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Abstract We define local Hardy spaces of differential forms hpD(/\T*M ) for all
p € [1, oo] that are adapted to a class of first-order differential operators D on a com-
plete Riemannian manifold M with at most exponential volume growth. In particular,
if D is the Hodge—Dirac operator on M and A = D? is the Hodge—Laplacian, then
the local geometric Riesz transform D(A +al )~1/2 has a bounded extension to h’;)
for all p € [1, oo], provided that a > 0 is large enough compared to the exponential
growth of M. A characterization of h]D in terms of local molecules is also obtained.
These results can be viewed as the localization of those for the Hardy spaces of dif-
ferential forms H g (AT*M) introduced by Auscher, McIntosh, and Russ.
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1 Introduction and Main Results

The local Hardy space h'(R") introduced by Goldberg in [26] is an intermedi-
ate space H'(R") c h'(R") ¢ L'(R"). The Hardy space H'(R") is suited to
quasi-homogenous multipliers, and indeed the boundedness of the Riesz transforms
(Rju)"(¢) = i&;|&|7 (&) is built into its definition. The local Hardy space i!(R"),
however, is suited to smooth quasi-homogenous multipliers, and the boundedness of
local Riesz transforms, such as (r;u)(§) = i§j(|§|2 +a)~124 (&) for a > 0, is built
into its definition.

Let M denote a complete Riemannian manifold with geodesic distance p and Rie-
mannian measure w. We adopt the convention that such a manifold M is smooth
and connected. Let L2(AT*M) denote the Hilbert space of square-integrable differ-
ential forms on M. Let d and d* denote the exterior derivative and its adjoint on
L2(AT*M). The Hodge—Dirac operator is D = d + d* and the Hodge—Laplacian is
A = D?. The geometric Riesz transform DA~Y2 is bounded on LZ(AT*M), which
led Auscher, Mclntosh, and Russ in [7] to construct Hardy spaces of differential forms
HJ (AT*M), or simply H}, for all p € [1, co]. Among other things, they show that
the geometric Riesz transform is bounded on H g and that H [1) has a molecular char-
acterization.

The atomic characterization of H l(R”), due to Coifman [19] and Latter [33],
was used by Coifman and Weiss in [21] to define a Hardy space of functions on a
space of homogeneous type. A requirement in the definition of Hardy space atoms
a is that they satisfy the moment condition ['@ = 0. The approach taken in [7] is
instead based on the connection between the tent spaces TP(R’:FI) and H? (R™).
This connection was first recognized by Coifman, Meyer, and Stein, who showed
in Sect. 9B of [22] that HP(R") is isomorphic to a complemented subspace of
TP (RQ’_‘H) for all p € [1, co]. More precisely, there exist two bounded operators
P:HPR") — TP(RT'I) and 7 : TP(RTFI) — HP(R") such that Pz is a pro-
jection and HP? (R") is isomorphic to Pn(TP(R’fl)).

The definition of the tent space T! (Rf’ﬁ]) and its atoms, which are not required to
satisfy a moment condition, admit natural generalizations to differential forms. Also,
both P and 7 are convolution-type operators, which can be interpreted in terms of the
functional calculus of —id/dx. The idea in [7] was to define H g in terms of the tent
space of differential forms T7(AT*M x (0, c0)) and operators Q and S, which are
adapted to D in the same way that P and 7 are adapted to —id/dx. The main require-
ment for the construction was that operators such as the projection QS be bounded on
TP(AT*M x (0, 00)). The authors of [7] prove this by using off-diagonal estimates
for the resolvents of D to establish uniform bounds on tent space atoms. In this pa-
per, we adapt the definition of H g to define local Hardy spaces of differential forms
hY(AT*M), or simply A7), for all p € [1, oo]. We first consider a general locally dou-
bling metric measure space X, and define a local tent space #” (X x (0, 1]) and a new
function space Lg (X), both of which have an atomic characterization for p = 1 and
admit a natural generalization to differential forms. One can show classically that
hP(R™) is isomorphic to a complemented subspace of 7 (R" x (0, 1]) & Lg(R”).
While square function characterizations for ~#” (R") are certainly known, this charac-
terization appears to be new.
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The atomic characterization of 4! (R"), due to Goldberg [26], consists of two types
of atoms. The first kind are supported on balls of radius less than one and satisfy a
moment condition, while the second kind are supported on balls with radius larger
than one and are not required to satisfy a moment condition. In our new characteri-
zation, we can associate the first kind of atoms with elements of ¢! (R™ x (0, 1]) and
the second kind with elements of L 1@ (R™).

The definition of H 1[; in [7] is limited to Riemannian manifolds that are doubling,
which we define below using the following notation. Given x € M and r > 0, let
B(x, r) denote the open geodesic ball in M with center x and radius r, and let V (x, r)
denote the Riemannian measure u(B(x, r)).

Definition 1.1 A complete Riemannian manifold M is doubling if there exists A > 1
such that

O0<V(@x,2r) <AV(x,r) <oo (D)

forall x € X and r > 0.

The doubling condition is equivalent to the requirement that there exist A > 1 and
k > 0 such that

0<V(x,ar) <Ad“V(x,r) < oo

for all x € X, r > 0 and o > 1. This condition is imposed to define H Dp because
the Hardy space norm incorporates global geometry. The nature of the local Hardy
space, however, allows us to define h% on manifolds that are only locally doubling.
Specifically, we define h’l’) on the following class of manifolds.

Definition 1.2 A complete Riemannian manifold M is exponentially locally dou-
bling if there exist A > 1 and «, A > 0 such that

0<Vx,ar) < Ad“? @ V"V (x,r) <o (Ex,2)

forall « > 1, r > 0 and x € M. The constants « and A are referred to as the polyno-
mial and exponential growth parameters, respectively.

The class of doubling Riemannian manifolds includes R” with the Euclidean dis-
tance and the standard Lebesgue measure, as well as Lie groups with polynomial vol-
ume growth; other examples are listed in [7]. The class of exponentially locally dou-
bling Riemannian manifolds is larger and includes hyperbolic space (see Sect. 3.H.3
of [25]), Lie groups with exponential volume growth (see Sect. I1.4 of [24]) and thus
all Lie groups. More generally, by Gromov’s variant of the Bishop comparison the-
orem (see [12, 27]), all Riemannian manifolds with Ricci curvature bounded from
below are exponentially locally doubling. This includes Riemannian manifolds with
bounded geometry, noncompact symmetric spaces, and Damek—Ricci spaces.

Taylor recently defined local Hardy spaces of functions on Riemannian manifolds
with bounded geometry in [46]. Hardy spaces of functions have also been defined
on some nondoubling metric measure spaces in [13, 15]; extensions of that work
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are also in [14, 35, 36]. The theory developed in those papers applies to R” with the
Euclidean distance and the Gaussian measure, as well as to Riemannian manifolds on
which the Ricci curvature is bounded from below and the Laplace-Beltrami operator
has a spectral gap.

The Hardy spaces H g in [7] are defined using the holomorphic functional cal-
culus of D in L>(AT*M). In particular, the authors consider the class H (89
of functions that are bounded and holomorphic on the open bisector Sj of angle
0 € (0, w/2) centered at the origin in the complex plane. This is because the function
sgn(Re(z)) = z/ Ns maps D to the geometric Riesz transform DA~Y2 under the
H °°(Sg ) functional calculus. The local Hardy spaces, however, are suited to the local
geometric Riesz transforms D(A 4+ al)~!/ 2 for a > 0, so we consider the smaller
class H C’O(Sg’ ,) of functions that are bounded and holomorphic on S; U D7, where
D? is the open disc of radius r > 0 centered at the origin in the complex plane.

The space h}) has a characterization in terms of local molecules, which are defined
in Sect. 7.1. This is the first main result of the paper.

Theorem 1.3 Let k, A > 0 and suppose that M is a complete Riemannian manifold
satisfying (BEx1). If N € N, N >k /2, and q > X, then th = hb’mol(N’q).

The following is the principal result of the paper.

Theorem 1.4 Let k, A > 0 and suppose that M is a complete Riemannian manifold
satisfying (Ey ;). Let 8 € (0,7/2) and r > 0 such that r sinf > A/2. Then for all
fe HOO(Sg’r), the operator f (D) on L? has a bounded extension to h% such that

IF Dyl S f ool
forallu e h% and p €[1, o).
There is then the following corollary for the local geometric Riesz transforms.

Corollary 1.5 Let k, A > 0 and suppose that M is a complete Riemannian man-
ifold satisfying (E¢,). If a > A2/4, then the local geometric Riesz transform
D(A + al)~V? has a bounded extension to h’éfor all p e [1, o0].

The theory in this paper actually applies to a large class of first-order differential
operators, which we introduce in Sect. 5. These operators are denoted by D. Theo-
rems 1.3 and 1.4 follow from the more general results in Theorems 7.14 and 7.19 by
setting D = D, where D will always denote the Hodge—Dirac operator. The case of
the Hodge—Dirac operator is considered in Example 5.2.

Taylor proved in [44] that on a Riemannian manifold with bounded geometry,
where A denotes the Hodge—Laplacian on functions, a sufficient condition for the
operator f(+/Ag) to be bounded on L? for all p € (1, 00) is that f be holomorphic
and satisfy inhomogeneous Mihlin boundary conditions on an open strip of width
W > XA /2 in the complex plane, where A > 0 is such that (E, ;) holds. This result was
improved by Mauceri, Meda, and Vallarino in [34], and then by Taylor in [45]. The
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need for f to be holomorphic on a strip was originally noted by Clerc and Stein in
the setting of noncompact symmetric spaces in [18], and that work was extended by
others in [3, 16, 41].

In this paper, we do not assume bounded geometry. Theorem 1.4 represents the
beginning of the development of an approach to the theory discussed above based
on first-order operators. The connection between h% and L7 is investigated in the
sequel, although note that h% is defined so that it can be identified with LZ. Also,
Taylor’s result suggests that the bound 7 sin6 > A /2 in Theorem 1.4 may be the best
possible, since 7 sin@ is the width of the largest open strip contained in S7 ..

For all x, y € R, we adopt the convention whereby x < y means that there exists
a constant ¢ > 1, which may only depend on constants specified in the relevant pre-
ceding hypotheses, such that x < cy. To emphasize that the constant ¢ depends on a
specific parameter p, we write x <, y. Also, we write x ~ y to mean that x Sy S x.
For all normed spaces X and Y, we write X C Y to mean both the set-theoretical
inclusion and the topological inclusion, whereby x|y < |lx||x for all x € X. Also,
we write X = Y to mean that X and Y are equal as sets and that they have equivalent
norms.

The structure of the paper is as follows: In Sect. 2 we develop local analogues of
some basic tools from harmonic analysis in the context of a locally doubling metric
measure space X. The local tent spaces (X x (0, 1]) and the new spaces Lg (X) are
introduced and shown to have atomic characterizations for p = 1 in Sects. 3 and 4,
respectively. We also obtain duality and interpolation results for these spaces. Next,
we introduce a general class of first-order differential operators, which includes the
Hodge-Dirac operator. We denote these operators by D and prove exponential off-
diagonal estimates for their resolvents in Sect. 5. These are used to prove the main
technical estimate in Sect. 6, which allows us to define the local Hardy spaces of dif-
ferential forms hpD(/\T*M ) in Sect. 7. We also obtain duality and interpolation results
for the local Hardy spaces. Finally, Theorems 1.3 and 1.4 follow from Theorems 7.14
and 7.19 in the case of the Hodge—Dirac operator.

2 Localization

The subsequent two sections do not require a differentiable structure. To distinguish
these results, it is convenient to let X denote a metric measure space with metric p
and Borel measure L.

Notation A ballin X will always refer to an open metric ball. Given x € X andr > 0,
let B(x, r) denote the ball in X with center x and radius r, and let V (x, r) denote the
measure 1 (B(x,r)). Given «, r > 0 and a ball B of radius r, let « B denote the ball
with the same center as B and radius ar.

The results here and in the next section hold if we assume the following local
doubling condition.

Definition 2.1 A metric measure space X is locally doubling if for each r > 0, the
function x +— V (x, r) is continuous on X, and if for each b > 0, there exists A, > 1
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such that
0<V(x,2r)<ApV(x,r) <oo (Dioe)
forall x € X and r € (0, b].

Remark 2.2 The continuity of x — V(x,r) is assured on a complete Riemannian
manifold and in most applications, but in general only lower semicontinuity is guar-
anteed. We require this condition because it implies that the volumes of open balls
and closed balls are identical (see also Remark 3.2).

If sup, A < oo, then (Djoc) is equivalent to (D) in Definition 1.1. In fact, the
doubling condition was introduced by Coifman and Weiss in [20] to define a space
of homogeneous type. The results here are a localized version of that work. We begin
by proving the following useful consequence of local doubling.

Proposition 2.3 If X is locally doubling, then for each b > 0 there exists kp > 0 such
that

V(x,ar) < Apa®V(x,r)
forallx e X,r € (0,b] and @ € [1,2b/r].

Proof Let N = [log, ], which is the smallest integer not less than log, «, so
that 2V—! < @ < 2" and B(x, 2l,vr) C B(x,r). Application of the (Djoc) inequality
N times reveals that

o

Vix,ar) < A,iVV(x, —Nr) < Apad®®Vi(x,r),

where «p =log, Ap. O

We introduce the local property of homogeneity, which is the local analogue of
the property of homogeneity from [20], and show that it holds on a locally doubling
space. This property allows us to apply harmonic analysis locally on X.

Definition 2.4 A metric space (X, p) has the local property of homogeneity if for
each b > 0 there exists N € N such that for all x € X and r € (0, b], the ball B(x, r)
contains at most N, points (x;) j=1,... N, satisfying p(x;, x¢) >r/2 forall j #k.
Remark 2.5 The local property of homogeneity is equivalent to the requirement that
if b > 0, then for all x € X, r € (0, b] and n € N, the ball B(x, r) contains at most
Ny points (x;) ;1. Ny satisfying p(x;j, xi) = r/2" for j # k. The proof of this is
similar to that of Lemma 1.1 in Chap. III of [20]. This property is more suited to
applications. It can be used, for instance, to prove the next proposition.

Proposition 2.6 If X is a locally doubling metric measure space, then it has the local
property of homogeneity.
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Proof This follows the proof of the Remark on p. 67 in Chap. III of [20]. U

Following the scheme of [20], we use the local property of homogeneity to prove
local covering lemmas. The next two proofs are adapted from [1], which treats the
global case.

Proposition 2.7 (Vitali-Wiener type covering lemma) Let X be a metric space with
the local property of homogeneity. Let B be a collection of balls in X. If there is a
finite upper bound on the radii of the balls in B, then there exists a sequence (Bj) j of
pairwise disjoint balls in B with the property that each B € B is contained in some
4B;.

Proof Fix R > 0 such that the radii r(B) < R forall B € 8. Let§ € (0, 1) to be fixed
later, and for each k € N define

Br={BecB|5R<r(B)<s 'R

Proceeding recursively for k = 1,2, ..., choose a maximal subset By of pairwise
disjoint balls in 8By according to the following requirements:
(1) Bk € Bys

) If B, B e Ji_, B; and B # B', then BN B' = ;
(3) If B € By \ By, then there exists B’ € Ulj?:] B such that BN B’ # (.

To show that each :ék is countable, choose By € :ék and write

Bi=|J(BeBi|BcnBy).
neN

For each n € N, the centers of all of the balls in {B € By | B C nBo)} are separated
by at least a distance of §¥R and contained in a ball of radius nR, so countability
follows by the local property of homogeneity. Therefore, the collection B = Uk By
is a sequence (B;); of pairwise disjoint balls in B.

To complete the proof, let B € 8\ $. For some k € N, we have B € 8By \ :@’k and
there exists B’ € Ul;zl B; such that B N B’ # (. In particular, we have B’ € By for
some k' < k, so if x” denotes the center of B’, then

p(y,x") <2r(B) +r(B") <2688 'R+ r(B) < 2/5 + r(B)
for all y € B. If we set § =2/3, then B C 4B’ and the proof is complete. O

Proposition 2.8 (Whitney type covering lemma) Let X be a metric space with the
local property of homogeneity. Let O be a nonempty proper open subset of X and let
€O =X\ 0. For each h > 0, there exists a sequence of pairwise disjoint balls (B}) ;
with center x; € X and radius

1
rj = gmin(p(x;.°0). 1)
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such that, if B i =4Bj, then O = j B j and the following bounded intersection
property is satisfied.

supjj({k | B; N By # 0}) < 0.
J

Furthermore, there exists a sequence (¢ ;) j of nonnegative functions supported in B I
such that infyep; ¢j(x) > 0 and Zj ¢; =10, where 19 denotes the characteristic
function of O.

Proof Let B denote the collection of all balls with center x € O and radius r =
%min(p(x, €0), h). Proposition 2.7 gives a sequence (B;); = (B(x;,r;)); of pair-
wise disjoint balls fron~1 B such that O C Uj Ej, and since 4r; < p(x;,°0), we
actually have O =, B;.

We note some facts to help prove that (B;); has the bounded intersection property.
First, if x € B, then

p(x,0) > p(xj,°0) — p(xj,x) =8rj —4rj =4r;. 2.1
Second, given ¢ > 0, if x € Bj and p(x;,“0) < crj, then
p(x,€0) < p(x,x)) + p(x;.°0) < (4 + )1 ). 22)
Now suppose that B N By # . This implies that
p(xj,xp) <4@rj+r) < h. (2.3)
Consider two cases: (1) If p(x;, “O) > 2h, then by (2.3) we have
p(xk, ©0) = p(xj,“0) — p(xj, xk) > h,
sory=h/8=rjand By C9B;; (2) If p(x;,“0) < 2h, then by (2.3) we have
p(xk, ©0) < p(xg, xj) + p(x;,“0) < 3h,

which implies that p (x, ©O) < 24ry, since either p(xk,  O) = 8ry or h = 8r. In this
case, if x € Bj N By, then by (2.1) and (2.2) with ¢ = 24 we obtain

4rj <p(x,°0) <28r; and 4r; <p(x,“0) <28,

so (1/7rj <ri <7Tr;j and By € 39B;.

The above shows that for each j € N, the centers of all balls By satisfying B N
By #  are separated by at least a distance of (1/7)r ; and contained in a ball of radius
39r; < 5h. The bounded intersection property then follows from the local property
of homogeneity.

To construct the sequence of functions (¢;);, let n be the function equal to 1 on
[0,1) and 0 on [1, c0). For each j € N, define

P(x,xj)>
4rj

1ﬁj(x)=71<
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for all x € X. These are nonnegative functions supported in B 7. We also have

1< ¥(x) <ooforall x € O, since O =, B and the bounded intersection
property is satisfied. The required functions are then defined for each j € N by

V() X Yi(x), ifx € 0;

#i0= {0, ifxeco. O

We now prove a general version of the fundamental theorem for the (centered)
local maximal operator M. defined for all measurable functions f on X by

Mioc f(x) = sup
o re@.11 V& 1) B,

[f()ld(y)
forall x € X.

Proposition 2.9 Let X be a locally doubling metric measure space. If f is a measur-
able function on X, then Mo f is lower semicontinuous, and thus measurable, and
the following hold:

(1) Ifa >0, then n(fx € X | Mioe f(x) > a}) S I fll1/a forall f € LY(X);
() If 1 < p < oo, then |Mioc fll p Sp | fll p for all f € LP(X).

Proof The lower semicontinuity of M. f is guaranteed by Fatou’s Lemma and the
continuity of the mapping x — V (x, r) from Definition 2.1.

To prove (1), let f € L'(X)and set E, = {x € X | Mioc f(x) > e} for each o > 0.
If x € E,, then there exists r, € (0, 1] such that

1
V) - [fDIdu(y) > a.

By Proposition 2.7, the collection B = (B(x, 7y))xeE, contains a subsequence (B})
of pairwise disjoint balls such that, if B i =4Bj, then (f? j)j cover Ey. Therefore, by
(Dioc) we have

15012 3 [ 17 010) = 0 Y Z ok,
j 7B j

The proof of (2) is then standard (see, for instance, Sect. 1.1.5 of [42]). O

We conclude this section by proving that a locally doubling space is exponentially
locally doubling, as in Definition 1.2, if and only if it satisfies a certain additional
condition on volume growth. While we do not make explicit use of this equivalence,
it shows why (E ;) is often a more useful assumption than (Djec). In particular, it
allows us to obtain the atomic characterization of the space L é) (X) in Sect. 4.

Proposition 2.10 Let X be a locally doubling metric measure space. Then X is ex-
ponentially locally doubling if and only if there exist Ao > 1 and by, 6 > 0 such that

Vix,r+6) <AyV(x,r) (Dglo)

forallr > bgand x € X.
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Proof 1If X satisfies (Ey, ), then for any by > 0 and § > 0, we have
V@, r+8) =V, (1+8/r)r) < A(1+8/bp) eV (x, )

forall r > by and x € X.

To prove the converse, suppose X satisfies (Dglo) and let o > 1. Consider three
cases:

If r > bg, choose N € N so that ar — N§ € (r,r + 8]. Application of the (Dgjo)
inequality N + 1 times reveals that

Vx,ar) < AVTV (e, r) < At @V (x, 1), (2.4)

where A = (log Ag)/3d;
If r € (0, bo] and « € (1, 2bg/r], then Proposition 2.3 implies that

V(x,ar) < Apa*V(x,r); (2.5)
If r € (0, bp] and o > 2bg/r, then we obtain
V(x,ar) =V (x, (ar/2bgy)2bg)
< AgeH@r/20=D2b0 v (x 2p)
< Apt ™DV (x, 2bo/r)r)
< ApAp, a0 2Dy (x ),

where we used (2.4) to obtain the first inequality and (2.5) to obtain the final inequal-

1ty.
These show that X satisfies (E, ;) with ¥ = «p, and A = (log Ap)/8é. O

3 Local Tent Spaces ¢ (X x (0, 1])

We introduce the local tent spaces t”(X x (0, 1]), or simply ¢?, for all p €[1, o0]
in the context of a locally doubling metric measure space X. Note that functions on
X x (0, 1] are assumed to be complex valued. There is also the following notation.

Notation The cone of aperture « > 0 and height 1 with vertex at x € X is
Te) ={(,0) € X x 0,11 p(x,y) <at).
LetT'l(x) = F% (x). For any closed set F € X and any open set O C X, define

Ry(F)=|JTy(x) and T,;(0)=(X x (0,1)\ R} (0),

xeF

where €O = X\ 0.Let T'(0) = Tll(O) and call it the truncated tent over O. Note
that

T)(0)={(y,1) € X x (0,11 ] p(y,0) > at}.
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For any ball B in X of radius r(B) > 0, the truncated Carleson box over B is
C'(B) = B x (0, min{r(B), 1}].

Finally, if E is a measurable subset of X x (0, 1], then 1g denotes the characteristic
function of E on X x (0, 1].

The local Lusin operator Ajo. and its dual Cj,c are defined for any measurable
function f on X x (0, 1] as follows:

1
_ 2 du(y) de\2,
Alocf<x)—<ffrl(x)|f<y,t>| — t) :

Clocf ()= su (L// O, DPd ()ff
toc _Be,@f(x) w(B) JJr1(B ¥ R

for all x € X, where B> (x) denotes the set of all balls B in X of radius r(B) < 2 such
that x € B. We now define the local tent spaces.

Definition 3.1 Let X be a locally doubling metric measure space. For each p €
[1, 00), the local tent space tP(X x (0, 1]) consists of all measurable functions f
on X x (0, 1] with

I fller = I Atoc £l p < 00.

The local tent space t°°(X x (0, 1]) consists of all measurable functions f on
X x (0, 1] with

||f||to<; = ”Clocf”oo < Q.

Remark 3.2 Recall that in Definition 2.1 we required the continuity of the mapping
x +— V(x,r) for each r > 0. This implies that the volumes of open balls and closed
balls are identical, which ensures that Ao f and Cioc f are lower semicontinuous and
thus measurable.

The local tent spaces are Banach spaces under the usual identification of func-
tions that are equal almost everywhere. This follows as in the global case in [22]. In
particular, completeness holds by dominated convergence upon noting that for each
compact set K € X x (0, 1] and each p € [1, oo], we have

1
2
1k fller Sk.p (ffK If(y,t)|2du(y)dl> Skop Lfller 3.D

for all measurable functions f on X x (0, 1].
Let L%(X x (0, 1]), or simply L%, denote the Hilbert space of all measurable func-
tions f on X x (0, 1] with

1
d
1/l = <// |f(y,t)|2du<y>{)2 <0,
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We have 1> = L2, sinceif (y, 1) € I'!(x),thent < 1, B(y, t) € B(x,2t) and B(x, 1) C
B(y, 2t), so by (Djoc) we obtain

||f||t2~///1rl(x)(y DIF 0P “(” Lane) = 1£12;.

These observations lead us to the following density result, which is crucial to the
extension procedure in Sect. 6.

Proposition 3.3 Let X be a locally doubling metric measure space. For all p €
[1,00) and g € [1, 00], the set t? Nt9 is dense in tP.

Proof Let f €t? and p € [1, 00). Fix a ball B in X and define

S =Ixpxn/enf

for each k € N. The functions fj belong to t? N ¢4 for all g € [1, co] by (3.1), and
limg— o0 || f — fllz» =0 by dominated convergence. O

We characterize ¢! in terms of the following atoms.
Definition 3.4 Let X be a locally doubling metric measure space. A t!-atom is a

measurable function a on X x (0, 1] supported in the truncated tent T'(B) over a
ball B in X of radius r(B) < 2 with

llall,2 = <// la(y, )| dM(y)—> <u(B) 2
* TY(B) !

If a is a t'-atom corresponding to a ball B as above, then the Cauchy—Schwarz
inequality implies that @ € ¢! N ¢? with [la| > < |lall2 < u(B)~!/? and

1
lally < (B)2llall,2 S 1. (3.2)
Remark 3.5 If ();); is a sequence in ¢! and (aj);j is a sequence of t!-atoms, then
(3.2) implies that Zj Ajaj converges in 11 with || Zj rjajlla S j)jller. Note that

this did not require the condition »(B) < 2 in Definition 3.4.

The atomic characterization of ! asserts the converse of the above remark. This
is the content of the following theorem.

Theorem 3.6 Let X be a locally doubling metric measure space. If f € t', then there

exist a sequence (Aj); in 2 and a sequence (aj) j oftl-atoms such that Zj Ajaj
converges to f in t' and almost everywhere in X x (0, 1]. Moreover, we have

£, :inf{u(xj),-nel f= Zk./aj}-
J

Also, if p € (1,00) and f €t' NP, then Zj Ajaj convergesto f int? as well.
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The proof of Theorem 3.6 is deferred to Appendix so that it does not disrupt the
main flow of ideas. It is also possible to characterize ! in terms of atoms supported
in truncated Carleson boxes.

Definition 3.7 Let X be a locally doubling metric measure space. A t'-Carleson
atom is a measurable function a on X x (0, 1] supported in the truncated Carleson
box C'(B) overaball B in X of radius r(B) > 0 with |l ;2 < u(B)~'/2,

It is immediate that Theorem 3.6 holds with ¢!-Carleson atoms in place of ¢!-
atoms. As explained in Remark 3.5, the converse of Theorem 3.6 does not require
the upper bound r(B) < 2 on the radii of the supports of #!-atoms. This may not be
the case for #!-Carleson atoms on a locally doubling metric measure space. In the
following proposition, however, we show that this is the case on an exponentially
locally doubling metric measure space. We will need this to prove the molecular
characterization of hlD in Lemma 7.17. This is the first indication that (E, ;) is more
suited to our purposes than (Djc).

Proposition 3.8 Let X be an exponentially locally doubling metric measure space. If
(Aj)j is a sequence in ¢ and (aj); is a sequence of t'-Carleson atoms, then Zj Ajaj
converges in t' with || Zj Aiajlla SH) e

Proof 1t is enough to show that sup ||a||,1 < 1, where the supremum is taken over all
a that are ¢'-Carleson atoms.

Let a be a ¢'-Carleson atom supported on a ball B in X of radius r(B) > 0 with
lallz2 < w(B)~"/2. First suppose that r(B) < 1. It follows by (Dioc) that w(2B) <
ci(B) for some ¢ > 0 that does not depend on B. Also, we have C'(B) c T'(2B)
and the radius r(2B) < 2. This implies that a//c is a t!-atom and the result follows
by (3.2).

Now suppose that 7(B) > 1. Let B be the collection of all balls centered in B with
radius equal to 1/4. Proposition 2.7 gives a sequence (B;); of pairwise disjoint balls
from B such that B C | j l},', where 3/ =4B;. We also have the following bounded
intersection property:

sup ({k | B; N By #0}) < 0.
J
This follows from the local property of homogeneity, and in particular Remark 2.5,
since for each j € N, the centers of all balls By satlsfylng B N By # ) are separated

by at least a distance of 1/4 and contained in ZB . Therefore, the following are well
defined for each j € N:

(11 1/n -
- CY(Bj) a ~ L
4=, —; aj = —————; Aj=n(Bj)zlla;lL2-
k2C(By) w(Bj)2lajllp2

Also, we have C1(B) = B x (0,1] C Uj C1(1§j), since the radius r(f?j) =1. We
can then write a =) jhjaj where each a; is a t!-atom by the previous paragraph.
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Therefore, we have
2 ~
lall?y < (Z |A,»|) < (ZMBJ-)) (Z ||&j||%) §M<UBJ)IIaII%,
J J J J

where we used (Djoc) in the final inequality to obtain /L([?./) < n(Bj). Each Bj is
contained in (1 + ﬁ)B, so by (E,.») we obtain

1
lall% §u<<1 - m)B)u(B)l S

which completes the proof. g

The following duality and interpolation results for the local tent spaces follow as
in the global case.

Theorem 3.9 Let X be a locally doubling metric measure space. If p € [1, 00) and
1/p+1/p’ =1, then the mapping

S d
g+ (f.8)12 =//f<x,r)g<x,r)du<x){

forall f et? and g € 17" is an isomorphism from 17" onto the dual space (tP)*.

Proof For p=1 and p’ = oo, the proof is closely related to the atomic characteriza-
tion in Theorem 3.6 and follows the proof of Theorem 1 in [22]. The remaining cases
follow the proof of Theorem 2 in [22]. O

Theorem 3.10 Let X be a locally doubling metric measure space. If 0 € (0, 1) and
1 < po < p1 < 0, then

[IPO’ tp1]9 — tpe’

where 1/pg = (1 —0)/po +0/p1 and [-, -19 denotes complex interpolation.

Proof The interpolation space [¢70,1P!]y is well defined because

1P (X x (0,1]) € Lipe (X x (0, 1)
for all p € [1, co] by (3.1). This allows us to construct the Banach space 170 + ¢71,
which is the smallest ambient space in which #70 and ¢! are continuously embedded.
The proof then follows that of Theorem 3 and Proposition 1 in [11]. O

We conclude this section by dealing with a technicality involving the space ¢*°. In
contrast with Proposition 3.3, the set #*° N 12 may not be dense in t> when X is not
compact. Therefore, define 7 to be the closure of ! N> in >, so we have both
the density of 7°° N ¢2 in 7°° and the interpolation result in the following corollary.
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Corollary 3.11 Let X be a locally doubling metric measure space. If 0 € (0, 1) and
1 <p<oo,then

[t7,1]g =17,

where 1/ pg = (1 —0)/p and [-, -19 denotes complex interpolation. Also, the set {>° N
14 is dense in i for all q € [1, oc], and t* is dense in t' + .

Proof 1f 6 € (0, 1), then by a standard property of complex interpolation, as in The-
orem 1.9.3(g) of [47], and Theorem 3.10, we have

[t 1% =", 1%0g =1/

If p € (1, 00), then by the standard reiteration theorem for complex interpolation, as
in Theorem 1.7 in Chap. IV of [32], we have

[P, 7%l = [t", 711—-6)1—1/p)+6 = 17,
where the density properties required to apply the reiteration theorem are guaranteed
by Proposition 3.3.

Finally, the interpolation in Theorem 3.10 implies that ' N ¢ C ¢4 for all ¢ €
[1, oc]. Therefore, the density of #! N 7> in 7°° implies that 7°° N 19 is dense in 7>
for all ¢ € [1, oo]. The density of 7' N 72 in ¢! from Proposition 3.3 then implies that
t2 is dense in ¢! + 7°°. O

4 Some New Function Spaces Lg X)

We introduce some new function spaces Lg(X ), or simply LZ, for all p € [1, 00] in
the context of a locally doubling metric measure space X. Note that functions on X
are assumed to be complex valued. We begin with the following abstraction of the
unit cube structure in R”.

Definition 4.1 Let X be a metric measure space. A unit cube structure on X is a
countable collection @ = (Q;); of pairwise disjoint measurable sets that cover X,
for which there exists § € (0, 1] and a sequence of balls (B;); in X of radius equal to
1 such that

5Bj - Qj gBj.

The sets in @ are called unit cubes.
A unit cube structure exists on a locally doubling space.

Lemma 4.2 [f X is a locally doubling metric measure space, then it has a unit cube
structure.

Proof The cubes are constructed in the same way that general dyadic cubes are con-
structed in Sect. 1.3.2 of [43]. Let 8B be the collection of all balls in X with radius
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equal to 1/4. Proposition 2.7 gives a sequence (B;); of pairwise disjoint balls from
8B such that X = J; 4B;. The unit cubes Q; are then defined recursively for each
j €Nby

Q,-=4Bij(U Qk>mC<UBk).

k<j k>j

We have § = 1/4 in this unit cube structure. O

In the proof above we could instead use the dyadic cubes constructed by Christ
in [17]. In any case, this brings us to the definition of L éz (X).

Definition 4.3 Let X be a locally doubling metric measure space. Let @ = (Q;);
be a unit cube structure on X. For each p € [1, 00), the space Lg (X) consists of all
measurable functions f on X with

1

1/l =< 3 (u<Qj>H||1Q,.f||z)”)” < .

0jeq

The space LZQO(X ) consists of all measurable functions f on X with

1
1z = sup 1@ g, 1l < o0.

j€

These are Banach spaces under the usual identification of functions that are equal
almost everywhere. The space Lé (X) is exactly the Hilbert space L?(X). More gen-
erally, completeness holds because for each compact set K € X and each p € [1, 0],
we have

Mk flly Sk.p Mk fll2 Skp 11 4.1

for all measurable functions f on X.
We will see that the Lg spaces are independent of the unit cube structure @ used
in their definition. First, however, we consider their relationship with the L? spaces.

Proposition 4.4 Let X be a locally doubling metric measure space. The following
hold:

D Lg N LZ‘) is dense in Lgforall pell,o0)and q €1, o0];

(2) L S LP forall p€1,2];

(3) LP S LE forall p €12, ).

Proof Let p e [1,00) and f € Lg. Fix a ball B in X of radius r(B) > 1 and define
fi = 1xp f for each k € N. The functions fj belong to Ly N LE for all g € [1, o0]
by (4.1), and

. P _ 1 . l]—l P __
Jim I = Sl = Jim 3 (@72, fl2)" =0
Q;N¢ (kB)#H
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because f € Lé;, which proves (1).
We use Holder’s inequality to prove (2) and (3). If p € [1, 2], then

£ = 3" Mo, /7 = Y (w(@)7 2I1g, 1) = I£15,

Q_,E(Q Q_,'E(Q

forall f € LY which proves (2). If p € [2, 00), then

117, = 3 ()7 g, £27) = Y g, £I5 = I£1I5

0jeq 0jeQ

forall f € L?, while

_1 i 3
Il = sup w(Q@)"ZIg, f21I7 < sup g, f2Id& =1flloo
0jeq 0jeq@

for all f € L®, which proves (3). O
Now we turn to the atomic characterization of L}Q.

Definition 4.5 Let X be a locally doubling metric measure space. An LéQ—atom is
a measurable function a on X supported on a ball B in X of radius r(B) > 1 with
lallz < (B~

If a is an L) -atom, then a belongs to Ly N L? with ||la]; < 1. If X is exponen-
tially locally doubling, then it is shown in the following theorem that ||a|| Ly <I.
This allows us to prove that L (12 is precisely the subspace of L! in which functions
have an atomic characterization consisting purely of atoms supported on balls with
large radii. The effectiveness of (E, ;) in the proof of the first part of the following
theorem can be understood in terms of its equivalence with the condition (Dgjo) from
Proposition 2.10.

Theorem 4.6 Let X be an exponentially locally doubling metric measure space. The

following hold:

L. If (A}); is a sequence in ¢! and (aj);j is a sequence of L({Q-atoms, then Z/ Aja;
converges in L, with || > Ajajliy SHA)jllers

2. If f e Léz’ then there exist a sequence (Aj); in 0" and a sequence (aj)j of Lérz‘

atoms such that y_ jhjaj converges to fin Lél and almost everywhere in X.
Moreover, we have

1l Ninf{u(xj)jnel :f=ZMaj}~
J

Also, if pe (1,00) and f € Lél N Lg, then Zj Ajaj converges to f in ng as
well.
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Proof To prove (1), it is enough to show that sup{|la ||Lé2 1ais an Lég-atom} <1.Let

a be an L}Q—atom supported on a ball B of radius (B) > 1. Let
Qp={0;€@:0;NB#U}.
For each Q; € @p, there exists a ball B; in X of radius equal to 1 such that
dB; € Q; < By,

where § is the constant associated with @ in Definition 4.1. The Cauchy—Schwarz
inequality and the properties of the unit cube structure imply that

2
lalig, <llalz > M(Qj)=||a||§u< U Qj)sMB)—lu((H@)B)-

0;edp 0;edp

The lower bound on r(B) and (E, ;) then imply that ||a||, L < 1, where the constant
in < does not depend on a.

To prove (2), let f € L};r We can write f(x) = ZQJ,E@ Ajaj(x) for almost every
x € X, where

lQ]f(x)

——= and Ay =p(Q) g, fla.
W@ g, flz

aj(x)=

Given that f € L éz’ this series also converges to f in Léz. The same reasoning shows
thatif f € L} N L for some p € (1, 00), then the series also converges to f in L.
Also, each a; is supported in Q; € B}, so by (Djoc) we obtain

Bl—

lajll2 = M(Q,/)_l < M((SB/)_% Su(Bj) 2.

Therefore, each a; is a constant multiple of an L}Q—atom, and this constant does not
depend on f or Q ;. The result then follows since [|(A;) ], = ||f||L(12. O

Remark 4.7 The proof of the second part of Theorem 4.6 actually shows that a func-
tion in L}Q has a characterization in terms of L}Q—atoms supported on balls of radius
equal to 1.

The definition of L ég-atoms does not require a unit cube structure. Therefore, the
atomic characterization of L }Q shows that, up to an equivalence of norms, L éQ is inde-
pendent of the unit cube structure @ used in its definition. The atomic characterization
of Léz is also related to the following duality.
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Theorem 4.8 Let X be an exponentially locally doubling metric measure space. If
pell,o0)and 1/p+1/p’ =1, then the mapping

g (f.8) 2= f F0)g(x)du(x)

or all f € LY and g € L%, is an isometric isomorphism from L% onto the dual
Q Q Q
space (Lg)*.

Proof Let p € [1,00).1f f € L}y and g € L}, ' then Holder’s inequality gives

[(frghal < ) Ilg; fi1g,8) 2

QjE(Q

= Y g, Flallg;glhm(Q)7 2 (@)

Q_/'E(Q

==

<
< IIfIILgllglng-

To prove the converse, given p and g € [1, 00), let w,(Q;) = ,u(Qj)l_’I/2 for all
Q; € @, and define £”(w,) to be the space of all sequences & = {60;10,eq with

£p, € L*(Q;) and

1

7
I|$I|eﬁ(wq)=< Z |I1Q,-€Q,-||§wq(Qj)) < 00.
QjG@

Let T € (LE)* and define T € (€7 (wp))* by
T(§)=T( > 1Qj§Qj>
0;eq

for all £ € £7(w)). It is immediate that || T|| < |IT|, and by the standard duality there
exists n € E”/(w,,) such that ”’7”61”(wp) < ||f|| and

T =) (lg,50,-10,70,)12wp(Q))

Q/'E@

for all £ € £7(w)). Therefore, we have

T(f)=T({lg, flo,c@)= D (f.1o;n0;)2wp(Q))=(f.8)2

Q,—e(,‘l

forall f € Lly, where g = ZQ,’E@ 1p,m0,wp(Q;). Now consider two cases: (1) If
p € (1, 00), then .

1
_r _2 \7
”8”Lg=< > (@) T ling;m(@)! zné’) = Il ) < 1T

QjE@
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) If p =1, then

1
ligllLye = sup w(Q;) 2I1g;gll2
@

Qje

_1
= sup u(Q;)"2 sup [(f, )2l
0;eq I fl2=1,
sppt fSQ;

_1
=sup sup w(@;) 2T ()l
0;e@ | fl2=1,
sppt fCQ;

_1
<sup sup w(Qj) 2I|TIIIIfIILéQ
0;€@ |If=1,
sppt fSQ;

=T,
which completes the proof. g

The duality between L}Q and Lg shows that, up to an equivalence of norms, L’
is independent of the unit cube structure @ used in its definition. This is made explicit
by the following corollary.

Corollary 4.9 Let X be an exponentially locally doubling metric measure space. Let
B! denote the set of all balls B in X of radius r(B) > 1. Then

_1
I flleg = SUPIM(B) 21 fll2
BeB

forall felLy.
Proof Let f € L. Given Q € @, let B be a ball in X of radius 7(B) =1 such
that §B C Q C B, where § is the constant associated with @ in Definition 4.1. It

follows by (Djoc) that u(B) < (8 B), where the constant in < does not depend on Q.
Therefore, we have

w(Q) g fll S w(B) 2 15 £l

for all O € @, which implies that

_1
I fllee < SUPIM(B) 21 fll2.
BeB

To show the converse, suppose that g € L? is supported in a ball B € 8! with radius
r(B) > 1. As in the first part of the proof of Proposition 4.6, we find that

2
gl < IIgII%M<<1 + @)B> Sllgl3u(B),
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where the second inequality, which follows from (E, ;) since r(B) > 1, does not
depend on g or B. Using this and Theorem 4.8, we obtain

_1 _1
sup w(B) 2|11 flla= sup n(B)"2 sup [(g, f) 2]
BeB! BeB! llgl2=1,
sppt fCB

_1
< sup sup (B Zlgly Il

Beg! lgll2=1,
sppt fCB
<
<Ifle
which completes the proof. |

Given that L}Q and Ly are independent of the choice of @, the following in-
terpolation result shows that, up to an equivalence of norms, the Lg spaces for all
p € (1, 00) are independent of the unit cube structure @ used in their definition.

Theorem 4.10 Let X be an exponentially locally doubling metric measure space. If
0€(0,1)and 1 < pg < p1 <00, then

(L. Lo =LY

isometrically, where 1/pg = (1 —0)/po+ 60/ p1 and [, -1p denotes complex interpo-
lation.

Proof The interpolation space [LY), Ll' ]y is well defined because
LB (X) S Ly (X)

for all p € [1, oo] by (4.1). This allows us to construct the Banach space Lgo + LA
which is the smallest ambient space in which Lgo and Lgl are continuously embed-
ded.

The space £”(w,) was defined for all p € [1, 0co) in the proof of Theorem 4.8.
Likewise, let

_1
Woo(Qj) =n(Qj) 2
for all Q; € @, and define £°°(wx,) to be the space of all sequences £ = {60,10,ea
with &g, € L*(Q;) and

€ lleewae) = sup 11g;60;ll2wec(Q;) < 00.
Qje(fl

If 1 < py < p1 < oo, then wg,l(;e)/powf,{pl = w;,ép", while if p; = oo, then

w;{)_e)/ P Owgo = w,l,{,p ?. Therefore, by the interpolation of vector-valued £ spaces,
as in Theorem 1.18.1 of [47], and the interpolation of weighted L2 spaces, as in The-

orem 5.5.3 of [10], we obtain

(€70 (wpy), €71 (wp)]o = €77 (W)
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isometrically. Note that the isometric equivalence is proved in Remark 1 of
Sect. 1.18.1 of [47], and the proof for p; = oo is given in Remark 2 of the same
reference.

Define the operators R and S by

RE= Y 1g,tg, and Sf={lg,flo,ca
Q,—e(,‘l

for all sequences § = {£¢p;}p,e@ Withép, € L*(Q i), and all measurable functions
fon X.If p e€[1, oo], then the restricted operators

R:€’(wy)— LE and S:Llj— € (w))

are bounded with operator norms equal to 1. Moreover, we have RS = I on ng and
RP(wp)) = LZ. The operator R is a retraction and S is its coretraction. It follows
by Theorem 1.2.4 of [47], which concerns the interpolation of spaces related by a
retraction, that S is an isometric isomorphism from [L’, LL'1y onto

SR([LP (wpy), L7 (wp))]g) = SREP (wp,)) = S(Lgy)

in €7¢ (w, ). Therefore, we have [LL’, L'l = Ll isometrically. O

We conclude this section by defining I:ZQO to be the closure of Ll N LY in L,
and by noting the following corollary.

Corollary 4.11 Let X be an exponentially locally doubling metric measure space. If
0e€(0,1)and 1 < p < oo, then

(LR, L¥lo =LY

isometrically, where 1/pg = (1 — 6)/p and [-, g denotes complex interpolation.
Also, the set L°° N LZQ is dense in L"Oforall g €[1, 00, and L? is dense in L}Q + L"O

Proof The proof follows that of Corollary 3.11 by using Proposition 4.4(1) and The-
orem 4.10. U

5 Exponential Off-Diagonal Estimates

We return to the setting of a complete Riemannian manifold M and derive the oft-
diagonal estimates required to define and characterize our local Hardy spaces. To
consider differential forms on M, let us first dispense with some technicalities.
Foreachk =0, ...,dimM and x € M, let AF T} M denote the k-th exterior power
of the cotangent space T, M. Let A kT*M denote the bundle over M whose fiber at
x is AKT*M, and let AT*M = @M AKT*M. A differential form is a section of
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AT*M. For each p € [1, c0], let L?(AT*M) denote the Banach space of all measur-
able differential forms u with

o 10O ey ()7 if p e 1, 00);

lull ey = -
esssupy ey u(X)|arpm,  if p=o0,

where | - |72 m is the norm associated with the inner product (-, -) AT*M given by the
bundle metric on AT*M at x. '

Our main technical tool will be holomorphic functional calculus, which requires
the following definition. A comprehensive introduction to this topic can be found in
Chap. VII of [23].

Definition 5.1 Given 0 < u < 6 < /2, define the closed and open bisectors in the
complex plane as follows:

Sy={z€C:largz| <por|r —argz| < u};

Sg={z€C\{0}: |argz| <6 or |[r —argz| < 6}.
Given r > 0, define the closed and open discs as follows:

D, ={zeC:|z| <r}
Dl={zeC:|z| <r}.

These are denoted together by S, , = S, U D, and Sj = Sj U D;. Note that
Do ={0}, Sy0 =Su, Dg =9, and Sg ; = S7. A holomorphic function on 7, is
called nondegenerate if it is not identically zero on Sg , and, when r = 0, is not iden-
tically zero on either component of Sg. ’

Let H OO(Sg’r) denote the algebra of bounded holomorphic functions on Sg’r.
Given f € H°°(Sg’r) and t € (0, 1], define f* € HOO(Sg’r) and f; € HOO(Sg,r/t) as
follows:

ff@)=f@E) forallzeS],:

fi(@) = f(tz) forallzeSy,,.
Given «, 8 > 0, define the following sets:

wh(S5 ) ={w e H¥(S5,) : 1¥(2)| Smin{lz|*, |z|P}};
OF (S5, =1{p e H(S),) : 1o ()] S Izl 7P}

Let Wo(S3,) = Upoo WE (S50, WA (S5,) = U= Wh (S5,).
W(Sg,) =Up-o WF(Sg,) and O(S7 ) =Up.o OF (S5

There is also the following notation.
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Notation Given a linear operator T on L>(AT*M), let D(T), R(T), N(T), and || T ||
denote its domain, range, null space, and operator norm, respectively. The resolvent
set p(T) is the set of all z € C for which zI — T has a bounded inverse with domain
equal to L?>(AT*M). The resolvent Ry (z) is defined by

Rr(z)= (I —T)""

for all z € p(T). The spectrum o (T) is the complement of the resolvent set in the
extended complex plane.

Given a bounded measurable scalar-valued function n on M, let n/ denote the
operator on L>(AT* M) of pointwise multiplication by 7. Square brackets [-, -] denote
the commutator operator.

In the remainder of the paper, we consider a closed and densely defined operator
D:D(D) C L>(AT*M) — L*(AT*M) satisfying the following hypotheses:

(HI) There exists w € [0,7/2) and R > 0 such that D is of type S, g. This is de-
fined to mean that o (D) C S, g and that for each 6 € (w, 7/2) and r > R, the
constant

Co,r :==sup{lzl[Rp (@)l : 2 € C\ So,r}

satisfies 0 < Cp , < oo. Given ¢ € @(Sg’r), this property allows us to define
the bounded operator ¢ (D) on L>(AT*M) by

(D = —— / 6(2) R (2)udz
2mi Jipse.

for all u € L2Z(AT*M), where 6 € (w,0), 7 € (R, r) and +95S7 _ denotes the
boundary of Sg ; oriented anticlockwise. ’
(H2) For all 6 € (a)’,n/2) and r > R, the operator D has a bounded HOO(Sg,r)

functional calculus in L2(AT*M). This is defined to mean that for each
0 € (w,/2) and r > R, there exists ¢ > 0 such that

oDl < cligllo

for all ¢ € ®(Sg,r)' Given f € H°°(Sg’r), this property allows us to define
the bounded operator f (D) on L>(AT*M) by f(D)u = lim,— oo (fP1/2) (D)u
for all u € L2(AT*M), where ¢ € ®(qur) such that ¢1/,(z) := ¢(z/n) con-
verges to 1 uniformly on compact subsets of S . The mapping f +— f(D) is
an algebra homomorphism from H °°(Sg’ ,) into the algebra of bounded linear

operators on L2(AT*M) such that

IfF D) =cllflleo

forall f € HOO(S(‘;’V).
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(H3) The operator D is a first-order differential operator in the following sense.
There exists Cp > 0 such that for all smooth compactly supported scalar-
valued functions n € C2°(M), the domain D(D) € D(D o nl) and the com-
mutator [D, nl] is a pointwise multiplication operator such that

[[D, n1Ju(x)|arxm < Cpldn() |z mu(X) | AT m

for all u € D(D) and almost all x € M, where d is the exterior derivative.

The hypothesis (H1) in the case R = 0 is precisely the condition that D is of
type S, (or w-sectorial). The theory of type S,, operators is well understood and can
be found in, for instance, [29, 31]. In particular, given 0 <w <0 <7 /2, V¥ € \IJ(Sg)
and an operator T of type S,,, it is proved in [2, 37] that T has a bounded H*°(Sy)
functional calculus if and only if the quadratic estimate

o0 dt
/O ||w,<T>u||%7 ~ lull?

holds for all u € R(T). The theory of type S, g operators in the case R > 0 is con-
tained in [39]. In particular, given an operator D satisfying (H1), the main result
of that paper shows that (H2) is equivalent to the requirement that D satisfies local
quadratic estimates, which we will introduce after Proposition 7.2.

Note that, as a means of generalizing this theory to other contexts, one could re-
place the space C2°(M) in (H3) with the space of bounded scalar-valued Lipschitz
functions Lip(M). This stronger condition is still satisfied by the Hodge—Dirac oper-
ator, as in Example 5.2 below, and it obviates the need to construct smooth approx-
imations in the proof of Lemma 5.3. Moreover, all of the results in this paper hold
under this condition.

Example 5.2 The Hodge—Dirac operator D = d 4+ d* defined on the space of smooth
compactly supported differential forms C2°(AT*M) is essentially self-adjoint (see
Theorem 1.17 and Example 1.7 in [28]). Therefore, its unique self-adjoint extension,
also denoted by D, immediately satisfies (HI-H2) with w =0, R =0, and Cy , =
1/sin@ for all 6 € (0, 7/2) and r > 0. It also satisfies (H3), since it is a first-order
differential operator, and Cp = 1, since for all n € C2°(M) we have

LD, n1Tu(x)|arsm = ldn(x) au(x) —dn(x) su(x) | arem = 1dn ()| 7 p |lu(X) AT M

for all u € C°(AT*M) and almost all x € M, where A and _ denote the exterior and
(left) interior products on AT, M, respectively. Note that the second equality above
holds because dn(x) J is an antiderivation on AT, M, which implies that

dn 2(dn ru) = |dn|5pu — dn A(dn 2u)
pointwise almost everywhere on M.

Off-diagonal estimates, otherwise known as Davies—Gaffney estimates, provide a
measure of the decay associated with the action of an operator. Their use as a substi-
tute for pointwise kernel bounds is becoming abundant in the literature. In particular,
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they are an essential tool used to prove the Kato Conjecture in [5] and the related
results in [8]. The theory of off-diagonal estimates has also been developed in its own
right in [4]. The following notation is suited to these estimates.

Notation For all x > 0, let (x) = min{1, x}. For all closed subsets E, F C M, let
p(E, F) =infxeg, yer p(x, y).

We prove off-diagonal estimates for the resolvents Rp(z) and then deduce esti-
mates for more general functions of D by using holomorphic functional calculus.
The following proof utilizes the higher-commutator technique from Sect. 2 of [38].
Note that we could instead apply the technique for establishing off-diagonal estimates
from [5, 6].

Lemma 5.3 Let0<w <6 <m/2and 0 < R < r and suppose that D is a closed op-
erator on LX(AT*M) of type Sy, r satisfying (H1) and (H3) with constants Cg , > 0
and Cp > 0. For each a € (0, 1) and b > 0, there exists ¢ > 0 such that

Co.r 1 b p(E, F)lz|
11z Rp(2)1 ||§c—’<7> ex (—ai
ERDRFN =\ o E Pzl TP\ ency,

forall z € C\ Sy and closed subsets E and F of M.

Proof Let E and F be closed subsets of M with p(E, F) > 0. For each € > 0, there
exists n: M — [0, 1]in CZ°(M) such that

1, ifxekE;
nx) = .
0, ifp(x,E)=p(E,F)

and [|dnlloo = supyep [dn(xX)|7xm < (1 +€)/p(E, F). The function n can be con-
structed from smooth approximations of the Lipschitz function f defined by

feo= {0, it p(x, E) = p(E, F)

for all x € M. Note that f is Lipschitz because the geodesic distance p is Lipschitz

on a Riemannian manifold. For further details, see, for instance, [9].

Fixae(0,1),6 €(a,1),and e = fl_T‘f It suffices to show that

Co,r ((1 +€)CDC9J)" 5.1)

1z Rp(2)1F|| < inf n!
MeRp@)1F|l = ir S(E. )|

No |z]

where Ny = N U {0}. For & = 0, the result follows from (5.1) because §/(1 +€) > a
and ¢’ = 2 nen, (6x)"/n! < ﬁ sup,epy, X" /n! for all x > 0. For each b > 0, the

result follows from (5.1) because (8 —€)/(1 +¢) > a and e ¥ < x~be==x for all
x> 0.
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We make repeated use, without reference, of the following easily verified identities
for operators A, B, and C:

[A, BC]=[A, B]C + B[A, C]: [A,B~'1=B![B,A1B~!

on the largest domains for which both sides are defined.
First, we show by induction that

[n1, ID, n11Rp(2))"1 = —n([D, nI1Rp(2))""" (5.2)

for all n € N. The commutator [D, n/] is a pointwise multiplication operator by hy-
pothesis (H3). This implies that [n/, [D, nI]] =0, so (5.2) holds for n = 1. If (5.2)
holds for some k € N, then

[n1. (D, n11Rp())**']
= [n1,[D. n11Rp (1D, nI1Rp(2)* + [D. n11Rp @0, (D, n11Rp(2))*]
=[D. n11[nl. Rp@I(D. nI1Rp(2))* — k(ID. nI1Rp(2))* >
= —[D. nI1Rp(2)[D. nI1Rp(2)([D. n11Rp(2))* — k(D nI1Rp(2))*
= —(k+ (D, nI1Rp ()2,

0 (5.2) holds for all n € N. Next, we show by induction that

n

—_——~
n1,...Inl, Rp(2)]...1=(=1)"n!Rp(2)([D, nI1Rp(2))" (5.3)

for all n € N. This is immediate for n = 1. If (5.3) holds for some k € N, then by (5.2)
we have

k+1
—_———
(nl,...Inl,Rp(2)]...]

= (=D*k![n1, Rp)(D. n11Rp())"]
= (=D*k!{[n1, Rp@1(D. nI1Rp()* + Rp(2)[nl, (D, nI1Rp(2))*1}
= (=D*k{=Rp@)(ID. nI1Rp ()" — kRp()(ID. nI1Rp(2)* "}
= (=)' (k+ D!Rp @)D, nI1Rp(2))* ",
s0 (5.3) holds for all n € N. Using (5.3) with hypotheses (H1) and (H3), we obtain

1eRD1FN < I(nD)" Rp(2)1F|

= ()"~ InI, Rp()11F||

n

—
=|nl,...[n1, Rp(D)]... 11F|
<n![|[Rp@) (D, nI1Rp ()" |l
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<n!(Cplldnlle)" I Rp ()"

Ce r ((1 + G)CDCG,r)"
"zl o(E, F)lz|

for all n € Ny, which proves (5.1). O
The following proof was inspired by the proof of Lemma 7.3 in [30].

Lemma 54 Let 0 <w <0 <m/2 and 0 < R < r and suppose that D is an op-
erator satisfying the assumptions of Lemma 5.3. Let M > 0 and § > 0. For each
v e lI'}‘,,%(.S‘(;r), ¢ e @’S(Sg’r), and a € (0, 1), there exists ¢ > 0 such that the fol-
lowing hold:

M
(D IIIE(fIZfz)(D)lFII<C||f||oo< (Et F)> exp(— p(E, F))

Cp C@ r

2 MNe(fe)DIrl <cll fllocexp (-a p(E, F)) ;

r
CDCO,r
forallt € (0,11, f € H*®(Sg ) and closed subsets E and F of M.

Proof For all 6 € (w,0) and 7 € (R, r), let +BSO denote the boundary of S" ori-

ented anticlockwise, and divide this into y; = —|—8S" N Dj and y; = —|—8S" ﬂ Sg.
Using the Cauchy integral formula from (H1), we have

1
1(fyv)(D)1p = 7l (/ +/ ) F@QUi(1gRp(D)1pdz=11+ D>
Yi VZi

forall € (w,6) and 7 € (R, r). It follows by Lemma 5.3 that for each a € (0, 1) and
b > 0, we have

M
i - —ap(E.F)|zl/CpC; - 142]
IS Gy ] /mln{|tz|M+‘s,|tZ| a}<7> w0 el
R P(E. F)lc] i

Sk Ci il flloolt/ p(E, F))yM e P BRI/ DG

and

P | M —ap(E,F)|zl/CpC; - 41zl
||12||5C§;||f||oo(/ B Pl Cp Gy 2
: P ((E, Plz)) 2]

/Oo |tz] =2 e—ap(E,F)zI/CpCa;%)
i/t (p(E, F)lz])? |z

forall 6 € (w,0) and 7 € (R, r). Setting b = 0 shows that

— E.F CpC
1all Sr.k Cg 71l flloce™ P HFT/ PG,
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and setting b = M shows that
121l Sr.k Cg 71 flloo(t/ p(E, F))M e BT/ CPCoz

Altogether, this shows that for each a € (0, 1), there exists ¢ > 0 such that

LEFYD)DIE < cCh | flloot/p(E, F))M =T/ CPCRPED
forall € (w, 0) and 7 € (R, r). The first result follows by noting that
sup{7/Cj ; :0 € (@,0),7 € (R,r)} =r/Cp,r.
The proof of the second result is similar. |
We conclude this section with a useful application of this result.

Proposition 5.5 Let 0 <w <60 < /2 and 0 < R < r and suppose that D is an
operator satisfying the assumptions of Lemma 5.3. Let 0 <o <a and 0 <t < .
For each r € \po’?(sg,,), Ve wE(Sg,), ¢ € ©F(S7 ), ¢ €©®(Sg,), and a € (0, 1),
there exists ¢ > 0 such that the following hold:

M) @ fP)D)1F|

s/ (t/p(E, F)>Ol+fe—a(r/CDC8,r)P(E’F)’ ifs <t;
(1/)7 {5/ p(E. F)F+7 =00 /CoCInER) ify <.

<cllflloo

Q) IE@ fU)DF| <cll fllo sTe @/ CDCoONPEF),

3) IEW £ YDE| <cll fllo t7e 4/ CDCoNPEF),

@) Ee@ £ )DE| <c|lfllo e @/ CDCONPEE)
orails,t € (0, 1), 1 € , and closed subsets L an 0 .
for all (0,11, f € H®(S] ), and closed subsets E and F of M

Proof To prove (1), first suppose that 0 < s < <1 and choose § € (0, 8 — 7). Let
2)(@) = (527D Y(2) £ (z) and 1(z) = 2" (2) so that

Vi fPs = (/D g
The function 5 is in \Iltf;f;g(Sg’r) and the functions g(s) are in \Il(Sgﬁr) and satisfy
sup;c(0.17 1€(s) lloo S Il f lloo- Therefore, Lemma 5.4 provides the off-diagonal esti-
mate

e (21 DEN S Nlge oot/ p(E, F))*TTemat/CDConpEF)

and the required estimate follows. The proof in the case 0 < ¢t < s < 1 is analogous.
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The results in (2) and (3) follow from Lemma 5.4 by writing the following:
@) (@) =572 () f () (s2) P (52);
Wi [)(2) =1727¢(2) f () (12) 7P (12).

The result in (4) follows immediately from Lemma 5.4. O

6 The Main Estimate

We consider a complete Riemannian manifold M that is exponentially locally dou-
bling. The spaces 7 (X x (0, 1]) and L7, @ (X) introduced in Sects. 3 and 4 consist of
measurable functions. We begin by showmg that it is a simple matter to formulate
that theory for differential forms.

The local Lusin operator Aj is defined for any measurable family of differential
forms U = (U,);e(0,1) on M, where each U, is a section of AT*M, by

du(y) dr
AocU(x) = <//1" w |Ut(y)|AT*MV( ) l>

for all x € M. The dual operator Cjq is defined in the same way. For each p € [1, oo],
the local tent space t” (AT*M x (0, 1]) consists of all measurable families of differ-
ential forms U on M with

WU llw» = {(fM(AlocU(x))pdl/«(x))%, if p e[1, 00);

ess sup,.c s ClocU (%), if p =o0.

Let LZ(AT*M x (0, 1]) denote the space of all measurable families of differential
forms U on M with ||U||L2 = fo ”Ut”Lz(AT*M) .- As before, this is an equivalent
norm on 12(AT*M x (0, 1]).

Next, fix a unit cube structure @ = (Q;); on M. For each p € [1, o], the space
Lg (AT*M) consists of all measurable differential forms u on M with

1_1 1 .
(ZQjeQ(M(Qj)” 2 ||1qu||L2(AT*M))p)ps if p e[1, 00);

ol = ) |
SUPg ;e@ w(@ )72 fllL2(ar*m)s if p=oo.
As before, we have L (AT*M) = L*(AT*M).

A t'(AT*M)-atom is a measurable family of differential forms A = (Af)re(0,1) 0n
M supported in the truncated tent 7' (B) over a ball B in M of radius r(B) < 2 with
A2 < w(B)~Y/2. The atomic characterization in Theorem 3.6 is proved in this
context by defining the local maximal operator M, for all measurable differential
forms u on M by

1
Mipcu(x) = sup —HIB(XJ“)MHLI(AT*M)
re,11 V(x,71)

forall x e M.



136 A. Carbonaro et al.

An L é,z(/\T*M )-atom is a measurable differential form a on M supported on a
ball B in M of radius r(B) > 1 with [lallz < u(B)~'/2. The proof of the atomic
characterization in Theorem 4.6 goes over directly.

The duality and interpolation results from Sects. 3 and 4 extend to this setting as
well. In what follows, we only consider spaces of differential forms and usually omit
writing AT*M and AT*M x (0, 1].

Definition 6.1 Let M be a complete Riemannian manifold. Let w € [0, 7/2) and
R > 0 and suppose that D is a closed densely defined operator on L>(AT*M)
of type S, r satisfying (H1-H2). Given 6 € (w,n/2), r > R, ¥ € \D(Sg’r),
and ¢ € @(Sg’r), define the bounded operators Qg’(ﬁ ) L% ® L? and SII;’(;) :
L2®L>— L? by

QY su = (Y (D)u, p(D)u)

forall u € L? and ¢ € (0, 1], and

1 1
SPU = [ @ T+ o= tim [ w0 T + o0
’ 0 N a—0J, s
forall (U,u) e L2 & L>.

The operator Qﬁ ® is bounded because D satisfies (H1) and (H2). This is a conse-
quence of the equivalence of (H2) with the requirement that D satisfies local quadratic
estimates, which we will introduce after Proposition 7.2. Further details are in [39].
It is also well known that the adjoint operator D* satisfies (H1-H2) if and only if D
satisfies (H1-H2). Therefore, we have 85 6= (Q}/,):,q)*)*, where {* and ¢* are given
by Definition 5.1, and this is a bounded operator.

The remainder of this section is dedicated to the proof of the following theorem,
which is fundamental to the definition of our local Hardy spaces. It is a local analogue
of Theorem 4.9 in [7]. The proof below simplifies some aspects of the original proof.

Theorem 6.2 Let k, A > 0 and suppose that M is a complete Riemannian manifold
satisfying (B 1). Let w € [0, w/2) and R > 0 and suppose that D is a closed densely
defined operator on L>(AT*M) of type S, r satisfying (HI-H3). Let 6 € (o, ),
r> R, and B > /2 such that r/| CpCy > A/2, where Cy , is from (H1) and Cp is
Jfrom (H3).

For each ¢ € WP(S) ), ¥ € Wp(Sg,). ¢ € OF(S] ), and ¢ € O(S) ), there ex-
ists ¢ > 0 such that the following hold for all f € H>*(Sy ,):

(1) The operator Qg 5 f (D)S];Dqs has a bounded extension Pr satisfying
IPr W, il ipgrr <l fllocllUs )l ipgrr

for all (U, u) eﬂ’@Lg and p €[1,2];
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(2) The operator Qg P f (D)Sf é has a bounded extension 75f satisfying

1P, g, <l Fllao IV, 1)
forall (U,u) et? & Lg and p € [2, o).

Proof Hypothesis (H2) and the comments in the paragraph after Definition 6.1 guar-
antee that both Qﬁ é f (D)S?ﬁ)& and Q?//? 3 f (D)Sf 5 satisfy the estimates in (1) and

(2)ont? @ L2
To prove (1), define the following operators:

1 B d B
PHU = /0 VD) f DY (DU~ P} Pu= (D) f D)D)
1 5 d 5
PrU = /0 ¢<D)f(D>ws<D)Us§; P}2u=¢(D)f(D)§(Du,

forall U e L%, uel?andrt e (0, 1], so we have the system

1,1 1,2
o rys® =" ) (Y
v,¢ v.p k4 - 7)2,1 ,P2,2 u
f f

forall (U,u) € L% ®L>.
We claim that there exists ¢ > 0 such that

197, fDIST (A Dlory =l flle 6.1

for all A that are t'-atoms and a that are L}Q—atoms. The proof of (6.1) is quite
technical, so we postpone it to Lemmas 6.3, 6.4, 6.5, and 6.6.

The set ' N2 is dense in 7' by Proposition 3.3. Therefore, to prove that there
exist bounded extensions Pfl At 5t and sz AT RN L}y, it suffices to show that

1P Ulla S U loclUll and PP UN SUf ool Ul (6.2)

forall U e t' N¢2.
If U € t' Nt?, then by Theorem 3.6 there exist a sequence (Aj); in ¢! and a se-

quence (A;); of t!-atoms such that >_jAjAj convergesto U in 12 with [[(A )l <
IU]l;1. Then, since Q?;q)f(D)Sv?é is bounded on 12 @ L2, we have

2,1 2,1
PrU=Y 3PP (A,
j



138 A. Carbonaro et al.

where the sum converges in Lé. Also, the partial sums 27:1 Pf2‘1 (AjA;) form a
Cauchy sequence in Lé2 by (6.1). Therefore, there exists v € L (13 such that

v=2 AT A)).
J

where the sum converges in L}Q, and ”U”Léz S f oo lU 11 Given that both Léz and
Lé are continuously embedded in L (19 + Lé, as in the proof of Theorem 4.10, we
must have v = 73f2 U A similar argument holds for ’Pf] 10U to give (6.2).

The set L }2 N Lé is dense in L é‘z by Proposition 4.4. Therefore, to prove that there

exist bounded extensions ’Pf] 2L (12 — ¢! and sz 2. L({Q — L éQ, it suffices to show
that

”Pfl’zunﬂS”f”oo”l/i”L}Q and ||73f2’2u||L32§||f||oo||u||L}2 (6.3)

forall u € Lé‘z N Lé.

If u e Ly N L%, then by Theorem 4.6 there exist a sequence (1;); in ¢! and
a sequence (a;); of L}Q-atoms such that ) jAjaj converges to u in Lé with
IGoj)jller < el - Then, since Q% f(D)SJ/D,d; is bounded on > @ L, we have

PHu=Y"1;P @),
j

where the sum converges in 2. Also, the partial sums > i 73]‘.1’2()» jaj) form a
Cauchy sequence in ¢! by (6.1). Therefore, there exists V € ¢! such that

V=X A7
J

where the sum converges in ¢!, and Via S ||f||oo||u||L32. Given that both 7! and 2

are continuously embedded in t1+ 2, asin the proof of Theorem 3.10, we must have
V= Pfl’zu. A similar argument holds for ’sz’zU to give (6.3).
The bounds in (6.2) and (6.3) prove that 95 P f (D)S&Ddg has a bounded exten-

sion satisfying the estimate in (1) on e Léq. Therefore, result (1) follows by the
interpolation in Theorems 3.10 and 4.10.

To prove (2), note that replacing D with D* in the proof of (1) shows that
Q?;: o f *(D*)Sg: * has a bounded extension Py« satisfying the estimate in (1)
on t! @ Léz. The duality in Theorems 3.9 and 4.8 then allows us to define the
dual operator P}* satisfying the estimate in (2) on > @ Lg. We also have
Pl = Qg’éf(D)Sf’(ﬁ on (t*N1?) @ (LY NL%), as Sﬁ(ﬁ = (sz):w)* ont’ @ L.
Therefore, result (2) follows by the interpolation in Theorems 3.10 and 4.10. O
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The remainder of this section is devoted to proving ( 6.1). The proof is divided
into four lemmas. We adopt the notation

Pl,l Pl,z

QP f(D)ST . =< Ly
b ; 2,1 2,2

4 V.9 pf pf

as in the proof of Theorem 6.2.

Lemma 6.3 Under the assumptions of Theorem 6.2, there exists ¢ > 0 such that
IPA Al < cll f lloo for all A that are '-atoms.

Proof Let A be a t'-atom. There exists a ball B in M with radius r(B) < 2 such
that A is supported in T!(B) and IAll2 < w(B)"Y2 If r(B) > 1/2, let K =0.
If r(B) < 1/2, let K be the positive integer such that 2K < 1/r(B) < 2K+, Next,
associate B with the characteristic functions 1 defined by

1, — 1T1(4B)’ lfk:(),
“Tlir@esri@eip, K =landke(l, .., K).

Also, define the ball B* with radius r(B*) € [4, 8] by B* = 2K+2 B and associate it
with the characteristic functions 1; defined by

1 =171 g1y Bo0NT (kB

forallke N={1,2,...}.
Let Ay = lkaI’lA and A} = lsz]’lA, so we have spptA; € T'(2K2B),

sppt A¥ € T' ((k + 1)B*) and

K oo
Pfl’lA ZZA]( —|—ZAZ
k=0 k=1

We prove below that there exist ¢ > 0 and two sequences (Ag)kefo,..., k} and (k;:)keN
in ¢1, all of which do not depend on A, such that the following hold:

1

1Akl 2 < cll fllootere (242B) 2 forallk €{0,..., K}; 6.4)

1

2 forallk e N. (6.5)

14702 < el flloohfn (G +1)B”)

The result then follows by Remark 3.5.

To prove (6.4) and (6.5), choose é in (0, 2’83_'() so that ¢ € ‘l/g(Sg’r) and that

Ve \Pé‘s(Sg’r), which is possible because 8 > «/2. Also, choose a in (% CDrC‘“ D),

which is possible because r/CpCy,, > A /2. Proposition 5.5 applied with o = § and
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T = 8 — § then shows that

VB if s <1

} ()P =5
Mg W fU)DEN S || f lloce @0/ CPCONPEE) PER)
( )5(/)(]5 F))ﬂ+8 ift <s

(6.6)
for all s, € (0, 1] and closed subsets E and F of M. Applying the Cauchy—Schwarz
inequality and considering the support of A, we also obtain

{r(B) t s > t s -3 ~ ds
|(73f A), 2 —‘/ mi {— —} (min{—,—} (wzflﬂs)(D)As>—
st K

(r(B)) t s . o ds
5/ mln{— —} [t frs) (D) Ag|”— (6.7)
0 st K

2

for all ¢t € (0, 1]. We now use (6.6) and (6.7) to prove (6.4) and (6.5):
Proof of (6.4) The operator QD f (D)S - 1s bounded on L2 @® L2, so we have

: 1
[Aollrz < IPr (A, Oz S f ool Allzz S IS lloopt(4B) 2.

Suppose that K > 1 and thatk € {1, ..., K}, which implies that 2¥7(B) < 1. Note that
the support of Ak is contained in T (2k+zB) \T (2"'“8) Also, if (x, t) belongs to
T'2k2B)\ T (21 B) and t < 2¥r(B), then x belongs to Qk+2p \2¥B. Using (6.7),
we then obtain

~ 24r(B) rr(B) t s)7° - ds dr
1A, < fo /0 min{;, ;} Loty (V1 S U) (DI A B —

@2r(B)) fr(B) t s ds dr
+/2 /O min{;,;} (W frs) (D) As II§——

kr(B)
=L+1.

To estimate I;, note that p(2¥T2B \ 2¥B, B) = (2 — 1)r(B) < 1, since we are
assuming that 2%r(B) < 1. Using (6.6) and (E, ), we then obtain

r(B) 26+28 4, ds
L< ||f||oo/ / (MB)) — A5G

rB) r2r(B) o 2p-35 /1 ¢\ g 2ds
+||f||oo/ f _> <2kr(B)> ”A 2

S I f1136 @GP0k 4 2= @P=30ky 417,
SIfIR2 By~

_ e k+2 _
§||f||g02 (2,3 K 38)/(6)»2 r(B)M(2k+ZB) 1

S flIZ 27 P30k (ok+2 gy =1,
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where 2¢7(B) < 1 was used in the final inequality. We also obtain

5 [ [TB) 5\28-38 ,ds dr
S N M O M N
2kr(B) J0O t 0

r(B) 28-368
<||f||2f e I
~ oo [\ 2k (B)

SIfI2- P 3K A1,
S fI1227 G300k ak+2 gy =T,
The bounds for /; and I, show that
~ —(2B—k— _1
1Akl S 1 f o2 GP30K2, 2842 gy 1,

which proves (6.4) with Ay = 2~ @#=<=39k/2 ‘since 28 — k — 38 > 0.

Proof of (6.5) Suppose that k € N. If (x, ) belongs to T!'((k + 1)B*) \ T'(kB*),
then x belongs to (k + 1)B* \ (k — 1/4)B*, since the radius r(B*) € [4, 8]. Also,
since r(B) < r(B*)/4, we have

((k +1)B* \( )B* > > (k — %)r(B*) —r(B) > max{l1, kr(B*)}.
Using (6.6), (6.7), and (E,,), we then obtain
1A% 2

t s

(r8) ds dr
SIFI% / / mm{— ;} I k1) B\ (k1 /) B (W £ ) (D) A ||2

- o [U@®) s d ds
5 ”f”goe 2a(r/C'DC9,r)kr(B )/ / ( 2/5+23 ||A ”2

|| f112 e 200/ CoCorkr (B) / r / 2’9 ? 2pr2s At —lAs IIst
SIS I5ee™ 2/ CPCDM B (B)) 263 A 7,
SIS I5ee™ 2/ PN ED (B 1u(B) ™!
< ”f”goe*@a(r/CDCH‘r)*)L)kr(B*)kKM((k + I)B*)fl.
This shows that
1702 S 11 fllsse™ 200/ COCD MK (ke + 1) B2,
which proves (6.5) with A} = e~ (Qat/CpCo.r)=Mk ince 2a(r/CpCo ) —A>0. O

Lemma 6.4 Under the assumptions of Theorem 6.2, there exists ¢ > 0 such that
||73f2 1A||L1 <c|| flloo for all A that are t'-atoms.
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Proof Let A be a t'-atom. There exists a ball B in M with radius r(B) < 2 such
that A is supported in T1(B) and ||A||L3 < u(B)~1/2. Define the ball B* with radius
r(B*) €[2,4] by

. 2B, ifl <r(B)<2;
/BB, ifrB)<1

and associate B* with the characteristic functions 1; defined by

1% — 123*, ifk=();
1(k+2)B*\(k+l)B*a ifk=1,2,....

Let AZ = I*sz’lA so we have spptA* C (k+2)B* and sz’lA = Z,fooﬁ* We
prove below that there exist ¢ > 0 and a sequence (X ) in £1, both of which do not
depend on A, such that

1

1AZ 2 < cll flloohim (G +2)B*) 2. (6.8)

The result then follows from Theorem 4.6.
To prove (6.8), choose a as in the proof of Lemma 6.3. Proposition 5.5 applied
with T = k /2 then shows that

e @fT)DIE] S 1 f loos 264/ CDCoNPED
for all s € (0, 1] and closed subsets E and F of M. Now note that if kK > 0, then
p((k+2)B*\(k+ 1)B*, B) = (k + )r(B*) — r(B) > kr(B*).

Using (E,.,), we then obtain

||Az||2—/ 1;
M

<r(B) / SIS T) (D) A, ||2—s

2

(B)) ds
/ ST GFIDIA

< | f13ee 200 P ED L (B A7,
S ”f”goef(26{(1‘/CDC(-),r)f)»)kr(B*)kKM((k + 2)B*)71 ,
which proves (6.8) with A = ¢~2a(/CDCo.) =Rk, O

Lemma 6.5 Under the assumptions of Theorem 6.2, there exists ¢ > 0 such that
||Pf1’2A||;1 <c| flleo for all A that are L}Q-atom&

Proof Let A be an L é?—atom. There exists a ball B in M with radius (B) > 1 such

that A is supported in B and ||A||z < w(B)~1/2. In view of Remark 4.7 and Theo-
rem 4.6, however, it suffices to assume that »(B) = 1. In that case, associate B with
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the characteristic functions 1; defined by
1k= ITI(B)’ lfk:O,
lTl((k-l—l)B)\Tl(kB)’ 1fk:1,2,....

Let Ay = 1,P* A, so we have sppt Ay € T'((k + 1)B) and P} A = Y3 Ay.

We prove below that there exist ¢ > 0 and a sequence (A;)x in £!, both of which do
not depend on A, such that

1Akl 2 < el fllsokemt (k+1)B)™2. 6.9)

The result then follows by Remark 3.5.
To prove (6.9), choose § and a as in the proof of Lemma 6.3. Proposition 5.5
applied with o = § then shows that

e W fHYDNEN S NI f oot e/ CPCORPET
for all ¢t € (0, 1] and closed subsets E and F of M. Now note that if £ > 1 and (x, t)

belongs to 7! ((k+1)B)\ T' (kB), then x belongs to (k+1)B\ (k—1)B, since r < 1
and r(B) = 1. Using (E, ), we then obtain

= ! - ,dt
IIAJ<IIL3=/O (e fO)DYAN—

1
dr

2 =2 CpCo.r)k 28 2
S flIZ e 240/ €pCor) /Ot — Al
SN fl15e 240 CrCork By~
S If N3e G P =D (ke + B!
S f12ge™ A/ CoCoN=PRI2 ) (k 4+ 1)B) 7!,

which proves (6.9) with Ay = e~ (2a0/CDCo.r)=1k/4, O

Lemma 6.6 Under the assumptions of Theorem 6.2, there exists ¢ > 0 such that
||73f2’2A||Lé2 <c|flloo for all A that are L}Q-atoms.

Proof Let A be an LéQ—atom. As in the proof of Lemma 6.5, it suffices to assume that
there exists a ball B in M with radius »(B) = 1 such that A is supported in B and
|All2 < w(B)~1/2. Associate B with the characteristic functions 1; defined by

1 15, if k =0;
k= .
1(k+2)B\(k+l)B7 if k= 1, 2,

Let Ay = lkaz’zA, so we have sppt Ay C (k+2)B and sz’zA = Z,fio Ag. As in
the proof of Lemma 6.4, it is enough to find ¢ > 0 and a sequence (Aj)x in ¢!, both
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of which do not depend on A, such that

| Axllz < el flloohir (k +2)B) 2. (6.10)

Choose a as in the proof of Lemma 6.3. Using Proposition 5.5 and (E, »), we then
obtain

I Akll2 S Il f llooe™ 0/ CPC0K A

< fllooe ™t/ COCon)=Mk/24/2 ) (k +2)B) "2

which proves (6.10) with Ax = e~ (2a(r/CpCor)=M)k/4 O

7 Local Hardy Spaces h?. p(AT*M)

Throughout this section, let ¥, 2 > 0 and suppose that M is a complete Riemannian
manifold satisfying (E ;). Also, let w € [0,7/2) and R > 0 and suppose that D is
a closed densely defined operator on L>(AT*M) of type S,, g satisfying hypotheses
(H1-H3) from Sect. 5 with constants Cy , > 0 and Cp > 0, where Cy , is defined for
each 0 € (w,/2) and r > R.

The ®-class of holomorphic functions is introduced to prove a variant of the
Calderén reproducing formula. This allows us to characterize L>(AT*M) in terms
of square functions involving the operators Q » and S from the previous section,
where ¢ is restricted to the ®-class. We comblne th1s w1th Theorem 6.2 to define
local Hardy spaces of differential forms 4% DAT*M) for all p € [1, 00] in terms of
square functions and a retraction on the space t” (AT*M x (0, 1]) & L%, oAT*M). In
what follows, we only consider spaces of differential forms and usually omit writing
AT*M and AT*M x (0, 1].

Definition 7.1 Given 6 € (0, 77/2), r > 0 and 8 > 0, define ol (Sg,r) to be the set of
all ¢ € OF (Sg.,) with the following properties:

(1) Forall z in Sg’r, ¢ (2) £0;
(2) infzepe |9 (2)| #0;
(3) sup;>; ¢ (2)| S ¢ (2)| forall z in S .\ D,

Also, let @89 ,) = U= PP (S5,).

For example, if § € (0, 7/2),0 < r < /a, and B > 0, then the functions e~V Zz*“,

e~ and (Z2+a)P arein <I>’3(Sgyr). We now require the following version of the
Calder6n reproducing formula.

Proposition 7.2 (Calderén reproducing formula) Let 6 € (w, w/2) and r > R. Given
o, B,y,0,t,v > 0 and nondegenerate € \115 (Sg‘r) and ¢ € CIDV(Sg’r), there exist
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Y € W(Sy,) and ¢ € OV(SY ) such that

1 5 d -
/0 l/fz(Z)lﬁz(Z)Tt +¢(@)p () =1 (7.1)

0 D AP _ <D oD _ 2
forall 7 € Se,r' Moreover, we have SW,¢Q1/~/,¢~> = 81/7,43Q\0,¢ =1IonlL".
Proof Given f € H™(Sg,), let f-(z) = f(~z) and f*(z) = f(2) forall z € 5],
Choose integers M and N so that 4M > max(Z, %) +land4MB + (4N — 1)y > v.

Letc= f0°° W (OY (=)Mo (1) (—1) |2 % and define the functions

=, M- -1 Lo de

v=c Y@ty )M (9p*p-_¢X)"  and o=3 (1— /0 vmm7>,
i~n which case (7.1) is immediate and ¥ € ‘-Ilf((j%__ll))(SgJ) C w;(sg,r). The function
¢ is holomorphic on S7 by Morera’s Theorem, since ¢(z) # 0 for all z € 7 ,
and bounded on Dy, since infyepe [¢(z)| # 0. A change of variable shows that
JoZ V()Y ()% =1 for all x € R\ {0}, and since z > [;° ¥ (2)¥:(2)% is holo-

morphic on SJ, we must have fooo Ui (2) Wy (Z)% =1 for all z € §. It then follows
from property (7.1) in Definition 7.1 that

z |¢t(Z)|/°° —aMp—@n—1yy A —v
< Y <
| (2)] Ngrf o] ), (t1zl) =~ |z]

forall z € §7, 50 € OV(SY ).
The last part of the proposition follows from holomorphic functional calculus,
since D satisfies (H1) and (H2). Further details are in Lemma 2.9 of [39]. Il

Given ¢ € \I!(Sg,r) and ¢ € <I>(Sg’r), since D satisfies (H1) and (H2), the main
result of [39] shows that the local quadratic estimate

lull = 197 gl 2612 (7.2)

holds for all u € L2. There also exists ¥ € \I/(qur) and ¢ € ®(qur) such that
qub Qg(’; = I on L? by Proposition 7.2. This shows that L> = S]E(P(L% ® L?) with

lully = inf(|U |l 2g2: U € L2® L* and u = S ,U} (7.3)

for all u € L2, since both S}Z p and Ql,],), 3 are bounded operators. These characteri-
zations of L? help to motivate our definition of the local Hardy spaces. In particular,
we define 17, by replacing L2 @ L? with t” @ Ll in (7.2) and (7.3), and suitably
extending the operators Qll/z » and SI}Z e

There is a fundamental difference here from the Hardy spaces H Dp in [7]. The
reproducing formula used to define H Dp is based on selecting ¥ and ¥ in W (Sg)
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such that fooo Ui ()Y (Z)%—t =1 for all z € Sg. The decay of the W(Sg)-class func-
tions near the origin implies that fooo U (D) ( L.))% = PW’ where PW den.o’tes
the projection onto the closure of R(D), as given by the Hodge decomposition
L? =R(D) @ N(D). This leads the authors of [7] to define le) to be R(D). Identity
(7.1), by contrast, holds on a neighborhood D? of the origin as well as on the bisector

Sg, and since the ®-class functions are nonzero at the origin, we get SJ/D QBQ?; 5= 1

on all of L2. The local Hardy spaces are therefore not subject to the null space con-
siderations that one encounters with the Hardy spaces. In fact, we show that hZD can
be identified with L?.

We now define an ambient space hOD in order to have h% C hOD for all p € [1, oo].

This requires that we recall the results concerning the spaces ¢! +7°° and L é) + igf
in Corollaries 3.11 and 4.11.

Definition 7.3 Let 6 € (w,7/2), r > R, and B > «/2 such that r/CpCy , > 1/2.
Fix n € lIJ’; (Sg)r) and ¢ € @ﬁ(Sg!r) satisfying

1
/ n?(z)g +¢*(2) =1
0 t

for all z € S . The ambient space hOD is defined to be the abstract completion of L?
under the norm defined by

_ oD )
el = 1Qn 0l 14700yt + £

for all u € L?. This provides an identification of L? with a dense subspace of hOD.
The functions 1 and ¢ remain fixed for the remainder of this section.

To check that || - ||h% is a norm on L2, suppose that ||u||h(7)J =0 for some u €

L2, 1t follows that Qﬁpu =0, and since sz?w
guarantees that u = 0, as required.
The following result allows us to define the local Hardy spaces.

ue L% @ L?, the equivalence in (7.2)

Proposition 7.4 The operators Q?w and S,? o have bounded extensions
QP hy— '+ @ (Ly +LY)

and
SP '+ @ (L +Ly) —

such that S,%Qap =1 on hOD, the restriction QEWS,% <) Lg —tP P LZ2 is
bounded for each p € [1, 00), and the restriction QP SP .7 @ LY >i* Ly

1.9n.0
is bounded.
Proof We immediately have

D R
1 pull iyt +ig) = 14lng,
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for all u € L?, and since L? is identified with a dense subspace of 1Y, the bounded
extension Qﬁa exists.

It follows from Theorem 6.2 that Q?w SnD, 0 has a bounded extension from t? @ Lg
to tP @ Ll for each p € [1, 0c0], and hence from 7 & LZQO to ° @ igf as well.
Moreover, the extensions coincide with a single bounded operator

P +i°) @ (Lg+ L) —> (' +7°)® (L + LY)

such that the restriction of P to t? & Lg coincides with the extension of Q%S%?w to
tP @ Lg for each p € [1, 00), and the restriction of P to £ @ I:ZQO coincides with the
extension of Q?’WS,%) to 1° @ LZQO. Therefore, we have
ISP, Ul = IPUll 1 yimernt 4700 SNU 1 piorart 4
n.¢~ Y, (' H®)S (L +LF) ~ (' H)S (L +LF)

for all U € t2 @ L%, and since 1> @ Lé is dense in (¢! + ) @ (Lé,2 + ZZQO) by
Corollaries 3.11 and 4.11, the bounded extension S,RP exists.
It follows that ‘S:rlz?w Q%),w is bound;d onD hOD. The formula S,? o Qz’?(p =1 holds on L?
o . . ~ i~ _ 0
by Proposition 7.2, so b}: denflty S0 Qi =1o0nhp. ) i
It also follows that QP SP is bounded on (' + 7°) & (Lé,2 + Lg), and that

1.9°n.0
QZ;?(pS,?(p =Pon(’Nt?) @ (Lg2 N Lé) for p € [1,00), and on (7 N %) @ (lN,Zf n
Lé). Now suppose that p € [1,00) and that u € t? @ Lg. There exists a sequence
(un)y in (tP N1%) & (LY N L%) that converges to u in t” & L by Propositions 3.3
and 4.4. The continuity of the embedding 17 ® Lk € (! +7°) @ (L}, + L%), which
is a consequence of the interpolation in Corollaries 3.11 and 4.11, then implies that

AD &D .
1P = Q@ oSyptlloriiorewl+ig)
AD &D
= ||P(l/t - ul’l)”;P@ng + ”Q’%WSTLW(M” - u)”(tl_";oo)@(l‘éfz""ZZQO)

for all n € N. Therefore, we have QEWS,ID@ =Pont’d Lg for all p € [1, 00). We

also have Q%?wg,fw =Poni®@ I:ZQO by the density properties in Corollaries 3.11
and 4.11, so the result follows. O

We now define the local Hardy spaces.

Definition 7.5 For each p € [1, 00), the local Hardy space h% consists of all u € hOD
with

ND
”M”hpp = ||Q,7’¢M||tp®Lé’2 < Q.
For p = oo, the local Hardy space hog consists of all u € hOD such that Q?ﬁwu c

7 @ LY with

3D ND
el = 19Dl = 19D ulliory -
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The dual of h%) should be identified with a bmo type space, as in the classical case
in [26]. To construct the ambient space h%, however, we used the closed subspace
TR I:ZQO of 1> @ L. This suggests that 275 can only be identified with a closed
subspace of the dual of hi). Therefore, we do not denote 435 by bmop and we post-
pone the construction of an appropriate bmop space to the sequel. Note that we do
identify the dual of hpD for all p € (1, oo) in Theorem 7.11 below.

The local Hardy spaces are Banach spaces for all p € [1, oo]. To see this, suppose
that p € [1, c0) and that (u,), is a Cauchy sequence in hpD Then there exists v in

1P @ Ly such that lim,, || QZ,D,(pun —ll;pg7 = 0. Moreover, the embedding 7 & Lhc

(t' +7°) @ (L + L) implies that lim,, | OF ,u, — Vll 1 4iyerl 42y = 0- and

hence that there exists u in hOD such that lim,, |lu, — u|| H, = 0. Therefore, we have

0P yu=vet’®L"?, which implies that # € h2) and that lim,, |lu, —u|,» =0. The
n.¢ D ),

proof for p = oo is the same, but with 7 @ ioao instead of 17 @ Lg.
The definition of the ambient space allowed us to identify L? with a dense sub-
space of hOD. It now follows from (7.2) that L2 C h% under this identification. In fact,

we have L? = th under this identification by (7.3) and the following proposition,
which gives an equivalent definition for h%,

Proposition 7.6 If p € [1, 00), then hf, = 8P (1" @ Ll) and
lullyp, =~ inf(I1U | pgrr = U €17 @ LG andu =38P, U}.
If p = 0o, then the above holds with > ® Ijgf instead of t? @ Lig.

Proof Suppose that p € [1, 00). Proposition 7.4 shows that S,fw Qg(p =1/Ion hOD, and
that the restricted operators

P, :nfy—t" @ Ly and SP 1P @ Ll — hi)
are bounded. Therefore, we have hpD = SnD 0 t? ® L‘ZQ) with

. ~D _ _&D
oo Wiy < 197 glingg = lulhg, = IS7V g, S 1Vlingrg
(Q’

_3&D
u=S,,U

forall V et? @ ng satisfying u = 5‘,2’?(/) V.
The proof for p = oo is the same, but with 7> & I:gf instead of t” @ Lg. d

This leads us to the following density properties of the local Hardy spaces.

Corollary 7.7 For all p € [1,00] and q € [1,00), the set hl, N\ h, is dense in hY,.
Moreover, for all p,q € [1, 00), we have hpD N hqD = S,?(p((tl’ Nt?) @ (ng N L(é)).
This also holds for p = oo but with {*° and Zg; instead of t? and LZ).
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Proof If p,q €1, 00), then h2, = S,]D)(p t’ & ng) by Proposition 7.6, so the density

of hf, N ki, in kY, follows from the density properties in Propositions 3.3 and 4.4.
If p = oo, then the result follows from the density properties in Corollaries 3.11
and 4.11.

If p,q €[1,00) and u € h%, N, then by the reproducing formula in Proposi-
tion 7.4, we have

u=8P OP ueSP (t" Nty e (LyNLY)).

since O u € (1P N 17) @ (L N LY). If p = oo, then this holds with 7> and L
instead of #” and L g, which completes the proof. g

The interpolation results for the local tent spaces ¢ and the spaces Lg allow us to
interpolate the local Hardy spaces.

Theorem 7.8 If0 € (0,1) and 1 < pg < p1 < 00, then
[hiy hip lo = hip.
where 1/pg = (1 —0)/po+0/p1 and [-, -]Jo denotes complex interpolation.

Proof The interpolation space [h%o, h%]g is well defined because it is an immediate

consequence of Definition 7.5 that h% C hOD for all p € [1, oo].
Suppose that p; € (1, 00). Theorems 3.10 and 4.10 show that

(P eLY " @Lylg=1t" @ LY.

D QD = [ holds on hOD, and

Proposition 7.4 shows that the reproducing formula 5,7‘ 0 %0

that the restricted operators
AD . P p p 3D ..p r r
Qpo hp—>1"®Lgy and S, 1" ®Lgy— hp

are bounded for all p € [1, c0). It follows by Theorem~1.2.4 of [47], which concerns
the interpolation of spaces related by a retraction, that Qﬂa : [h%’, h% lo = tP° ® Lg}
is an isomorphism onto the subspace

OP,SP, (7 & L) =P ()

for all py € [1, p1), where the equality is given by Proposition 7.6. The reproducing
formula then implies that [h), k13 19 = hYy.

The proof for pj = oo is the same but with 7° @ L% instead of 17! @ L%, and it
relies on Corollaries 3.11 and 4.11. 0

The next result is an application of the interpolation of the local Hardy spaces.

Lemma 7.9 Let 6 € (w, %), r> R, and B > /2 such that r/CpCy , > M\/2. For
each Y € WP(SS ), ¥ € Wg(S5,), € OF(SY ), and ¢ € O(S] ), the following
hold:
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(1) The operators Q?Z) @ and SIZD(; have bounded extensions Q? 6" hpD —>tP P Lg
andéi?(i P @ Lg — hprorallp e[1,2].

(2) The 0~perat0rs Q?//?’ 3 and S}; ¢ have bounded extensions Qxl//?& : h% —> PP Lg
and S&Zd, PP Lg — h%for all p € [2, 00). This also holds for p = oo but with
o ZZQO instead of t™° © L.

Proof If u € hlD N L2, then Q%Lu ce'ntdH e (L(I;2 N L%Q) and u :SE(pQEwu, SO

by Theorem 6.2 we have

D _ D ¢D HD
”QW,¢M||IIGBL(IQ = ||Qw,¢8n»wgn,w”||t'ea% < ||”||h§)'

The set h%) N L? is dense in h%) by Corollary 7.7, so the bounded extension QE "
exists for p =1, and hence for all p € [1, 2] by interpolation.
IfU € (t'Nt?) @ (L N L), then by Theorem 6.2 we have

182 Ul =197 8P :Ullngry, S1Ulgyy,-

The density properties in Propositions 3.3 and 4.4 then imply that the bounded ex-
tension ST _ exists for p = 1, and hence for all p € [1,2] by interpolation, which

proves (1). The proof of (2) is similar. O
This allows us to construct a family of equivalent norms on the local Hardy spaces.

Proposition 7.10 Let 6 € (w, 3), 7 > R, and B > «/2 such that r/CpCq, > 1/2.
For each € WP (S ), Ve Ws(Sg ). ¢ € PP(SS ), and ¢ € (83 ), the following
hold:

(1) The extension operators from Lemma 7.9 satisfy hpD = 35 J)(tp &) LZZ) and

lullyy, = 197 gullipgr ~ it Ul

u=S>.U
7.6
forallueh% and p €[1,2]. i

(2) The extension operators from Lemma 7.9 satisfy h% = 85 P (2 Lg) and

llle, =~ 197 sullipgrr =~ inf Ul pepr

D v.g NPOLg u=S8P,U 7Ly

forall u € hpD and p € [2,00). This also holds for p = oo but with i & ZZQO
instead of t° @ Ly .

Proof Suppose that p € [1, 2]. Proposition 7.2 shows that there exists ¥’ € Wg (Sg.)
and ¢’ € @(Sg’r) such that Sf, & sz),d) = I on L2. Lemma 7.9 then shows that

D oD D D
lullp =190, 8P 4 Q8 sttlperr S1QP gtllimerr < il
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forall u € hpD N L2, so by density we have ||u ||hpD = || Qﬁwll,p@% forallu € h%.
There also exists V' € \IJﬂ(Sg’r) and ¢’ € ®ﬂ(300,r) such that S&DJ)QE, P =1

on h% N L?, so by density we have SIZD(Z)QE/ _=1on h%. It then follows from

¢
3D
Lemma 7.9 that h¥, = Sx/},é(tp @ LY).

Now suppose that u € K2 | in which case u = S}Z)&QE/ &/u and there exists V in

14 _ &D : -
tP Ly such that u = Sx},&V and || V||,H®Lg < 21nfu285¢U ||U||tp®Lg. Lemma 7.9
then shows that

: 3D _1&D
it Ulgry <197 - ulnary Sl =157 5Vl

u:SEd)U
=2 inf |Ull;pgpr,
u=8$¢U "ola
which completes the proof of (1). The proof of (2) is similar. |

All of the equivalent norms on h% are denoted by || - || nh - As an example, recall

the Hodge—Dirac operator D and the Hodge—Laplacian A = D? from Example 5.2.
If B > k/2 and a > A2 /4, then by recalling the ®-class functions listed after Defini-
tion 7.1, we have

_ —ty/Aval —VAtal
lullyp = lltDe VAT |y eV AT ulle,

—¢2 —
~ 2 Ae™ Bullp + e bl o)

~tD@A +aD)Pull + (A + al)—ﬁuuLpQ

for all u € h% and p € [1, oo], where the operators are initially defined on L? and
extended to A%,

Finally, the duality results for the local tent spaces #” and the spaces Lg allow us
to derive a duality result for the local Hardy spaces.

Theorem 7.11 If p € (1,00) and 1/p + 1/p’ = 1, then the mapping

v (u, v)h% = (Q?qu, ng*vhg@Lz
forallu e hpD and v € h%*, is an isomorphism from hp/* onto the dual (hpD)*.
Proof Using Theorems 3.9 and 4.8, we obtain

QD u. OF v) p2gr2] < lielg, vl

’ ~ ~ Ty .
for all u € h%, and v € k%, since Q?’(pu € tP @ Ll by Definition 7.5, and Qﬁw*v is

int” @ LZ by Proposition 7.10.
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Now suppose that T € (h%)* and define T € (t” & ng)* by
T(V)=T(SL,V)

for all V e t? & Lg. It follows from Theorems 3.9 and 4.8 that there exists Uy in
tP @ LY such that |Ur ||”,,@Lg ~|T| and T(V) = (V, Ur) g2 forall V e’ @

ng . The reproducing formula Snp 0

then implies that

Q?w = I, which is valid on hpD by Proposition 7.4,

Tu= T(Sr?w Q;?Dxﬂ”) = T(Qzl?wgfw Q?w”) = <Q~Ew‘§£w Q?,w”’ Ur)paer2

for all u € hpD. If Ur et NtY) & (Lg N Lé), then since (Qwa)* = SZZZD* on
e LEQ and (S,f(p)* = sz)*iﬂ* on L2, we obtain

D D* D*
Tu= <an<pu’ Q"I*»‘ﬂ* (Sn*’(p* UT))L%@LZ

forallu € hpD NL2IfUr et? @ Lp,, then the density properties in Propositions 3.3
and 4.4 imply that the above result extends to

D S D* sD*
Tu= (Qn’wu, Qn*’w* (Sn*’(p* UT))LE@Lz
forall u € hpD, and by Proposition 7.10, we have S??:o* Ur e hg* with

y SITISITIL

- 3
18R Urll S 10Tl g,

where the last inequality follows from Proposition 7.6.

Finally, to prove injectivity, let v € h%* and suppose that (u, v) ny = 0 for all
u e h%. It suffices to show that v = 0. Define £(V) = (V, Q?:wv)L%@Lz forall V e
1P @ Ly, in which case £ € (17 @ L)* with [[€] = QI .v]

QD

n*,e

= vl since

’ p P
24 @LQ hD*

*

wet’ @ Lg . Using the reproducing formula and duality, we obtain
V)= (v, QN .S QP ) 2g2= (8P, V. V)2, =0

for all V € t” @ Li, since Proposition 7.6 implies that S°,V € hf,. Altogether, we
have ||v||hpr ~ |1€]| = 0, hence v = 0 as required. O
D*

7.1 Molecular Characterization

We prove a molecular characterization of h]D The Hardy space H 5 from [7] is
characterized in terms of H $-molecules, which are differential forms a that satisfy
a = DVb for some differential form b and N € N. In contrast to atoms, molecules
are not assumed to be compactly supported. Instead, the L?-norms of a and b are
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concentrated on some ball. The condition @ = Db is the substitute for the moment
condition required of classical atoms. The molecular characterization of h,lD proved
here involves two different types of molecules, reflecting the atomic characterization
of k! (R") mentioned in the introduction. The first kind are concentrated on balls of
radius less than 1 and are of the type used to characterize H}, while the second kind
are concentrated on balls of radius larger than 1 and are not required to satisfy a
moment condition.
We use the following notation to specify the L?-norm distribution of molecules.

Notation Given aball B in M of radius r(B) > 0, let 1; (B) denote the characteristic
function defined by

1 if k =0;
LB ={" S
lsz\zk—lB, 1fk=l,2,....

Definition 7.12 Given N € Nand g > 0, an hID—molecule of type (N, q) is a measur-
able differential form a associated with a ball B in M of radius r(B) > 0 such that
the following hold:

(1) The bound [|1x(B)all2 < exp(—q2K~1r(B))27* (2K B)~1/2 for all k > 0;
(2) If r(B) < 1, then there exists a differential form » with a = D" b and the bound
11k (B)b|l2 < r(B)N exp(—g2*~1r(B))27 % (2 B)~1/2 for all k > 0.

If a and b are as in Definition 7.12, then a and b are in L? = h%) C hOD with

o0
1
lalla <) 11k (B)ally < 2e~ B2 (B) 2 (74)
k=0
and
Iblla < 2r(B)Ne~4r B2 (B) ™3, (7.5)

Condition (2) is obviated in Definition 7.12 when r(B) > 1, so we set N = 0 in that
case. We will see that ¢ is related to the exponential growth parameter A in (E, ),
and that we can set ¢ = 0 when M is doubling, since then A = 0. Given § > 1, note
that the results in this section also hold for h%—molecules defined by replacing 2 and
27k with §* and 6% in Definition 7.12.

Definition 7.13 Given N € N and g > 0, define hlD mol(N.q) to be the space of all
u in hoD for which there exist a sequence (2 ;); in ¢! and a sequence (a;); of h%)-

molecules of type (N, ¢) such that ) jAjaj converges to u in h%. Moreover, define

bty v =inf{||(xj) jles f= ijaj}
J

1
forallu € hpy 1w )
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The following is the molecular characterization of hID. Theorem 1.3 follows from
this result in the case of the Hodge—Dirac operator by Example 5.2.

Theorem 7.14 Let «, ) > 0 and suppose that M is a complete Riemannian man-
ifold satisfying (E. ;). Suppose that D is a closed densely defined operator on
L2(AT*M) satisfying (H1-H3) from Sect. 5. If N € N, N > «/2, and q > X, then

1 _ gl
hD - hD,mol(N,q)'

Proof Fix N € N and g > 0. Let ¥ and ¢ be the functions from Lemmas 7.15
and 7.16 below. Suppose that u € h’lD c hOD. Proposition 7.10 then implies that there

: 1 1 _&pD
exists (V,v) €1’ @ L such that u = S&’(ﬁ(v, v) and ||(V, v)||t1@L(12 < ||u||h1D. Also,

by Theorems 3.6 and 4.6, there exist a sequence (A ) ; of t!-atoms, a sequence (a;);
of L}Q—atoms and two sequences (A ;); and (A j)jin ¢! such that

VZZ)‘jAj and UZZ)ijaj,
J J

where these sums converge in ¢! and L, , respectively. Moreover, we can assume that
I il STV I TR Dl S ||v||LéQ and, by Remark 4.7, that each L}Q—atom aj
is associated with a ball of radius equal to 1. Therefore, we have

l~ d o
M=Z(Aj/0 I/It(D)AjTI+)»j¢(D)aj>,
J

where the sum converges in hl . and hence also in hOD, because Proposition 7.10
implies that

S

1
hD

+

Ll

1
t )

n n n
D - -
u— E Slz’q;(ijj,)»jaj) vV — E AjA;j v— E Ajd;j
Jj=1 Jj=1 j=1

for all n € N. It follows from Lemmas 7.15 and 7.16 that u € hl and since

~ D,mol(N,q)’
I jller + 1) jller < llullyy  we have shown that hi < hg’mol(N,q).
We prove the converse in the case N € N, N > «/2, and g > A. Let ¢ and ¢ be

: 1 0
the functions from Lemmas 7.17 and 7.18 below. Suppose that u € hD,mol(N,q) Chp.
There exist a sequence (a;); of hID-molecules of type (V, g) and a sequence (A;);
in ¢! such that )" jAjaj converges to u in hOD. It follows from Proposition 7.10 and
Lemmas 7.17 and 7.18 that Z;’»ZI Xjaj isin h%) with || Z’}Zl rjaj ”h% < Z'}Zl ;]
for all n € N. Therefore, there exists v in hID such that ) j Ajaj converges to v in

ﬁlp, and hence also in hOD. This implies that u = v € hlp, so by Proposition 7.10 we
ave

S

n
ND D
H Qp g — Y 2 Qp 44

j=1

n
u — Z)\jaj
Jj=1

1 1
'eLy hp
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for all n € N. It follows from Lemmas 7.17 and 7.18 that

el = 19D gl agry < Y A1 W(D)aj D)aplagrr S 16l
J

which shows that i, O

1
,mol(N,q) s hD'

We now prove four lemmas to construct the functions 1} (]3 Y, and ¢ that were
used to prove Theorem 7.14.

Lemma 7.15 Let 0 € (w, %), r > R, and B > /2 such that r/CpCy., > 1/2. For
each N e N and q > 0, there exist ¢ > 0 and Iﬁ €Yy (Sg’r) such that
1
~ dr
e[ wmas
0 t
is an hlp—molecule of type (N, q) for all A that are t'-atoms.

Proof Let A be a t!-atom. There exists a ball B in M with radius r(B) < 2 such
that A is supported in 7!(B) and Al 2 < w(B)~1/2. Choose 7 so that 7 > r and

7/CpCq i > X+ q. Also, choose ¥ in Vgin+1(S ;). in which case Y € llllg(Sgyr).
Next, define tﬂ(z) = Z_Nlﬁ(z), in which case 1,} € Wg (Sg’r) and

1 1 -
/@(D)Aﬂﬂ’v (/ r%(D)Aﬂ).
0 t 0 t

It remains to prove that there exists ¢ > 0, which does not depend on A, such that

L d
lk(B>( / w,(D)A,—’)
0 t

for all k > 0, and that if »(B) < 1, then

1 ~ d
lk(B>( /0 t%(D)A%)

for all k > 0.
Now, since § > «/2 and 7/CpCy 7 > A + q, Lemma 5.4 implies the following
estimates:

< ce 12 IrBy—k ok g)=3 (7.6)
2

<er(B)Ne= a2 r Bk okpy=3  (77)
2

e (DE| < (t/p(E, F))2 e CranE D), (7.8)
Mg (DY1E| < (t/p(E, F)) 5+ e OFpEF) (7.9)

for all ¢ € (0, 1] and closed subsets £ and F of M.
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We now prove (7.6). If k =0 or k = 1, then by (7.3) and r(B) <2, we have

L dr
lk(B)(fO wz(D)AzT)

If k > 2, then

92 By (BYE ifk =0
B 2B)"2, ifk=1.

SIAlL: S {
2

p(¥B\2*"1B, B) = 2! — 1)r(B) > 2*+(B)

and w(2kB) < 2k 2@ =Dr(B ;(B), s0 by (7.8), and since r(B) < 2, we have

L dr
lk(B>( /0 wt(D>At7)

r(B) B dr
< /0 (BY (D) 1a11A 12

B 254D 45\ 2
< /r( (! S R T
~ k L
o \2%r(B) 1 .

< 2—k(5+1=5) ,—q @' =Dr(B) JA (=2 142! —%)r(B),u(sz)—%

2

S equk‘lr(B)szM(sz)f% .

We prove (7.7) similarly. If Xk =0 or k = 1, then we have

1 ~ d
lk(B><fo rNWD)At?’) SrBN Al

2

=12 By (BYE ) ifk =0

<rB)N
RriB) {e—mB)z—lu(zB)—%, ifk=1.

If k > 2, then by (7.9) we have

1 ~ d
lk(B>( /O rNt/f,(mA,?t)

N r(B) - g
<r(B) A ||1k(B)Wt(D)IB||||Az||2t

2
Sr(B)Nem 2 BTk 0k gy,

which completes the proof. g

Lemma 7.16 Let 6 € (w, %), r > R, and B > /2 such that r/ CpCy > 1 /2. For

each N € Nand g > 0, there exist ¢ > (0 and¢~> € ¢(Sg’r) such that ch(D)a isan h%)-

molecule of type (N, q) for all a that are L él—atoms supported on balls B of radius
r(B) = lwith ||a]2 < u(B)~"/%.

Proof Leta and B be as stated in the lemma. Choose 7 so that7 > r and 7/ CpCy 7 >
A +¢. Also, choose ¢ in @ (Sy ), in which case be @(Sg’r). Now, since r(B) = 1, it
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only remains to prove that there exists ¢ > 0, which does not depend on a, such that
114(B)$(D)alls < ce~ 2 "Bk 2k p) 3

for all k > 0. To do this, choose § in (0,7/CpCy ;i — (A + ¢q)). Lemma 5.4 then
implies that

I1E@(D)1p|| S e~ *HIHIPEE < (1/p(E, F))sH e~ CFOPEE) (7.10)

for all closed subsets E and F of M.
If k=0 or k =1, then by (7.3), and since r(B) = 1, we have

=12 B (BYE ifk =0

~ 1
1L (BYp(D)all2 S llallz < u(B)"2 5
K(B)¢(Dlall2 2=H B, 2B, ifk=1.

If k > 2, then using (7.10) and proceeding as in Lemma 7.15, we obtain

- ~ _ok—1 _ _1
11(B)$(D)allz < [1e(B)d(D)1p|llally Se 9> " B2~ kB2,
which completes the proof. 0

Lemma 7.17 Let 6 € (w0, 5), r > R, and B > «/2 such that r/CpCy,, > A/2. For
each N e N, N > «/2, and q > A, there exist c > 0 and ¥ € \I'ﬂ(Sg‘r) such that
lV:(D)all,1 < c forall a that are hID-molecules of type (N, q).

Proof Let a be an h]D-molecule of type (N, g). There exists a ball B in M of radius
r(B) > 0 such that the requirements of Definition 7.12 are satisfied. Let Cé (B) =
C!(B) be the truncated Carleson box over B introduced in Sect. 3, and let C,,: (B) =
C'(2¥B) \ C'(2k~!B) for each k > 1. As depicted in Figure 1, divide each C} (B)
with the following characteristic functions:

k= 1c) gy Luxo.r)1;

M= 1)) o) 21
" 1 1

My = c,i(g) Mxk=1r(B),2kr(B)]>

so we have 1Ck|(B) =N+ 7’)]/( + TIZ and Zk lcll(B) = 1M><(0,1]~
Suppose that there exist ¢ € \Ifﬂ(Sg’r) and ¢, § > 0, all of which do not depend
on a, such that the following hold for all k£ > 0:

1
I (Dyall 2 < 2~ n@*B)~7; (7.11a)
Imbe(Dallz < 2@ B)~3; (7.11b)

1
In{v:(Dyall2 < 2™ u(@*B)2. (7.11¢)



158 A. Carbonaro et al.

1
I Ui
4r(B) 1
3 )
M3 3
2r(B)+
(B) -
B) 2 Uit 2
r(B)+
3 2 T Mo m 2 73
t M

0 r(B)2r(B)  4r(B)

Fig. 1 The division of C% (B) used in Lemma 7.17 for a ball B in M of radius r(B) < 1/4

In that case, each (2% /C)IC/! ( B)wt (D)a is a t!-Carleson atom, and since

Vi(Da=) 1)z Vi(Da
k=0

almost everywhere in M x (0, 1], Proposition 3.8 implies that ¥, (D)a is in t! with

l¥:(Dally Sy reo 278k <. Therefore, it suffices to prove (7.11).

To prove (7.11), choose 7 so that 7 > r and 7/CpCy 7z > A. Also, choose § in
(0, B — k/2) and choose ¥ in lI/ngN (S -), in which case ¥ € \I/ﬁ(Sg’r). Then, since

B > Kk /2, Lemma 5.4 implies that
ey (Dpl S (t/p(E, F) 2 e P EF) < (1/p(E, F))?

for all closed subsets E and F of M.
We now prove (7.11a). If k =0, then by (7.2) and (7.4) we have

Imoy: (Dlall2 < I (Dall2 S llall2 S M(B)
Now consider k > 1. For each [ € N, define I; by

(r(B))

||nkwt(D)a||Lz<Z / ||1k(B)1/fz(D)ll(B)a||2 Zn.

If0<!<k—2,then
p(2B\2*"1B, 2! B\2!71B) = 2*~1 —2!yr(B) > 2*r(B)

and 12K B) < 20Dk @1 =12'r(B) (2 B) | 50 by (7.12) we have

I'<

2kr(B) t

K K K k I+1 k l )
< 9 —2(5+1)9—2k(5+8—5) ,h(-2 42lFl ok _ol_» )r(B)M(ZkB)—l

5 2—212—28ku(2k B)—l )

B 2(5+6)
/r( >( t > dl —2.Q2* =20 (B) p—q2'r(B)p =21 (5l By~
0

(7.12)
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Ifk—1<I<k+1,then u(2*B) < e“[’u(2lB), so we have
I < [ DL(Bal2, S e @22 @ By S22 p@k ey
If > k +2, then
p(2¥B\2k"1B, 2! B\2!71B) = 2!~' — 2%)r(B) > 2'r(B)

and 1 (2¥B) < (2! B), so by (7.12) we have

rB) ! dr 2l 1 2Un—28k . 1k 1
I < —_ —2- 2'B) <2742~ 2B) .
IN/O <21r(B)> 2T REB)TS n(2°B)

Note that we needed ¢ > A when 0 </ < k + 1. This proves (7.11a), since now
o0 o0
||nk1ﬁ,(D)a||i% < Z I; g 22—212—2%#(2/(3)—1 5 2_26kﬂ(2k3)_1-
=0 =0

To prove (7.11b) and (7.11c) we only need to consider when r(B) < 1, otherwise
n,/c = ”Z = 0. In that case, there exists a differential form b such that a = DV b, as in
Definition 7.12. Define &(z) = ZNI/I(Z) in which case 1]/ € \-IIN( ) where 7 > r
was fixed previously so that 7/CpCy 7 > A. Now choose € in (0, N — «/2). Then,
since N > k /2, Lemma 5.4 implies that

MEP (D1 S (t/p(E, F)) 2 H<e ™ ED < (1/p(E, F))* (7.13)

for all closed subsets E and F of M.
To prove (7.11b), we only consider k > 2, since otherwise 7, = 0. For each / € N,
define J; by

(2k=1r(B))

I (D)all2, <Z f » 116(BYPe (DY (BYBIB ZJI

The proof proceeds as for I; by using (7.13) instead of (7.12). If 0 <[ <k — 2, then
since N —k/2 —¢e >0andr(B) < 1, we have

_ 1 t 2(5+€) dr 22212 (B) 2N ,—q2'r(B)p~2 ! !
J e T (BT e T n2 By
’N/rua) (Zkr(B)> 2N " -

1
< r(B)zuvfgfe)/ t72(Nf%fe)g272l(§+1)272k(%+57—)u(2kB),
r(B) t

52_212_26kﬂ(2k3)_1~
Ifk—1<I<k+1,thensince r(B) < 1, we have

— = —g2! — — — —
I =rB) 2N DILB)bIT, e P22 @' By S 27 @ )7
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If ] >k +2,thensince N —e¢ > 0and r(B) < 1, we have

! ! * dt INA=2 ol pr—1
Jls/,(3)<—21r(3)) ,2N+1V(B) 2772 B)”

1
< r(B)2(Nfe) / t72(Nfe)g2721272eku(2k3)71
B r(B) t

S 2—2]2—26/{M(2k3)—1.
Note that we needed ¢ > A when 0 </ < k + 1. This proves (7.11b), since now
Injn (Dall, < 35720 1 $2° 2k 2k By~

To prove (7.1 1c), we only consider k£ > 1 for which 2k_1r(B) < 1, since otherwise
ng =0. For each [ € N, define K; by

(2kr(B))

Iy (D)all?, <Z / ||12kaI(D>11<B>b||2 v ZKI

The proof proceeds as for J;. In fact, we only require the weaker estimate obtained
by setting € = 0 in (7.13). If 0 <[ < k + 2, then u(2KB) < 2*=Dx (2! B), since
2k=11(B) < 1, so we have

Ki S Q5 (B) N I (D)L (BbIl7, <27 GHD2 KD by

If I > k + 2, then we have

2*r(B 2(N-—
K) < 2-2(5+D "B B\ X )df w2 B)~! <272 K(N=5) ) ok gy~
~ A-1ry \ 1 '

Note that we did not require g > A here This proves (7.11c), since N > k /2 and now
I (Dall}, < 370 Ki 272V Dku@ By, O

Lemma 7.18 Let 6 € (w0, 5), r > R, and B > «/2 such that r/CpCy,, > A/2. For
each N e N, N > /2, and q > A, there exist ¢ > 0 and ¢ € <I>’3(Sg,r) such that
||¢(D)a||L}2 <c forall a that are h]D-molecules of type (N, q).

Proof Let a be an hID—molecule of type (N, q). There exists a ball B in M of
radius 7(B) > 0 such that the requirements of Definition 7.12 are satisfied. Let
B* = (1/{r(B)))B, so the radius r(B*) > 1.

Suppose that there exist ¢ € ®F (Sg,r) and ¢, 6 > 0, all of which do not depend
on a, such that

I1e(B*)¢ (D)allz < 2~ (2" B*) 2 (7.14)
for all k > 0. In that case, each (2% /¢)1,(B*)¢ (D)a is an L}Q-atom, and since

¢(D)a=> 1(B*)p(D)a

k=0
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almost everywhere on M, Theorem 4.6 implies that ||¢ (D)a|| Ly Sed 2%,

Therefore, it suffices to prove (7.14).

To prove (7.14), choose 7 so that 7 > r and 7/CpCy; > A. Also, choose §
in (0,7/CpCy; — ») and choose ¢ in ®FFN (85 ;) in which case ¢ € dA(SY ).
Lemma 5.4 then implies that

gD 1p|| S e CFIPED < (1/p(E, F)) s+ e ED < (1/p(E, F)) (7.15)

for all closed subsets E and F of M.
We now prove (7.14) when r(B) > 1, in which case B* = B. If k = 0, then by
(7.2) and (7.4) we have

110(B)¢ (D)all> < llp(Dall> < llall2 S w(B)~2.

Now consider k > 1 and for each [/ € N, define Il’ by

I (B)p(D)all3 < > 11 (B)¢(D)Li(B)al; =D 1Ij.

1=0 =0

The proof proceeds as for I; in Lemma 7.17 by using (7.15) instead of (7.12). If
0 <[ <k — 2, then since r(B) > 1, we have

1 25+D k—1_nl i
< —-— 22 @120 (B) ,—q2'r 5 =21 (ol py—1 < 9=2n=2k Dk py—1
I~ <2kl”(B)> u( ) ~ :u'( )

Ifk—1<I[<k+ 1, then we have
I} <D (B)al} S e 27 ®22 2l By~ <272 u2kB) ",

If [ > k + 2, then since r(B) > 1, we have

/

URS <2lr(B)

Note that we needed g > A when 0 </ <k + 1. This proves (7.14) when r(B) > 1,
since now [[1x(B)¢(D)all3 < 3% 1) 27 Hpn@kB)~1.

If r(B) < 1, then r(B*) = 1 and there exists a differential form 5 such that
a ="DNb, as in Definition 7.12. Define ¥ (z) = z"V ¢ (), in which case ¥ € Wy (S ,),
where 7 > r was fixed previously so that 7/CpCy ;i > A. Now choose € in
(0, N — k/2). Then, since N > k/2, Lemma 5.4 implies that

2
) Z_ZZM(ZIB)_I ,f, 2—2]2—2kﬂ(2k3)—1

ey (D)1 S (1/p(E, F))2tee ™ ED < (1/p(E, F))* (7.16)

for all closed subsets E and F of M.
We now prove (7.14) when r(B) < 1. If k =0, then by (7.2) and (7.5), and since
r(B) <1and N > k/2, we have

10(B)p(D)allz < 1y (D)blla < r(B)N u(B)™2 <r(B)N 5 u(B*) ™2 < u(B*) 2.



162 A. Carbonaro et al.

Now consider k > 1. For each [ € N, define I[” by
o0 o0
1k(B*)p(D)all3 <Y 1 (B)¥(D)L(B)bl5 =Y 1}
1=0 1=0
If 1 <2/ <2k 1/r(B), then
p 2k B*\2k=1 p* 2l p\2!=1 By = 2k=1 _2lr(B) > 2k

and (28 B*) < (2K /r(B))< 22 /rBI=D2'r(B) | 2l B, 50 that by (7.16), and since
r(B) <1and N > k/2, we have

"< 1\25F —20(2k—1 2! (BY) 2N —q2'r(B)n—2I I py—1
'S 7% e r(B)*Ve 277 u(@2'B)
< 2721(§+1)272k(§+67%)r(B)2(Nf%)e)\(72"'+21+1r(B)+2k721r(B)ler(B))M(zkB*)fl

§ 2—2]2—26ku(2k3*)—1 .

If 2¢=1/7(B) < 2! < 2%+1/r(B), then (2K B*) < ¢*" ;12! B), and since r(B) < 1,
we have

1 < I DL B)BIS S r(B) N e B2 ol gy=t <272 2k B~
If 2! > 2k+1/r(B), then
p(2kB*\2K"1B* 2! B\2'71B) =2!"1r(B) — 2k > 2!

and /L(2kB*) < /L(ZIB), so that by (7.16), and since r(B) < 1, we have
1 2e
Il// 5 <?> r(B)ZNZ_ZlM(ZlB)_I ,S 2—212—2€ku(2k3*)—1 .

Note that we needed ¢ > A when 1 <2/ < 2¥+1/,(B). This proves (7.14) when
r(B) < 1, since now |1 (B)¢(D)all3 < Y15 I/ S 272k p2kB)~1. O

7.2 Local Riesz Transforms and Holomorphic Functional Calculi

We now prove the principal result of the paper, which is the local analogue of Theo-
rem 5.11 in [7].

Theorem 7.19 Let k, ) > 0 and suppose that M is a complete Riemannian mani-
fold satisfying (Ei.,). Let w € [0,/2) and R > 0 and suppose that D is a closed
densely defined operator on L>(AT*M) of type Sw. R satisfying hypotheses (H1-H3)
from Sect. 5. Let 6 € (v, /2) and r > R such that r/CpCo , > L/2, where Cy , is
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from (H1) and Cp is from (H3). Then for all f € H°°(Sg,r), the operator f (D) on
L2(AT*M) has a bounded extension to h%(/\T*M) such that

1 Dyullye, S NS loollullp,
orall u € h”, and p € [1, oc].
D

Proof If u € h%) N L2, then Proposition 7.6 gives U € t' @ L}Q with SE(pU =u and
”U”tleaL}Q <2|u ||h|D. Therefore, by Theorem 6.2 we have

I1f Dyullyy = ||Q£?¢f(D)S,?¢U||t1@L5 S ol Ulliigrl S I loollully

for all u € h}y N L?, and since h, N L? is dense in hJ, by Corollary 7.7, f(D) has a
bounded extension to h%. The same proof with 7°° @ ng instead of t' @ L é‘z shows
that f(D) has a bounded extension to h%’ These extensions coincide on h%) NhsS,

since h%) Nh3 < h% = L? is a consequence of the interpolation of the local Hardy
spaces in Theorem 7.8. Therefore, the required extension exists by interpolation. [

Theorem 1.4 follows from this result in the case of the Hodge—Dirac operator by
Example 5.2, which allows us to prove Corollary 1.5.

Proof of Corollary 1.5 Tt was shown in Example 5.2 that D satisfies (H1-H3) with
w=0,R=0,Cp=1,and Cy, =1/sin0 for all 6 € (0, r/2) and r > 0. There-
fore, Corollary 1.5 follows from Theorem 7.19 by choosing 6 in (0, 7 /2) such that
A/2sin@ < \/a, choosing r in (A/2sin@, \/a), and defining the holomorphic function
f@ =2 +a) P forallze sy, O
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Appendix: The Atomic Characterization of t1(X x o,1)

The proof of Theorem 3.6 is an adaptation of [40], which in turn is based on the
original proof in [22]. For this, we introduce the notion of local y-density.
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Definition A.1 Let X be a locally doubling metric measure space. Let F be a closed
subset of X with O =“F and u(0) < oo. For each y € (0, 1), the points of local
y -density with respect to F are the elements of the set

inf w(FNB(x,r)) - }
0<r<l1 Vx,r)

loc

FY ={x€X

The complement of this set is denoted by 013;0 = C(FIZC).

Local y-density can be understood in terms of the local maximal operator Mj,c
from Sect. 2. For each y € (0, 1), the following hold:

(1) F/

loc

is closed;
@) Fl CF;
3) OI)Z)C ={xeX | Mpolokx)>1-y};

@) u(op) < r).

The proof of these properties relies on Proposition 2.9 and is left to the reader.
The proof of Theorem 3.6 also requires the following lemma, which is adapted
from Lemma 2.1 in [40].

Lemma A.2 Let X be a locally doubling metric measure space. Let F be a closed
subset of X and let ® be a nonnegative measurable function on X x (0, 1]. For each
n € (0, 1), there exists y € (0, 1) such that

/./;e}_n(FV )

loc

¢(y,t)V(y,t)dM(y)dt§/F//F1( )<I>(y,t)d/¢(y)dtdu(X),

where R{_n and T'! are defined in Sect. 3.

Proof Fix n € (0,1) and let y € (0,1) to be chosen later. For each (y,?) in
Rll_n(Fly ), choose & € Flzc such that (y, t) € Fll_n(f). We then have

n(FNBE, 1)) =y V(E, D).

Also, the condition p(&, y) < (1 — n)t implies that B(&, nt) € B(y,t). Therefore,
we have B(§,nt) C B(&,1) N B(y, t) and by Proposition 2.3 there exists ¢, € (0, 1),
depending on 7, such that

cpV(E, 1) < V(E, ) = (B, 1) N B(y,1)).

Now choose y € (1 — ¢y, 1). The above inequalities show that there exists Cy, ,, > 0,
depending on 7 and the choice of y, such that

w(F N B(y, 1)) > u(F N B, 1) — n(BE, 1) N“B(y, 1))
>y =0 =c)V(E, 1)
>ChuyV(y, 1),

where the final inequality follows from (Djoc) and B(y, t) € B(&, 2¢).
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Using the above inequality and Fubini’s theorem we obtain

[ ewovenmo
1 r;(F]Zc)

§f/Rl O (y, ) (F N B(y, 1))du(y)dt

14
1-n (Floc)

< / / / & (y. ) () dpe(y)dr
RI(F) JFNB(,1)

< / // O (y. )du(y)drdu(x). -
F Fl(x)

We now complete the proof of the atomic characterization of 7.

Proof of Theorem 3.6 Let f €t! and for each k € Z, define
Ok = {x € X | Aoc f () > 2

and Fy = ©Og. The lower semicontinuity of A, f ensures that Oy is open. We also
have (Ox) <27¥| 1|1 < oo,

Let n € (0, 1) to be chosen later and let y € (0, 1) be the constant, which depends
on n, from Lemma A.2. Let F,;“ denote the set (Fk)f:)C from Definition A.1 and let
OF =“(Fy). We then have O C Of and (0;) < i (Oy).

First, we establish that f is supported in | ;. TIIHY(O,’(“). For each k € Z, we
apply Lemma A.2 with ®(y, ) = | f(y,)|>(V(y,t)t)"! and F = F; to obtain

/f |f (.0l du(y)— // If(y,t)lzdu(y)—
“Ujez T\, (0)) N

JjEZ Izy

=[[, . reorwnd
R

lnk

du(y) dr
< Rk —d
N/Fk //Fl(x)my P e (o

< / 15, () (Aoe f (1)) 2 (x),

where the final inequality follows from (Djy), since if (y,t) € I'(x), then r < 1
and B(x,t) € B(y,2t). If k is a negative integer, then pointwise on X we have
15, (Aioe ) < Atoc f and limg, —oo 17, (Aloe )2 = 0, where Aloc f € L' (X). There-
fore, by dominated convergence we have

Jim [ 1,0 f )t =

which implies that f = 0 almost everywhere on (| jez TI_U(O;‘)), as required.
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Now we decompose f into ¢!-atoms. For each k € Z, apply Proposition 2.8 with
O = O} and h > 0 to be chosen later. This gives a sequence of pairwise disjoint balls
(B;?)je],{, where each ball B;? = B(xj?, rj?) has radius r;? = %min(,o (xj?, COZ‘), h) and
I is some indexing set. It also gives a sequence of nonnegative functions (qﬁf)‘/e It
supported in B’; = 4ij such that ) ¢>]; = IOZ' For each (y,t) in X x (0, 1], we
have ’ ‘

J€lk

k
1711777(02)\T117n(0* )(y’ 1= Z (bj (}’)17117”(0;)\737”(0* )(y, 1),

k+1 . k+1
Jelk

since either (y,t) € Tll_n(O;:) \ Tll_n(OlfH), in which case y € O and we have
> jel ¢§ (y) =1, or both sides of the equation are zero. Given that f is supported in
Ukez Tll_n(O,f), the following holds for almost every (v, ) € X x (0, 1]:

fo.0=r0, f)kXZ:1n‘ﬂ,<o,f)\T1‘fn<0;‘+1)(y’ 0
€

— k
= Z Z SO, t)¢j (Y)lTllfn(OZ‘)\TLMOZH>(y’ 1)

keZ jel
=) Mdio.n. (A1)

keZ jel

where

1
k _ b k
a; v, = 2k SO, t)d)j (y)lTllfnw;)\Tllfn(O;H)(y, 1),
J

1

dr\ 2
M= (u(an) / / F O DPO O Ay om0z, r)du(y){)

and o > 0 will be chosen later.

Given that f € t!, the series in (A.1) also converges to f in ¢! by dominated
convergence. The same reasoning shows that if f € t! N #? for some p € (1,00),
then the series also converges to f in #”. It remains to choose the constants 1 € (0, 1),
h > 0 and o > 0 so that (A.1) is the required atomic decomposition.

First, consider the support of af df (v, 1) € spptaf, then y € sppt¢>f. - 4B§? and
we have

p(3,2) = p(x,2) — p(xf, y) = (@ = yr] (A2)
forall z € C(an). We also have p(y, “O)) > (1 —n)t, since (y,1) € Tllfn(O;:). Now
consider two cases: (1) If Sr;? = min(p(x?, 0P, h)= ,o(xf, €0y), then

(A=t <p(,°0)) < p(y, X)) + p(x}, 0 < 127},
so by (A.2) we have
p(y,2) = (=41 —n)t/12 (A.3)
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forall z € C(aij); Q) If 8r§ = min(p(xf, €0f),h) = h, then
p(y,2) = (0 —Hh/8 (A.4)

forall z € "(an).
Now choose n € (0, 1), h > 0, and @ > 0 such that

@—-4(1—n/12>1, (@—Hh/8>1, and oh/8<2.

For example, set n =1/4, h = 1/2, and o = 20. It then follows from (A.3) and (A.4)
that p(y, C(Ole)) >t and so spptaj‘- c Tl(aB;‘), where the radius of aij is ar;‘ <

ah/8 < 2. Also, it is immediate that ||a§||L3 = M(osz.‘)’l/2 and thus aj‘. is a t1-atom.
It remains to prove the norm equivalence. Using the support condition just proved
and applying Lemma A.2 with F = Fy and

®(, 1) =714 0 O 0DV 007

gives

- dr
b2 @B < // £ 0P =
Tl(aB"]?)ﬂf[Tll_”(Olf_*_,)] !

Lt
- / / L1y 00 DL O, DPdu () =
) J !

( k+1

+ d
Fig1 J I (x) 1 (

N/ k(Alocf(x)) du(x)
0k+1ﬂOlB
< 2% u(@BY).

Furthermore, by (Dj,.) we have A]; < 2k /L(B;?), and since for each k € Z the balls

(Bj.‘ )j are pairwise disjoint and contained in O}, we obtain

SO k=) 2k uop

keZ jel keZ

S 2 u0p

keZ

= Z / n({xeX| Alocf(x) > 2k})dl

keZ

N Z/ nw({x € X | Ajoe f(x) > t})dt

keZ

=11l

which completes the proof. (|



168 A. Carbonaro et al.

Remark A.3 If b > 1, then a judicious choice of n € (0, 1), 2 > 0, and @ > O in the
proof of Theorem 3.6 allows us to characterize f € ¢! in terms #'-atoms supported
on truncated tents 71 (B) over balls B with radius r(B) < b. The constants in the
norm equivalence ~ then depend on b and, as we may expect, become unbounded as
b approaches 1.
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