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Abstract We define local Hardy spaces of differential forms h
p

D(∧T ∗M) for all
p ∈ [1,∞] that are adapted to a class of first-order differential operators D on a com-
plete Riemannian manifold M with at most exponential volume growth. In particular,
if D is the Hodge–Dirac operator on M and � = D2 is the Hodge–Laplacian, then
the local geometric Riesz transform D(� + aI)−1/2 has a bounded extension to h

p
D

for all p ∈ [1,∞], provided that a > 0 is large enough compared to the exponential
growth of M . A characterization of h1

D in terms of local molecules is also obtained.
These results can be viewed as the localization of those for the Hardy spaces of dif-
ferential forms H

p
D(∧T ∗M) introduced by Auscher, McIntosh, and Russ.
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1 Introduction and Main Results

The local Hardy space h1(Rn) introduced by Goldberg in [26] is an intermedi-
ate space H 1(Rn) ⊂ h1(Rn) ⊂ L1(Rn). The Hardy space H 1(Rn) is suited to
quasi-homogenous multipliers, and indeed the boundedness of the Riesz transforms
(Rju)ˆ(ξ) = iξj |ξ |−1û(ξ) is built into its definition. The local Hardy space h1(Rn),
however, is suited to smooth quasi-homogenous multipliers, and the boundedness of
local Riesz transforms, such as (rju) (̂ξ ) = iξj (|ξ |2 + a)−1/2û(ξ) for a > 0, is built
into its definition.

Let M denote a complete Riemannian manifold with geodesic distance ρ and Rie-
mannian measure μ. We adopt the convention that such a manifold M is smooth
and connected. Let L2(∧T ∗M) denote the Hilbert space of square-integrable differ-
ential forms on M . Let d and d∗ denote the exterior derivative and its adjoint on
L2(∧T ∗M). The Hodge–Dirac operator is D = d + d∗ and the Hodge–Laplacian is
� = D2. The geometric Riesz transform D�−1/2 is bounded on L2(∧T ∗M), which
led Auscher, McIntosh, and Russ in [7] to construct Hardy spaces of differential forms
H

p
D(∧T ∗M), or simply H

p
D , for all p ∈ [1,∞]. Among other things, they show that

the geometric Riesz transform is bounded on H
p
D and that H 1

D has a molecular char-
acterization.

The atomic characterization of H 1(Rn), due to Coifman [19] and Latter [33],
was used by Coifman and Weiss in [21] to define a Hardy space of functions on a
space of homogeneous type. A requirement in the definition of Hardy space atoms
a is that they satisfy the moment condition

∫
a = 0. The approach taken in [7] is

instead based on the connection between the tent spaces T p(Rn+1+ ) and Hp(Rn).
This connection was first recognized by Coifman, Meyer, and Stein, who showed
in Sect. 9B of [22] that Hp(Rn) is isomorphic to a complemented subspace of
T p(Rn+1+ ) for all p ∈ [1,∞]. More precisely, there exist two bounded operators
P : Hp(Rn) → T p(Rn+1+ ) and π : T p(Rn+1+ ) → Hp(Rn) such that Pπ is a pro-
jection and Hp(Rn) is isomorphic to Pπ(T p(Rn+1+ )).

The definition of the tent space T 1(Rn+1+ ) and its atoms, which are not required to
satisfy a moment condition, admit natural generalizations to differential forms. Also,
both P and π are convolution-type operators, which can be interpreted in terms of the
functional calculus of −id/dx. The idea in [7] was to define H

p
D in terms of the tent

space of differential forms T p(∧T ∗M × (0,∞)) and operators Q and S , which are
adapted to D in the same way that P and π are adapted to −id/dx. The main require-
ment for the construction was that operators such as the projection Q S be bounded on
T p(∧T ∗M × (0,∞)). The authors of [7] prove this by using off-diagonal estimates
for the resolvents of D to establish uniform bounds on tent space atoms. In this pa-
per, we adapt the definition of H

p
D to define local Hardy spaces of differential forms

h
p
D(∧T ∗M), or simply h

p
D , for all p ∈ [1,∞]. We first consider a general locally dou-

bling metric measure space X, and define a local tent space tp(X × (0,1]) and a new
function space L

p
Q(X), both of which have an atomic characterization for p = 1 and

admit a natural generalization to differential forms. One can show classically that
hp(Rn) is isomorphic to a complemented subspace of tp(Rn × (0,1]) ⊕ L

p
Q(Rn).

While square function characterizations for hp(Rn) are certainly known, this charac-
terization appears to be new.
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The atomic characterization of h1(Rn), due to Goldberg [26], consists of two types
of atoms. The first kind are supported on balls of radius less than one and satisfy a
moment condition, while the second kind are supported on balls with radius larger
than one and are not required to satisfy a moment condition. In our new characteri-
zation, we can associate the first kind of atoms with elements of t1(Rn × (0,1]) and
the second kind with elements of L1

Q(Rn).
The definition of H

p
D in [7] is limited to Riemannian manifolds that are doubling,

which we define below using the following notation. Given x ∈ M and r > 0, let
B(x, r) denote the open geodesic ball in M with center x and radius r , and let V (x, r)

denote the Riemannian measure μ(B(x, r)).

Definition 1.1 A complete Riemannian manifold M is doubling if there exists A ≥ 1
such that

0 < V (x,2r) ≤ AV (x, r) < ∞ (D)

for all x ∈ X and r > 0.

The doubling condition is equivalent to the requirement that there exist A ≥ 1 and
κ ≥ 0 such that

0 < V (x,αr) ≤ AακV (x, r) < ∞
for all x ∈ X, r > 0 and α ≥ 1. This condition is imposed to define H

p
D because

the Hardy space norm incorporates global geometry. The nature of the local Hardy
space, however, allows us to define h

p
D on manifolds that are only locally doubling.

Specifically, we define h
p
D on the following class of manifolds.

Definition 1.2 A complete Riemannian manifold M is exponentially locally dou-
bling if there exist A ≥ 1 and κ,λ ≥ 0 such that

0 < V (x,αr) ≤ Aακeλ(α−1)rV (x, r) < ∞ (Eκ,λ)

for all α ≥ 1, r > 0 and x ∈ M . The constants κ and λ are referred to as the polyno-
mial and exponential growth parameters, respectively.

The class of doubling Riemannian manifolds includes R
n with the Euclidean dis-

tance and the standard Lebesgue measure, as well as Lie groups with polynomial vol-
ume growth; other examples are listed in [7]. The class of exponentially locally dou-
bling Riemannian manifolds is larger and includes hyperbolic space (see Sect. 3.H.3
of [25]), Lie groups with exponential volume growth (see Sect. II.4 of [24]) and thus
all Lie groups. More generally, by Gromov’s variant of the Bishop comparison the-
orem (see [12, 27]), all Riemannian manifolds with Ricci curvature bounded from
below are exponentially locally doubling. This includes Riemannian manifolds with
bounded geometry, noncompact symmetric spaces, and Damek–Ricci spaces.

Taylor recently defined local Hardy spaces of functions on Riemannian manifolds
with bounded geometry in [46]. Hardy spaces of functions have also been defined
on some nondoubling metric measure spaces in [13, 15]; extensions of that work
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are also in [14, 35, 36]. The theory developed in those papers applies to R
n with the

Euclidean distance and the Gaussian measure, as well as to Riemannian manifolds on
which the Ricci curvature is bounded from below and the Laplace–Beltrami operator
has a spectral gap.

The Hardy spaces H
p
D in [7] are defined using the holomorphic functional cal-

culus of D in L2(∧T ∗M). In particular, the authors consider the class H∞(So
θ )

of functions that are bounded and holomorphic on the open bisector So
θ of angle

θ ∈ (0,π/2) centered at the origin in the complex plane. This is because the function
sgn(Re(z)) = z/

√
z2 maps D to the geometric Riesz transform D�−1/2 under the

H∞(So
θ ) functional calculus. The local Hardy spaces, however, are suited to the local

geometric Riesz transforms D(� + aI)−1/2 for a > 0, so we consider the smaller
class H∞(So

θ,r ) of functions that are bounded and holomorphic on So
θ ∪ Do

r , where
Do

r is the open disc of radius r > 0 centered at the origin in the complex plane.
The space h1

D has a characterization in terms of local molecules, which are defined
in Sect. 7.1. This is the first main result of the paper.

Theorem 1.3 Let κ,λ ≥ 0 and suppose that M is a complete Riemannian manifold
satisfying (Eκ,λ). If N ∈ N, N > κ/2, and q ≥ λ, then h1

D = h1
D,mol(N,q).

The following is the principal result of the paper.

Theorem 1.4 Let κ,λ ≥ 0 and suppose that M is a complete Riemannian manifold
satisfying (Eκ,λ). Let θ ∈ (0,π/2) and r > 0 such that r sin θ > λ/2. Then for all
f ∈ H∞(So

θ,r ), the operator f (D) on L2 has a bounded extension to h
p
D such that

‖f (D)u‖h
p
D

� ‖f ‖∞‖u‖h
p
D

for all u ∈ h
p
D and p ∈ [1,∞].

There is then the following corollary for the local geometric Riesz transforms.

Corollary 1.5 Let κ,λ ≥ 0 and suppose that M is a complete Riemannian man-
ifold satisfying (Eκ,λ). If a > λ2/4, then the local geometric Riesz transform
D(� + aI)−1/2 has a bounded extension to h

p
D for all p ∈ [1,∞].

The theory in this paper actually applies to a large class of first-order differential
operators, which we introduce in Sect. 5. These operators are denoted by D. Theo-
rems 1.3 and 1.4 follow from the more general results in Theorems 7.14 and 7.19 by
setting D = D, where D will always denote the Hodge–Dirac operator. The case of
the Hodge–Dirac operator is considered in Example 5.2.

Taylor proved in [44] that on a Riemannian manifold with bounded geometry,
where �0 denotes the Hodge–Laplacian on functions, a sufficient condition for the
operator f (

√
�0) to be bounded on Lp for all p ∈ (1,∞) is that f be holomorphic

and satisfy inhomogeneous Mihlin boundary conditions on an open strip of width
W ≥ λ/2 in the complex plane, where λ ≥ 0 is such that (Eκ,λ) holds. This result was
improved by Mauceri, Meda, and Vallarino in [34], and then by Taylor in [45]. The
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need for f to be holomorphic on a strip was originally noted by Clerc and Stein in
the setting of noncompact symmetric spaces in [18], and that work was extended by
others in [3, 16, 41].

In this paper, we do not assume bounded geometry. Theorem 1.4 represents the
beginning of the development of an approach to the theory discussed above based
on first-order operators. The connection between h

p

D and Lp is investigated in the
sequel, although note that h2

D is defined so that it can be identified with L2. Also,
Taylor’s result suggests that the bound r sin θ > λ/2 in Theorem 1.4 may be the best
possible, since r sin θ is the width of the largest open strip contained in So

θ,r .
For all x, y ∈ R, we adopt the convention whereby x � y means that there exists

a constant c ≥ 1, which may only depend on constants specified in the relevant pre-
ceding hypotheses, such that x ≤ cy. To emphasize that the constant c depends on a
specific parameter p, we write x �p y. Also, we write x � y to mean that x � y � x.
For all normed spaces X and Y , we write X ⊆ Y to mean both the set-theoretical
inclusion and the topological inclusion, whereby ‖x‖Y � ‖x‖X for all x ∈ X. Also,
we write X = Y to mean that X and Y are equal as sets and that they have equivalent
norms.

The structure of the paper is as follows: In Sect. 2 we develop local analogues of
some basic tools from harmonic analysis in the context of a locally doubling metric
measure space X. The local tent spaces tp(X× (0,1]) and the new spaces L

p
Q(X) are

introduced and shown to have atomic characterizations for p = 1 in Sects. 3 and 4,
respectively. We also obtain duality and interpolation results for these spaces. Next,
we introduce a general class of first-order differential operators, which includes the
Hodge–Dirac operator. We denote these operators by D and prove exponential off-
diagonal estimates for their resolvents in Sect. 5. These are used to prove the main
technical estimate in Sect. 6, which allows us to define the local Hardy spaces of dif-
ferential forms h

p

D(∧T ∗M) in Sect. 7. We also obtain duality and interpolation results
for the local Hardy spaces. Finally, Theorems 1.3 and 1.4 follow from Theorems 7.14
and 7.19 in the case of the Hodge–Dirac operator.

2 Localization

The subsequent two sections do not require a differentiable structure. To distinguish
these results, it is convenient to let X denote a metric measure space with metric ρ

and Borel measure μ.

Notation A ball in X will always refer to an open metric ball. Given x ∈ X and r > 0,
let B(x, r) denote the ball in X with center x and radius r , and let V (x, r) denote the
measure μ(B(x, r)). Given α, r > 0 and a ball B of radius r , let αB denote the ball
with the same center as B and radius αr .

The results here and in the next section hold if we assume the following local
doubling condition.

Definition 2.1 A metric measure space X is locally doubling if for each r > 0, the
function x �→ V (x, r) is continuous on X, and if for each b > 0, there exists Ab ≥ 1
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such that

0 < V (x,2r) ≤ AbV (x, r) < ∞ (Dloc)

for all x ∈ X and r ∈ (0, b].

Remark 2.2 The continuity of x �→ V (x, r) is assured on a complete Riemannian
manifold and in most applications, but in general only lower semicontinuity is guar-
anteed. We require this condition because it implies that the volumes of open balls
and closed balls are identical (see also Remark 3.2).

If supb Ab < ∞, then (Dloc) is equivalent to (D) in Definition 1.1. In fact, the
doubling condition was introduced by Coifman and Weiss in [20] to define a space
of homogeneous type. The results here are a localized version of that work. We begin
by proving the following useful consequence of local doubling.

Proposition 2.3 If X is locally doubling, then for each b > 0 there exists κb ≥ 0 such
that

V (x,αr) ≤ Abα
κbV (x, r)

for all x ∈ X, r ∈ (0, b] and α ∈ [1,2b/r].

Proof Let N = �log2 α�, which is the smallest integer not less than log2 α, so
that 2N−1 < α ≤ 2N and B(x, α

2N r) ⊆ B(x, r). Application of the (Dloc) inequality
N times reveals that

V (x,αr) ≤ AN
b V

(

x,
α

2N
r

)

≤ Abα
κbV (x, r),

where κb = log2 Ab . �

We introduce the local property of homogeneity, which is the local analogue of
the property of homogeneity from [20], and show that it holds on a locally doubling
space. This property allows us to apply harmonic analysis locally on X.

Definition 2.4 A metric space (X,ρ) has the local property of homogeneity if for
each b > 0 there exists Nb ∈ N such that for all x ∈ X and r ∈ (0, b], the ball B(x, r)

contains at most Nb points (xj )j=1,...,Nb
satisfying ρ(xj , xk) ≥ r/2 for all j �= k.

Remark 2.5 The local property of homogeneity is equivalent to the requirement that
if b > 0, then for all x ∈ X, r ∈ (0, b] and n ∈ N, the ball B(x, r) contains at most
Nn

b points (xj )j=1,...,Nn
b

satisfying ρ(xj , xk) ≥ r/2n for j �= k. The proof of this is
similar to that of Lemma 1.1 in Chap. III of [20]. This property is more suited to
applications. It can be used, for instance, to prove the next proposition.

Proposition 2.6 If X is a locally doubling metric measure space, then it has the local
property of homogeneity.
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Proof This follows the proof of the Remark on p. 67 in Chap. III of [20]. �

Following the scheme of [20], we use the local property of homogeneity to prove
local covering lemmas. The next two proofs are adapted from [1], which treats the
global case.

Proposition 2.7 (Vitali–Wiener type covering lemma) Let X be a metric space with
the local property of homogeneity. Let B be a collection of balls in X. If there is a
finite upper bound on the radii of the balls in B, then there exists a sequence (Bj )j of
pairwise disjoint balls in B with the property that each B ∈ B is contained in some
4Bj .

Proof Fix R > 0 such that the radii r(B) ≤ R for all B ∈ B. Let δ ∈ (0,1) to be fixed
later, and for each k ∈ N define

Bk = {B ∈ B | δkR < r(B) ≤ δk−1R}.
Proceeding recursively for k = 1,2, . . . , choose a maximal subset B̃k of pairwise
disjoint balls in Bk according to the following requirements:

(1) B̃k ⊆ Bk ;
(2) If B,B ′ ∈⋃k

j=1 B̃j and B �= B ′, then B ∩ B ′ = ∅;

(3) If B ∈ Bk \ B̃k , then there exists B ′ ∈⋃k
j=1 B̃j such that B ∩ B ′ �= ∅.

To show that each B̃k is countable, choose B0 ∈ B̃k and write

B̃k =
⋃

n∈N

{B ∈ B̃k | B ⊆ nB0}.

For each n ∈ N, the centers of all of the balls in {B ∈ B̃k | B ⊆ nB0} are separated
by at least a distance of δkR and contained in a ball of radius nR, so countability
follows by the local property of homogeneity. Therefore, the collection B̃ =⋃k B̃k

is a sequence (Bj )j of pairwise disjoint balls in B.
To complete the proof, let B ∈ B \ B̃. For some k ∈ N, we have B ∈ Bk \ B̃k and

there exists B ′ ∈⋃k
j=1 B̃j such that B ∩ B ′ �= ∅. In particular, we have B ′ ∈ B̃k′ for

some k′ ≤ k, so if x′ denotes the center of B ′, then

ρ(y, x′) ≤ 2r(B) + r(B ′) ≤ 2δk′−1R + r(B ′) ≤ (2/δ + 1)r(B ′)

for all y ∈ B . If we set δ = 2/3, then B ⊆ 4B ′ and the proof is complete. �

Proposition 2.8 (Whitney type covering lemma) Let X be a metric space with the
local property of homogeneity. Let O be a nonempty proper open subset of X and let
cO = X \ O . For each h > 0, there exists a sequence of pairwise disjoint balls (Bj )j
with center xj ∈ X and radius

rj = 1

8
min(ρ(xj ,

cO),h)
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such that, if B̃j = 4Bj , then O = ⋃j B̃j and the following bounded intersection
property is satisfied:

sup
j

�
({k | B̃j ∩ B̃k �= ∅})< ∞.

Furthermore, there exists a sequence (φj )j of nonnegative functions supported in B̃j

such that infx∈Bj
φj (x) > 0 and

∑
j φj = 1O , where 1O denotes the characteristic

function of O .

Proof Let B denote the collection of all balls with center x ∈ O and radius r =
1
8 min(ρ(x, cO),h). Proposition 2.7 gives a sequence (Bj )j = (B(xj , rj ))j of pair-

wise disjoint balls from B such that O ⊆⋃j B̃j , and since 4rj < ρ(xj ,
cO), we

actually have O =⋃j B̃j .

We note some facts to help prove that (B̃j )j has the bounded intersection property.
First, if x ∈ B̃j , then

ρ(x, cO) ≥ ρ(xj ,
cO) − ρ(xj , x) ≥ 8rj − 4rj = 4rj . (2.1)

Second, given c > 0, if x ∈ B̃j and ρ(xj ,
cO) ≤ crj , then

ρ(x, cO) ≤ ρ(x, xj ) + ρ(xj ,
cO) ≤ (4 + c)rj . (2.2)

Now suppose that B̃j ∩ B̃k �= ∅. This implies that

ρ(xj , xk) ≤ 4(rj + rk) ≤ h. (2.3)

Consider two cases: (1) If ρ(xj ,
cO) > 2h, then by (2.3) we have

ρ(xk,
cO) ≥ ρ(xj ,

cO) − ρ(xj , xk) > h,

so rk = h/8 = rj and Bk ⊆ 9Bj ; (2) If ρ(xj ,
cO) ≤ 2h, then by (2.3) we have

ρ(xk,
cO) ≤ ρ(xk, xj ) + ρ(xj ,

cO) ≤ 3h,

which implies that ρ(xk,
cO) ≤ 24rk , since either ρ(xk,

cO) = 8rk or h = 8rk . In this
case, if x ∈ B̃j ∩ B̃k , then by (2.1) and (2.2) with c = 24 we obtain

4rj ≤ ρ(x, cO) ≤ 28rj and 4rk ≤ ρ(x, cO) ≤ 28rk,

so (1/7)rj ≤ rk ≤ 7rj and Bk ⊆ 39Bj .
The above shows that for each j ∈ N, the centers of all balls B̃k satisfying B̃j ∩

B̃k �= ∅ are separated by at least a distance of (1/7)rj and contained in a ball of radius
39rj ≤ 5h. The bounded intersection property then follows from the local property
of homogeneity.

To construct the sequence of functions (φj )j , let η be the function equal to 1 on
[0,1) and 0 on [1,∞). For each j ∈ N, define

ψj(x) = η

(
ρ(x, xj )

4rj

)



114 A. Carbonaro et al.

for all x ∈ X. These are nonnegative functions supported in B̃j . We also have
1 ≤∑j ψj (x) < ∞ for all x ∈ O , since O =⋃j B̃j and the bounded intersection
property is satisfied. The required functions are then defined for each j ∈ N by

φj (x) =
{

ψj(x)/
∑

k ψk(x), if x ∈ O;
0, if x ∈ cO. �

We now prove a general version of the fundamental theorem for the (centered)
local maximal operator Mloc defined for all measurable functions f on X by

Mlocf (x) = sup
r∈(0,1]

1

V (x, r)

∫

B(x,r)

|f (y)|dμ(y)

for all x ∈ X.

Proposition 2.9 Let X be a locally doubling metric measure space. If f is a measur-
able function on X, then Mlocf is lower semicontinuous, and thus measurable, and
the following hold:

(1) If α > 0, then μ({x ∈ X | Mlocf (x) > α}) � ‖f ‖1/α for all f ∈ L1(X);
(2) If 1 < p ≤ ∞, then ‖Mlocf ‖p �p ‖f ‖p for all f ∈ Lp(X).

Proof The lower semicontinuity of Mlocf is guaranteed by Fatou’s Lemma and the
continuity of the mapping x �→ V (x, r) from Definition 2.1.

To prove (1), let f ∈ L1(X) and set Eα = {x ∈ X | Mlocf (x) > α} for each α > 0.
If x ∈ Eα , then there exists rx ∈ (0,1] such that

1

V (x, rx)

∫

B(x,rx)

|f (y)|dμ(y) > α.

By Proposition 2.7, the collection B = (B(x, rx))x∈Eα contains a subsequence (Bj )j

of pairwise disjoint balls such that, if B̃j = 4Bj , then (B̃j )j cover Eα . Therefore, by
(Dloc) we have

∫

X

|f (y)|dμ(y) ≥
∑

j

∫

Bj

|f (y)|dμ(y) > α
∑

j

μ(Bj ) � αμ(Eα).

The proof of (2) is then standard (see, for instance, Sect. I.1.5 of [42]). �

We conclude this section by proving that a locally doubling space is exponentially
locally doubling, as in Definition 1.2, if and only if it satisfies a certain additional
condition on volume growth. While we do not make explicit use of this equivalence,
it shows why (Eκ,λ) is often a more useful assumption than (Dloc). In particular, it
allows us to obtain the atomic characterization of the space L1

Q(X) in Sect. 4.

Proposition 2.10 Let X be a locally doubling metric measure space. Then X is ex-
ponentially locally doubling if and only if there exist A0 ≥ 1 and b0, δ > 0 such that

V (x, r + δ) ≤ A0V (x, r) (Dglo)

for all r ≥ b0 and x ∈ X.
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Proof If X satisfies (Eκ,λ), then for any b0 > 0 and δ > 0, we have

V (x, r + δ) = V (x, (1 + δ/r)r) ≤ A(1 + δ/b0)
κeλδV (x, r)

for all r ≥ b0 and x ∈ X.
To prove the converse, suppose X satisfies (Dglo) and let α > 1. Consider three

cases:
If r > b0, choose N ∈ N so that αr − Nδ ∈ (r, r + δ]. Application of the (Dglo)

inequality N + 1 times reveals that

V (x,αr) ≤ AN+1
0 V (x, r) ≤ A0e

λ(α−1)rV (x, r), (2.4)

where λ = (logA0)/δ;
If r ∈ (0, b0] and α ∈ (1,2b0/r], then Proposition 2.3 implies that

V (x,αr) ≤ Ab0α
κb0 V (x, r); (2.5)

If r ∈ (0, b0] and α > 2b0/r , then we obtain

V (x,αr) = V (x, (αr/2b0)2b0)

≤ A0e
λ(αr/2b0−1)2b0V (x,2b0)

≤ A0e
λ(α−1)rV (x, (2b0/r)r)

≤ A0Ab0α
κb0 eλ(α−1)rV (x, r),

where we used (2.4) to obtain the first inequality and (2.5) to obtain the final inequal-
ity.

These show that X satisfies (Eκ,λ) with κ = κb0 and λ = (logA0)/δ. �

3 Local Tent Spaces tp(X × (0,1])
We introduce the local tent spaces tp(X × (0,1]), or simply tp , for all p ∈ [1,∞]
in the context of a locally doubling metric measure space X. Note that functions on
X × (0,1] are assumed to be complex valued. There is also the following notation.

Notation The cone of aperture α > 0 and height 1 with vertex at x ∈ X is

�1
α(x) = {(y, t) ∈ X × (0,1] | ρ(x, y) < αt}.

Let �1(x) = �1
1(x). For any closed set F ⊆ X and any open set O ⊆ X, define

R1
α(F ) =

⋃

x∈F

�1
α(x) and T 1

α (O) = (X × (0,1]) \ R1
α(cO),

where cO = X \ O . Let T 1(O) = T 1
1 (O) and call it the truncated tent over O . Note

that

T 1
α (O) = {(y, t) ∈ X × (0,1] | ρ(y, cO) ≥ αt}.
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For any ball B in X of radius r(B) > 0, the truncated Carleson box over B is

C1(B) = B × (0,min{r(B),1}].
Finally, if E is a measurable subset of X × (0,1], then 1E denotes the characteristic
function of E on X × (0,1].

The local Lusin operator Aloc and its dual Cloc are defined for any measurable
function f on X × (0,1] as follows:

Alocf (x) =
(∫∫

�1(x)

|f (y, t)|2 dμ(y)

V (x, t)

dt

t

) 1
2 ;

Clocf (x) = sup
B∈B2(x)

(
1

μ(B)

∫∫

T 1(B)

|f (y, t)|2dμ(y)
dt

t

) 1
2

for all x ∈ X, where B2(x) denotes the set of all balls B in X of radius r(B) ≤ 2 such
that x ∈ B . We now define the local tent spaces.

Definition 3.1 Let X be a locally doubling metric measure space. For each p ∈
[1,∞), the local tent space tp(X × (0,1]) consists of all measurable functions f

on X × (0,1] with

‖f ‖tp = ‖Alocf ‖p < ∞.

The local tent space t∞(X × (0,1]) consists of all measurable functions f on
X × (0,1] with

‖f ‖t∞ = ‖Clocf ‖∞ < ∞.

Remark 3.2 Recall that in Definition 2.1 we required the continuity of the mapping
x �→ V (x, r) for each r > 0. This implies that the volumes of open balls and closed
balls are identical, which ensures that Alocf and Clocf are lower semicontinuous and
thus measurable.

The local tent spaces are Banach spaces under the usual identification of func-
tions that are equal almost everywhere. This follows as in the global case in [22]. In
particular, completeness holds by dominated convergence upon noting that for each
compact set K ⊆ X × (0,1] and each p ∈ [1,∞], we have

‖1Kf ‖tp �K,p

(∫∫

K

|f (y, t)|2dμ(y)dt

) 1
2

�K,p ‖f ‖tp (3.1)

for all measurable functions f on X × (0,1].
Let L2•(X × (0,1]), or simply L2•, denote the Hilbert space of all measurable func-

tions f on X × (0,1] with

‖f ‖L2• =
(∫∫

|f (y, t)|2dμ(y)
dt

t

) 1
2

< ∞.
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We have t2 = L2•, since if (y, t) ∈ �1(x), then t ≤ 1, B(y, t) ⊆ B(x,2t) and B(x, t) ⊆
B(y,2t), so by (Dloc) we obtain

‖f ‖2
t2 �

∫∫∫
1�1(x)(y, t)|f (y, t)|2 dμ(y)

V (y, t)

dt

t
dμ(x) = ‖f ‖2

L2•
.

These observations lead us to the following density result, which is crucial to the
extension procedure in Sect. 6.

Proposition 3.3 Let X be a locally doubling metric measure space. For all p ∈
[1,∞) and q ∈ [1,∞], the set tp ∩ tq is dense in tp .

Proof Let f ∈ tp and p ∈ [1,∞). Fix a ball B in X and define

fk = 1kB×[1/k,1]f

for each k ∈ N. The functions fk belong to tp ∩ tq for all q ∈ [1,∞] by (3.1), and
limk→∞ ‖f − fk‖tp = 0 by dominated convergence. �

We characterize t1 in terms of the following atoms.

Definition 3.4 Let X be a locally doubling metric measure space. A t1-atom is a
measurable function a on X × (0,1] supported in the truncated tent T 1(B) over a
ball B in X of radius r(B) ≤ 2 with

‖a‖L2• =
(∫∫

T 1(B)

|a(y, t)|2dμ(y)
dt

t

) 1
2 ≤ μ(B)−

1
2 .

If a is a t1-atom corresponding to a ball B as above, then the Cauchy–Schwarz
inequality implies that a ∈ t1 ∩ t2 with ‖a‖t2 � ‖a‖L2• ≤ μ(B)−1/2 and

‖a‖t1 ≤ μ(B)
1
2 ‖a‖t2 � 1. (3.2)

Remark 3.5 If (λj )j is a sequence in �1 and (aj )j is a sequence of t1-atoms, then
(3.2) implies that

∑
j λjaj converges in t1 with ‖∑j λjaj‖t1 � ‖(λj )j‖�1 . Note that

this did not require the condition r(B) ≤ 2 in Definition 3.4.

The atomic characterization of t1 asserts the converse of the above remark. This
is the content of the following theorem.

Theorem 3.6 Let X be a locally doubling metric measure space. If f ∈ t1, then there
exist a sequence (λj )j in �1 and a sequence (aj )j of t1-atoms such that

∑
j λjaj

converges to f in t1 and almost everywhere in X × (0,1]. Moreover, we have

‖f ‖t1 � inf

{

‖(λj )j‖�1 : f =
∑

j

λj aj

}

.

Also, if p ∈ (1,∞) and f ∈ t1 ∩ tp , then
∑

j λj aj converges to f in tp as well.
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The proof of Theorem 3.6 is deferred to Appendix so that it does not disrupt the
main flow of ideas. It is also possible to characterize t1 in terms of atoms supported
in truncated Carleson boxes.

Definition 3.7 Let X be a locally doubling metric measure space. A t1-Carleson
atom is a measurable function a on X × (0,1] supported in the truncated Carleson
box C1(B) over a ball B in X of radius r(B) > 0 with ‖a‖L2• ≤ μ(B)−1/2.

It is immediate that Theorem 3.6 holds with t1-Carleson atoms in place of t1-
atoms. As explained in Remark 3.5, the converse of Theorem 3.6 does not require
the upper bound r(B) ≤ 2 on the radii of the supports of t1-atoms. This may not be
the case for t1-Carleson atoms on a locally doubling metric measure space. In the
following proposition, however, we show that this is the case on an exponentially
locally doubling metric measure space. We will need this to prove the molecular
characterization of h1

D in Lemma 7.17. This is the first indication that (Eκ,λ) is more
suited to our purposes than (Dloc).

Proposition 3.8 Let X be an exponentially locally doubling metric measure space. If
(λj )j is a sequence in �1 and (aj )j is a sequence of t1-Carleson atoms, then

∑
j λjaj

converges in t1 with ‖∑j λj aj‖t1 � ‖(λj )j‖�1 .

Proof It is enough to show that sup‖a‖t1 � 1, where the supremum is taken over all
a that are t1-Carleson atoms.

Let a be a t1-Carleson atom supported on a ball B in X of radius r(B) > 0 with
‖a‖L2• ≤ μ(B)−1/2. First suppose that r(B) ≤ 1. It follows by (Dloc) that μ(2B) ≤
cμ(B) for some c > 0 that does not depend on B . Also, we have C1(B) ⊂ T 1(2B)

and the radius r(2B) ≤ 2. This implies that a/
√

c is a t1-atom and the result follows
by (3.2).

Now suppose that r(B) > 1. Let B be the collection of all balls centered in B with
radius equal to 1/4. Proposition 2.7 gives a sequence (Bj )j of pairwise disjoint balls
from B such that B ⊆⋃j B̃j , where B̃j = 4Bj . We also have the following bounded
intersection property:

sup
j

�
({k | B̃j ∩ B̃k �= ∅})< ∞.

This follows from the local property of homogeneity, and in particular Remark 2.5,
since for each j ∈ N, the centers of all balls B̃k satisfying B̃j ∩ B̃k �= ∅ are separated
by at least a distance of 1/4 and contained in 2B̃j . Therefore, the following are well
defined for each j ∈ N:

ãj =
a1

C1(B̃j )
∑

k 1
C1(B̃k)

; aj = ãj

μ(B̃j )
1
2 ‖ãj‖L2•

; λj = μ(B̃j )
1
2 ‖ãj‖L2• .

Also, we have C1(B) = B × (0,1] ⊆⋃j C1(B̃j ), since the radius r(B̃j ) = 1. We

can then write a =∑j λjaj , where each aj is a t1-atom by the previous paragraph.
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Therefore, we have

‖a‖2
t1 �
(∑

j

|λj |
)2

≤
(∑

j

μ(B̃j )

)(∑

j

‖ãj‖2
2

)

� μ

(⋃

j

Bj

)

‖a‖2
2,

where we used (Dloc) in the final inequality to obtain μ(B̃j ) � μ(Bj ). Each Bj is
contained in (1 + 1

4r(B)
)B , so by (Eκ,λ) we obtain

‖a‖2
t1 � μ

((

1 + 1

4r(B)

)

B

)

μ(B)−1 � 1,

which completes the proof. �

The following duality and interpolation results for the local tent spaces follow as
in the global case.

Theorem 3.9 Let X be a locally doubling metric measure space. If p ∈ [1,∞) and
1/p + 1/p′ = 1, then the mapping

g �→ 〈f,g〉L2• =
∫∫

f (x, t)g(x, t)dμ(x)
dt

t

for all f ∈ tp and g ∈ tp
′

is an isomorphism from tp
′

onto the dual space (tp)∗.

Proof For p = 1 and p′ = ∞, the proof is closely related to the atomic characteriza-
tion in Theorem 3.6 and follows the proof of Theorem 1 in [22]. The remaining cases
follow the proof of Theorem 2 in [22]. �

Theorem 3.10 Let X be a locally doubling metric measure space. If θ ∈ (0,1) and
1 ≤ p0 < p1 ≤ ∞, then

[tp0 , tp1]θ = tpθ ,

where 1/pθ = (1 − θ)/p0 + θ/p1 and [·, ·]θ denotes complex interpolation.

Proof The interpolation space [tp0 , tp1]θ is well defined because

tp(X × (0,1]) ⊆ L2
loc(X × (0,1])

for all p ∈ [1,∞] by (3.1). This allows us to construct the Banach space tp0 + tp1 ,
which is the smallest ambient space in which tp0 and tp1 are continuously embedded.
The proof then follows that of Theorem 3 and Proposition 1 in [11]. �

We conclude this section by dealing with a technicality involving the space t∞. In
contrast with Proposition 3.3, the set t∞ ∩ t2 may not be dense in t∞ when X is not
compact. Therefore, define t̃∞ to be the closure of t1 ∩ t∞ in t∞, so we have both
the density of t̃∞ ∩ t2 in t̃∞ and the interpolation result in the following corollary.
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Corollary 3.11 Let X be a locally doubling metric measure space. If θ ∈ (0,1) and
1 ≤ p < ∞, then

[tp, t̃∞]θ = tpθ ,

where 1/pθ = (1 − θ)/p and [·, ·]θ denotes complex interpolation. Also, the set t̃∞ ∩
tq is dense in t̃∞ for all q ∈ [1,∞], and t2 is dense in t1 + t̃∞.

Proof If θ ∈ (0,1), then by a standard property of complex interpolation, as in The-
orem 1.9.3(g) of [47], and Theorem 3.10, we have

[t1, t̃∞]θ = [t1, t∞]θ = t1/(1−θ).

If p ∈ (1,∞), then by the standard reiteration theorem for complex interpolation, as
in Theorem 1.7 in Chap. IV of [32], we have

[tp, t̃∞]θ = [t1, t̃∞](1−θ)(1−1/p)+θ = tpθ ,

where the density properties required to apply the reiteration theorem are guaranteed
by Proposition 3.3.

Finally, the interpolation in Theorem 3.10 implies that t1 ∩ t∞ ⊆ tq for all q ∈
[1,∞]. Therefore, the density of t1 ∩ t∞ in t̃∞ implies that t̃∞ ∩ tq is dense in t̃∞
for all q ∈ [1,∞]. The density of t1 ∩ t2 in t1 from Proposition 3.3 then implies that
t2 is dense in t1 + t̃∞. �

4 Some New Function Spaces L
p
Q(X)

We introduce some new function spaces L
p
Q(X), or simply L

p
Q, for all p ∈ [1,∞] in

the context of a locally doubling metric measure space X. Note that functions on X

are assumed to be complex valued. We begin with the following abstraction of the
unit cube structure in R

n.

Definition 4.1 Let X be a metric measure space. A unit cube structure on X is a
countable collection Q = (Qj )j of pairwise disjoint measurable sets that cover X,
for which there exists δ ∈ (0,1] and a sequence of balls (Bj )j in X of radius equal to
1 such that

δBj ⊆ Qj ⊆ Bj .

The sets in Q are called unit cubes.

A unit cube structure exists on a locally doubling space.

Lemma 4.2 If X is a locally doubling metric measure space, then it has a unit cube
structure.

Proof The cubes are constructed in the same way that general dyadic cubes are con-
structed in Sect. I.3.2 of [43]. Let B be the collection of all balls in X with radius
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equal to 1/4. Proposition 2.7 gives a sequence (Bj )j of pairwise disjoint balls from
B such that X =⋃j 4Bj . The unit cubes Qj are then defined recursively for each
j ∈ N by

Qj = 4Bj ∩ c

(⋃

k<j

Qk

)

∩ c

(⋃

k>j

Bk

)

.

We have δ = 1/4 in this unit cube structure. �

In the proof above we could instead use the dyadic cubes constructed by Christ
in [17]. In any case, this brings us to the definition of L1

Q(X).

Definition 4.3 Let X be a locally doubling metric measure space. Let Q = (Qj )j
be a unit cube structure on X. For each p ∈ [1,∞), the space L

p
Q(X) consists of all

measurable functions f on X with

‖f ‖L
p
Q

=
( ∑

Qj ∈Q

(
μ(Qj )

1
p

− 1
2 ‖1Qj

f ‖2
)p
) 1

p

< ∞.

The space L∞
Q (X) consists of all measurable functions f on X with

‖f ‖L∞
Q

= sup
Qj ∈Q

μ(Qj )
− 1

2 ‖1Qj
f ‖2 < ∞.

These are Banach spaces under the usual identification of functions that are equal
almost everywhere. The space L2

Q(X) is exactly the Hilbert space L2(X). More gen-
erally, completeness holds because for each compact set K ⊆ X and each p ∈ [1,∞],
we have

‖1Kf ‖L
p
Q

�K,p ‖1Kf ‖2 �K,p ‖f ‖L
p
Q

(4.1)

for all measurable functions f on X.
We will see that the L

p
Q spaces are independent of the unit cube structure Q used

in their definition. First, however, we consider their relationship with the Lp spaces.

Proposition 4.4 Let X be a locally doubling metric measure space. The following
hold:

(1) L
p
Q ∩ L

q
Q is dense in L

p
Q for all p ∈ [1,∞) and q ∈ [1,∞];

(2) L
p
Q ⊆ Lp for all p ∈ [1,2];

(3) Lp ⊆ L
p
Q for all p ∈ [2,∞].

Proof Let p ∈ [1,∞) and f ∈ L
p
Q. Fix a ball B in X of radius r(B) ≥ 1 and define

fk = 1kBf for each k ∈ N. The functions fk belong to L
p
Q ∩ L

q
Q for all q ∈ [1,∞]

by (4.1), and

lim
k→∞‖f − fk‖p

L
p
Q

= lim
k→∞

∑

Qj ∩c(kB)�=∅

(
μ(Qj )

1
p

− 1
2 ‖1Qj

f ‖2
)p = 0
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because f ∈ L
p
Q, which proves (1).

We use Hölder’s inequality to prove (2) and (3). If p ∈ [1,2], then

‖f ‖p
p =

∑

Qj ∈Q

‖1Qj
f p‖1 ≤

∑

Qj ∈Q

(
μ(Qj )

1
p

− 1
2 ‖1Qj

f ‖2
)p = ‖f ‖p

L
p
Q

for all f ∈ L
p
Q, which proves (2). If p ∈ [2,∞), then

‖f ‖p

L
p
Q

=
∑

Qj ∈Q

(
μ(Qj )

1
p

− 1
2 ‖1Qj

f 2‖
1
2
1

)p ≤
∑

Qj ∈Q

‖1Qj
f ‖p

p = ‖f ‖p
p

for all f ∈ Lp , while

‖f ‖L∞
Q

= sup
Qj ∈Q

μ(Qj )
− 1

2 ‖1Qj
f 2‖

1
2
1 ≤ sup

Qj ∈Q
‖1Qj

f 2‖
1
2∞ = ‖f ‖∞

for all f ∈ L∞, which proves (3). �

Now we turn to the atomic characterization of L1
Q.

Definition 4.5 Let X be a locally doubling metric measure space. An L1
Q-atom is

a measurable function a on X supported on a ball B in X of radius r(B) ≥ 1 with
‖a‖2 ≤ μ(B)−1/2.

If a is an L1
Q-atom, then a belongs to L1

Q ∩ L2 with ‖a‖1 � 1. If X is exponen-
tially locally doubling, then it is shown in the following theorem that ‖a‖L1

Q
� 1.

This allows us to prove that L1
Q is precisely the subspace of L1 in which functions

have an atomic characterization consisting purely of atoms supported on balls with
large radii. The effectiveness of (Eκ,λ) in the proof of the first part of the following
theorem can be understood in terms of its equivalence with the condition (Dglo) from
Proposition 2.10.

Theorem 4.6 Let X be an exponentially locally doubling metric measure space. The
following hold:

1. If (λj )j is a sequence in �1 and (aj )j is a sequence of L1
Q-atoms, then

∑
j λjaj

converges in L1
Q with ‖∑j λjaj‖L1

Q
� ‖(λj )j‖�1 ;

2. If f ∈ L1
Q, then there exist a sequence (λj )j in �1 and a sequence (aj )j of L1

Q-
atoms such that

∑
j λj aj converges to f in L1

Q and almost everywhere in X.
Moreover, we have

‖f ‖L1
Q

� inf

{

‖(λj )j‖�1 : f =
∑

j

λj aj

}

.

Also, if p ∈ (1,∞) and f ∈ L1
Q ∩ L

p
Q, then

∑
j λjaj converges to f in L

p
Q as

well.
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Proof To prove (1), it is enough to show that sup{‖a‖L1
Q

: a is an L1
Q-atom} � 1. Let

a be an L1
Q-atom supported on a ball B of radius r(B) ≥ 1. Let

QB = {Qj ∈ Q : Qj ∩ B �= ∅}.

For each Qj ∈ QB , there exists a ball Bj in X of radius equal to 1 such that

δBj ⊆ Qj ⊆ Bj ,

where δ is the constant associated with Q in Definition 4.1. The Cauchy–Schwarz
inequality and the properties of the unit cube structure imply that

‖a‖2
L1

Q
≤ ‖a‖2

2

∑

Qj ∈QB

μ(Qj ) = ‖a‖2
2 μ

( ⋃

Qj ∈QB

Qj

)

≤ μ(B)−1μ

((

1 + 2

r(B)

)

B

)

.

The lower bound on r(B) and (Eκ,λ) then imply that ‖a‖L1
Q

� 1, where the constant

in � does not depend on a.
To prove (2), let f ∈ L1

Q. We can write f (x) =∑Qj ∈Q λjaj (x) for almost every
x ∈ X, where

aj (x) = 1Qj
f (x)

μ(Qj )
1
2 ‖1Qj

f ‖2

and λj = μ(Qj )
1
2 ‖1Qj

f ‖2.

Given that f ∈ L1
Q, this series also converges to f in L1

Q. The same reasoning shows
that if f ∈ L1

Q ∩ L
p
Q for some p ∈ (1,∞), then the series also converges to f in L

p
Q.

Also, each aj is supported in Qj ⊆ Bj , so by (Dloc) we obtain

‖aj‖2 ≤ μ(Qj )
− 1

2 ≤ μ(δBj )
− 1

2 � μ(Bj )
− 1

2 .

Therefore, each aj is a constant multiple of an L1
Q-atom, and this constant does not

depend on f or Qj . The result then follows since ‖(λj )j‖�1 = ‖f ‖L1
Q

. �

Remark 4.7 The proof of the second part of Theorem 4.6 actually shows that a func-
tion in L1

Q has a characterization in terms of L1
Q-atoms supported on balls of radius

equal to 1.

The definition of L1
Q-atoms does not require a unit cube structure. Therefore, the

atomic characterization of L1
Q shows that, up to an equivalence of norms, L1

Q is inde-
pendent of the unit cube structure Q used in its definition. The atomic characterization
of L1

Q is also related to the following duality.
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Theorem 4.8 Let X be an exponentially locally doubling metric measure space. If
p ∈ [1,∞) and 1/p + 1/p′ = 1, then the mapping

g �→ 〈f,g〉L2 =
∫

f (x)g(x)dμ(x)

for all f ∈ L
p
Q and g ∈ L

p′
Q , is an isometric isomorphism from L

p′
Q onto the dual

space (L
p
Q)∗.

Proof Let p ∈ [1,∞). If f ∈ L
p
Q and g ∈ L

p′
Q , then Hölder’s inequality gives

|〈f,g〉L2 | ≤
∑

Qj ∈Q

|〈1Qj
f,1Qj

g〉L2 |

≤
∑

Qj ∈Q

‖1Qj
f ‖2‖1Qj

g‖2μ(Qj )
1
p

− 1
2 μ(Qj )

1
2 − 1

p

≤ ‖f ‖L
p
Q
‖g‖

L
p′
Q

.

To prove the converse, given p and q ∈ [1,∞), let wq(Qj ) = μ(Qj )
1−q/2 for all

Qj ∈ Q, and define �p(wq) to be the space of all sequences ξ = {ξQj
}Qj ∈Q with

ξQj
∈ L2(Qj ) and

‖ξ‖�p(wq) =
( ∑

Qj ∈Q

‖1Qj
ξQj

‖p

2 wq(Qj )

) 1
p

< ∞.

Let T ∈ (L
p
Q)∗ and define T̃ ∈ (�p(wp))∗ by

T̃ (ξ) = T

( ∑

Qj ∈Q

1Qj
ξQj

)

for all ξ ∈ �p(wp). It is immediate that ‖T̃ ‖ ≤ ‖T ‖, and by the standard duality there
exists η ∈ �p′

(wp) such that ‖η‖
�p′

(wp)
≤ ‖T̃ ‖ and

T̃ (ξ) =
∑

Qj ∈Q

〈1Qj
ξQj

,1Qj
ηQj

〉L2wp(Qj )

for all ξ ∈ �p(wp). Therefore, we have

T (f ) = T̃ ({1Qj
f }Qj ∈Q) =

∑

Qj ∈Q

〈f,1Qj
ηQj

〉L2wp(Qj ) = 〈f,g〉L2

for all f ∈ L
p
Q, where g =∑Qj ∈Q 1Qj

ηQj
wp(Qj ). Now consider two cases: (1) If

p ∈ (1,∞), then

‖g‖
L

p′
Q

=
( ∑

Qj ∈Q

μ(Qj )
1− p′

2 ‖ηQj
μ(Qj )

1− p
2 ‖p′

2

) 1
p′

= ‖η‖
�p′

(wp)
≤ ‖T ‖;
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(2) If p = 1, then

‖g‖L∞
Q

= sup
Qj ∈Q

μ(Qj )
− 1

2 ‖1Qj
g‖2

= sup
Qj ∈Q

μ(Qj )
− 1

2 sup
‖f ‖2=1,

spptf ⊆Qj

|〈f,g〉L2 |

= sup
Qj ∈Q

sup
‖f ‖2=1,

spptf ⊆Qj

μ(Qj )
− 1

2 |T (f )|

≤ sup
Qj ∈Q

sup
‖f ‖2=1,

spptf ⊆Qj

μ(Qj )
− 1

2 ‖T ‖‖f ‖L1
Q

= ‖T ‖,
which completes the proof. �

The duality between L1
Q and L∞

Q shows that, up to an equivalence of norms, L∞
Q

is independent of the unit cube structure Q used in its definition. This is made explicit
by the following corollary.

Corollary 4.9 Let X be an exponentially locally doubling metric measure space. Let
B1 denote the set of all balls B in X of radius r(B) ≥ 1. Then

‖f ‖L∞
Q

� sup
B∈B1

μ(B)−
1
2 ‖1Bf ‖2

for all f ∈ L∞
Q .

Proof Let f ∈ L∞
Q . Given Q ∈ Q, let B be a ball in X of radius r(B) = 1 such

that δB ⊆ Q ⊆ B , where δ is the constant associated with Q in Definition 4.1. It
follows by (Dloc) that μ(B) � μ(δB), where the constant in � does not depend on Q.
Therefore, we have

μ(Q)−
1
2 ‖1Qf ‖2 � μ(B)−

1
2 ‖1Bf ‖2

for all Q ∈ Q, which implies that

‖f ‖L∞
Q

� sup
B∈B1

μ(B)−
1
2 ‖1Bf ‖2.

To show the converse, suppose that g ∈ L2 is supported in a ball B ∈ B1 with radius
r(B) ≥ 1. As in the first part of the proof of Proposition 4.6, we find that

‖g‖2
L1

Q
≤ ‖g‖2

2μ

((

1 + 2

r(B)

)

B

)

� ‖g‖2
2μ(B),
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where the second inequality, which follows from (Eκ,λ) since r(B) ≥ 1, does not
depend on g or B . Using this and Theorem 4.8, we obtain

sup
B∈B1

μ(B)−
1
2 ‖1Bf ‖2 = sup

B∈B1
μ(B)−

1
2 sup

‖g‖2=1,
spptf ⊆B

|〈g,f 〉L2 |

≤ sup
B∈B1

sup
‖g‖2=1,
spptf ⊆B

μ(B)−
1
2 ‖g‖L1

Q
‖f ‖L∞

Q

� ‖f ‖L∞
Q

,

which completes the proof. �

Given that L1
Q and L∞

Q are independent of the choice of Q, the following in-
terpolation result shows that, up to an equivalence of norms, the L

p
Q spaces for all

p ∈ (1,∞) are independent of the unit cube structure Q used in their definition.

Theorem 4.10 Let X be an exponentially locally doubling metric measure space. If
θ ∈ (0,1) and 1 ≤ p0 < p1 ≤ ∞, then

[Lp0
Q ,L

p1
Q ]θ = L

pθ

Q

isometrically, where 1/pθ = (1 − θ)/p0 + θ/p1 and [·, ·]θ denotes complex interpo-
lation.

Proof The interpolation space [Lp0
Q ,L

p1
Q ]θ is well defined because

L
p
Q(X) ⊆ L2

loc(X)

for all p ∈ [1,∞] by (4.1). This allows us to construct the Banach space L
p0
Q + L

p1
Q ,

which is the smallest ambient space in which L
p0
Q and L

p1
Q are continuously embed-

ded.
The space �p(wp) was defined for all p ∈ [1,∞) in the proof of Theorem 4.8.

Likewise, let

w∞(Qj ) = μ(Qj )
− 1

2

for all Qj ∈ Q, and define �∞(w∞) to be the space of all sequences ξ = {ξQj
}Qj ∈Q

with ξQj
∈ L2(Qj ) and

‖ξ‖�∞(w∞) = sup
Qj ∈Q

‖1Qj
ξQj

‖2w∞(Qj ) < ∞.

If 1 ≤ p0 < p1 < ∞, then w
(1−θ)/p0
p0 w

θ/p1
p1 = w

1/pθ
pθ

, while if p1 = ∞, then

w
(1−θ)/p0
p0 wθ∞ = w

1/pθ
pθ

. Therefore, by the interpolation of vector-valued �p spaces,
as in Theorem 1.18.1 of [47], and the interpolation of weighted L2 spaces, as in The-
orem 5.5.3 of [10], we obtain

[�p0(wp0), �
p1(wp1)]θ = �pθ (wpθ )
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isometrically. Note that the isometric equivalence is proved in Remark 1 of
Sect. 1.18.1 of [47], and the proof for p1 = ∞ is given in Remark 2 of the same
reference.

Define the operators R and S by

Rξ =
∑

Qj ∈Q

1Qj
ξQj

and Sf = {1Qj
f }Qj ∈Q

for all sequences ξ = {ξQj
}Qj ∈Q with ξQj

∈ L2(Qj ), and all measurable functions
f on X. If p ∈ [1,∞], then the restricted operators

R : �p(wp) → L
p
Q and S : Lp

Q → �p(wp)

are bounded with operator norms equal to 1. Moreover, we have RS = I on L
p
Q and

R(�p(wp)) = L
p
Q. The operator R is a retraction and S is its coretraction. It follows

by Theorem 1.2.4 of [47], which concerns the interpolation of spaces related by a
retraction, that S is an isometric isomorphism from [Lp0

Q ,L
p1
Q ]θ onto

SR([�p0(wp0), �
p1(wp1)]θ ) = SR(�pθ (wpθ )) = S(L

pθ

Q )

in �pθ (wpθ ). Therefore, we have [Lp0
Q ,L

p1
Q ]θ = L

pθ

Q isometrically. �

We conclude this section by defining L̃∞
Q to be the closure of L1

Q ∩ L∞
Q in L∞

Q ,
and by noting the following corollary.

Corollary 4.11 Let X be an exponentially locally doubling metric measure space. If
θ ∈ (0,1) and 1 ≤ p < ∞, then

[Lp
Q, L̃∞

Q ]θ = L
pθ

Q

isometrically, where 1/pθ = (1 − θ)/p and [·, ·]θ denotes complex interpolation.
Also, the set L̃∞

Q ∩L
q
Q is dense in L̃∞

Q for all q ∈ [1,∞], and L2 is dense in L1
Q +L̃∞

Q .

Proof The proof follows that of Corollary 3.11 by using Proposition 4.4(1) and The-
orem 4.10. �

5 Exponential Off-Diagonal Estimates

We return to the setting of a complete Riemannian manifold M and derive the off-
diagonal estimates required to define and characterize our local Hardy spaces. To
consider differential forms on M , let us first dispense with some technicalities.

For each k = 0, . . . ,dimM and x ∈ M , let ∧kT ∗
x M denote the k-th exterior power

of the cotangent space T ∗
x M . Let ∧kT ∗M denote the bundle over M whose fiber at

x is ∧kT ∗
x M , and let ∧T ∗M =⊕dimM

k=0 ∧kT ∗M . A differential form is a section of
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∧T ∗M . For each p ∈ [1,∞], let Lp(∧T ∗M) denote the Banach space of all measur-
able differential forms u with

‖u‖Lp(∧T ∗M) =
{

(
∫
M

|u(x)|p∧T ∗
x Mdμ(x))

1
p , if p ∈ [1,∞);

ess supx∈M |u(x)|∧T ∗
x M, if p = ∞,

where | · |∧T ∗
x M is the norm associated with the inner product 〈·, ·〉∧T ∗

x M given by the
bundle metric on ∧T ∗M at x.

Our main technical tool will be holomorphic functional calculus, which requires
the following definition. A comprehensive introduction to this topic can be found in
Chap. VII of [23].

Definition 5.1 Given 0 ≤ μ < θ < π/2, define the closed and open bisectors in the
complex plane as follows:

Sμ = {z ∈ C : | arg z| ≤ μ or |π − arg z| ≤ μ};
So

θ = {z ∈ C \ {0} : | arg z| < θ or |π − arg z| < θ}.

Given r ≥ 0, define the closed and open discs as follows:

Dr = {z ∈ C : |z| ≤ r};
Do

r = {z ∈ C : |z| < r}.

These are denoted together by Sμ,r = Sμ ∪ Dr and So
θ,r = So

θ ∪ Do
r . Note that

D0 = {0}, Sμ,0 = Sμ, Do
0 = ∅, and So

θ,0 = So
θ . A holomorphic function on So

θ,r is
called nondegenerate if it is not identically zero on So

θ,r and, when r = 0, is not iden-
tically zero on either component of So

θ .
Let H∞(So

θ,r ) denote the algebra of bounded holomorphic functions on So
θ,r .

Given f ∈ H∞(So
θ,r ) and t ∈ (0,1], define f ∗ ∈ H∞(So

θ,r ) and ft ∈ H∞(So
θ,r/t ) as

follows:

f ∗(z) = f (z̄) for all z ∈ So
θ,r ;

ft (z) = f (tz) for all z ∈ So
θ,r/t .

Given α,β > 0, define the following sets:

�β
α (So

θ,r ) = {ψ ∈ H∞(So
θ,r ) : |ψ(z)| � min{|z|α, |z|−β}};

�β(So
θ,r ) = {φ ∈ H∞(So

θ,r ) : |φ(z)| � |z|−β}.

Let �α(So
θ,r ) =⋃β>0 �

β
α (So

θ,r ), �β(So
θ,r ) =⋃α>0 �

β
α (So

θ,r ),

�(So
θ,r ) =⋃β>0 �β(So

θ,r ) and �(So
θ,r ) =⋃β>0 �β(So

θ,r ).

There is also the following notation.
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Notation Given a linear operator T on L2(∧T ∗M), let D(T ), R(T ), N(T ), and ‖T ‖
denote its domain, range, null space, and operator norm, respectively. The resolvent
set ρ(T ) is the set of all z ∈ C for which zI − T has a bounded inverse with domain
equal to L2(∧T ∗M). The resolvent RT (z) is defined by

RT (z) = (zI − T )−1

for all z ∈ ρ(T ). The spectrum σ(T ) is the complement of the resolvent set in the
extended complex plane.

Given a bounded measurable scalar-valued function η on M , let ηI denote the
operator on L2(∧T ∗M) of pointwise multiplication by η. Square brackets [·, ·] denote
the commutator operator.

In the remainder of the paper, we consider a closed and densely defined operator
D : D(D) ⊆ L2(∧T ∗M) → L2(∧T ∗M) satisfying the following hypotheses:

(H1) There exists ω ∈ [0,π/2) and R ≥ 0 such that D is of type Sω,R . This is de-
fined to mean that σ(D) ⊆ Sω,R and that for each θ ∈ (ω,π/2) and r > R, the
constant

Cθ,r := sup{|z|‖RD(z)‖ : z ∈ C \ Sθ,r}
satisfies 0 < Cθ,r < ∞. Given φ ∈ �(So

θ,r ), this property allows us to define

the bounded operator φ(D) on L2(∧T ∗M) by

φ(D)u = 1

2πi

∫

+∂So

θ̃,r̃

φ(z)RD(z)udz

for all u ∈ L2(∧T ∗M), where θ̃ ∈ (ω, θ), r̃ ∈ (R, r) and +∂So

θ̃,r̃
denotes the

boundary of So

θ̃,r̃
oriented anticlockwise.

(H2) For all θ ∈ (ω,π/2) and r > R, the operator D has a bounded H∞(So
θ,r )

functional calculus in L2(∧T ∗M). This is defined to mean that for each
θ ∈ (ω,π/2) and r > R, there exists c > 0 such that

‖φ(D)‖ ≤ c‖φ‖∞

for all φ ∈ �(So
θ,r ). Given f ∈ H∞(So

θ,r ), this property allows us to define

the bounded operator f (D) on L2(∧T ∗M) by f (D)u = limn→∞(f φ1/n)(D)u

for all u ∈ L2(∧T ∗M), where φ ∈ �(So
θ,r ) such that φ1/n(z) := φ(z/n) con-

verges to 1 uniformly on compact subsets of So
θ,r . The mapping f �→ f (D) is

an algebra homomorphism from H∞(So
θ,r ) into the algebra of bounded linear

operators on L2(∧T ∗M) such that

‖f (D)‖ ≤ c‖f ‖∞

for all f ∈ H∞(So
θ,r ).
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(H3) The operator D is a first-order differential operator in the following sense.
There exists CD > 0 such that for all smooth compactly supported scalar-
valued functions η ∈ C∞

c (M), the domain D(D) ⊆ D(D ◦ ηI) and the com-
mutator [D, ηI ] is a pointwise multiplication operator such that

|[D, ηI ]u(x)|∧T ∗
x M ≤ CD|dη(x)|T ∗

x M |u(x)|∧T ∗
x M

for all u ∈ D(D) and almost all x ∈ M , where d is the exterior derivative.

The hypothesis (H1) in the case R = 0 is precisely the condition that D is of
type Sω (or ω-sectorial). The theory of type Sω operators is well understood and can
be found in, for instance, [29, 31]. In particular, given 0 ≤ ω < θ < π/2, ψ ∈ �(So

θ )

and an operator T of type Sω, it is proved in [2, 37] that T has a bounded H∞(So
θ )

functional calculus if and only if the quadratic estimate
∫ ∞

0
‖ψt(T )u‖2

2
dt

t
� ‖u‖2

holds for all u ∈ R(T ). The theory of type Sω,R operators in the case R ≥ 0 is con-
tained in [39]. In particular, given an operator D satisfying (H1), the main result
of that paper shows that (H2) is equivalent to the requirement that D satisfies local
quadratic estimates, which we will introduce after Proposition 7.2.

Note that, as a means of generalizing this theory to other contexts, one could re-
place the space C∞

c (M) in (H3) with the space of bounded scalar-valued Lipschitz
functions Lip(M). This stronger condition is still satisfied by the Hodge–Dirac oper-
ator, as in Example 5.2 below, and it obviates the need to construct smooth approx-
imations in the proof of Lemma 5.3. Moreover, all of the results in this paper hold
under this condition.

Example 5.2 The Hodge–Dirac operator D = d + d∗ defined on the space of smooth
compactly supported differential forms C∞

c (∧T ∗M) is essentially self-adjoint (see
Theorem 1.17 and Example 1.7 in [28]). Therefore, its unique self-adjoint extension,
also denoted by D, immediately satisfies (H1–H2) with ω = 0, R = 0, and Cθ,r =
1/ sin θ for all θ ∈ (0,π/2) and r > 0. It also satisfies (H3), since it is a first-order
differential operator, and CD = 1, since for all η ∈ C∞

c (M) we have

|[D,ηI ]u(x)|∧T ∗
x M = |dη(x)∧u(x) − dη(x)�u(x)|∧T ∗

x M = |dη(x)|T ∗
x M |u(x)|∧T ∗

x M

for all u ∈ C∞
c (∧T ∗M) and almost all x ∈ M , where ∧ and � denote the exterior and

(left) interior products on ∧T ∗
x M , respectively. Note that the second equality above

holds because dη(x)� is an antiderivation on ∧T ∗
x M , which implies that

dη �(dη ∧u) = |dη|2T ∗Mu − dη ∧(dη �u)

pointwise almost everywhere on M .

Off-diagonal estimates, otherwise known as Davies–Gaffney estimates, provide a
measure of the decay associated with the action of an operator. Their use as a substi-
tute for pointwise kernel bounds is becoming abundant in the literature. In particular,
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they are an essential tool used to prove the Kato Conjecture in [5] and the related
results in [8]. The theory of off-diagonal estimates has also been developed in its own
right in [4]. The following notation is suited to these estimates.

Notation For all x ≥ 0, let 〈x〉 = min{1, x}. For all closed subsets E,F ⊆ M , let
ρ(E,F ) = infx∈E,y∈F ρ(x, y).

We prove off-diagonal estimates for the resolvents RD(z) and then deduce esti-
mates for more general functions of D by using holomorphic functional calculus.
The following proof utilizes the higher-commutator technique from Sect. 2 of [38].
Note that we could instead apply the technique for establishing off-diagonal estimates
from [5, 6].

Lemma 5.3 Let 0 ≤ ω < θ < π/2 and 0 ≤ R < r and suppose that D is a closed op-
erator on L2(∧T ∗M) of type Sω,R satisfying (H1) and (H3) with constants Cθ,r > 0
and CD > 0. For each a ∈ (0,1) and b ≥ 0, there exists c > 0 such that

‖1ERD(z)1F ‖ ≤ c
Cθ,r

|z|
〈

1

ρ(E,F )|z|
〉b

exp

(

−a
ρ(E,F )|z|
CDCθ,r

)

for all z ∈ C \ Sθ,r and closed subsets E and F of M .

Proof Let E and F be closed subsets of M with ρ(E,F ) > 0. For each ε > 0, there
exists η : M → [0,1] in C∞

c (M) such that

η(x) =
{

1, if x ∈ E;
0, if ρ(x,E) ≥ ρ(E,F )

and ‖dη‖∞ = supx∈M |dη(x)|T ∗
x M ≤ (1 + ε)/ρ(E,F ). The function η can be con-

structed from smooth approximations of the Lipschitz function f defined by

f (x) =
{

1 − ρ(x,E)/ρ(E,F ), if ρ(x,E) < ρ(E,F );
0, if ρ(x,E) ≥ ρ(E,F )

for all x ∈ M . Note that f is Lipschitz because the geodesic distance ρ is Lipschitz
on a Riemannian manifold. For further details, see, for instance, [9].

Fix a ∈ (0,1), δ ∈ (a,1), and ε = δ−a
a+1 . It suffices to show that

‖1ERD(z)1F ‖ ≤ inf
n∈N0

n!Cθ,r

|z|
(

(1 + ε)CDCθ,r

ρ(E,F )|z|
)n

, (5.1)

where N0 = N ∪ {0}. For b = 0, the result follows from (5.1) because δ/(1 + ε) ≥ a

and eδx =∑n∈N0
(δx)n/n! ≤ 1

1−δ
supn∈N0

xn/n! for all x > 0. For each b > 0, the

result follows from (5.1) because (δ − ε)/(1 + ε) ≥ a and e−δx � x−be−(δ−ε)x for all
x > 0.
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We make repeated use, without reference, of the following easily verified identities
for operators A, B , and C:

[A,BC] = [A,B]C + B[A,C]; [A,B−1] = B−1[B,A]B−1

on the largest domains for which both sides are defined.
First, we show by induction that

[ηI, ([D, ηI ]RD(z))n] = −n([D, ηI ]RD(z))n+1 (5.2)

for all n ∈ N. The commutator [D, ηI ] is a pointwise multiplication operator by hy-
pothesis (H3). This implies that [ηI, [D, ηI ]] = 0, so (5.2) holds for n = 1. If (5.2)
holds for some k ∈ N, then

[ηI, ([D, ηI ]RD(z))k+1]
= [ηI, [D, ηI ]RD(z)]([D, ηI ]RD(z))k + [D, ηI ]RD(z)[ηI, ([D, ηI ]RD(z))k]
= [D, ηI ][ηI,RD(z)]([D, ηI ]RD(z))k − k([D, ηI ]RD(z))k+2

= −[D, ηI ]RD(z)[D, ηI ]RD(z)([D, ηI ]RD(z))k − k([D, ηI ]RD(z))k+2

= −(k + 1)([D, ηI ]RD(z))k+2,

so (5.2) holds for all n ∈ N. Next, we show by induction that

n
︷ ︸︸ ︷
[ηI, . . . [ηI,RD(z)] . . .] = (−1)nn!RD(z)([D, ηI ]RD(z))n (5.3)

for all n ∈ N. This is immediate for n = 1. If (5.3) holds for some k ∈ N, then by (5.2)
we have

k+1
︷ ︸︸ ︷
[ηI, . . . [ηI,RD(z)] . . .]

= (−1)kk![ηI,RD(z)([D, ηI ]RD(z))k]
= (−1)kk!{[ηI,RD(z)]([D, ηI ]RD(z))k + RD(z)[ηI, ([D, ηI ]RD(z))k]}
= (−1)kk!{−RD(z)([D, ηI ]RD(z))k+1 − kRD(z)([D, ηI ]RD(z))k+1}
= (−1)k+1(k + 1)!RD(z)([D, ηI ]RD(z))k+1,

so (5.3) holds for all n ∈ N. Using (5.3) with hypotheses (H1) and (H3), we obtain

‖1ERD(z)1F ‖ ≤ ‖(ηI)nRD(z)1F ‖
= ‖(ηI)n−1[ηI,RD(z)]1F ‖

= ‖
n

︷ ︸︸ ︷
[ηI, . . . [ηI,RD(z)] . . .]1F ‖

≤ n!‖RD(z)([D, ηI ]RD(z))n‖
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≤ n!(CD‖dη‖∞)n‖RD(z)‖n+1

≤ n!Cθ,r

|z|
(

(1 + ε)CDCθ,r

ρ(E,F )|z|
)n

for all n ∈ N0, which proves (5.1). �

The following proof was inspired by the proof of Lemma 7.3 in [30].

Lemma 5.4 Let 0 ≤ ω < θ < π/2 and 0 ≤ R < r and suppose that D is an op-
erator satisfying the assumptions of Lemma 5.3. Let M ≥ 0 and δ > 0. For each
ψ ∈ �δ

M+δ(S
o
θ,r ), φ ∈ �δ(So

θ,r ), and a ∈ (0,1), there exists c > 0 such that the fol-
lowing hold:

(1) ‖1E(f ψt )(D)1F ‖ ≤ c‖f ‖∞
〈

t

ρ(E,F )

〉M
exp

(

−a
r

CDCθ,r

ρ(E,F )

)

;

(2) ‖1E(f φ )(D)1F ‖ ≤ c‖f ‖∞ exp

(

−a
r

CDCθ,r

ρ(E,F )

)

,

for all t ∈ (0,1], f ∈ H∞(So
θ,r ) and closed subsets E and F of M .

Proof For all θ̃ ∈ (ω, θ) and r̃ ∈ (R, r), let +∂So

θ̃,r̃
denote the boundary of So

θ̃,r̃
ori-

ented anticlockwise, and divide this into γr̃ = +∂So

θ̃,r̃
∩ Dr̃ and γθ̃ = +∂So

θ̃,r̃
∩ Sθ̃ .

Using the Cauchy integral formula from (H1), we have

1E(f ψt )(D)1F = 1

2πi

(∫

γr̃

+
∫

γ
θ̃

)

f (z)ψt (z)1ERD(z)1F dz = I1 + I2

for all θ̃ ∈ (ω, θ) and r̃ ∈ (R, r). It follows by Lemma 5.3 that for each a ∈ (0,1) and
b ≥ 0, we have

‖I1‖ � Cθ̃,r̃‖f ‖∞
∫

γr̃

min{|tz|M+δ, |tz|−δ}
〈

1

ρ(E,F )|z|
〉M

e
−aρ(E,F )|z|/CD C

θ̃,r̃
|dz|
|z|

�r,R Cθ̃,r̃‖f ‖∞〈t/ρ(E,F )〉Me
−aρ(E,F )r̃/CD C

θ̃,r̃

and

‖I2‖ � Cθ̃,r̃‖f ‖∞
(∫ r̃/t

r̃

|tz|M+δ

(ρ(E,F )|z|)b e
−aρ(E,F )|z|/CD C

θ̃,r̃
d|z|
|z|

+
∫ ∞

r̃/t

|tz|−δ

(ρ(E,F )|z|)b e
−aρ(E,F )|z|/CD C

θ̃,r̃
d|z|
|z|
)

for all θ̃ ∈ (ω, θ) and r̃ ∈ (R, r). Setting b = 0 shows that

‖I2‖ �r,R Cθ̃,r̃‖f ‖∞e
−aρ(E,F )r̃/CD C

θ̃,r̃ ,
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and setting b = M shows that

‖I2‖ �r,R Cθ̃,r̃‖f ‖∞(t/ρ(E,F ))Me
−aρ(E,F )r̃/CD C

θ̃,r̃ .

Altogether, this shows that for each a ∈ (0,1), there exists c > 0 such that

‖1E(f ψt )(D)1F ‖ ≤ cCθ̃,r̃‖f ‖∞〈t/ρ(E,F )〉Me
−a(r̃/CD C

θ̃,r̃
)ρ(E,F )

for all θ̃ ∈ (ω, θ) and r̃ ∈ (R, r). The first result follows by noting that

sup{r̃/Cθ̃,r̃ : θ̃ ∈ (ω, θ), r̃ ∈ (R, r)} = r/Cθ,r .

The proof of the second result is similar. �

We conclude this section with a useful application of this result.

Proposition 5.5 Let 0 ≤ ω < θ < π/2 and 0 ≤ R < r and suppose that D is an
operator satisfying the assumptions of Lemma 5.3. Let 0 < σ < α and 0 < τ < β .
For each ψ ∈ �

β
α (So

θ,r ), ψ̃ ∈ �α
β (So

θ,r ), φ ∈ �β(So
θ,r ), φ̃ ∈ �α(So

θ,r ), and a ∈ (0,1),
there exists c > 0 such that the following hold:

(1) ‖1E(ψtf ψ̃s)(D)1F ‖

≤ c‖f ‖∞

{
(s/t)τ 〈t/ρ(E,F )〉α+τ e−a(r/CD Cθ,r )ρ(E,F ), if s ≤ t;
(t/s)σ 〈s/ρ(E,F )〉β+σ e−a(r/CD Cθ,r )ρ(E,F ), if t ≤ s;

(2) ‖1E(φ f ψ̃s)(D)1F ‖ ≤ c‖f ‖∞ sτ e−a(r/CD Cθ,r )ρ(E,F );
(3) ‖1E(ψtf φ̃ )(D)1F ‖ ≤ c‖f ‖∞ tσ e−a(r/CD Cθ,r )ρ(E,F );
(4) ‖1E(φ f φ̃ )(D)1F ‖ ≤ c‖f ‖∞ e−a(r/CD Cθ,r )ρ(E,F ),

for all s, t ∈ (0,1], f ∈ H∞(So
θ,r ), and closed subsets E and F of M .

Proof To prove (1), first suppose that 0 < s ≤ t ≤ 1 and choose δ ∈ (0, β − τ). Let
g(s)(z) = (sz)−(τ+δ)ψ̃s(z)f (z) and η(z) = zτ+δψ(z) so that

ψtf ψ̃s = (s/t)τ+δg(s)ηt .

The function η is in �
β−τ−δ
α+τ+δ (So

θ,r ) and the functions g(s) are in �(So
θ,r ) and satisfy

sups∈(0,1] ‖g(s)‖∞ � ‖f ‖∞. Therefore, Lemma 5.4 provides the off-diagonal esti-
mate

‖1E(g(s)ηt )(D)1F ‖ � ‖g(s)‖∞〈t/ρ(E,F )〉α+τ e−a(r/CD Cθ,r )ρ(E,F )

and the required estimate follows. The proof in the case 0 < t ≤ s ≤ 1 is analogous.
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The results in (2) and (3) follow from Lemma 5.4 by writing the following:

(φf ψ̃s)(z) = sτ zτ φ(z)f (z)(sz)−τ ψ̃(sz);
(ψtf φ̃)(z) = tσ zσ φ̃(z)f (z)(tz)−σ ψ(tz).

The result in (4) follows immediately from Lemma 5.4. �

6 The Main Estimate

We consider a complete Riemannian manifold M that is exponentially locally dou-
bling. The spaces tp(X × (0,1]) and L

p
Q(X) introduced in Sects. 3 and 4 consist of

measurable functions. We begin by showing that it is a simple matter to formulate
that theory for differential forms.

The local Lusin operator Aloc is defined for any measurable family of differential
forms U = (Ut )t∈(0,1] on M , where each Ut is a section of �T ∗M , by

AlocU(x) =
(∫∫

�1(x)

|Ut(y)|2∧T ∗
y M

dμ(y)

V (x, t)

dt

t

) 1
2

for all x ∈ M . The dual operator Cloc is defined in the same way. For each p ∈ [1,∞],
the local tent space tp(∧T ∗M × (0,1]) consists of all measurable families of differ-
ential forms U on M with

‖U‖tp =
{

(
∫
M

(AlocU(x))pdμ(x))
1
p , if p ∈ [1,∞);

ess supx∈M ClocU(x), if p = ∞.

Let L2•(∧T ∗M × (0,1]) denote the space of all measurable families of differential

forms U on M with ‖U‖2
L2•

= ∫ 1
0 ‖Ut‖2

L2(∧T ∗M)
dt
t

. As before, this is an equivalent

norm on t2(∧T ∗M × (0,1]).
Next, fix a unit cube structure Q = (Qj )j on M . For each p ∈ [1,∞], the space

L
p
Q(∧T ∗M) consists of all measurable differential forms u on M with

‖u‖L
p
Q

=
⎧
⎨

⎩
(
∑

Qj ∈Q(μ(Qj )
1
p

− 1
2 ‖1Qj

u‖L2(∧T ∗M))
p)

1
p , if p ∈ [1,∞);

supQj ∈Q μ(Qj )
− 1

2 ‖1Qj
f ‖L2(∧T ∗M), if p = ∞.

As before, we have L2
Q(∧T ∗M) = L2(∧T ∗M).

A t1(∧T ∗M)-atom is a measurable family of differential forms A = (At )t∈(0,1] on
M supported in the truncated tent T 1(B) over a ball B in M of radius r(B) ≤ 2 with
‖A‖L2• ≤ μ(B)−1/2. The atomic characterization in Theorem 3.6 is proved in this
context by defining the local maximal operator Mloc for all measurable differential
forms u on M by

Mlocu(x) = sup
r∈(0,1]

1

V (x, r)
‖1B(x,r)u‖L1(∧T ∗M)

for all x ∈ M .
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An L1
Q(∧T ∗M)-atom is a measurable differential form a on M supported on a

ball B in M of radius r(B) ≥ 1 with ‖a‖2 ≤ μ(B)−1/2. The proof of the atomic
characterization in Theorem 4.6 goes over directly.

The duality and interpolation results from Sects. 3 and 4 extend to this setting as
well. In what follows, we only consider spaces of differential forms and usually omit
writing ∧T ∗M and ∧T ∗M × (0,1].

Definition 6.1 Let M be a complete Riemannian manifold. Let ω ∈ [0,π/2) and
R ≥ 0 and suppose that D is a closed densely defined operator on L2(∧T ∗M)

of type Sω,R satisfying (H1–H2). Given θ ∈ (ω,π/2), r > R, ψ ∈ �(So
θ,r ),

and φ ∈ �(So
θ,r ), define the bounded operators Q D

ψ,φ : L2 → L2• ⊕ L2 and S D
ψ,φ :

L2• ⊕ L2 → L2 by

Q D
ψ,φu = (ψt (D)u,φ(D)u)

for all u ∈ L2 and t ∈ (0,1], and

S D
ψ,φ(U,u) =

∫ 1

0
ψs(D)Us

ds

s
+ φ(D)u = lim

a→0

∫ 1

a

ψs(D)Us

ds

s
+ φ(D)u

for all (U,u) ∈ L2• ⊕ L2.

The operator Q D
ψ,φ is bounded because D satisfies (H1) and (H2). This is a conse-

quence of the equivalence of (H2) with the requirement that D satisfies local quadratic
estimates, which we will introduce after Proposition 7.2. Further details are in [39].
It is also well known that the adjoint operator D∗ satisfies (H1–H2) if and only if D
satisfies (H1–H2). Therefore, we have S D

ψ,φ = (Q D∗
ψ∗,φ∗)∗, where ψ∗ and φ∗ are given

by Definition 5.1, and this is a bounded operator.
The remainder of this section is dedicated to the proof of the following theorem,

which is fundamental to the definition of our local Hardy spaces. It is a local analogue
of Theorem 4.9 in [7]. The proof below simplifies some aspects of the original proof.

Theorem 6.2 Let κ,λ ≥ 0 and suppose that M is a complete Riemannian manifold
satisfying (Eκ,λ). Let ω ∈ [0,π/2) and R ≥ 0 and suppose that D is a closed densely
defined operator on L2(∧T ∗M) of type Sω,R satisfying (H1–H3). Let θ ∈ (ω, π

2 ),
r > R, and β > κ/2 such that r/CDCθ,r > λ/2, where Cθ,r is from (H1) and CD is
from (H3).

For each ψ ∈ �β(So
θ,r ), ψ̃ ∈ �β(So

θ,r ), φ ∈ �β(So
θ,r ), and φ̃ ∈ �(So

θ,r ), there ex-
ists c > 0 such that the following hold for all f ∈ H∞(So

θ,r ):

(1) The operator Q D
ψ,φ

f (D)S D
ψ̃,φ̃

has a bounded extension Pf satisfying

‖Pf (U,u)‖tp⊕L
p
Q

≤ c‖f ‖∞‖(U,u)‖tp⊕L
p
Q

for all (U,u) ∈ tp ⊕ L
p
Q and p ∈ [1,2];
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(2) The operator Q D
ψ̃,φ̃

f (D)S D
ψ,φ

has a bounded extension P̃f satisfying

‖P̃f (U,u)‖tp⊕L
p
Q

≤ c‖f ‖∞‖(U,u)‖tp⊕L
p
Q

for all (U,u) ∈ tp ⊕ L
p
Q and p ∈ [2,∞].

Proof Hypothesis (H2) and the comments in the paragraph after Definition 6.1 guar-
antee that both Q D

ψ,φ
f (D)S D

ψ̃,φ̃
and Q D

ψ̃,φ̃
f (D)S D

ψ,φ
satisfy the estimates in (1) and

(2) on t2 ⊕ L2
Q.

To prove (1), define the following operators:

P 1,1
f U =

∫ 1

0
ψt(D)f (D)ψ̃s(D)Us

ds

s
; P 1,2

f u = ψt(D)f (D)φ̃(D)u;

P 2,1
f U =

∫ 1

0
φ(D)f (D)ψ̃s(D)Us

ds

s
; P 2,2

f u = φ(D)f (D)φ̃(D)u,

for all U ∈ L2•, u ∈ L2 and t ∈ (0,1], so we have the system

Q D
ψ,φ

f (D)S D
ψ̃,φ̃

(U,u) =
(

P 1,1
f P 1,2

f

P 2,1
f P 2,2

f

)(
U

u

)

for all (U,u) ∈ L2• ⊕ L2.
We claim that there exists c > 0 such that

‖Q D
ψ,φ

f (D)S D
ψ̃,φ̃

(A, a)‖t1⊕L1
Q

≤ c‖f ‖∞ (6.1)

for all A that are t1-atoms and a that are L1
Q-atoms. The proof of (6.1) is quite

technical, so we postpone it to Lemmas 6.3, 6.4, 6.5, and 6.6.
The set t1 ∩ t2 is dense in t1 by Proposition 3.3. Therefore, to prove that there

exist bounded extensions P 1,1
f : t1 → t1 and P 2,1

f : t1 → L1
Q, it suffices to show that

‖P 1,1
f U‖t1 � ‖f ‖∞‖U‖t1 and ‖P 2,1

f U‖L1
Q

� ‖f ‖∞‖U‖t1 (6.2)

for all U ∈ t1 ∩ t2.
If U ∈ t1 ∩ t2, then by Theorem 3.6 there exist a sequence (λj )j in �1 and a se-

quence (Aj )j of t1-atoms such that
∑

j λjAj converges to U in t2 with ‖(λj )j‖�1 �
‖U‖t1 . Then, since Q D

ψ,φ
f (D)S D

ψ̃,φ̃
is bounded on t2 ⊕ L2

Q, we have

P 2,1
f U =

∑

j

λj P 2,1
f (Aj ),
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where the sum converges in L2
Q. Also, the partial sums

∑n
j=1 P 2,1

f (λjAj ) form a

Cauchy sequence in L1
Q by (6.1). Therefore, there exists v ∈ L1

Q such that

v =
∑

j

λj P 2,1
f (Aj ),

where the sum converges in L1
Q, and ‖v‖L1

Q
� ‖f ‖∞‖U‖t1 . Given that both L1

Q and

L2
Q are continuously embedded in L1

Q + L2
Q, as in the proof of Theorem 4.10, we

must have v = P 2,1
f U . A similar argument holds for P 1,1

f U to give (6.2).

The set L1
Q ∩L2

Q is dense in L1
Q by Proposition 4.4. Therefore, to prove that there

exist bounded extensions P 1,2
f : L1

Q → t1 and P 2,2
f : L1

Q → L1
Q, it suffices to show

that

‖P 1,2
f u‖t1 � ‖f ‖∞‖u‖L1

Q
and ‖P 2,2

f u‖L1
Q

� ‖f ‖∞‖u‖L1
Q

(6.3)

for all u ∈ L1
Q ∩ L2

Q.
If u ∈ L1

Q ∩ L2
Q, then by Theorem 4.6 there exist a sequence (λj )j in �1 and

a sequence (aj )j of L1
Q-atoms such that

∑
j λjaj converges to u in L2

Q with

‖(λj )j‖�1 � ‖u‖L1
Q

. Then, since Q D
ψ,φ

f (D)S D
ψ̃,φ̃

is bounded on t2 ⊕ L2
Q, we have

P 1,2
f u =

∑

j

λj P 1,2
f (aj ),

where the sum converges in t2. Also, the partial sums
∑n

j=1 P 1,2
f (λjaj ) form a

Cauchy sequence in t1 by (6.1). Therefore, there exists V ∈ t1 such that

V =
∑

j

λj P 1,2
f (aj ),

where the sum converges in t1, and ‖V ‖t1 � ‖f ‖∞‖u‖L1
Q
. Given that both t1 and t2

are continuously embedded in t1 + t2, as in the proof of Theorem 3.10, we must have
V = P 1,2

f u. A similar argument holds for P 2,2
f U to give (6.3).

The bounds in (6.2) and (6.3) prove that Q D
ψ,φ

f (D)S D
ψ̃,φ̃

has a bounded exten-

sion satisfying the estimate in (1) on t1 ⊕ L1
Q. Therefore, result (1) follows by the

interpolation in Theorems 3.10 and 4.10.
To prove (2), note that replacing D with D∗ in the proof of (1) shows that

Q D∗
ψ∗,φ∗f

∗(D∗)S D∗
ψ̃∗,φ̃∗ has a bounded extension Pf ∗ satisfying the estimate in (1)

on t1 ⊕ L1
Q. The duality in Theorems 3.9 and 4.8 then allows us to define the

dual operator P ′
f ∗ satisfying the estimate in (2) on t∞ ⊕ L∞

Q . We also have

P ′
f ∗ = Q D

ψ̃,φ̃
f (D)S D

ψ,φ
on (t∞ ∩ t2)⊕ (L∞

Q ∩L2
Q), as S D

ψ,φ = (Q D∗
ψ∗,φ∗)∗ on t2 ⊕L2

Q.

Therefore, result (2) follows by the interpolation in Theorems 3.10 and 4.10. �



Local Hardy Spaces 139

The remainder of this section is devoted to proving ( 6.1). The proof is divided
into four lemmas. We adopt the notation

Q D
ψ,φ

f (D)S D
ψ̃,φ̃

=
(

P 1,1
f P 1,2

f

P 2,1
f P 2,2

f

)

as in the proof of Theorem 6.2.

Lemma 6.3 Under the assumptions of Theorem 6.2, there exists c > 0 such that
‖P 1,1

f A‖t1 ≤ c‖f ‖∞ for all A that are t1-atoms.

Proof Let A be a t1-atom. There exists a ball B in M with radius r(B) ≤ 2 such
that A is supported in T 1(B) and ‖A‖L2• ≤ μ(B)−1/2. If r(B) > 1/2, let K = 0.

If r(B) ≤ 1/2, let K be the positive integer such that 2K ≤ 1/r(B) < 2K+1. Next,
associate B with the characteristic functions 1k defined by

1k =
{

1T 1(4B), if k = 0;
1T 1(2k+2B)\T 1(2k+1B), if K ≥ 1 and k ∈ {1, . . . ,K}.

Also, define the ball B∗ with radius r(B∗) ∈ [4,8] by B∗ = 2K+2B and associate it
with the characteristic functions 1∗

k defined by

1∗
k = 1T 1((k+1)B∗)\T 1(kB∗)

for all k ∈ N = {1,2, . . .}.
Let Ãk = 1k P 1,1

f A and Ã∗
k = 1∗

k P 1,1
f A, so we have sppt Ãk ⊆ T 1(2k+2B),

sppt Ã∗
k ⊆ T 1 ((k + 1)B∗) and

P 1,1
f A =

K∑

k=0

Ãk +
∞∑

k=1

Ã∗
k.

We prove below that there exist c > 0 and two sequences (λk)k∈{0,...,K} and (λ∗
k)k∈N

in �1, all of which do not depend on A, such that the following hold:

‖Ãk‖L2• ≤ c‖f ‖∞λkμ
(
2k+2B

)− 1
2 for all k ∈ {0, . . . ,K}; (6.4)

‖Ã∗
k‖L2• ≤ c‖f ‖∞λ∗

kμ
(
(k + 1)B∗)− 1

2 for all k ∈ N. (6.5)

The result then follows by Remark 3.5.
To prove (6.4) and (6.5), choose δ in (0,

2β−κ
3 ) so that ψ ∈ �

β

2δ(S
o
θ,r ) and that

ψ̃ ∈ �2δ
β (So

θ,r ), which is possible because β > κ/2. Also, choose a in ( λ
2

CD Cθ,r

r
,1),

which is possible because r/CDCθ,r > λ/2. Proposition 5.5 applied with σ = δ and
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τ = β − δ then shows that

‖1E(ψtf ψ̃s)(D)1F ‖ � ‖f ‖∞e−a(r/CD Cθ,r )ρ(E,F )

{
( s

t
)β−δ〈 t

ρ(E,F )
〉β+δ if s ≤ t;

( t
s
)δ〈 s

ρ(E,F )
〉β+δ if t ≤ s

(6.6)
for all s, t ∈ (0,1] and closed subsets E and F of M . Applying the Cauchy–Schwarz
inequality and considering the support of A, we also obtain

|(P 1,1
f A)t |2 =

∣
∣
∣
∣

∫ 〈r(B)〉

0
min

{
t

s
,
s

t

} δ
2
(

min

{
t

s
,
s

t

}− δ
2

(ψtf ψ̃s)(D)As

)
ds

s

∣
∣
∣
∣

2

�
∫ 〈r(B)〉

0
min

{
t

s
,
s

t

}−δ

|(ψtf ψ̃s)(D)As |2 ds

s
(6.7)

for all t ∈ (0,1]. We now use (6.6) and (6.7) to prove (6.4) and (6.5):

Proof of (6.4) The operator QD
ψ,φ

f (D)S D
ψ̃,φ̃

is bounded on L2• ⊕ L2, so we have

‖Ã0‖L2• ≤ ‖Pf (A,0)‖L2• � ‖f ‖∞‖A‖L2• � ‖f ‖∞μ(4B)−
1
2 .

Suppose that K ≥ 1 and that k ∈ {1, . . . ,K}, which implies that 2kr(B) ≤ 1. Note that
the support of Ãk is contained in T 1(2k+2B) \ T 1(2k+1B). Also, if (x, t) belongs to
T 1(2k+2B)\T 1(2k+1B) and t ≤ 2kr(B), then x belongs to 2k+2B \2kB . Using (6.7),
we then obtain

‖Ãk‖2
L2•

�
∫ 2kr(B)

0

∫ r(B)

0
min

{
t

s
,
s

t

}−δ

‖12k+2B\2kB(ψtf ψ̃s)(D)As‖2
2

ds

s

dt

t

+
∫ 〈2k+2r(B)〉

2kr(B)

∫ r(B)

0
min

{
t

s
,
s

t

}−δ

‖(ψtf ψ̃s)(D)As‖2
2

ds

s

dt

t

= I1 + I2.

To estimate I1, note that ρ(2k+2B \ 2kB,B) = (2k − 1)r(B) ≤ 1, since we are
assuming that 2kr(B) ≤ 1. Using (6.6) and (Eκ,λ), we then obtain

I1 � ‖f ‖2∞
∫ r(B)

0

∫ s

0

( t

s

)δ ( s

2kr(B)

)2β+2δ dt

t
‖As‖2

2
ds

s

+ ‖f ‖2∞
∫ r(B)

0

∫ 2kr(B)

s

( s

t

)2β−3δ
(

t

2kr(B)

)2β+2δ dt

t
‖As‖2

2
ds

s

� ‖f ‖2∞(2−(2β+2δ)k + 2−(2β−3δ)k)‖A‖2
L2•

� ‖f ‖2∞2−(2β−3δ)kμ(B)−1

� ‖f ‖2∞2−(2β−κ−3δ)keλ2k+2r(B)μ(2k+2B)−1

� ‖f ‖2∞2−(2β−κ−3δ)kμ(2k+2B)−1,
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where 2kr(B) ≤ 1 was used in the final inequality. We also obtain

I2 ≤ ‖f ‖2∞
∫ ∞

2kr(B)

∫ r(B)

0

( s

t

)2β−3δ ‖As‖2
2

ds

s

dt

t

� ‖f ‖2∞
∫ r(B)

0

(
s

2kr(B)

)2β−3δ

‖As‖2
2

ds

s

� ‖f ‖2∞2−(2β−3δ)k‖A‖2
L2•

� ‖f ‖2∞2−(2β−κ−3δ)kμ(2k+2B)−1.

The bounds for I1 and I2 show that

‖Ãk‖L2• � ‖f ‖∞2−(2β−κ−3δ)k/2μ(2k+2B)−
1
2 ,

which proves (6.4) with λk = 2−(2β−κ−3δ)k/2, since 2β − κ − 3δ > 0.

Proof of (6.5) Suppose that k ∈ N. If (x, t) belongs to T 1((k + 1)B∗) \ T 1(kB∗),
then x belongs to (k + 1)B∗ \ (k − 1/4)B∗, since the radius r(B∗) ∈ [4,8]. Also,
since r(B) ≤ r(B∗)/4, we have

ρ

(

(k + 1)B∗∖
(

k − 1

4

)

B∗,B
)

≥
(

k − 1

4

)

r(B∗) − r(B) ≥ max{1, kr(B∗)}.

Using (6.6), (6.7), and (Eκ,λ), we then obtain

‖Ã∗
k‖L2•

� ‖f ‖2∞
∫ 1

0

∫ 〈r(B)〉

0
min

{
t

s
,
s

t

}−δ

‖1(k+1)B∗\(k−1/4)B∗(ψtf ψ̃s)(D)As‖2
2

ds

s

dt

t

� ‖f ‖2∞e−2a(r/CD Cθ,r )kr(B∗)
∫ 〈r(B)〉

0

∫ s

0

( t

s

)δ
s2β+2δ dt

t
‖As‖2

2
ds

s

+ ‖f ‖2∞e−2a(r/CD Cθ,r )kr(B∗)
∫ 〈r(B)〉

0

∫ 1

s

( s

t

)2β−3δ

t2β+2δ dt

t
‖As‖2

2
ds

s

� ‖f ‖2∞e−2a(r/CD Cθ,r )kr(B∗)〈r(B)〉2β−3δ‖A‖2
L2•

� ‖f ‖2∞e−2a(r/CD Cθ,r )kr(B∗)r(B)κμ(B)−1

� ‖f ‖2∞e−(2a(r/CD Cθ,r )−λ)kr(B∗)kκμ((k + 1)B∗)−1.

This shows that

‖Ã∗
k‖L2• � ‖f ‖∞e−(2a(r/CD Cθ,r )−λ)kμ((k + 1)B∗)−

1
2 ,

which proves (6.5) with λ∗
k = e−(2a(r/CD Cθ,r )−λ)k , since 2a(r/CDCθ,r ) − λ > 0. �

Lemma 6.4 Under the assumptions of Theorem 6.2, there exists c > 0 such that
‖P 2,1

f A‖L1
Q

≤ c‖f ‖∞ for all A that are t1-atoms.
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Proof Let A be a t1-atom. There exists a ball B in M with radius r(B) ≤ 2 such
that A is supported in T 1(B) and ‖A‖L2• ≤ μ(B)−1/2. Define the ball B∗ with radius
r(B∗) ∈ [2,4] by

B∗ =
{

2B, if 1 < r(B) ≤ 2;
(2/r(B))B, if r(B) ≤ 1

and associate B∗ with the characteristic functions 1∗
k defined by

1∗
k =
{

12B∗ , if k = 0;
1(k+2)B∗\(k+1)B∗ , if k = 1,2, . . . .

Let Ã∗
k = 1∗

k P 2,1
f A, so we have sppt Ã∗

k ⊆ (k + 2)B∗ and P 2,1
f A =∑∞

k=0 Ã∗
k . We

prove below that there exist c > 0 and a sequence (λ∗
k)k in �1, both of which do not

depend on A, such that

‖Ã∗
k‖2 ≤ c‖f ‖∞λ∗

kμ
(
(k + 2)B∗)− 1

2 . (6.8)

The result then follows from Theorem 4.6.
To prove (6.8), choose a as in the proof of Lemma 6.3. Proposition 5.5 applied

with τ = κ/2 then shows that

‖1E(φf ψ̃s)(D)1F ‖ � ‖f ‖∞s
κ
2 e−a(r/CD Cθ,r )ρ(E,F )

for all s ∈ (0,1] and closed subsets E and F of M . Now note that if k ≥ 0, then

ρ((k + 2)B∗\(k + 1)B∗,B) = (k + 1)r(B∗) − r(B) ≥ kr(B∗).

Using (Eκ,λ), we then obtain

‖Ã∗
k‖2

2 =
∫

M

1∗
k

∣
∣
∣
∣

∫ 〈r(B)〉

0
s

κ
2 s− κ

2 (φf ψ̃s)(D)As

ds

s

∣
∣
∣
∣

2

dμ

� r(B)κ
∫ r(B)

0
s−κ‖1∗

k(φf ψ̃s)(D)As‖2
2

ds

s

≤ ‖f ‖2∞e−2a(r/CD Cθ,r )kr(B∗)r(B)κ‖A‖2
L2•

≤ ‖f ‖2∞e−(2a(r/CD Cθ,r )−λ)kr(B∗)kκμ((k + 2)B∗)−1,

which proves (6.8) with λ∗
k = e−(2a(r/CD Cθ,r )−λ)k . �

Lemma 6.5 Under the assumptions of Theorem 6.2, there exists c > 0 such that
‖P 1,2

f A‖t1 ≤ c‖f ‖∞ for all A that are L1
Q-atoms.

Proof Let A be an L1
Q-atom. There exists a ball B in M with radius r(B) ≥ 1 such

that A is supported in B and ‖A‖2 ≤ μ(B)−1/2. In view of Remark 4.7 and Theo-
rem 4.6, however, it suffices to assume that r(B) = 1. In that case, associate B with
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the characteristic functions 1k defined by

1k =
{

1T 1(B), if k = 0;
1T 1((k+1)B)\T 1(kB), if k = 1,2, . . . .

Let Ãk = 1k P 1,2
f A, so we have sppt Ãk ⊆ T 1((k + 1)B) and P 1,2

f A =∑∞
k=0 Ãk .

We prove below that there exist c > 0 and a sequence (λk)k in �1, both of which do
not depend on A, such that

‖Ãk‖L2• ≤ c‖f ‖∞λkμ((k + 1)B)−
1
2 . (6.9)

The result then follows by Remark 3.5.
To prove (6.9), choose δ and a as in the proof of Lemma 6.3. Proposition 5.5

applied with σ = δ then shows that

‖1E(ψtf φ̃)(D)1F ‖ � ‖f ‖∞tδe−a(r/CD Cθ,r )ρ(E,F )

for all t ∈ (0,1] and closed subsets E and F of M . Now note that if k ≥ 1 and (x, t)

belongs to T 1((k +1)B)\T 1(kB), then x belongs to (k +1)B \ (k −1)B , since t ≤ 1
and r(B) = 1. Using (Eκ,λ), we then obtain

‖Ãk‖2
L2•

=
∫ 1

0
‖1k(ψtf φ̃)(D)A‖2

2
dt

t

� ‖f ‖2∞e−2a(r/CD Cθ,r )k

∫ 1

0
t2δ dt

t
‖A‖2

2

� ‖f ‖2∞e−2a(r/CD Cθ,r )kμ(B)−1

� ‖f ‖2∞e−(2a(r/CD Cθ,r )−λ)kkκμ((k + 1)B)−1

� ‖f ‖2∞e−(2a(r/CD Cθ,r )−λ)k/2μ((k + 1)B)−1,

which proves (6.9) with λk = e−(2a(r/CD Cθ,r )−λ)k/4. �

Lemma 6.6 Under the assumptions of Theorem 6.2, there exists c > 0 such that
‖P 2,2

f A‖L1
Q

≤ c‖f ‖∞ for all A that are L1
Q-atoms.

Proof Let A be an L1
Q-atom. As in the proof of Lemma 6.5, it suffices to assume that

there exists a ball B in M with radius r(B) = 1 such that A is supported in B and
‖A‖2 ≤ μ(B)−1/2. Associate B with the characteristic functions 1k defined by

1k =
{

12B, if k = 0;
1(k+2)B\(k+1)B, if k = 1,2, . . . .

Let Ãk = 1k P 2,2
f A, so we have sppt Ãk ⊆ (k + 2)B and P 2,2

f A =∑∞
k=0 Ãk . As in

the proof of Lemma 6.4, it is enough to find c > 0 and a sequence (λk)k in �1, both
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of which do not depend on A, such that

‖Ãk‖2 ≤ c‖f ‖∞λkμ((k + 2)B)−
1
2 . (6.10)

Choose a as in the proof of Lemma 6.3. Using Proposition 5.5 and (Eκ,λ), we then
obtain

‖Ãk‖2 � ‖f ‖∞e−a(r/CD Cθ,r )k‖A‖2

� ‖f ‖∞e−(2a(r/CD Cθ,r )−λ)k/2kκ/2μ((k + 2)B)−
1
2 ,

which proves (6.10) with λk = e−(2a(r/CD Cθ,r )−λ)k/4. �

7 Local Hardy Spaces h
p
D(∧T ∗M)

Throughout this section, let κ,λ ≥ 0 and suppose that M is a complete Riemannian
manifold satisfying (Eκ,λ). Also, let ω ∈ [0,π/2) and R ≥ 0 and suppose that D is
a closed densely defined operator on L2(∧T ∗M) of type Sω,R satisfying hypotheses
(H1–H3) from Sect. 5 with constants Cθ,r > 0 and CD > 0, where Cθ,r is defined for
each θ ∈ (ω,π/2) and r > R.

The �-class of holomorphic functions is introduced to prove a variant of the
Calderón reproducing formula. This allows us to characterize L2(∧T ∗M) in terms
of square functions involving the operators QD

ψ,φ and S D
ψ,φ from the previous section,

where φ is restricted to the �-class. We combine this with Theorem 6.2 to define
local Hardy spaces of differential forms h

p

D(∧T ∗M) for all p ∈ [1,∞] in terms of
square functions and a retraction on the space tp(∧T ∗M × (0,1]) ⊕ L

p
Q(∧T ∗M). In

what follows, we only consider spaces of differential forms and usually omit writing
∧T ∗M and ∧T ∗M × (0,1].

Definition 7.1 Given θ ∈ (0,π/2), r > 0 and β > 0, define �β(So
θ,r ) to be the set of

all φ ∈ �β(So
θ,r ) with the following properties:

(1) For all z in So
θ,r , φ(z) �= 0;

(2) infz∈Do
r
|φ(z)| �= 0;

(3) supt≥1 |φt (z)| � |φ(z)| for all z in So
θ,r \ Dr .

Also, let �(So
θ,r ) =⋃β>0 �β(So

θ,r ).

For example, if θ ∈ (0,π/2), 0 < r <
√

a, and β > 0, then the functions e−
√

z2+a ,
e−z2

and (z2 + a)−β are in �β(So
θ,r ). We now require the following version of the

Calderón reproducing formula.

Proposition 7.2 (Calderón reproducing formula) Let θ ∈ (ω,π/2) and r > R. Given
α,β, γ,σ, τ,υ > 0 and nondegenerate ψ ∈ �

β
α (So

θ,r ) and φ ∈ �γ (So
θ,r ), there exist
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ψ̃ ∈ �τ
σ (So

θ,r ) and φ̃ ∈ �υ(So
θ,r ) such that

∫ 1

0
ψ̃t (z)ψt (z)

dt

t
+ φ̃(z)φ(z) = 1 (7.1)

for all z ∈ So
θ,r . Moreover, we have S D

ψ,φ
Q D

ψ̃,φ̃
= S D

ψ̃,φ̃
Q D

ψ,φ
= I on L2.

Proof Given f ∈ H∞(So
θ,r ), let f−(z) = f (−z) and f ∗(z) = f (z̄) for all z ∈ So

θ,r .
Choose integers M and N so that 4M ≥ max( σ

α
, τ

β
) + 1 and 4Mβ + (4N − 1)γ ≥ υ .

Let c = ∫∞
0 |ψ(t)ψ(−t)|2M |φ(t)φ(−t)|2N dt

t
and define the functions

ψ̃ = c−1ψM−1(ψ∗ψ−ψ∗−)M(φφ∗φ−φ∗−)N and φ̃ = 1

φ

(

1 −
∫ 1

0
ψ̃tψt

dt

t

)

,

in which case (7.1) is immediate and ψ̃ ∈ �
β(4M−1)

α(4M−1) (S
o
θ,r ) ⊆ �τ

σ (So
θ,r ). The function

φ̃ is holomorphic on So
θ,r by Morera’s Theorem, since φ(z) �= 0 for all z ∈ So

θ,r ,
and bounded on Do

r , since infz∈Do
r
|φ(z)| �= 0. A change of variable shows that

∫∞
0 ψ̃t (x)ψt (x) dt

t
= 1 for all x ∈ R \ {0}, and since z �→ ∫∞

0 ψ̃t (z)ψt (z)
dt
t

is holo-
morphic on So

θ , we must have
∫∞

0 ψ̃t (z)ψt (z)
dt
t

= 1 for all z ∈ So
θ . It then follows

from property (7.1) in Definition 7.1 that

|φ̃(z)| � sup
t≥1

|φt (z)|
|φ(z)|

∫ ∞

1
(t |z|)−4Mβ−(4N−1)γ dt

t
� |z|−υ

for all z ∈ So
θ , so φ̃ ∈ �υ(So

θ,r ).
The last part of the proposition follows from holomorphic functional calculus,

since D satisfies (H1) and (H2). Further details are in Lemma 2.9 of [39]. �

Given ψ ∈ �(So
θ,r ) and φ ∈ �(So

θ,r ), since D satisfies (H1) and (H2), the main
result of [39] shows that the local quadratic estimate

‖u‖2 � ‖Q D
ψ,φu‖L2•⊕L2 (7.2)

holds for all u ∈ L2. There also exists ψ̃ ∈ �(So
θ,r ) and φ̃ ∈ �(So

θ,r ) such that

S D
ψ,φ

Q D
ψ̃,φ̃

= I on L2 by Proposition 7.2. This shows that L2 = S D
ψ,φ(L2• ⊕ L2) with

‖u‖2 � inf{‖U‖L2•⊕L2 : U ∈ L2• ⊕ L2 and u = S D
ψ,φU} (7.3)

for all u ∈ L2, since both S D
ψ,φ

and Q D
ψ̃,φ̃

are bounded operators. These characteri-

zations of L2 help to motivate our definition of the local Hardy spaces. In particular,
we define h

p

D by replacing L2• ⊕ L2 with tp ⊕ L
p
Q in (7.2) and (7.3), and suitably

extending the operators QD
ψ,φ and S D

ψ,φ .

There is a fundamental difference here from the Hardy spaces H
p
D in [7]. The

reproducing formula used to define H
p
D is based on selecting ψ and ψ̃ in �(So

θ )
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such that
∫∞

0 ψ̃t (z)ψt (z)
dt
t

= 1 for all z ∈ So
θ . The decay of the �(So

θ )-class func-
tions near the origin implies that

∫∞
0 ψ̃t (D)ψt (D) dt

t
= PR(D), where PR(D) denotes

the projection onto the closure of R(D), as given by the Hodge decomposition
L2 = R(D) ⊕ N(D). This leads the authors of [7] to define H 2

D to be R(D). Identity
(7.1), by contrast, holds on a neighborhood Do

r of the origin as well as on the bisector
So

θ , and since the �-class functions are nonzero at the origin, we get S D
ψ̃,φ̃

Q D
ψ,φ

= I

on all of L2. The local Hardy spaces are therefore not subject to the null space con-
siderations that one encounters with the Hardy spaces. In fact, we show that h2

D can
be identified with L2.

We now define an ambient space h0
D in order to have h

p

D ⊆ h0
D for all p ∈ [1,∞].

This requires that we recall the results concerning the spaces t1 + t̃∞ and L1
Q + L̃∞

Q
in Corollaries 3.11 and 4.11.

Definition 7.3 Let θ ∈ (ω,π/2), r > R, and β > κ/2 such that r/CDCθ,r > λ/2.
Fix η ∈ �

β
β (So

θ,r ) and ϕ ∈ �β(So
θ,r ) satisfying

∫ 1

0
η2

t (z)
dt

t
+ ϕ2(z) = 1

for all z ∈ So
θ,r . The ambient space h0

D is defined to be the abstract completion of L2

under the norm defined by

‖u‖h0
D

= ‖Q D
η,ϕu‖

(t1+t̃∞)⊕(L1
Q+L̃∞

Q )

for all u ∈ L2. This provides an identification of L2 with a dense subspace of h0
D .

The functions η and ϕ remain fixed for the remainder of this section.

To check that ‖ · ‖h0
D

is a norm on L2, suppose that ‖u‖h0
D

= 0 for some u ∈
L2. It follows that Q D

η,ϕu = 0, and since Q D
η,ϕu ∈ L2• ⊕ L2, the equivalence in (7.2)

guarantees that u = 0, as required.
The following result allows us to define the local Hardy spaces.

Proposition 7.4 The operators QD
η,ϕ and S D

η,ϕ have bounded extensions

Q̃ D
η,ϕ : h0

D → (t1 + t̃∞) ⊕ (L1
Q + L̃∞

Q )

and

S̃ D
η,ϕ : (t1 + t̃∞) ⊕ (L1

Q + L̃∞
Q ) → h0

D

such that S̃ D
η,ϕ Q̃ D

η,ϕ = I on h0
D , the restriction Q̃ D

η,ϕ S̃ D
η,ϕ : tp ⊕ L

p
Q → tp ⊕ L

p
Q is

bounded for each p ∈ [1,∞), and the restriction Q̃ D
η,ϕ S̃ D

η,ϕ : t̃∞ ⊕ L̃∞
Q → t̃∞ ⊕ L̃∞

Q
is bounded.

Proof We immediately have

‖Q D
η,ϕu‖

(t1+t̃∞)⊕(L1
Q+L̃∞

Q )
= ‖u‖h0

D
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for all u ∈ L2, and since L2 is identified with a dense subspace of h0
D , the bounded

extension Q̃ D
η,ϕ exists.

It follows from Theorem 6.2 that Q D
η,ϕ S D

η,ϕ has a bounded extension from tp ⊕L
p
Q

to tp ⊕ L
p
Q for each p ∈ [1,∞], and hence from t̃∞ ⊕ L̃∞

Q to t̃∞ ⊕ L̃∞
Q as well.

Moreover, the extensions coincide with a single bounded operator

P : (t1 + t̃∞) ⊕ (L1
Q + L̃∞

Q ) → (t1 + t̃∞) ⊕ (L1
Q + L̃∞

Q )

such that the restriction of P to tp ⊕ L
p
Q coincides with the extension of Q D

η,ϕ S D
η,ϕ to

tp ⊕L
p
Q for each p ∈ [1,∞), and the restriction of P to t̃∞ ⊕ L̃∞

Q coincides with the
extension of Q D

η,ϕ S D
η,ϕ to t̃∞ ⊕ L̃∞

Q . Therefore, we have

‖S D
η,ϕU‖h0

D
= ‖P U‖

(t1+t̃∞)⊕(L1
Q+L̃∞

Q )
� ‖U‖

(t1+t̃∞)⊕(L1
Q+L̃∞

Q )

for all U ∈ t2 ⊕ L2
Q, and since t2 ⊕ L2

Q is dense in (t1 + t̃∞) ⊕ (L1
Q + L̃∞

Q ) by
Corollaries 3.11 and 4.11, the bounded extension S̃ D

η,ϕ exists.

It follows that S̃ D
η,ϕ Q̃ D

η,ϕ is bounded on h0
D . The formula S D

η,ϕ Q D
η,ϕ = I holds on L2

by Proposition 7.2, so by density S̃ D
η,ϕ Q̃ D

η,ϕ = I on h0
D .

It also follows that Q̃ D
η,ϕ S̃ D

η,ϕ is bounded on (t1 + t̃∞) ⊕ (L1
Q + L̃∞

Q ), and that

Q̃ D
η,ϕ S̃ D

η,ϕ = P on (tp ∩ t2) ⊕ (L
p
Q ∩ L2

Q) for p ∈ [1,∞), and on (t̃∞ ∩ t2) ⊕ (L̃∞
Q ∩

L2
Q). Now suppose that p ∈ [1,∞) and that u ∈ tp ⊕ L

p
Q. There exists a sequence

(un)n in (tp ∩ t2) ⊕ (L
p
Q ∩ L2

Q) that converges to u in tp ⊕ L
p
Q by Propositions 3.3

and 4.4. The continuity of the embedding tp ⊕L
p
Q ⊆ (t1 + t̃∞)⊕ (L1

Q + L̃∞
Q ), which

is a consequence of the interpolation in Corollaries 3.11 and 4.11, then implies that

‖P u − Q̃ D
η,ϕ S̃ D

η,ϕu‖
(t1+t̃∞)⊕(L1

Q+L̃∞
Q )

≤ ‖P (u − un)‖tp⊕L
p
Q

+ ‖Q̃ D
η,ϕ S̃ D

η,ϕ(un − u)‖
(t1+t̃∞)⊕(L1

Q+L̃∞
Q )

for all n ∈ N. Therefore, we have Q̃ D
η,ϕ S̃ D

η,ϕ = P on tp ⊕ L
p
Q for all p ∈ [1,∞). We

also have Q̃ D
η,ϕ S̃ D

η,ϕ = P on t̃∞ ⊕ L̃∞
Q by the density properties in Corollaries 3.11

and 4.11, so the result follows. �

We now define the local Hardy spaces.

Definition 7.5 For each p ∈ [1,∞), the local Hardy space h
p

D consists of all u ∈ h0
D

with

‖u‖h
p

D
= ‖Q̃ D

η,ϕu‖tp⊕L
p
Q

< ∞.

For p = ∞, the local Hardy space h∞
D consists of all u ∈ h0

D such that Q̃ D
η,ϕu ∈

t̃∞ ⊕ L̃∞
Q with

‖u‖h∞
D

= ‖Q̃ D
η,ϕu‖

t̃∞⊕L̃∞
Q

= ‖Q̃ D
η,ϕu‖t∞⊕L∞

Q
.
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The dual of h1
D should be identified with a bmo type space, as in the classical case

in [26]. To construct the ambient space h0
D , however, we used the closed subspace

t̃∞ ⊕ L̃∞
Q of t∞ ⊕ L∞

Q . This suggests that h∞
D can only be identified with a closed

subspace of the dual of h1
D . Therefore, we do not denote h∞

D by bmoD and we post-
pone the construction of an appropriate bmoD space to the sequel. Note that we do
identify the dual of h

p

D for all p ∈ (1,∞) in Theorem 7.11 below.
The local Hardy spaces are Banach spaces for all p ∈ [1,∞]. To see this, suppose

that p ∈ [1,∞) and that (un)n is a Cauchy sequence in h
p

D . Then there exists v in

tp ⊕L
p
Q such that limn ‖Q̃ D

η,ϕun−v‖tp⊕L
p
Q

= 0. Moreover, the embedding tp ⊕L
p
Q ⊆

(t1 + t̃∞) ⊕ (L1
Q + L̃∞

Q ) implies that limn ‖Q̃ D
η,ϕun − v‖

(t1+t̃∞)⊕(L1
Q+L̃∞

Q )
= 0, and

hence that there exists u in h0
D such that limn ‖un − u‖h0

D
= 0. Therefore, we have

Q̃ D
η,ϕu = v ∈ tp ⊕L

p
Q, which implies that u ∈ h

p

D and that limn ‖un −u‖h
p

D
= 0. The

proof for p = ∞ is the same, but with t̃∞ ⊕ L̃∞
Q instead of tp ⊕ L

p
Q.

The definition of the ambient space allowed us to identify L2 with a dense sub-
space of h0

D . It now follows from (7.2) that L2 ⊆ h2
D under this identification. In fact,

we have L2 = h2
D under this identification by (7.3) and the following proposition,

which gives an equivalent definition for h
p

D .

Proposition 7.6 If p ∈ [1,∞), then h
p

D = S̃ D
η,ϕ(tp ⊕ L

p
Q) and

‖u‖h
p

D
� inf{‖U‖tp⊕L

p
Q

: U ∈ tp ⊕ L
p
Q and u = S̃ D

η,ϕU}.

If p = ∞, then the above holds with t̃∞ ⊕ L̃∞
Q instead of tp ⊕ L

p
Q.

Proof Suppose that p ∈ [1,∞). Proposition 7.4 shows that S̃ D
η,ϕ Q̃ D

η,ϕ = I on h0
D , and

that the restricted operators

Q̃ D
η,ϕ : hp

D → tp ⊕ L
p
Q and S̃ D

η,ϕ : tp ⊕ L
p
Q → h

p

D

are bounded. Therefore, we have h
p

D = S̃ D
η,ϕ(tp ⊕ L

p
Q) with

inf
U∈tp⊕L

p
Q;

u=S̃ D
η,ϕU

‖U‖tp⊕L
p
Q

≤ ‖Q̃ D
η,ϕu‖tp⊕L

p
Q

= ‖u‖h
p

D
= ‖S̃ D

η,ϕV ‖h
p

D
� ‖V ‖tp⊕L

p
Q

for all V ∈ tp ⊕ L
p
Q satisfying u = S̃ D

η,ϕV .

The proof for p = ∞ is the same, but with t̃∞ ⊕ L̃∞
Q instead of tp ⊕ L

p
Q. �

This leads us to the following density properties of the local Hardy spaces.

Corollary 7.7 For all p ∈ [1,∞] and q ∈ [1,∞), the set h
p

D ∩ h
q

D is dense in h
p

D .

Moreover, for all p,q ∈ [1,∞), we have h
p

D ∩ h
q

D = S̃ D
η,ϕ((tp ∩ tq) ⊕ (L

p
Q ∩ L

q
Q)).

This also holds for p = ∞ but with t̃∞ and L̃∞
Q instead of tp and L

p
Q.
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Proof If p,q ∈ [1,∞), then h
p

D = S̃ D
η,ϕ(tp ⊕ L

p
Q) by Proposition 7.6, so the density

of h
p

D ∩ h
q

D in h
p

D follows from the density properties in Propositions 3.3 and 4.4.
If p = ∞, then the result follows from the density properties in Corollaries 3.11
and 4.11.

If p,q ∈ [1,∞) and u ∈ h
p

D ∩ h
q

D , then by the reproducing formula in Proposi-
tion 7.4, we have

u = S̃ D
η,ϕ Q̃ D

η,ϕu ∈ S̃ D
η,ϕ((tp ∩ tq) ⊕ (L

p
Q ∩ L

q
Q)),

since Q̃ D
η,ϕu ∈ (tp ∩ tq) ⊕ (L

p
Q ∩ L

q
Q). If p = ∞, then this holds with t̃∞ and L̃∞

Q

instead of tp and L
p
Q, which completes the proof. �

The interpolation results for the local tent spaces tp and the spaces L
p
Q allow us to

interpolate the local Hardy spaces.

Theorem 7.8 If θ ∈ (0,1) and 1 ≤ p0 < p1 ≤ ∞, then

[hp0
D , h

p1
D ]θ = h

pθ

D ,

where 1/pθ = (1 − θ)/p0 + θ/p1 and [·, ·]θ denotes complex interpolation.

Proof The interpolation space [hp0
D , h

p1
D ]θ is well defined because it is an immediate

consequence of Definition 7.5 that h
p

D ⊆ h0
D for all p ∈ [1,∞].

Suppose that p1 ∈ (1,∞). Theorems 3.10 and 4.10 show that

[tp0 ⊕ L
p0
Q , tp1 ⊕ L

p1
Q ]θ = tpθ ⊕ L

pθ

Q .

Proposition 7.4 shows that the reproducing formula S̃ D
η,ϕ Q̃ D

η,ϕ = I holds on h0
D , and

that the restricted operators

Q̃ D
η,ϕ : hp

D → tp ⊕ L
p
Q and S̃ D

η,ϕ : tp ⊕ L
p
Q → h

p

D

are bounded for all p ∈ [1,∞). It follows by Theorem 1.2.4 of [47], which concerns
the interpolation of spaces related by a retraction, that Q̃ D

η,ϕ : [hp0
D , h

p1
D ]θ → tpθ ⊕L

pθ

Q
is an isomorphism onto the subspace

Q̃ D
η,ϕ S̃ D

η,ϕ(tpθ ⊕ L
pθ

Q ) = Q̃ D
η,ϕ(h

pθ

D )

for all p0 ∈ [1,p1), where the equality is given by Proposition 7.6. The reproducing
formula then implies that [hp0

D , h
p1
D ]θ = h

pθ

D .
The proof for p1 = ∞ is the same but with t̃∞ ⊕ L̃∞

Q instead of tp1 ⊕ L
p1
Q , and it

relies on Corollaries 3.11 and 4.11. �

The next result is an application of the interpolation of the local Hardy spaces.

Lemma 7.9 Let θ ∈ (ω, π
2 ), r > R, and β > κ/2 such that r/CDCθ,r > λ/2. For

each ψ ∈ �β(So
θ,r ), ψ̃ ∈ �β(So

θ,r ), φ ∈ �β(So
θ,r ), and φ̃ ∈ �(So

θ,r ), the following
hold:
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(1) The operators Q D
ψ,φ and S D

ψ̃,φ̃
have bounded extensions Q̃ D

ψ,φ : h
p

D → tp ⊕ L
p
Q

and S̃ D
ψ̃,φ̃

: tp ⊕ L
p
Q → h

p

D for all p ∈ [1,2].
(2) The operators Q D

ψ̃,φ̃
and S D

ψ,φ have bounded extensions Q̃ D
ψ̃,φ̃

: h
p

D → tp ⊕ L
p
Q

and S̃ D
ψ,φ : tp ⊕L

p
Q → h

p

D for all p ∈ [2,∞). This also holds for p = ∞ but with

t̃∞ ⊕ L̃∞
Q instead of t∞ ⊕ L∞

Q .

Proof If u ∈ h1
D ∩ L2, then Q D

η,ϕu ∈ (t1 ∩ t2) ⊕ (L1
Q ∩ L2

Q) and u = S D
η,ϕ Q D

η,ϕu, so
by Theorem 6.2 we have

‖Q D
ψ,φu‖t1⊕L1

Q
= ‖Q D

ψ,φ S D
η,ϕ Q D

η,ϕu‖t1⊕L1
Q

� ‖u‖h1
D

.

The set h1
D ∩ L2 is dense in h1

D by Corollary 7.7, so the bounded extension Q̃ D
ψ,φ

exists for p = 1, and hence for all p ∈ [1,2] by interpolation.
If U ∈ (t1 ∩ t2) ⊕ (L1

Q ∩ L2
Q), then by Theorem 6.2 we have

‖S D
ψ̃,φ̃

U‖h1
D

= ‖Q D
η,ϕ

S D
ψ̃,φ̃

U‖t1⊕L1
Q

� ‖U‖t1⊕L1
Q
.

The density properties in Propositions 3.3 and 4.4 then imply that the bounded ex-
tension S̃ D

ψ̃,φ̃
exists for p = 1, and hence for all p ∈ [1,2] by interpolation, which

proves (1). The proof of (2) is similar. �

This allows us to construct a family of equivalent norms on the local Hardy spaces.

Proposition 7.10 Let θ ∈ (ω, π
2 ), r > R, and β > κ/2 such that r/CDCθ,r > λ/2.

For each ψ ∈ �β(So
θ,r ), ψ̃ ∈ �β(So

θ,r ), φ ∈ �β(So
θ,r ), and φ̃ ∈ �(So

θ,r ), the following
hold:

(1) The extension operators from Lemma 7.9 satisfy h
p

D = S̃ D
ψ̃,φ̃

(tp ⊕ L
p
Q) and

‖u‖h
p

D
� ‖Q̃ D

ψ,φu‖tp⊕L
p
Q

� inf
u=S̃ D

ψ̃,φ̃
U

‖U‖tp⊕L
p
Q

for all u ∈ h
p

D and p ∈ [1,2].
(2) The extension operators from Lemma 7.9 satisfy h

p

D = S̃ D
ψ,φ(tp ⊕ L

p
Q) and

‖u‖h
p

D
� ‖Q̃ D

ψ̃,φ̃
u‖tp⊕L

p
Q

� inf
u=S̃ D

ψ,φU

‖U‖tp⊕L
p
Q

for all u ∈ h
p

D and p ∈ [2,∞). This also holds for p = ∞ but with t̃∞ ⊕ L̃∞
Q

instead of t∞ ⊕ L∞
Q .

Proof Suppose that p ∈ [1,2]. Proposition 7.2 shows that there exists ψ ′ ∈ �β(So
θ,r )

and φ′ ∈ �(So
θ,r ) such that S D

ψ ′,φ′ Q D
ψ,φ = I on L2. Lemma 7.9 then shows that

‖u‖h
p

D
= ‖Q D

η,ϕ S D
ψ ′,φ′ Q D

ψ,φu‖tp⊕L
p
Q

� ‖Q D
ψ,φu‖tp⊕L

p
Q

� ‖u‖h
p

D
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for all u ∈ h
p

D ∩ L2, so by density we have ‖u‖h
p

D
� ‖Q̃ D

ψ,φu‖tp⊕L
p
Q

for all u ∈ h
p

D .

There also exists ψ̃ ′ ∈ �β(So
θ,r ) and φ̃′ ∈ �β(So

θ,r ) such that S D
ψ̃,φ̃

Q D
ψ̃ ′,φ̃′ = I

on h
p

D ∩ L2, so by density we have S̃ D
ψ̃,φ̃

Q̃ D
ψ̃ ′,φ̃′ = I on h

p

D . It then follows from

Lemma 7.9 that h
p

D = S̃ D
ψ̃,φ̃

(tp ⊕ L
p
Q).

Now suppose that u ∈ h
p

D , in which case u = S̃ D
ψ̃,φ̃

Q̃ D
ψ̃ ′,φ̃′u and there exists V in

tp ⊕L
p
Q such that u = S̃ D

ψ̃,φ̃
V and ‖V ‖tp⊕L

p
Q

≤ 2 inf
u=S̃ D

ψ,φU
‖U‖tp⊕L

p
Q

. Lemma 7.9

then shows that

inf
u=S̃ D

ψ,φU

‖U‖tp⊕L
p
Q

≤ ‖Q̃ D
ψ̃ ′,φ̃′u‖tp⊕L

p
Q

� ‖u‖h
p

D
= ‖S̃ D

ψ̃,φ̃
V ‖h

p

D

≤ 2 inf
u=S̃ D

ψ,φU

‖U‖tp⊕L
p
Q
,

which completes the proof of (1). The proof of (2) is similar. �

All of the equivalent norms on h
p

D are denoted by ‖ · ‖h
p

D
. As an example, recall

the Hodge–Dirac operator D and the Hodge–Laplacian � = D2 from Example 5.2.
If β > κ/2 and a > λ2/4, then by recalling the �-class functions listed after Defini-
tion 7.1, we have

‖u‖h
p
D

� ‖tDe−t
√

�+aI u‖tp + ‖e−√
�+aI u‖L

p

Q

� ‖t2�e−t2�u‖tp + ‖e−�u‖L
p

Q

� ‖tD(t2� + aI)−βu‖tp + ‖(� + aI)−βu‖L
p

Q

for all u ∈ h
p

D and p ∈ [1,∞], where the operators are initially defined on L2 and
extended to h

p

D .
Finally, the duality results for the local tent spaces tp and the spaces L

p
Q allow us

to derive a duality result for the local Hardy spaces.

Theorem 7.11 If p ∈ (1,∞) and 1/p + 1/p′ = 1, then the mapping

v �→ 〈u,v〉h2
D

= 〈Q̃ D
η,ϕu, Q̃ D∗

η∗,ϕ∗v〉L2•⊕L2

for all u ∈ h
p

D and v ∈ h
p′
D∗ , is an isomorphism from h

p′
D∗ onto the dual (h

p

D)∗.

Proof Using Theorems 3.9 and 4.8, we obtain

|〈Q̃ D
η,ϕu, Q̃ D∗

η∗,ϕ∗v〉L2•⊕L2 | ≤ ‖u‖h
p

D
‖v‖

h
p′
D∗

for all u ∈ h
p

D and v ∈ h
p′
D∗ , since Q̃ D

η,ϕu ∈ tp ⊕L
p
Q by Definition 7.5, and Q̃ D∗

η∗,ϕ∗v is

in tp
′ ⊕ L

p′
Q by Proposition 7.10.
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Now suppose that T ∈ (h
p

D)∗ and define T̃ ∈ (tp ⊕ L
p
Q)∗ by

T̃ (V ) = T (S̃ D
η,ϕV )

for all V ∈ tp ⊕ L
p
Q. It follows from Theorems 3.9 and 4.8 that there exists UT in

tp
′ ⊕ L

p′
Q such that ‖UT ‖

tp
′⊕L

p′
Q

� ‖T̃ ‖ and T̃ (V ) = 〈V,UT 〉L2•⊕L2 for all V ∈ tp ⊕
L

p
Q. The reproducing formula S̃ D

η,ϕ Q̃ D
η,ϕ = I , which is valid on h

p

D by Proposition 7.4,
then implies that

T u = T (S̃ D
η,ϕ Q̃ D

η,ϕu) = T̃ (Q̃ D
η,ϕ S̃ D

η,ϕ Q̃ D
η,ϕu) = 〈Q̃ D

η,ϕ S̃ D
η,ϕ Q̃ D

η,ϕu,UT 〉L2•⊕L2

for all u ∈ h
p

D . If UT ∈ (tp
′ ∩ t2) ⊕ (L

p′
Q ∩ L2

Q), then since (Q D
η,ϕ)∗ = S D∗

η∗,ϕ∗ on

t2 ⊕ L2
Q and (S D

η,ϕ)∗ = Q D∗
η∗,ϕ∗ on L2, we obtain

T u = 〈Q D
η,ϕu, Q D∗

η∗,ϕ∗(S D∗
η∗,ϕ∗UT )〉L2•⊕L2

for all u ∈ h
p

D ∩L2. If UT ∈ tp
′ ⊕L

p′
Q , then the density properties in Propositions 3.3

and 4.4 imply that the above result extends to

T u = 〈Q̃ D
η,ϕu, Q̃ D∗

η∗,ϕ∗(S̃ D∗
η∗,ϕ∗UT )〉L2•⊕L2

for all u ∈ h
p

D , and by Proposition 7.10, we have S̃ D∗
η∗,ϕ∗UT ∈ h

p′
D∗ with

‖S̃ D∗
η∗,ϕ∗UT ‖

h
p′
D∗

� ‖UT ‖
tp

′⊕L
p′
Q

� ‖T̃ ‖ � ‖T ‖,

where the last inequality follows from Proposition 7.6.

Finally, to prove injectivity, let v ∈ h
p′
D∗ and suppose that 〈u,v〉h2

D
= 0 for all

u ∈ h
p

D . It suffices to show that v = 0. Define �(V ) = 〈V, Q̃ D∗
η∗,ϕ∗v〉L2•⊕L2 for all V ∈

tp ⊕L
p
Q, in which case � ∈ (tp ⊕L

p
Q)∗ with ‖�‖ � ‖Q̃ D∗

η∗,ϕ∗v‖
tp

′⊕L
p′
Q

� ‖v‖
h

p′
D∗

, since

Q̃ D∗
η∗,ϕ∗v ∈ tp

′ ⊕ L
p′
Q . Using the reproducing formula and duality, we obtain

�(V ) = 〈V, Q̃ D∗
η∗,ϕ∗ S̃ D∗

η∗,ϕ∗ Q̃ D∗
η∗,ϕ∗v〉L2•⊕L2 = 〈S̃ D

η,ϕV , v〉h2
D

= 0

for all V ∈ tp ⊕ L
p
Q, since Proposition 7.6 implies that S̃ D

η,ϕV ∈ h
p

D . Altogether, we
have ‖v‖

h
p′
D∗

� ‖�‖ = 0, hence v = 0 as required. �

7.1 Molecular Characterization

We prove a molecular characterization of h1
D . The Hardy space H 1

D from [7] is
characterized in terms of H 1

D-molecules, which are differential forms a that satisfy
a = DNb for some differential form b and N ∈ N. In contrast to atoms, molecules
are not assumed to be compactly supported. Instead, the L2-norms of a and b are
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concentrated on some ball. The condition a = DNb is the substitute for the moment
condition required of classical atoms. The molecular characterization of h1

D proved
here involves two different types of molecules, reflecting the atomic characterization
of h1(Rn) mentioned in the introduction. The first kind are concentrated on balls of
radius less than 1 and are of the type used to characterize H 1

D , while the second kind
are concentrated on balls of radius larger than 1 and are not required to satisfy a
moment condition.

We use the following notation to specify the L2-norm distribution of molecules.

Notation Given a ball B in M of radius r(B) > 0, let 1k(B) denote the characteristic
function defined by

1k(B) =
{

1B, if k = 0;
12kB\2k−1B, if k = 1,2, . . . .

Definition 7.12 Given N ∈ N and q ≥ 0, an h1
D -molecule of type (N,q) is a measur-

able differential form a associated with a ball B in M of radius r(B) > 0 such that
the following hold:

(1) The bound ‖1k(B)a‖2 ≤ exp(−q2k−1r(B))2−kμ(2kB)−1/2 for all k ≥ 0;
(2) If r(B) < 1, then there exists a differential form b with a = DNb and the bound

‖1k(B)b‖2 ≤ r(B)N exp(−q2k−1r(B))2−kμ(2kB)−1/2 for all k ≥ 0.

If a and b are as in Definition 7.12, then a and b are in L2 = h2
D ⊆ h0

D with

‖a‖2 ≤
∞∑

k=0

‖1k(B)a‖2 ≤ 2e−qr(B)/2μ(B)−
1
2 (7.4)

and

‖b‖2 ≤ 2r(B)Ne−qr(B)/2μ(B)−
1
2 . (7.5)

Condition (2) is obviated in Definition 7.12 when r(B) ≥ 1, so we set N = 0 in that
case. We will see that q is related to the exponential growth parameter λ in (Eκ,λ),
and that we can set q = 0 when M is doubling, since then λ = 0. Given δ > 1, note
that the results in this section also hold for h1

D -molecules defined by replacing 2k and
2−k with δk and δ−k in Definition 7.12.

Definition 7.13 Given N ∈ N and q ≥ 0, define h1
D,mol(N,q)

to be the space of all

u in h0
D for which there exist a sequence (λj )j in �1 and a sequence (aj )j of h1

D -
molecules of type (N,q) such that

∑
j λj aj converges to u in h0

D . Moreover, define

‖u‖h1
D,mol(N,q)

= inf

{

‖(λj )j‖�1 : f =
∑

j

λj aj

}

for all u ∈ h1
D,mol(N,q)

.
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The following is the molecular characterization of h1
D . Theorem 1.3 follows from

this result in the case of the Hodge–Dirac operator by Example 5.2.

Theorem 7.14 Let κ,λ ≥ 0 and suppose that M is a complete Riemannian man-
ifold satisfying (Eκ,λ). Suppose that D is a closed densely defined operator on
L2(∧T ∗M) satisfying (H1–H3) from Sect. 5. If N ∈ N, N > κ/2, and q ≥ λ, then
h1

D = h1
D,mol(N,q)

.

Proof Fix N ∈ N and q ≥ 0. Let ψ̃ and φ̃ be the functions from Lemmas 7.15
and 7.16 below. Suppose that u ∈ h1

D ⊆ h0
D . Proposition 7.10 then implies that there

exists (V , v) ∈ t1 ⊕L1
Q such that u = S̃ D

ψ̃,φ̃
(V , v) and ‖(V , v)‖t1⊕L1

Q
� ‖u‖h1

D
. Also,

by Theorems 3.6 and 4.6, there exist a sequence (Aj )j of t1-atoms, a sequence (aj )j

of L1
Q-atoms and two sequences (λj )j and (λ̃j )j in �1 such that

V =
∑

j

λjAj and v =
∑

j

λ̃j aj ,

where these sums converge in t1 and L1
Q, respectively. Moreover, we can assume that

‖(λj )j‖�1 � ‖V ‖t1 , ‖(λ̃j )j‖�1 � ‖v‖L1
Q

and, by Remark 4.7, that each L1
Q-atom aj

is associated with a ball of radius equal to 1. Therefore, we have

u =
∑

j

(

λj

∫ 1

0
ψ̃t (D)Aj

dt

t
+ λ̃j φ̃(D)aj

)

,

where the sum converges in h1
D , and hence also in h0

D , because Proposition 7.10
implies that
∥
∥
∥
∥
∥
u −

n∑

j=1

S D
ψ̃,φ̃

(λjAj , λ̃j aj )

∥
∥
∥
∥
∥

h1
D

�
∥
∥
∥
∥
∥
V −

n∑

j=1

λjAj

∥
∥
∥
∥
∥

t1

+
∥
∥
∥
∥
∥
v −

n∑

j=1

λ̃j aj

∥
∥
∥
∥
∥

L1
Q

for all n ∈ N. It follows from Lemmas 7.15 and 7.16 that u ∈ h1
D,mol(N,q)

, and since

‖(λj )j‖�1 + ‖(λ̃j )j‖�1 � ‖u‖h1
D

, we have shown that h1
D ⊆ h1

D,mol(N,q)
.

We prove the converse in the case N ∈ N, N > κ/2, and q ≥ λ. Let ψ and φ be
the functions from Lemmas 7.17 and 7.18 below. Suppose that u ∈ h1

D,mol(N,q)
⊆ h0

D .

There exist a sequence (aj )j of h1
D -molecules of type (N,q) and a sequence (λj )j

in �1 such that
∑

j λj aj converges to u in h0
D . It follows from Proposition 7.10 and

Lemmas 7.17 and 7.18 that
∑n

j=1 λjaj is in h1
D with ‖∑n

j=1 λjaj‖h1
D

�
∑n

j=1 |λj |
for all n ∈ N. Therefore, there exists v in h1

D such that
∑

j λj aj converges to v in

h1
D , and hence also in h0

D . This implies that u = v ∈ h1
D , so by Proposition 7.10 we

have
∥
∥
∥
∥
∥

Q̃ D
ψ,φu −

n∑

j=1

λj Q D
ψ,φaj

∥
∥
∥
∥
∥

t1⊕L1
Q

�
∥
∥
∥
∥
∥
u −

n∑

j=1

λjaj

∥
∥
∥
∥
∥

h1
D
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for all n ∈ N. It follows from Lemmas 7.17 and 7.18 that

‖u‖h1
D

� ‖Q̃ D
ψ,φu‖t1⊕L1

Q
≤
∑

j

λj‖(ψt (D)aj ,φ(D)aj )‖t1⊕L1
Q

� ‖(λj )j‖�1,

which shows that h1
D,mol(N,q)

⊆ h1
D . �

We now prove four lemmas to construct the functions ψ̃ , φ̃, ψ , and φ that were
used to prove Theorem 7.14.

Lemma 7.15 Let θ ∈ (ω, π
2 ), r > R, and β > κ/2 such that r/CDCθ,r > λ/2. For

each N ∈ N and q ≥ 0, there exist c > 0 and ψ̃ ∈ �β(So
θ,r ) such that

c

∫ 1

0
ψ̃t (D)At

dt

t

is an h1
D -molecule of type (N,q) for all A that are t1-atoms.

Proof Let A be a t1-atom. There exists a ball B in M with radius r(B) ≤ 2 such
that A is supported in T 1(B) and ‖A‖L2• ≤ μ(B)−1/2. Choose r̃ so that r̃ ≥ r and

r̃/CDCθ,r̃ > λ + q . Also, choose ψ̃ in �β+N+1(S
o
θ,r̃

), in which case ψ ∈ �β(So
θ,r ).

Next, define ˜̃
ψ(z) = z−Nψ̃(z), in which case ˜̃

ψ ∈ �β+1(S
o
θ,r ) and

∫ 1

0
ψ̃t (D)At

dt

t
= DN

(∫ 1

0
tN

˜̃
ψt(D)At

dt

t

)

.

It remains to prove that there exists c > 0, which does not depend on A, such that

∥
∥
∥
∥1k(B)

(∫ 1

0
ψ̃t (D)At

dt

t

)∥∥
∥
∥

2
≤ ce−q2k−1r(B)2−kμ(2kB)−

1
2 (7.6)

for all k ≥ 0, and that if r(B) < 1, then

∥
∥
∥
∥1k(B)

(∫ 1

0
tN

˜̃
ψt(D)At

dt

t

)∥
∥
∥
∥

2
≤ cr(B)Ne−q2k−1r(B)2−kμ(2kB)−

1
2 (7.7)

for all k ≥ 0.
Now, since β > κ/2 and r̃/CDCθ,r̃ > λ + q , Lemma 5.4 implies the following

estimates:

‖1Eψ̃t (D)1F ‖ � 〈t/ρ(E,F )〉 κ
2 +1e−(λ+q)ρ(E,F ); (7.8)

‖1E
˜̃
ψt(D)1F ‖ � 〈t/ρ(E,F )〉 κ

2 +1e−(λ+q)ρ(E,F ) (7.9)

for all t ∈ (0,1] and closed subsets E and F of M .



156 A. Carbonaro et al.

We now prove (7.6). If k = 0 or k = 1, then by (7.3) and r(B) ≤ 2, we have

∥
∥
∥
∥1k(B)

(∫ 1

0
ψ̃t (D)At

dt

t

)∥
∥
∥
∥

2
� ‖A‖L2• �

{
e−q2−1r(B)μ(B)− 1

2 , if k = 0;
e−qr(B)2−1μ(2B)− 1

2 , if k = 1.

If k ≥ 2, then

ρ(2kB\2k−1B,B) = (2k−1 − 1)r(B) � 2kr(B)

and μ(2kB) ≤ 2kκeλ(2k−1)r(B)μ(B), so by (7.8), and since r(B) ≤ 2, we have

∥
∥
∥
∥1k(B)

(∫ 1

0
ψ̃t (D)At

dt

t

)∥
∥
∥
∥

2

≤
∫ r(B)

0
‖1k(B)ψ̃t (D)1B‖‖At‖2

dt

t

�
(∫ r(B)

0

(
t

2kr(B)

)2( κ
2 +1) dt

t

) 1
2

e−(λ+q)(2k−1−1)r(B)‖A‖L2•

≤ 2−k( κ
2 +1− κ

2 )e−q(2k−1−1)r(B)eλ(−2k−1+1+2k−1− 1
2 )r(B)μ(2kB)−

1
2

� e−q2k−1r(B)2−kμ(2kB)−
1
2 .

We prove (7.7) similarly. If k = 0 or k = 1, then we have

∥
∥
∥
∥1k(B)

(∫ 1

0
tN

˜̃
ψt(D)At

dt

t

)∥
∥
∥
∥

2
� r(B)N‖A‖L2•

� r(B)N

{
e−q2−1r(B)μ(B)− 1

2 , if k = 0;
e−qr(B)2−1μ(2B)− 1

2 , if k = 1.

If k ≥ 2, then by (7.9) we have

∥
∥
∥
∥1k(B)

(∫ 1

0
tN

˜̃
ψt(D)At

dt

t

)∥
∥
∥
∥

2
≤ r(B)N

∫ r(B)

0
‖1k(B)

˜̃
ψt(D)1B‖‖At‖2

dt

t

� r(B)Ne−q2k−1r(B)2−kμ(2kB)−
1
2 ,

which completes the proof. �

Lemma 7.16 Let θ ∈ (ω, π
2 ), r > R, and β > κ/2 such that r/CDCθ,r > λ/2. For

each N ∈ N and q ≥ 0, there exist c > 0 and φ̃ ∈ �(So
θ,r ) such that cφ̃(D)a is an h1

D -

molecule of type (N,q) for all a that are L1
Q-atoms supported on balls B of radius

r(B) = 1 with ‖a‖2 ≤ μ(B)−1/2.

Proof Let a and B be as stated in the lemma. Choose r̃ so that r̃ ≥ r and r̃/CDCθ,r̃ >

λ+q . Also, choose φ̃ in �(So
θ,r̃

), in which case φ̃ ∈ �(So
θ,r ). Now, since r(B) = 1, it
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only remains to prove that there exists c > 0, which does not depend on a, such that

‖1k(B)φ̃(D)a‖2 ≤ ce−q2k−1r(B)2−kμ(2kB)−
1
2

for all k ≥ 0. To do this, choose δ in (0, r̃/CDCθ,r̃ − (λ + q)). Lemma 5.4 then
implies that

‖1Eφ̃(D)1F ‖ � e−(λ+q+δ)ρ(E,F ) � 〈1/ρ(E,F )〉 κ
2 +1e−(λ+q)ρ(E,F ) (7.10)

for all closed subsets E and F of M .
If k = 0 or k = 1, then by (7.3), and since r(B) = 1, we have

‖1k(B)φ̃(D)a‖2 � ‖a‖2 ≤ μ(B)−
1
2 �
{

e−q2−1r(B)μ(B)− 1
2 , if k = 0;

e−qr(B)2−1μ(2B)− 1
2 , if k = 1.

If k ≥ 2, then using (7.10) and proceeding as in Lemma 7.15, we obtain

‖1k(B)φ̃(D)a‖2 ≤ ‖1k(B)φ̃(D)1B‖‖a‖2 � e−q2k−1r(B)2−kμ(2kB)−
1
2 ,

which completes the proof. �

Lemma 7.17 Let θ ∈ (ω, π
2 ), r > R, and β > κ/2 such that r/CDCθ,r > λ/2. For

each N ∈ N, N > κ/2, and q ≥ λ, there exist c > 0 and ψ ∈ �β(So
θ,r ) such that

‖ψt(D)a‖t1 ≤ c for all a that are h1
D -molecules of type (N,q).

Proof Let a be an h1
D -molecule of type (N,q). There exists a ball B in M of radius

r(B) > 0 such that the requirements of Definition 7.12 are satisfied. Let C1
0(B) =

C1(B) be the truncated Carleson box over B introduced in Sect. 3, and let C1
k (B) =

C1(2kB) \ C1(2k−1B) for each k ≥ 1. As depicted in Figure 1, divide each C1
k (B)

with the following characteristic functions:

ηk = 1C1
k (B)1M×(0,r(B)];

η′
k = 1C1

k (B)1M×(r(B),2k−1r(B)];
η′′

k = 1C1
k (B)1M×(2k−1r(B),2kr(B)],

so we have 1C1
k (B) = ηk + η′

k + η′′
k and

∑
k 1C1

k (B) = 1M×(0,1].
Suppose that there exist ψ ∈ �β(So

θ,r ) and c, δ > 0, all of which do not depend
on a, such that the following hold for all k ≥ 0:

‖ηkψt (D)a‖L2• ≤ c2−δkμ(2kB)−
1
2 ; (7.11a)

‖η′
kψt (D)a‖L2• ≤ c2−δkμ(2kB)−

1
2 ; (7.11b)

‖η′′
kψt (D)a‖L2• ≤ c2−δkμ(2kB)−

1
2 . (7.11c)
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Fig. 1 The division of C1
2 (B) used in Lemma 7.17 for a ball B in M of radius r(B) < 1/4

In that case, each (2δk/c)1C1
k (B)ψt (D)a is a t1-Carleson atom, and since

ψt(D)a =
∞∑

k=0

1C1
k (B)ψt (D)a

almost everywhere in M × (0,1], Proposition 3.8 implies that ψt(D)a is in t1 with
‖ψt(D)a‖t1 � c

∑∞
k=0 2−δk � 1. Therefore, it suffices to prove (7.11).

To prove (7.11), choose r̃ so that r̃ ≥ r and r̃/CDCθ,r̃ > λ. Also, choose δ in

(0, β − κ/2) and choose ψ in �
β+N
β (So

θ,r̃
), in which case ψ ∈ �β(So

θ,r ). Then, since
β > κ/2, Lemma 5.4 implies that

‖1Eψt(D)1F ‖ � 〈t/ρ(E,F )〉 κ
2 +δe−λρ(E,F ) ≤ 〈t/ρ(E,F )〉δ (7.12)

for all closed subsets E and F of M .
We now prove (7.11a). If k = 0, then by (7.2) and (7.4) we have

‖η0ψt(D)a‖L2• ≤ ‖ψt(D)a‖L2• � ‖a‖2 � μ(B)−
1
2 .

Now consider k ≥ 1. For each l ∈ N, define Il by

‖ηkψt (D)a‖2
L2•

≤
∞∑

l=0

∫ 〈r(B)〉

0
‖1k(B)ψt (D)1l (B)a‖2

2
dt

t
=

∞∑

l=0

Il.

If 0 ≤ l ≤ k − 2, then

ρ(2kB\2k−1B,2lB\2l−1B) = (2k−1 − 2l )r(B) � 2kr(B)

and μ(2kB) ≤ 2(k−l)κeλ(2k−l−1)2l r(B)μ(2lB), so by (7.12) we have

Il �
∫ r(B)

0

(
t

2kr(B)

)2( κ
2 +δ) dt

t
e−2λ(2k−1−2l )r(B)e−q2l r(B)2−2lμ(2lB)−1

� 2−2l( κ
2 +1)2−2k( κ

2 +δ− κ
2 )eλ(−2k+2l+1+2k−2l−2l )r(B)μ(2kB)−1

� 2−2l2−2δkμ(2kB)−1.
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If k − 1 ≤ l ≤ k + 1, then μ(2kB) � eλ2l rμ(2lB), so we have

Il ≤ ‖ψt(D)1l (B)a‖2
L2•

� e−q2l r(B)2−2lμ(2lB)−1 � 2−2lμ(2kB)−1.

If l ≥ k + 2, then

ρ(2kB\2k−1B,2lB\2l−1B) = (2l−1 − 2k)r(B) � 2lr(B)

and μ(2kB) ≤ μ(2lB), so by (7.12) we have

Il �
∫ r(B)

0

(
t

2lr(B)

)2δ dt

t
2−2lμ(2lB)−1 � 2−2l2−2δkμ(2kB)−1.

Note that we needed q ≥ λ when 0 ≤ l ≤ k + 1. This proves (7.11a), since now

‖ηkψt (D)a‖2
L2•

≤
∞∑

l=0

Il �
∞∑

l=0

2−2l2−2δkμ(2kB)−1 � 2−2δkμ(2kB)−1.

To prove (7.11b) and (7.11c) we only need to consider when r(B) < 1, otherwise
η′

k = η′′
k = 0. In that case, there exists a differential form b such that a = DNb, as in

Definition 7.12. Define ψ̃(z) = zNψ(z), in which case ψ̃ ∈ �N(So
θ,r̃

), where r̃ ≥ r

was fixed previously so that r̃/CDCθ,r̃ > λ. Now choose ε in (0,N − κ/2). Then,
since N > κ/2, Lemma 5.4 implies that

‖1Eψ̃t (D)1F ‖ � 〈t/ρ(E,F )〉 κ
2 +εe−λρ(E,F ) � 〈t/ρ(E,F )〉ε (7.13)

for all closed subsets E and F of M .
To prove (7.11b), we only consider k ≥ 2, since otherwise η′

k = 0. For each l ∈ N,
define Jl by

‖η′
kψt (D)a‖2

L2•
≤

∞∑

l=0

∫ 〈2k−1r(B)〉

r(B)

‖1k(B)ψ̃t (D)1l (B)b‖2
2

dt

t2N+1
=

∞∑

l=0

Jl.

The proof proceeds as for Il by using (7.13) instead of (7.12). If 0 ≤ l ≤ k − 2, then
since N − κ/2 − ε > 0 and r(B) < 1, we have

Jl �
∫ 1

r(B)

(
t

2kr(B)

)2( κ
2 +ε) dt

t2N+1
e−2λ(2k−1−2l )r(B)r(B)2Ne−q2l r(B)2−2lμ(2lB)−1

� r(B)2(N− κ
2 −ε)

∫ 1

r(B)

t−2(N− κ
2 −ε) dt

t
2−2l( κ

2 +1)2−2k( κ
2 +ε− κ

2 )μ(2kB)−1

� 2−2l2−2εkμ(2kB)−1.

If k − 1 ≤ l ≤ k + 1, then since r(B) < 1, we have

Jl ≤ r(B)−2N‖ψ̃t (D)1l (B)b‖2
L2•

� e−q2l r(B)2−2lμ(2lB)−1 � 2−2lμ(2kB)−1.
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If l ≥ k + 2, then since N − ε > 0 and r(B) < 1, we have

Jl �
∫ 1

r(B)

(
t

2lr(B)

)2ε dt

t2N+1
r(B)2N 2−2lμ(2lB)−1

≤ r(B)2(N−ε)

∫ 1

r(B)

t−2(N−ε) dt

t
2−2l2−2εkμ(2kB)−1

� 2−2l2−2εkμ(2kB)−1.

Note that we needed q ≥ λ when 0 ≤ l ≤ k + 1. This proves (7.11b), since now
‖η′

kψt (D)a‖2
L2•

≤∑∞
l=0 Jl � 2−2εkμ(2kB)−1.

To prove (7.11c), we only consider k ≥ 1 for which 2k−1r(B) < 1, since otherwise
η′′

k = 0. For each l ∈ N, define Kl by

‖η′′
kψt (D)a‖2

L2•
≤

∞∑

l=0

∫ 〈2kr(B)〉

2k−1r(B)

‖12kBψ̃t (D)1l (B)b‖2
2

dt

t2N+1
=

∞∑

l=0

Kl.

The proof proceeds as for Jl . In fact, we only require the weaker estimate obtained
by setting ε = 0 in (7.13). If 0 ≤ l ≤ k + 2, then μ(2kB) � 2(k−l)κμ(2lB), since
2k−1r(B) < 1, so we have

Kl � (2kr(B))−2N‖ψ̃t (D)1l (B)b‖2
L2•

≤ 2−2l( κ
2 +1)2−2k(N− κ

2 )μ(2kB)−1.

If l ≥ k + 2, then we have

Kl � 2−2l( κ
2 +1)

∫ 2kr(B)

2k−1r(B)

(
r(B)

t

)2(N− κ
2 ) dt

t
μ(2lB)−1 ≤ 2−2l2−2k(N− κ

2 )μ(2kB)−1.

Note that we did not require q ≥ λ here. This proves (7.11c), since N > κ/2 and now
‖η′′

kψt (D)a‖2
L2•

≤∑∞
l=0 Kl � 2−2(N− κ

2 )kμ(2kB)−1. �

Lemma 7.18 Let θ ∈ (ω, π
2 ), r > R, and β > κ/2 such that r/CDCθ,r > λ/2. For

each N ∈ N, N > κ/2, and q ≥ λ, there exist c > 0 and φ ∈ �β(So
θ,r ) such that

‖φ(D)a‖L1
Q

≤ c for all a that are h1
D -molecules of type (N,q).

Proof Let a be an h1
D -molecule of type (N,q). There exists a ball B in M of

radius r(B) > 0 such that the requirements of Definition 7.12 are satisfied. Let
B∗ = (1/〈r(B)〉)B , so the radius r(B∗) ≥ 1.

Suppose that there exist φ ∈ �β(So
θ,r ) and c, δ > 0, all of which do not depend

on a, such that

‖1k(B
∗)φ(D)a‖2 ≤ c2−δkμ(2kB∗)−

1
2 (7.14)

for all k ≥ 0. In that case, each (2δk/c)1k(B
∗)φ(D)a is an L1

Q-atom, and since

φ(D)a =
∞∑

k=0

1k(B
∗)φ(D)a
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almost everywhere on M , Theorem 4.6 implies that ‖φ(D)a‖L1
Q

� c
∑∞

k=0 2−δk .
Therefore, it suffices to prove (7.14).

To prove (7.14), choose r̃ so that r̃ ≥ r and r̃/CDCθ,r̃ > λ. Also, choose δ

in (0, r̃/CDCθ,r̃ − λ) and choose φ in �β+N(So
θ,r̃

), in which case φ ∈ �β(So
θ,r ).

Lemma 5.4 then implies that

‖1Eφ(D)1F ‖ � e−(λ+δ)ρ(E,F ) � 〈1/ρ(E,F )〉 κ
2 +1e−λρ(E,F ) ≤ 〈1/ρ(E,F )〉 (7.15)

for all closed subsets E and F of M .
We now prove (7.14) when r(B) ≥ 1, in which case B∗ = B . If k = 0, then by

(7.2) and (7.4) we have

‖10(B)φ(D)a‖2 ≤ ‖φ(D)a‖2 � ‖a‖2 � μ(B)−
1
2 .

Now consider k ≥ 1 and for each l ∈ N, define I ′
l by

‖1k(B)φ(D)a‖2
2 ≤

∞∑

l=0

‖1k(B)φ(D)1l (B)a‖2
2 =

∞∑

l=0

I ′
l .

The proof proceeds as for Il in Lemma 7.17 by using (7.15) instead of (7.12). If
0 ≤ l ≤ k − 2, then since r(B) ≥ 1, we have

I ′
l �
(

1

2kr(B)

)2( κ
2 +1)

e−2λ(2k−1−2l )r(B)e−q2l r2−2lμ(2lB)−1 � 2−2l2−2kμ(2kB)−1.

If k − 1 ≤ l ≤ k + 1, then we have

I ′
l ≤ ‖φ(D)1l (B)a‖2

2 � e−q2l r(B)2−2lμ(2lB)−1 � 2−2lμ(2kB)−1.

If l ≥ k + 2, then since r(B) ≥ 1, we have

I ′
l �
(

1

2lr(B)

)2

2−2lμ(2lB)−1 � 2−2l2−2kμ(2kB)−1.

Note that we needed q ≥ λ when 0 ≤ l ≤ k + 1. This proves (7.14) when r(B) ≥ 1,
since now ‖1k(B)φ(D)a‖2

2 ≤∑∞
l=0 I ′

l � 2−2kμ(2kB)−1.
If r(B) < 1, then r(B∗) = 1 and there exists a differential form b such that

a = DNb, as in Definition 7.12. Define ψ(z) = zNφ(z), in which case ψ ∈ �N(So
θ,r̃

),
where r̃ ≥ r was fixed previously so that r̃/CDCθ,r̃ > λ. Now choose ε in
(0,N − κ/2). Then, since N > κ/2, Lemma 5.4 implies that

‖1Eψ(D)1F ‖ � 〈1/ρ(E,F )〉 κ
2 +εe−λρ(E,F ) ≤ 〈1/ρ(E,F )〉ε (7.16)

for all closed subsets E and F of M .
We now prove (7.14) when r(B) < 1. If k = 0, then by (7.2) and (7.5), and since

r(B) < 1 and N > κ/2, we have

‖10(B
∗)φ(D)a‖2 ≤ ‖ψ(D)b‖2 � r(B)Nμ(B)−

1
2 � r(B)N− κ

2 μ(B∗)−
1
2 ≤ μ(B∗)−

1
2 .
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Now consider k ≥ 1. For each l ∈ N, define I ′′
l by

‖1k(B
∗)φ(D)a‖2

2 ≤
∞∑

l=0

‖1k(B
∗)ψ(D)1l (B)b‖2

2 =
∞∑

l=0

I ′′
l .

If 1 ≤ 2l < 2k−1/r(B), then

ρ(2kB∗\2k−1B∗,2lB\2l−1B) = 2k−1 − 2lr(B) � 2k

and μ(2kB∗) ≤ (2k−l/r(B))κeλ(2k−l /r(B)−1)2l r(B)μ(2lB), so that by (7.16), and since
r(B) < 1 and N > κ/2, we have

I ′′
l �
(

1

2k

)2( κ
2 +ε)

e−2λ(2k−1−2l r(B))r(B)2Ne−q2l r(B)2−2lμ(2lB)−1

� 2−2l( κ
2 +1)2−2k( κ

2 +ε− κ
2 )r(B)2(N− κ

2 )eλ(−2k+2l+1r(B)+2k−2l r(B)−2l r(B))μ(2kB∗)−1

� 2−2l2−2εkμ(2kB∗)−1.

If 2k−1/r(B) ≤ 2l ≤ 2k+1/r(B), then μ(2kB∗) � eλ2l rμ(2lB), and since r(B) < 1,
we have

I ′′
l ≤ ‖ψ(D)1l (B)b‖2

2 � r(B)2Ne−q2l r(B)2−2lμ(2lB)−1 � 2−2lμ(2kB∗)−1.

If 2l > 2k+1/r(B), then

ρ(2kB∗\2k−1B∗,2lB\2l−1B) = 2l−1r(B) − 2k � 2l

and μ(2kB∗) ≤ μ(2lB), so that by (7.16), and since r(B) < 1, we have

I ′′
l �
(

1

2l

)2ε

r(B)2N 2−2lμ(2lB)−1 � 2−2l2−2εkμ(2kB∗)−1.

Note that we needed q ≥ λ when 1 ≤ 2l < 2k+1/r(B). This proves (7.14) when
r(B) < 1, since now ‖1k(B

∗)φ(D)a‖2
2 ≤∑∞

l=0 I ′′
l � 2−2εkμ(2kB∗)−1. �

7.2 Local Riesz Transforms and Holomorphic Functional Calculi

We now prove the principal result of the paper, which is the local analogue of Theo-
rem 5.11 in [7].

Theorem 7.19 Let κ,λ ≥ 0 and suppose that M is a complete Riemannian mani-
fold satisfying (Eκ,λ). Let ω ∈ [0,π/2) and R ≥ 0 and suppose that D is a closed
densely defined operator on L2(∧T ∗M) of type Sω,R satisfying hypotheses (H1–H3)
from Sect. 5. Let θ ∈ (ω,π/2) and r > R such that r/CDCθ,r > λ/2, where Cθ,r is
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from (H1) and CD is from (H3). Then for all f ∈ H∞(So
θ,r ), the operator f (D) on

L2(∧T ∗M) has a bounded extension to h
p

D(∧T ∗M) such that

‖f (D)u‖h
p

D
� ‖f ‖∞‖u‖h

p

D

for all u ∈ h
p

D and p ∈ [1,∞].

Proof If u ∈ h1
D ∩ L2, then Proposition 7.6 gives U ∈ t1 ⊕ L1

Q with S D
η,ϕU = u and

‖U‖t1⊕L1
Q

≤ 2‖u‖h1
D

. Therefore, by Theorem 6.2 we have

‖f (D)u‖h1
D

= ‖Q D
η,ϕf (D)S D

η,ϕU‖t1⊕L1
Q

� ‖f ‖∞‖U‖t1⊕L1
Q

� ‖f ‖∞‖u‖h1
D

for all u ∈ h1
D ∩ L2, and since h1

D ∩ L2 is dense in h1
D by Corollary 7.7, f (D) has a

bounded extension to h1
D . The same proof with t̃∞ ⊕ L̃∞

Q instead of t1 ⊕ L1
Q shows

that f (D) has a bounded extension to h∞
D . These extensions coincide on h1

D ∩ h∞
D ,

since h1
D ∩ h∞

D ⊆ h2
D = L2 is a consequence of the interpolation of the local Hardy

spaces in Theorem 7.8. Therefore, the required extension exists by interpolation. �

Theorem 1.4 follows from this result in the case of the Hodge–Dirac operator by
Example 5.2, which allows us to prove Corollary 1.5.

Proof of Corollary 1.5 It was shown in Example 5.2 that D satisfies (H1–H3) with
ω = 0, R = 0, CD = 1, and Cθ,r = 1/ sin θ for all θ ∈ (0,π/2) and r > 0. There-
fore, Corollary 1.5 follows from Theorem 7.19 by choosing θ in (0,π/2) such that
λ/2 sin θ <

√
a, choosing r in (λ/2 sin θ,

√
a), and defining the holomorphic function

f (z) = z(z2 + a)−1/2 for all z ∈ So
θ,r . �
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Appendix: The Atomic Characterization of t1(X × (0,1])

The proof of Theorem 3.6 is an adaptation of [40], which in turn is based on the
original proof in [22]. For this, we introduce the notion of local γ -density.
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Definition A.1 Let X be a locally doubling metric measure space. Let F be a closed
subset of X with O = cF and μ(O) < ∞. For each γ ∈ (0,1), the points of local
γ -density with respect to F are the elements of the set

F
γ

loc =
{

x ∈ X

∣
∣
∣
∣ inf

0<r≤1

μ(F ∩ B(x, r))

V (x, r)
≥ γ

}

.

The complement of this set is denoted by O
γ

loc = c(F
γ

loc).

Local γ -density can be understood in terms of the local maximal operator Mloc
from Sect. 2. For each γ ∈ (0,1), the following hold:

(1) F
γ

loc is closed;

(2) F
γ

loc ⊆ F ;

(3) O
γ

loc = {x ∈ X | Mloc1O(x) > 1 − γ };
(4) μ(O

γ

loc) � μ(O).

The proof of these properties relies on Proposition 2.9 and is left to the reader.
The proof of Theorem 3.6 also requires the following lemma, which is adapted

from Lemma 2.1 in [40].

Lemma A.2 Let X be a locally doubling metric measure space. Let F be a closed
subset of X and let � be a nonnegative measurable function on X × (0,1]. For each
η ∈ (0,1), there exists γ ∈ (0,1) such that

∫∫

R1
1−η(F

γ

loc)

�(y, t)V (y, t)dμ(y)dt �
∫

F

∫∫

�1(x)

�(y, t)dμ(y)dtdμ(x),

where R1
1−η and �1 are defined in Sect. 3.

Proof Fix η ∈ (0,1) and let γ ∈ (0,1) to be chosen later. For each (y, t) in
R1

1−η(F
γ

loc), choose ξ ∈ F
γ

loc such that (y, t) ∈ �1
1−η(ξ). We then have

μ(F ∩ B(ξ, t)) ≥ γV (ξ, t).

Also, the condition ρ(ξ, y) < (1 − η)t implies that B(ξ, ηt) ⊆ B(y, t). Therefore,
we have B(ξ, ηt) ⊆ B(ξ, t) ∩ B(y, t) and by Proposition 2.3 there exists cη ∈ (0,1),
depending on η, such that

cηV (ξ, t) ≤ V (ξ, ηt) ≤ μ(B(ξ, t) ∩ B(y, t)).

Now choose γ ∈ (1 − cη,1). The above inequalities show that there exists Cη,γ > 0,
depending on η and the choice of γ , such that

μ(F ∩ B(y, t)) ≥ μ(F ∩ B(ξ, t)) − μ(B(ξ, t) ∩ cB(y, t))

≥ (γ − (1 − cη))V (ξ, t)

≥ Cη,γ V (y, t),

where the final inequality follows from (Dloc) and B(y, t) ⊆ B(ξ,2t).
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Using the above inequality and Fubini’s theorem we obtain
∫∫

R1
1−η(F

γ

loc)

�(y, t)V (y, t)dμ(y)dt

�
∫∫

R1
1−η(F

γ

loc)

�(y, t)μ(F ∩ B(y, t))dμ(y)dt

≤
∫∫

R1
1(F )

∫

F∩B(y,t)

�(y, t)dμ(x)dμ(y)dt

≤
∫

F

∫∫

�1(x)

�(y, t)dμ(y)dtdμ(x). �

We now complete the proof of the atomic characterization of t1.

Proof of Theorem 3.6 Let f ∈ t1 and for each k ∈ Z, define

Ok = {x ∈ X | Alocf (x) > 2k}
and Fk = cOk . The lower semicontinuity of Alocf ensures that Ok is open. We also
have μ(Ok) ≤ 2−k‖f ‖t1 < ∞.

Let η ∈ (0,1) to be chosen later and let γ ∈ (0,1) be the constant, which depends
on η, from Lemma A.2. Let F ∗

k denote the set (Fk)
γ

loc from Definition A.1 and let
O∗

k = c(F ∗
k ). We then have Ok ⊆ O∗

k and μ(O∗
k ) � μ(Ok).

First, we establish that f is supported in
⋃

k∈Z
T 1

1−η(O
∗
k ). For each k ∈ Z, we

apply Lemma A.2 with �(y, t) = |f (y, t)|2(V (y, t)t)−1 and F = Fk to obtain
∫∫

c(
⋃

j∈Z
T 1

1−η(O∗
j ))

|f (y, t)|2dμ(y)
dt

t
=
∫∫

⋂
j∈Z

R1
1−η(F ∗

j )

|f (y, t)|2dμ(y)
dt

t

≤
∫∫

R1
1−η(F ∗

k )

|f (y, t)|2dμ(y)
dt

t

�
∫

Fk

∫∫

�1(x)

|f (y, t)|2 dμ(y)

V (y, t)

dt

t
dμ(x)

�
∫

1Fk
(x)(Alocf (x))2dμ(x),

where the final inequality follows from (Dloc), since if (y, t) ∈ �1(x), then t ≤ 1
and B(x, t) ⊆ B(y,2t). If k is a negative integer, then pointwise on X we have
1Fk

(Alocf )2 ≤ Alocf and limk→−∞ 1Fk
(Alocf )2 = 0, where Alocf ∈ L1(X). There-

fore, by dominated convergence we have

lim
k→−∞

∫
1Fk

(x)(Alocf (x))2dμ(x) = 0,

which implies that f = 0 almost everywhere on c(
⋃

j∈Z
T 1

1−η(O
∗
j )), as required.
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Now we decompose f into t1-atoms. For each k ∈ Z, apply Proposition 2.8 with
O = O∗

k and h > 0 to be chosen later. This gives a sequence of pairwise disjoint balls
(Bk

j )j∈Ik
, where each ball Bk

j = B(xk
j , rk

j ) has radius rk
j = 1

8 min(ρ(xk
j , cO∗

k ), h) and

Ik is some indexing set. It also gives a sequence of nonnegative functions (φk
j )j∈Ik

supported in B̃k
j = 4Bk

j such that
∑

j∈Ik
φk

j = 1O∗
k
. For each (y, t) in X × (0,1], we

have

1T 1
1−η(O∗

k )\T 1
1−η(O∗

k+1)
(y, t) =

∑

j∈Ik

φk
j (y)1T 1

1−η(O∗
k )\T 1

1−η(O∗
k+1)

(y, t),

since either (y, t) ∈ T 1
1−η(O

∗
k ) \ T 1

1−η(O
∗
k+1), in which case y ∈ O∗

k and we have
∑

j∈Ik
φk

j (y) = 1, or both sides of the equation are zero. Given that f is supported in
⋃

k∈Z
T 1

1−η(O
∗
k ), the following holds for almost every (y, t) ∈ X × (0,1]:

f (y, t) = f (y, t)
∑

k∈Z

1T 1
1−η(O∗

k )\T 1
1−η(O∗

k+1)
(y, t)

=
∑

k∈Z

∑

j∈Ik

f (y, t)φk
j (y)1T 1

1−η(O∗
k )\T 1

1−η(O∗
k+1)

(y, t)

=
∑

k∈Z

∑

j∈Ik

λk
j a

k
j (y, t), (A.1)

where

ak
j (y, t) = 1

λk
j

f (y, t)φk
j (y)1T 1

1−η(O∗
k )\T 1

1−η(O∗
k+1)

(y, t),

λk
j =
(

μ(αBk
j )

∫∫
|f (y, t)|2φk

j (y)21T 1
1−η(O∗

k )\T 1
1−η(O∗

k+1)
(y, t)dμ(y)

dt

t

) 1
2

and α > 0 will be chosen later.
Given that f ∈ t1, the series in (A.1) also converges to f in t1 by dominated

convergence. The same reasoning shows that if f ∈ t1 ∩ tp for some p ∈ (1,∞),
then the series also converges to f in tp . It remains to choose the constants η ∈ (0,1),
h > 0 and α > 0 so that (A.1) is the required atomic decomposition.

First, consider the support of ak
j . If (y, t) ∈ spptak

j , then y ∈ spptφk
j ⊆ 4Bk

j and
we have

ρ(y, z) ≥ ρ(xk
j , z) − ρ(xk

j , y) ≥ (α − 4)rk
j (A.2)

for all z ∈ c(αBk
j ). We also have ρ(y, cO∗

k ) ≥ (1−η)t , since (y, t) ∈ T 1
1−η(O

∗
k ). Now

consider two cases: (1) If 8rk
j = min(ρ(xk

j , cO∗
k ), h) = ρ(xk

j , cO∗
k ), then

(1 − η)t ≤ ρ(y, cO∗
k ) ≤ ρ(y, xk

j ) + ρ(xk
j , cO∗

k ) ≤ 12rk
j ,

so by (A.2) we have

ρ(y, z) ≥ (α − 4)(1 − η)t/12 (A.3)
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for all z ∈ c(αBk
j ); (2) If 8rk

j = min(ρ(xk
j , cO∗

k ), h) = h, then

ρ(y, z) ≥ (α − 4)h/8 (A.4)

for all z ∈ c(αBk
j ).

Now choose η ∈ (0,1), h > 0, and α > 0 such that

(α − 4)(1 − η)/12 ≥ 1, (α − 4)h/8 ≥ 1, and αh/8 ≤ 2.

For example, set η = 1/4, h = 1/2, and α = 20. It then follows from (A.3) and (A.4)
that ρ(y, c(αBk

j )) ≥ t and so spptak
j ⊆ T 1(αBk

j ), where the radius of αBk
j is αrk

j ≤
αh/8 ≤ 2. Also, it is immediate that ‖ak

j ‖L2• = μ(αBk
j )−1/2 and thus ak

j is a t1-atom.
It remains to prove the norm equivalence. Using the support condition just proved

and applying Lemma A.2 with F = Fk and

�(y, t) = 1T 1(αBk
j )(y, t)|f (y, t)|2(V (y, t)t)−1

gives

(λk
j )

2μ(αBk
j )−1 ≤

∫∫

T 1(αBk
j )∩c[T 1

1−η(O∗
k+1)]

|f (y, t)|2dμ(y)
dt

t

=
∫∫

R1
1−η(F ∗

k+1)

1T 1(αBk
j )(y, t)|f (y, t)|2dμ(y)

dt

t

�
∫

Fk+1

∫∫

�1(x)

1T 1(αBk
j )(y, t)|f (y, t)|2 dμ(y)

V (y, t)

dt

t
dμ(x)

�
∫

cOk+1∩αBk
j

(Alocf (x))2dμ(x)

� 22kμ(αBk
j ).

Furthermore, by (Dloc) we have λk
j � 2kμ(Bk

j ), and since for each k ∈ Z the balls

(Bk
j )j are pairwise disjoint and contained in O∗

k , we obtain

∑

k∈Z

∑

j∈Ik

|λk
j | ≤

∑

k∈Z

2kμ(O∗
k )

�
∑

k∈Z

2kμ(Ok)

=
∑

k∈Z

2
∫ 2k

2k−1
μ({x ∈ X | Alocf (x) > 2k})dt

�
∑

k∈Z

∫ 2k

2k−1
μ({x ∈ X | Alocf (x) > t})dt

= ‖f ‖t1,

which completes the proof. �
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Remark A.3 If b > 1, then a judicious choice of η ∈ (0,1), h > 0, and α > 0 in the
proof of Theorem 3.6 allows us to characterize f ∈ t1 in terms t1-atoms supported
on truncated tents T 1(B) over balls B with radius r(B) ≤ b. The constants in the
norm equivalence � then depend on b and, as we may expect, become unbounded as
b approaches 1.
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