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Abstract This paper contains four main results associated with an attractor of a pro-
jective iterated function system (IFS). The first theorem characterizes when a projec-
tive IFS has an attractor which avoids a hyperplane. The second theorem establishes
that a projective IFS has at most one attractor. In the third theorem the classical dual-
ity between points and hyperplanes in projective space leads to connections between
attractors that avoid hyperplanes and repellers that avoid points, as well as hyperplane
attractors that avoid points and repellers that avoid hyperplanes. Finally, an index is
defined for attractors which avoid a hyperplane. This index is shown to be a nontrivial
projective invariant.
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1 Introduction

This paper provides the foundations of a surprisingly rich mathematical theory asso-
ciated with the attractor of a real projective iterated function system (IFS). (A real
projective IFS consists of a finite set of projective transformations {fm : P → P }Mm=1
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where P is a real projective space. An attractor is a nonempty compact set A ⊂ P
such that limk→∞ F k(B) = F (A) = A for all nonempty sets B in an open neighbor-
hood of A, where F (B) = ⋃M

m=1 fm(B).) In addition to proving conditions which
guarantee the existence and uniqueness of an attractor for a projective IFS, we also
present several related concepts. The first connects an attractor which avoids a hyper-
plane with a hyperplane repeller. The second uses information about the hyperplane
repeller to define a new index for an attractor. This index is both invariant under pro-
jective transformations and nontrivial, which implies that it joins the cross ratio and
Hausdorff dimension as nontrivial invariants under the projective group. Thus, these
attractors belong in a natural way to the collection of geometrical objects of classical
projective geometry.

The definitions that support expressions such as “iterated function system”, “at-
tractor”, “basin of attraction” and “avoids a hyperplane”, used in this Introduction,
are given in Sect. 3.

Iterated function systems are a standard framework for describing and analyzing
self-referential sets such as deterministic fractals [2, 7, 22] and some types of ran-
dom fractals [10]. Attractors of affine IFSs have many applications, including image
compression [3, 8, 21] and geometric modeling [14]. They relate to the theory of the
joint spectral radius [12] and to wavelets [11]. Projective IFSs have more degrees of
freedom than comparable affine IFSs [5] while the constituent functions share geo-
metrical properties such as preservation of straight lines and cross ratios. Projective
IFSs have been used in digital imaging and computer graphics (see, for example, [6]),
and they may have applications to image compression, as proposed in [4, p. 10]. Pro-
jective IFSs can be designed so that their attractors are smooth objects such as arcs
of circles and parabolas, and rough objects such as fractal interpolation functions.

The behavior of attractors of projective IFSs appears to be complicated. In com-
puter experiments conducted by the authors, attractors seem to come and go in a mys-
terious manner as parameters of the IFS are changed continuously. See Example 4 in
Sect. 4 for an example that illustrates such phenomena. The intuition developed for
affine IFSs regarding the control of attractors seems to be wrong in the projective
setting. Our theorems provide insight into such behavior.

One key issue is the relationship between the existence of an attractor and the con-
tractive properties of the functions of the IFS. In a previous paper [1] we investigated
the relationship between the existence of attractors and the existence of contractive
metrics for IFSs consisting of affine maps on R

n. We established that an affine IFS F
has an attractor if and only if F is contractive on all of R

n. In the present paper we
focus on the setting where X = P

n is real n-dimensional projective space and each
function in F is a projective transformation. In this case F is called a projective IFS.

Our first main result, Theorem 1, provides a set of equivalent characterizations of a
projective IFS that possesses an attractor that avoids a hyperplane. The adjoint F t of
a projective IFS F is defined in Sect. 11, and convex body is defined in Definition 5.
An IFS F is contractive on S ⊂ X when F (S) ⊂ S and there is a metric on S with
respect to which all the functions of the IFS are contractive; see Definition 3. For a
set X in a topological space, X denotes its closure, and int(X) denotes its interior.

Theorem 1 If F is a projective IFS on P
n, then the following statements are equiva-

lent.
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(1) F has an attractor A that avoids a hyperplane.
(2) There is a nonempty open set U that avoids a hyperplane such that F (U) ⊂ U .
(3) There is a nonempty finite collection of disjoint convex bodies {Ci} such that

F (
⋃

i Ci) ⊂ int(
⋃

i Ci).
(4) There is a nonempty open set U ⊂ P

n such that F is contractive on U .
(5) The adjoint projective IFS F t has an attractor At that avoids a hyperplane.

When these statements are true we say that F is contractive.

Statement (4) is of particular importance because if an IFS is contractive, then it
possesses an attractor that depends continuously on the functions of the IFS; see, for
example, [2, Sect. 3.11]. Moreover, if an IFS is contractive, then various canonical
measures, supported on its attractor, can be computed by means of the “chaos game”
algorithm [7], and diverse applications, such as those mentioned above, become fea-
sible. Note that statement (4) of Theorem 1 immediately implies uniqueness of an
attractor in the set U , but not uniqueness in P

n. See also Remark 2 in Sect. 13.
Our second main result establishes uniqueness of attractors, independently of

whether or not Theorem 1 applies.

Theorem 2 A projective IFS has at most one attractor.

The classical projective duality between points and hyperplanes manifests itself in
interesting ways in the theory of projective IFSs. Theorem 3 below, which depends
on statement (5) in Theorem 1, is an example. It is a geometrical description of the
dynamics of F as a set operator on P

n. The terminology used is provided in Sect. 11.

Theorem 3 (1) A projective IFS has an attractor that avoids a hyperplane if and
only if it has a hyperplane repeller that avoids a point. The basin of attraction of the
attractor is the complement of the union of the hyperplanes in the repeller.

(2) A projective IFS has a hyperplane attractor that avoids a point if and only if
it has a repeller that avoids a hyperplane. The basin of attraction of the hyperplane
attractor is the set of hyperplanes that do not intersect the repeller.

Figure 1 illustrates Theorem 3. Here and in the other figures we use the disk model
of the projective plane. Diametrically opposite points on the boundary of the disk
are identified in P

2. In the left-hand panel of Figure 1 the “leaf” is the attractor A

of a certain projective IFS F consisting of four projective transformations on P
2.

The surrounding grainy region approximates the set R of points in the corresponding
hyperplane repeller. The complement of R is the basin of attraction of A. The central
green, red, and yellow objects in the right panel comprise the attractor of the adjoint
IFS F t , while the grainy orange scimitar-shaped region illustrates the corresponding
hyperplane repeller.

Theorem 3 enables us to associate a geometrical index with an attractor that avoids
a hyperplane. More specifically, if an attractor A avoids a hyperplane then A lies in
the complement of (the union of the hyperplanes in) the repeller. Since the connected
components of this complement form an open cover of A and since A is compact, A is
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Fig. 1 (Color online) The image on the left shows the attractor and hyperplane repeller of a projective
IFS. The basin of attraction of the leaf-like attractor is the black convex region together with the leaf. The
image on the right shows the attractor and repeller of the adjoint system

actually contained in a finite set of components of the complement. These observa-
tions lead to the definition of a geometric index of A, index(A), as is made precise in
Definition 13. This index is an integer associated with an attractor A, not any partic-
ular IFS that generates A. As shown in Sect. 12, as a consequence of Theorem 4, this
index is nontrivial, in the sense that it can take positive integer values other than one.
Moreover, it is invariant under PGL(n + 1,R), the group of real, dimension n, pro-
jective transformations. That is, index(A) = index(g(A)) for all g ∈ PGL(n + 1,R).

See Remark 3 of Sect. 13 concerning attractors and repellers in the case of affine
IFSs. See Remark 4 in Sect. 13 concerning the fact that the Hausdorff dimension of
the attractor is also an invariant under the projective group.

2 Organization

Since the proofs of our results are quite complicated, this section describes the struc-
ture of this paper, including an overview of the proof of Theorem 1.

Section 3 contains definitions and notation related to iterated function systems,
and background information on projective space, convex sets in projective space, and
the Hilbert metric.

Section 4 provides examples that illustrate the intricacy of projective IFSs and the
value of our results. These examples also illustrate the role of the avoided hyperplane
in statements (1), (2), and (5) of Theorem 1.

The proof of Theorem 1 is achieved by showing that

(1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (1) ⇔ (5).

Section 5 contains the proof that (1) ⇒ (2), by means of a topological argument.
Statement (2) states that the IFS F is a “topological contraction” in the sense that it
sends a nonempty compact set into its interior.
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Section 6 contains the proof of Proposition 4, which describes the action of a
projective transformation on the convex hull of a connected set in terms of its action
on the connected set. This is a key result that is used subsequently.

Section 7 contains the proof that (2) ⇒ (3) by means of a geometrical argument,
in Lemmas 2 and 3. Statement (3) states that the compact set, in statement (2), that
is sent into its interior can be chosen to be the disjoint union of finitely many convex
bodies. What makes the proof somewhat subtle is that, in general, there is no single
convex body that is mapped into its interior.

Sections 8 and 9 contain the proof that (3) ⇒ (4). Statement (4) states that, with
respect to an appropriate metric, each function in F is a contraction. The requisite
metric is constructed in two stages. On each of the convex bodies in statement (3),
the metric is basically the Hilbert metric as discussed in Sect. 3. How to combine
these metrics into a single metric on the union of the convex bodies is what requires
the two sections.

Section 10 contains both the proof that (4) ⇒ (1) and the proof of Theorem 2.
Section 11 contains the proof that (1) ⇔ (5), namely that F has an attractor if and

only if F t has an attractor. The adjoint IFS F t consists of those projective transfor-
mations which, when expressed as matrices, are the transposes of the matrices that
represent the functions of F . The proof relies on properties of an operation, called
the complementary dual, that takes subsets of P

n to subsets of P
n.

Section 11 also contains the proof of Theorem 3, which concerns the relationship
between attractors and repellers. The proof relies on classical duality between P

n and
its dual P̂n, as well as the equivalence of statement (4) in Theorem 1. Note that, if F
has an attractor A then the orbit under F of any compact set in the basin of attraction
of A will converge to A in the Hausdorff metric. Theorem 3 tells us that if A avoids
a hyperplane, then there is also a set R of hyperplanes that repel, under the action of
F , hyperplanes “close” to R. The hyperplane repeller R is such that the IFS F −1,
consisting of all inverses of functions in F , when applied to the dual space of P

n, has
R as an attractor. The relationship between the hyperplane repeller of an IFS F and
the attractor of the adjoint IFS F t is described in Proposition 10.

Section 12 considers properties of attractors that are invariant under the projective
group PGL(n + 1,R). In particular, we define index(A) of an attractor A that avoids
a hyperplane, and establish Theorem 4 which shows that this index is a nontrivial
group invariant.

Section 13 contains various remarks that add germane information that could in-
terrupt the flow on a first reading. In particular, the topic of non-contractive projective
IFSs that, nevertheless, have attractors is mentioned. Other areas open to future re-
search are also mentioned.

3 Iterated Function Systems, Projective Space, Convex Sets, and the Hilbert
Metric

3.1 Iterated Function Systems and Their Attractors

Definition 1 Let X be a complete metric space. If fm : X → X, m = 1,2, . . . ,M,

are continuous mappings, then F = (X;f1, f2, . . . , fM) is called an iterated function
system (IFS).
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To define the attractor of an IFS, first define

F (B) =
⋃

f ∈F
f (B)

for any B ⊂ X. By slight abuse of terminology we use the same symbol F for the
IFS, the set of functions in the IFS, and for the above mapping. For B ⊂ X, let F k(B)

denote the k-fold composition of F , the union of fi1 ◦ fi2 ◦ · · · ◦ fik (B) over all finite
words i1i2 · · · ik of length k. Define F 0(B) = B.

Definition 2 A nonempty compact set A ⊂ X is said to be an attractor of the IFS F
if

(i) F (A) = A and
(ii) there is an open set U ⊂ X such that A ⊂ U and limk→∞ F k(B) = A, for all

compact sets B ⊂ U , where the limit is with respect to the Hausdorff metric.

The largest open set U such that (ii) is true is called the basin of attraction [for the
attractor A of the IFS F ].

See Remark 6 in Sect. 13 concerning a different definition of attractor.

Definition 3 A function f : X → X is called a contraction with respect to a metric d

if there is 0 ≤ α < 1 such that d(f (x), f (y)) ≤ α d(x, y) for all x, y ∈ R
n.

An IFS F = (X;f1, f2, . . . , fM) is said to be contractive on a set U ⊂ X if
F (U) ⊂ U and there is a metric d : U × U → [0,∞), giving the same topology
as on U , such that, for each f ∈ F the restriction f |U of f to U is a contraction on
U with respect to d .

3.2 Projective Space

Let R
n+1 denote (n + 1)-dimensional Euclidean space and let P

n denote real projec-
tive space. Specifically, P

n is the quotient of R
n+1\{0} by the equivalence relation

which identifies (x0, . . . , xn) with (λx0, . . . , λxn) for all nonzero λ ∈ R. Let

φ : R
n+1\{0} → P

n

denote the canonical quotient map. The set (x0, . . . , xn) of coordinates of some
x ∈ R

n+1 such that φ(x) = p is referred to as homogeneous coordinates of p. If
p,q ∈ P

n have homogeneous coordinates (p0, . . . , pn) and (q0, . . . , qn), respectively,
and

∑n
i=0 piqi = 0, then we say that p and q are orthogonal, and write p⊥q . A hy-

perplane in P
n is a set of the form

H = Hp = {q ∈ P
n : p⊥q = 0} ⊂ P

n,

for some p ∈ P
n.

Definition 4 A set X ⊂ P
n is said to avoid a hyperplane if there exists a hyperplane

H ⊂ P
n such that H ∩ X = ∅.
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We define the “round” metric dP on P
n as follows. Each point p of P

n is repre-
sented by a line in R

n+1 through the origin, or by the two points ap and bp where
this line intersects the unit sphere centered at the origin. Then, in the obvious nota-
tion, dP(p, q) = min{‖ap − aq‖,‖ap − bq‖} where ‖x − y‖ denotes the Euclidean
distance between x and y in R

n+1. In terms of homogeneous coordinates, the metric
is given by

dP(p, q) =
√

2 − 2
|〈p,q〉|
‖p‖‖q‖ ,

where 〈·, ·〉 is the usual Euclidean inner product. The metric space (Pn, dP) is com-
pact.

A projective transformation f is an element of PGL(n + 1,R), the quotient of
GL(n+ 1,R) by the multiples of the identity matrix. A mapping f : P

n → P
n is well

defined by f (φx) = φ(Lf x), where Lf : R
n+1 → R

n+1 is any matrix representing
projective transformation f . In other words, the following diagram commutes:

R
n+1

φ

Lf

R
n+1

φ

P
n

f
P

n.

When no confusion arises we may designate an n-dimensional projective trans-
formation f by a matrix Lf ∈ GL(n + 1,R) that represents it. An IFS F =
(Pn;f1, f2, . . . , fM) is called a projective IFS if each f ∈ F is a projective trans-
formation on P

n.

3.3 Convex Subsets of P
n

We now define the notions of convex set, convex body, and convex hull of a set with
respect to a hyperplane. In Proposition 4 we state an invariance property that plays a
key role in the proof of Theorem 1.

If H ⊂ P
n is a hyperplane, then there is a unique hyperplane H ∈ R

n+1 such that
φ(H) = H . If p ∈ P

n\H , there is a unique 1-dimensional subspace p ∈ R
n+1 such

that φ(p) = p. Let u be a unit vector orthogonal to H and W = {x : 〈x,u〉 = 1} be the
corresponding affine subspace of R

n+1. Define a mapping θ : P
n\H → W by letting

θ(p) be the intersection of p with W . Now θ is a surjective mapping from P
n\H

onto the n-dimensional affine space W such that projective subspaces of P
n\H go to

affine subspaces of W . In light of the above, it makes sense to consider P
n\H as an

affine space.

Definition 5 A set S ⊂ P
n\H is said to be convex with respect to a hyperplane H

if S is a convex subset of P
n\H , considered as an affine space as described above.

Equivalently, with notation as in the above paragraph, S is convex with respect to H if
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θ(S) is a convex subset of W . A closed set that is convex with respect to a hyperplane
and has nonempty interior is called a convex body.

It is important to distinguish this definition of “convex” from projective convex,
which is the term often used to describe a set S ⊂ P

n with the property that if l is a
line in P

n then S ∩ l is connected. (See [18, 19] for a discussion of related matters.)

Definition 6 Given a hyperplane H ⊂ P
n and two points x, y ∈ P

n\H , the unique
line xy through x and y is divided into two closed line segments by x and y. The
one that does not intersect H will be called the line segment with respect to H and
denoted xyH .

Note that C is convex with respect to a hyperplane H if and only if xyH ⊂ C for
all x, y ∈ C.

Definition 7 Let S ⊂ P
n and let H be a hyperplane such that S ∩H = ∅. The convex

hull of S with respect to H is

convH (S) = conv(S),

where conv(S) is the usual convex hull of S, treated as a subset of the affine space
P

n\H . Equivalently, with notation as above, if S′ = conv(θ(S)), where conv denotes
the ordinary convex hull in W , then convH (S) = φ(S′).

We can also describe convH (S) as the smallest convex subset of P
n\H that con-

tains S, i.e., the intersection of all convex sets of P
n\H containing S. The key result

concerning convexity and projective transformations is Proposition 4 in Sect. 6.

3.4 The Hilbert Metric

In this section we define the Hilbert metric associated with a convex body.
Let p,q ∈ P

n, with p �= q and with homogeneous coordinates p = (p0, . . . , pn)

and q = (q0, . . . , qn). Any point r on the line pq has homogeneous coordinates ri =
α1 pi + α2qi, i = 0,1, . . . , n. The pair (α1, α2) is referred to as the homogeneous
parameters of r with respect to p and q . Since the homogeneous coordinates of p and
q are determined only up to a scalar multiple, the same is true of the homogeneous
parameters (α1, α2).

Let a = (α1, α2), b = (β1, β2), c = (γ1, γ2), d = (δ1, δ2) be any four points on
such a line in terms of homogeneous parameters. Their cross ratio R(a, b, c, d), in
terms of homogeneous parameters on the projective line, is defined to be

R(a, b, c, d) =
∣
∣ γ1 α1
γ2 α2

∣
∣

∣
∣ γ1 β1
γ2 β2

∣
∣
–

∣
∣ δ1 α1
δ2 α2

∣
∣

∣
∣ δ1 β1
δ2 β2

∣
∣
. (3.1)

The key property of the cross ratio is that it is invariant under any projective transfor-
mation and under any change of basis {p,q} for the line. If none of the four points
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is the first base point p, then the homogeneous parameters of the points are (α,1),
(β,1), (γ,1), (δ,1) and the cross ratio can be expressed as the ratio of (signed) dis-
tances:

R(a, b, c, d) = (γ − α)(δ − β)

(γ − β)(δ − α)
.

Definition 8 Let K ⊂ P
n be a convex body. Let H ⊂ P

n be a hyperplane such that
H ∩ K = ∅. Let x and y be distinct points in int(K). Let a and b be two distinct
points in the boundary of K such that xyH ⊂ abH , where the order of the points
along the line segment abH is a, x, y, b. The Hilbert metric dK on int(K) is defined
by

dK(x, y) = logR(a, b, x, y) = log

( |ay| |bx|
|ax| |by|

)

.

Here |ay| = ‖a′ − y′‖, |bx| = ‖b′ − x′‖, |ax| = ‖a′ − x′‖, |by| = ‖b′ − y′‖ denote
Euclidean distances associated with any set of collinear points a′, x′, y′, b′ ∈ R

n+1

such that φ(a′) = a, φ(x′) = x, φ(y′) = y, and φ(b′) = b.

A basic property of the Hilbert metric is that it is a projective invariant. See [16,
p. 105] for a more complete discussion of the properties of this metric. See Remark 4
in Sect. 13 concerning the relationship between the metrics dP and dK and its rele-
vance to the evaluation and projective invariance of the Hausdorff dimension.

4 Examples

Example 1 (IFSs with one transformation) Let F = (Pn;f ) be a projective IFS with
a single transformation. By Theorem 1 such an IFS has an attractor if and only if
any matrix Lf representing f has a dominant eigenvalue. (The map Lf has a real
eigenvalue λ0 with corresponding eigenspace of dimension 1, such that λ0 > |λ| for
every other eigenvalue λ.) For such an IFS the attractor is a single point whose ho-
mogeneous coordinates are the coordinates of the eigenvector corresponding to λ0.
The hyperplane repeller of F is the single hyperplane φ(E), where E is the span of
the eigenspaces corresponding to all eigenvalues of Lf except λ0. The attractor of
the adjoint IFS is also a single point, φ(E⊥), where E⊥ is the unique line through
the origin in R

n+1 perpendicular to the hyperplane E.

Example 2 (Convex hull caveat) In Theorem 1 the implication (2) ⇒ (3) contains a
subtle issue. It may seem, at first sight, to be trivial because surely one could choose
C simply to be the convex hull of U? The following example shows that this is not
true. Let F = (P1;f1, f2) where

f1 =
(

4 0
1 1

)

, f2 =
(−4 0

1 1

)

.

In P
1 a hyperplane is just a point. Let H0 = (0

1

)
and H∞ = ( 1

0

)
be two hyperplanes

and consider the four points p = (−9
1

)
, q = (−2

1

)
, r = (2

1

)
, and s = (9

1

)
in P

1. Let
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Fig. 2 (Color online) Projective attractor which includes a hyperplane, and a zoom. See Example 3

C1 be the line segment pqH0
and let C2 = rsH0 . There are two possible convex

hulls of C1 ∪ C2, one with respect to the hyperplane H0, for example and the other
with respect to H∞ for example. It is routine to check that F (C1 ∪ C2) ⊂ C1 ∪ C2
but F (convH (C1 ∪ C2)) � convH (C1 ∪ C2), where H is either H0 or H∞. Thus the
situation is fundamentally different from the affine case; see [1].

Example 3 (A non-contractive IFS with an attractor) Theorem 1 leaves open the
possible existence of a non-contractive IFS that, nevertheless, has an attractor. Ac-
cording to Theorem 1 such an attractor must have nonempty intersection with ev-
ery hyperplane. The following example shows that such an IFS does exist. Let
F = (P 2;f1, f2) where

f1 =
⎛

⎝
1 0 0
0 2 0
0 0 2

⎞

⎠ and f2 =
⎛

⎝
1 0 0
0 2 cos θ −2 sin θ

0 2 sin θ 2 cos θ

⎞

⎠ ,

and θ/π is irrational. In terms of homogeneous coordinates (x, y, z), the attractor of
F is the line x = 0.

Another example is illustrated in Figure 2, where

f1 =
⎛

⎝
41 −19 19

−19 41 19
19 19 41

⎞

⎠ and f2 =
⎛

⎝
−10 −1 19
−10 21 1
10 10 10

⎞

⎠ .

Neither function f1 nor f2 has an attractor, but the IFS consisting of both of them
does. The union A of the points in the red and green lines is the attractor. Since any
two lines in P

2 have nonempty intersection, the attractor A has nonempty intersec-
tion with every hyperplane. Consequently, by Theorem 1 there exists no metric with
respect to which both functions are contractive. In the right panel a zoom is shown
which displays the fractal structure of the set of lines that comprise the attractor. The
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color red is used to indicate the image of the attractor under f1, while green indicates
its image under f2.

Example 4 (Attractor discontinuity) This example consists of a family F = {F (t) :
t ∈ R} of projective IFSs that depend continuously on a real parameter t . The example
demonstrates how behavior of a projective family F may be more complicated than
in the affine case. Let F (t) = (P2;f1, f2, f3) where

f1 =
⎛

⎝
198t + 199 198t + 198 −198t2 − 297t − 99

0 1 0
198 198 −198t − 98

⎞

⎠ ,

f2 =
⎛

⎝
397 396 −594

0 1 0
198 198 −296

⎞

⎠ , and f3 =
⎛

⎝
595 594 −1485

0 1 0
198 198 −494

⎞

⎠ .

This family interpolates quadratically between three IFSs, F (0), F (1), and F (2),
each of which has an attractor that avoids a hyperplane. But the IFSs F (0.5) and
F (1.5) do not have an attractor. This contrasts with the affine case, where similar
interpolations yield IFSs that have an attractor at all intermediate values of the pa-
rameter. For example, if hyperbolic affine IFSs F and G each have an attractor, then
so does the average IFS, (t F + (1 − t)G) for all t ∈ [0,1].

5 Proof that (1) ⇒ (2) in Theorem 1

Lemma 1 (i) If the projective IFS F has an attractor A then there is a nonempty open
set U such that A ⊂ U , F (U) ⊂ U , and U is contained in the basin of attraction of A.

(ii) (Theorem 1 (1) ⇒ (2)) If the projective IFS F has an attractor A and there is
a hyperplane H such that H ∩ A = ∅, then there is a nonempty open set U such that
A ⊂ U, U ∩ H = ∅, F (U) ⊂ U , and U is contained in the basin of attraction of A.

Proof We prove (ii) first. The proof will make use of the function F −1(X) =
{x ∈ P

n : f (x) ∈ X for all f ∈ F }. Note that F −1 takes open sets to open sets, X ⊂
(F −1 ◦ F )(X) and (F ◦ F −1)(X) ⊂ X for all X.

Since A is an attractor contained in P
n\H , there is an open set V containing A

such that V is compact, V ⊂ P
n\H , and A = limk→∞ F k(V ). Hence there is an

integer m such that F k(V ) ⊂ V for k ≥ m.
Define Vk, k = 0,1, . . . ,m, recursively, going backwards from Vm to V0, as fol-

lows. Let Vm = V and for k = m−1, . . . ,2,1,0, let Vk = V ∩ F −1(Vk+1). If O = V0,
then O has the following properties:

(1) O is open,
(2) A ⊂ O ,
(3) F k(O) ⊂ V for all k ≥ 0.

To check property (2) notice that F (A) = A implies A ⊂ (F −1 ◦ F )(A) =
F −1(A). Then A ⊂ V = Vm implies that A ⊂ Vm for all m, in particular A ⊂
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V0 = O . To check property (3) notice that Vk ⊂ F −1(Vk+1) implies F (Vk) ⊂
(F ◦ F −1)(Vk+1) ⊂ Vk+1. It then follows that F k(O) ⊂ Vk ⊂ V for 0 ≤ k ≤ m. Also
F k(O) ⊂ F k(V ) ⊂ V for all k > m.

Since A = limn→∞ F n(O), there is an integer K such that F K(O) ⊂ O . Let
Ok, k = 0,1, . . . ,K, be defined recursively, going backwards from OK to O0, as
follows. Let OK = O , and for k = K − 1, . . . ,2,1,0, let Ok be an open set such
that

(4) F k(O) ⊂ Ok ,
(5) Ok ⊂ P

n\H , and
(6) F (Ok) ⊂ Ok+1.

To verify that a set Ok with these properties exists, first note that property (4)
holds for k = K . To verify the properties for all k = K − 1, . . . ,2,1,0 induc-
tively, assume that Ok, k ≥ 1, satisfies property (4). Using property (4) we have
F k−1(O) ⊂ F −1(F k(O)) ⊂ F −1(Ok) and using property (3) we have F k−1(O) ⊂
V ⊂ P

n\H . Now choose Ok−1 to be an open set such that F k−1(O) ⊂ Ok−1 and
Ok−1 ⊂ F −1(Ok) ∩ (Pn\H). The last inclusion implies F (Ok−1) ⊂ Ok .

We claim that

U =
K−1⋃

k=0

Ok

satisfies the properties in the statement of part (ii) of the lemma. (*) By property (5)
we have U ∩ H = ∅. By properties (2) and (4) we have A = F k(A) ⊂ F k(O) ⊂ Ok

for each k, which implies A ⊂ U . Last,

F (U) =
K−1⋃

k=0

F (Ok) ⊂
K⋃

k=1

Ok =
K−1⋃

k=1

Ok ∪ OK ⊂ U ∪ O ⊂ U ∪ O0 ⊂ U,

the first inclusion coming from property (6) and the second-to-last inclusion coming
from property (4) applied to k = 0. This completes the proof that there is a nonempty
open set U such that A ⊂ U . U ∩ H = ∅, and F (U) ⊂ U . Now note that, by con-
struction, U is such that F K(U) ⊂ OK = O and that O lies in V which lies in the
basin of attraction of A, which implies that U is contained in the basin of attraction
of A. This completes the proof of (ii).

The proof of (i) is the same as the above proof of (ii), except that P
n\H is replaced

by P
n throughout, and the sentence (*) is omitted. �

6 Projective Transformations of Convex Sets

This section describes the action of a projective transformation on a convex set. We
develop the key result, Proposition 4, that is used subsequently.

Proposition 1 states that the property of being a convex subset (with respect to a
hyperplane) of a projective space is preserved under a projective transformation.
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Proposition 1 Let f : P
n → P

n be a projective transformation. For any two hyper-
planes H,H ′ with S ∩H = ∅ and f (S)∩H ′ = ∅, the set S ⊂ P

n is a convex set with
respect to H if and only if f (S) is convex with respect to H ′.

Proof Assume that S is convex with respect to H . To show that f (S) is convex with
respect to H ′ it is sufficient to show, given any two points x′, y′ ∈ f (S), that x′y′

H ′ ⊆
f (S). If x = f −1(x′) and y = f −1(y′), then by the convexity of S and the fact that
S ∩ H = ∅, we know that xyH ⊆ S. Hence f (xyH ) ⊆ f (S). Since f (S) ∩ H ′ = ∅,
and f takes lines to lines, x′y′

H ′ = f (xyH ) ⊆ f (S).
The converse follows since f −1 is a projective transformation. �

Proposition 2 states that convH (S) behaves well under projective transformation.

Proposition 2 Let S ⊂ P
n and let H be a hyperplane such that S ∩ H = ∅. If f :

P
n → P

n is a projective transformation, then

convf (H) f (S) = f (convH (S)).

Proof Since S ⊆ convH (S), we know that f (S) ⊆ f (convH (S)). Moreover, by
Proposition 1, we know that f (convH (S)) is convex with respect to f (H). To
show that convf (H) f (S) = f (convH (S)) it is sufficient to show that f (convH (S))

is the smallest convex subset containing f (S), i.e., there is no set C such that C

is convex with respect to f (H) and f (S) ⊆ C � f (convH (S)). However, if such
a set exists, then by applying the inverse f −1 to the above inclusion, we have
S ⊆ f −1(C) � convH (S). Since f −1(C) is convex by Proposition 1, we arrive at
a contradiction to the fact that convH (S) is the smallest convex set containing S. �

In general, convH (S) depends on the avoided hyperplane H . But, as Proposition 3
shows, it is independent of the avoided hyperplane when S is connected.

Proposition 3 If S ⊂ P
n is a connected set such that S ∩ H = S ∩ H ′ = ∅ for hyper-

planes H,H ′ of P
n, then

convH (S) = convH ′(S).

Proof The fact that S is connected and S ∩ H ′ = ∅ implies that convH (S) ∩ H ′ = ∅.

Therefore convH (S) is the ordinary convex hull of S in (Pn\H)\H ′, which is an
affine n-dimensional space with a hyperplane deleted. Likewise convH ′(S) is the
ordinary convex hull of S in (Pn\H ′)\H = (Pn\H)\H ′. Therefore, convH (S) =
convH ′(S). �

The key result that will be needed, for example, in Sect. 7, is the following.

Proposition 4 Let S ⊂ P
n be a connected set and let H be a hyperplane. If S∩H = ∅

and f : P
n → P

n is a projective transformation such that f (S) ∩ H = ∅, then

convH f (S) = f (convH (S)).

Proof This follows at once from Propositions 2 and 3. �
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7 Proof that (2)⇒(3) in Theorem 1

The implication (2)⇒(3) in Theorem 1 is proved in two steps. We show that
(2)⇒(2.5)⇒(3) where (2.5) is the following statement.

(2.5) There is a hyperplane H and a nonempty finite collection of nonempty dis-
joint connected open sets {Oi} such that F (

⋃
i Oi) ⊂ ∪iOi and

⋃
i Oi ∩ H = ∅.

Lemma 2 ((2)⇒(2.5)) If there is a nonempty open set U and a hyperplane H

with U ∩ H = ∅ such that F (U) ⊂ U , then there is a nonempty finite collection
of nonempty disjoint connected open sets {Oi} such that F (

⋃
i Oi) ⊂ ∪iOi and⋃

i Oi ∩ H = ∅.

Proof Let U = ⋃
α Uα , where the Uα are the connected components of U . Let Ã =

⋂
k F k(U) and let {Oi} be the set of Uα that have nonempty intersection with Ã.

This set is finite because the sets in {Oi} are pairwise disjoint and Ã is compact.
Since F (Ã) ⊂ Ã and F (U) ⊂ U , we find that F (

⋃
Oi) ⊂ ⋃

i Oi . Since
⋃

i Oi ⊂ U

and U ∩ H = ∅, we have
⋃

i Oi ∩ H = ∅. �

Lemma 3 ((2.5)⇒(3)): If there is a nonempty finite collection of nonempty disjoint
connected open sets {Oi} and a hyperplane H such that F (

⋃
i Oi) ⊂ ⋃

i Oi and⋃
i Oi ∩ H = ∅, then there is a nonempty finite collection of disjoint convex bodies

{Ci} such that F (
⋃

i Ci) ⊂ int(
⋃

i Ci).

Proof Assume that there is a nonempty finite collection of nonempty disjoint con-
nected open sets {Oi} such that F (

⋃
i Oi) ⊂ ⋃

i Oi and
⋃

i Oi avoids a hyperplane.
Let O = ⋃

i Oi . Since F (O) ⊂ O , it must be the case that, for each f ∈ F and each i,
there is an index that we denote by f (i), such that f (Oi) ⊂ Of (i). Since Oi is con-
nected and both Oi and f (Oi) avoid the hyperplane H it follows from Proposition 4
that

f (convH (Oi)) = convH (f (Oi)) ⊂ convH (Of (i)) ⊂ int(convH (Of (i))).

For each i, let Ci = convH (Oi), so that each Ci is a convex body. Then we have

f (Ci) ⊂ int(Cf (i)).

However, it may occur, for some i �= j , that Ci ∩ Cj �= ∅. In this case Ci ∪ Cj is a
connected set that avoids the hyperplane H , and is such that f (Ci ∪ Cj) also avoids
H. It follows again by Proposition 4 that

convH (f (Ci ∪ Cj )) = f (convH (Ci ∪ Cj )) ⊂ int(conv(Cf (i) ∪ Cf (j)).

Define Ci and Cj to be related if Ci ∩ Cj �= ∅, and let ∼ denote the transitive
closure of this relation. (That is, if Ci is related to Cj and Cj is related to Ck , then
Ci is related to Ck .) From the set {Ci} define a new set U ′ whose elements are

U ′ =
{

conv

( ⋃

C∈Z

C

)

: Z is an equivalence class with respect to ∼
}

.
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By abuse of language, let {Ci} be the set of convex sets in U ′. It may again occur,
for some i �= j , that Ci ∩ Cj �= ∅. In this case we repeat the equivalence process. In
a finite number of such steps we arrive at a finite set of disjoint convex bodies {Ci}
such that F (∪Ci) ⊂ int(∪Ci). �

Lemmas 2 and 3 taken together imply that (2) ⇒ (3) in Theorem 1.

8 Part 1 of the Proof that (3) ⇒ (4) in Theorem 1

The standing assumption in this section is that statement (3) of Theorem 1 is true.
We begin to develop a metric with respect to which F is contractive. The final metric
is defined in the next section.

Let U := {C1,C2, . . . ,Cq} be the set of nonempty convex connected components
in statement (3) of Theorem 1. Define a directed graph (digraph) G as follows. The
nodes of G are the elements of U . For each f ∈ F , there is an edge colored f

directed from node U to node V if f (U) ⊂ int(V ). Note that, for each node U in G,
there is exactly one edge of each color emanating from U . Note also that G may have
multiple edges from one node to another and may have loops. (A loop is an edge from
a node to itself.)

A directed path in a digraph is a sequence of nodes U0,U1, . . . ,Uk such that there
is an edge directed from Ui−1 to Ui for i = 1,2, . . . , k. Note that a directed path is
allowed to have repeated nodes and edges. Let p = U0,U1, . . . ,Uk be a directed path.
If f1, f2, . . . , fk are the colors of the successive edges, then we will say that p has
type f1 f2 · · ·fk .

Lemma 4 The graph G cannot have two directed cycles of the same type starting at
different nodes.

Proof By way of contradiction assume that U �= U ′ are the starting nodes of two
paths p and p′ of the same type f1 f2 · · ·fk . Recall that the colors are functions of
the IFS F . If g = fk ◦ fk−1 ◦ · · · ◦ f1 ◦ f0, then the composition g takes the convex
set U into int(U) and the convex set U ′ into int(U ′). By the Krein–Rutman theorem
[23] this is impossible. More specifically, the Krein–Rutman theorem tells us that if
K is a closed convex cone in R

n+1 and L : R
n+1 → R

n+1 is a linear transformation
such that L(K) ⊂ int(K), then the spectral radius r(L) > 0 is a simple eigenvalue of
L with an eigenvector v ∈ int(K). �

Each function f ∈ F acts on the set of nodes of G in this way: f (U) = V where
(U,V ) is the unique edge of color f starting at U .

Lemma 5 There exists a metric dG on the set of nodes of G such that

(1) dG(U,V ) ≥ 2 for all U �= V and
(2) each f ∈ F is a contraction with respect to dG.
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Proof Starting from the graph G, construct a directed graph G2 whose set of nodes
consists of all unordered pairs {U,V } of distinct nodes of G. In G2 there is an edge
from {U,V } to {f (U),f (V )} for all nodes {U,V } in G2 and for each f ∈ F . Since
G has no two directed cycles of the same type starting at different nodes, we know
by Lemma 4 that G2 has no directed cycle. Because of this, a partial order ≺ can be
defined on the node set of G2 by declaring that {U ′,V ′} ≺ {U,V } if there is an edge
from {U,V } to {U ′,V ′} and then taking the transitive closure. Every finite partially
ordered set has a linear extension (see [15], for example), i.e., there is an ordering <

of the nodes of G2:

{U1,V1} < {U2,V2} < · · · < {Um,Vm}
such that if {U,V } ≺ {U ′,V ′} then {U,V } < {U ′,V ′}. Using N(G) to denote the set
of nodes of G, define a map dG : N(G) × N(G) → [0,∞) in any way satisfying

(1) dG(U,U) = 0 for all U ∈ N(G),

(2) dG(U,V ) = dG(V,U) for all U,V ∈ N(G), and
(3) 2 ≤ dG(U1,V1) < dG(U2,V2) < · · · < dG(Um,Vm) ≤ 4.

Properties (1), (2), and (3) guarantee that dG is a metric on N(G). The fact that
2 ≤ dG(Ui,Vi) ≤ 4 for all i guarantees the triangle inequality. If

s = min
1≤i<m

dG(Ui,Vi)

dG(Ui+1,Vi+1)
,

then 0 < s < 1 and, for any f ∈ F , we have

dG(f (U),f (V )) ≤ s dG(U,V )

because {f (U),f (V )} ≺ {U,V } by the definition of the partial order and {f (U),

f (V )} < {U,V } by the definition of linear extension. Hence f is a contraction with
respect to dG for any f ∈ F . �

9 Part 2 of the Proof that (3)⇒(4) in Theorem 1

In this section we construct a metric di on each component Ci of the collection {Ci} =
{Ci : i = 1,2, . . . , q} in statement (3) of Theorem 1. We will then combine the metrics
di with the graph metric dG in Sect. 8 to build a metric on

⋃
i Ci such that statement

(4) in Theorem 1 is true. Proofs that a projective transformation is contractive with
respect to the Hilbert metric go back to G. Birkhoff [13]; also see P.J. Bushell [17].
The next lemma is used to compute the contraction factor for projective maps under
the Hilbert metric.

Lemma 6 If r ≥ α ≥ 0, t ≥ α, and h,h′, s, s′ ∈ (0,1), where s′ = 1 − s, h′ = 1 − h,

and s ≤ h, then log(
(r+h)(t+s′)
(r+s)(t+h′) ) ≤ log(

(α+h)(α+s′)
(α+s)(α+h′) ) ≤ 1

α+1 log(hs′
sh′ ).

Proof Since we are assuming that s ≤ h, s(1 − h) > 0, and α ≥ 0, it is an easy
exercise to show that (α+h)(α+s′)

(α+s)(α+h′) ≥ 1. A bit of algebra can be used to show that N :=
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(α+h)(α+s′)
(α+s)(α+h′) = (1− h′

α+1 )(1− s
α+1 )

(1− s′
α+1 )(1− h

α+1 )
. If we let α = 0 in the above expression, we observe

that D := hs′
sh′ = (1−h′)(1−s)

(1−s′)(1−h)
.

Since ln(1 − x) = loge(1 − x) = −∑∞
j=1

xj

j
, whenever |x| < 1, for a logarithm

of any base we see that

log(N)

log(D)
= log(1 − h′

α+1 ) + log(1 − s
α+1 ) − log(1 − s′

α+1 ) − log(1 − h
α+1 )

log(1 − h′) + log(1 − s) − log(1 − s′) − log(1 − h)

=
−∑∞

j=1

[
h′j

j (α+1)j
+ sj

j (α+1)j
− s′j

j (α+1)j
− hj

j (α+1)j

]

−∑∞
j=1

[
h′j
j

+ sj

j
− s′j

j
− hj

j

]

= 1

α + 1

∑∞
j=1

1
(α+1)j−1

[
s′j
j

+ hj

j
− h′j

j
− sj

j

]

∑∞
j=1

[
s′j
j

+ hj

j
− h′j

j
− sj

j

] ≤ 1

α + 1
.

Note that the above inequality holds because the assumption s ≤ h implies s′ = 1 −
s ≥ 1 − h = h′ and (1 − s)j + hj ≥ (1 − h)j + sj , for all positive integers j. Thus,
the series in the numerator and denominator can be compared term by term. Finally,
it is a straightforward argument to show the numerator N(α) has the property that
if r ≥ α ≥ 0 and t ≥ α ≥ 0, then (r+h)(t+s′)

(r+s)(t+h′) ≤ (α+h)(α+s′)
(α+s)(α+h′) . Thus, log(

(r+h)(t+s′)
(r+s)(t+h′) ) ≤

log(
(α+h)(α+s′)
(α+s)(α+h′) ). �

Proposition 5 Let F be a projective IFS and let there be a nonempty finite collection
of disjoint convex bodies {Ci : i = 1,2, . . . , q} such that F (

⋃
i Ci) ⊂ int(

⋃
i Ci) as in

statement (3) of Theorem 1. For i ∈ {1,2, . . . , q} and f ∈ F , let f (i) ∈ {1,2, . . . , q}
be defined by f (Ci) ⊂ Cf (i). Then there is a metric di on Ci , giving the same topol-
ogy on Ci as dP, such that

1. (Ci, di) is a complete metric space, for all i = 1,2, . . . , q;
2. there is a real 0 ≤ α < 1 such that

df (i)(f (x), f (y)) ≤ αdi(x, y)

for all x, y ∈ Ci , for all i = 1,2, . . . , q, for all f ∈ F ; and
3. di(x, y) ≤ 1 for all x, y ∈ Ci and all i = 1,2, . . . , q .

Proof For each Ci there exists a hyperplane Hi such that Hi ∩ Ci = ∅. Let Ĉi =
{x ∈ P

n : dP(x, y) ≤ ε, y ∈ Ci} where ε is chosen so small that (i) Hi ∩ Ĉi = ∅; and
(ii) f (Ĉi) ⊂ int(Ĉf (i)) ∀f ∈ F ,∀i ∈ {1,2, . . . , q}.

Given arbitrary x, y ∈ int(Ĉi), let a, b be the points where the line xy intersects
∂Ĉi and let af , bf be the points where the line f (x)f (y) intersects ∂Ĉf (i). Let d̂i

denote the Hilbert metric on the interior of Ĉi for each i, and define

βf,i = min{|xy| : x ∈ ∂Ĉf (i), y ∈ f (Ĉi)} > 0, for f ∈ F ,i ∈ {1,2, . . . , q}.
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We claim that

d̂f (i)(f (x), f (y)) = ln

( |af f (y)| |f (x)bf |
|af f (x)| |f (y)bf |

)

≤ 1

βf,i + 1
ln

( |f (a)f (y)| |f (x)f (b)|
|f (a)f (x)| |f (y)f (b)|

)

= 1

βf,i + 1
ln

( |a y| |x b|
|a x| |y b|

)

= 1

βf,i + 1
d̂i (x, y), (9.1)

for all x, y ∈ int(Ĉi), for all f ∈ F , and all i = 1,2, . . . . Here | · | denotes Euclidean
distance as discussed in Sect. 3. The second-to-last equality is the invariance of the
cross ratio under a projective transformation. Concerning the inequality, without loss
of generality, let |f (a)f (b)| = 1, h := |f (a)f (y)|, and s := |f (a)f (x)|. Moreover,
let r := |af f (x)| and t := |f (y)bf |. Finally, let s′ = 1 − s and h′ = 1 −h. Note that
s ≤ h < 1. The inequality is now the inequality of Lemma 6.

Now let α = max{ 1
1+βf,i

: f ∈ F , ∀i = 1,2, . . . , q} < 1. It follows that

d̂f (i)(f (x), f (y)) ≤ αd̂i(x, y)

for all x, y ∈ Ĉi , for all i = 1,2, . . . , q, for all f ∈ F . Since Ci ⊂ int(Ĉi) it follows
that statement (2) in Proposition 5 is true.

Statement (1) follows at once from the fact that the topology generated by the
Hilbert metric d̂i on Ci as defined above is bi-Lipschitz equivalent to dP; see Re-
mark 4.

Since d̂i : Ci ×Ci → R is continuous and Ci ×Ci is compact, it follows that there
is a constant Ji such that d̂i (x, y) ≤ Ji for all x, y ∈ Ci . Let J = maxi Ji , and define
a new metric di by di(x, y) = d̂i (x, y)/J for all x, y ∈ Ci . We have that di satisfies
(1), (2), and (3) in the statement of Proposition 5. �

Lemma 7 (Theorem 1 (3)⇒(4)) If there is a nonempty finite collection of disjoint
convex bodies {Ci} such that F (

⋃
i Ci) ⊂ int(

⋃
i Ci), as in statement (3) of Theo-

rem 1, then there is a nonempty open set U ⊂ P
n and a metric d : U → [0,∞),

generating the same topology as dP on U , such that F is contractive on U .

Proof Let U = ⋃
i int(Ci). Define d : U × U by

d(x, y) =
{

di(x, y) if (x, y) ∈ Ci × Ci for some i,

dG(Ci,Cj ) if (x, y) ∈ Ci × Cj for some i �= j,

where the metrics di and dG are defined in Lemma 5 and Proposition 5.
First we show that d is a metric on U . We only need to check the triangle inequal-

ity. If x, y and z lie in the same connected component of Ci , the triangle inequality
follows from Proposition 5. If x, y, and z lie in three distinct components, the triangle
inequality follows from Lemma 5. If x, y ∈ Ci and z ∈ Cj for some i �= j , then

d(x, y) + d(y, z) = di(x, y) + dG(Ci,Cj ) ≥ dG(Ci,Cj ) = d(x, z),
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d(x, z) + d(z, y) = dG(Ci,Cj ) + dG(Cj ,Ci) ≥ 2 ≥ di(x, y) = d(x, y).

Second we show that F is contractive with respect to d . By Proposition 5 there is
0 ≤ α < 1 such that, if x and y lie in the same connected component of U and f ∈ F ,
then

d(f (x), f (y)) ≤ α d(x, y).

If x and y lie in different connected components of U , then there are two cases. If
f (x) and f (y) lie in different connected components, then by Lemma 5,

d(f (x), f (y)) = dG(f (x), f (y)) ≤ αG dG(x, y) = d(x, y),

where αG is the constant guaranteed by Lemma 5. If f (x) and f (y) lie in the same
connected component Ui , then

d(f (x), f (y)) = di(f (x), f (y)) ≤ 1 ≤ 1

2
dG(x, y) = 1

2
d(x, y).

Third, and last, the metric d generates the same topology on U as the metric dP,
because, for any convex body K , the Hilbert metric dK and the metric dP are bi-
Lipschitz equivalent on any compact subset of the interior of K ; see Remark 4 in
Sect. 13. �

10 Proof that (4)⇒(1) in Theorem 1 and the Proof of the Uniqueness of
Attractors

This section contains a proof that statement (4) implies statement (1) in Theorem 1
and a proof of Theorem 2 on the uniqueness of the attractor.

A point pf ∈ P
n is said to be an attractive fixed point of the projective transfor-

mation f if f (pf ) = pf , and f is a contraction with respect to the round metric on
some open ball centered at pf . If f has an attractive fixed point, then the real Jordan
canonical form [26] can be used to show that any matrix Lf : R

n+1 → R
n+1 repre-

senting f has a dominant eigenvalue. In the case that f has an attractive fixed point,
let Ef denote the n-dimensional Lf -invariant subspace of R

n+1 that is the span of
the eigenspaces corresponding to all the other eigenvalues. Let Hf := φ(Ef ) be the
corresponding hyperplane in P

n. Note that Hf is invariant under f and pf /∈ Hf .
Moreover, the basin of attraction of pf for f is P

n\Hf .

Lemma 8 (Theorem 1 (4)⇒(1)) If there is a nonempty open set U ⊂ P
n such that F

is contractive on U , then F has an attractor A that avoids a hyperplane.

Proof We are assuming statement (4) in Theorem 1 that the IFS F is contractive on
U with respect to some metric d . Since U is compact and (Pn, dP) is a complete
metric space, (U,d) is a complete metric space. It is well known in this case [22] that
F has an attractor A ⊂ U . It only remains to show that there is a hyperplane H such
that A ⊂ P

n\H .
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Let f be any function in F . Since f is a contraction on U , we know by the Banach
contraction mapping theorem that f has an attractive fixed point xf . We claim that
xf ∈ A. If x ∈ P

n\Hf lies in the basin of attraction of A, then xf = limk→∞ f k(x) ∈
A. It now suffices to show that A ∩ Hf = ∅. By way of contradiction, assume that
x ∈ A ∩ Hf . Since F is contractive on U , it is contractive on A. Since xf ∈ A, we
have d(f k(x), xf ) = d(f k(x), f k(xf )) → 0 as k → ∞, which is impossible since
f k(x) ∈ Hf and xf /∈ Hf . �

So now we have that Statements (1), (2), (3), and (4) in Theorem 1 are equivalent.
The proof of Lemma 8 also shows the following.

Corollary 1 If F is a contractive IFS, then each f ∈ F has an attractive fixed point
xf and an invariant hyperplane Hf .

Proposition 6 Let F be a projective IFS containing at least one map that has an
attractive fixed point. If F has an attractor A, then A is the unique attractor in P

n.

Proof Assume that there are two distinct attractors A, A′, and let U, U ′ be their
respective basins of attraction. If U ∩U ′ �= ∅, then A = A′, because if there is x ∈ U ∩
U ′ then A′ = limk→∞ F k(x) = A, where the limit is with respect to the Hausdorff
metric. Therefore U ∩ U ′ = ∅ and A ∩ A′ = ∅.

If f ∈ F has an attractive fixed point pf and p ∈ U\Hf , and p′ ∈ U ′\Hf , then
both

pf = lim
k→∞f k(p) ⊆ lim F k(p) = A, and

pf = lim
k→∞f k(p′) ⊆ lim F k(p′) = A′.

But this is impossible since A ∩ A′ = ∅. So Proposition 6 is proved. �

We can now prove Theorem 2—that a projective IFS has at most one attractor.

Proof of Theorem 2 Assume, by way of contradiction, that A and A′ are distinct
attractors of F in P

n. As in the proof of Proposition 6, it must be the case that A ∩
A′ = ∅ and hence that their respective basins of attraction are disjoint.

By Lemma 1 there exist open sets U and U ′ such that A ⊂ U, A′ ⊂ U ′, and
F (U) ⊂ U and F (U ′) ⊂ U ′. Since U belongs to the basin of attraction of A and U ′
belongs to the basin of attraction of A′, we have U ∩ U ′ = ∅. If f ∈ F and x ∈ U ,
then in the Hausdorff topology

A(x) := lim
k→∞

⋃

m≥k

f m(x) ⊂ A

and A(x) is nonempty. Similarly, if x′ ∈ U ′, then

A(x′) := lim
k→∞

⋃

m≥k

f m(x′) ⊂ A′
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and A(x′) is nonempty.
Let Lf be a matrix for f ∈ F in real Jordan canonical form and such that the

largest modulus of an eigenvalue is 1. Let W denote the Lf -invariant subspace of
R

n+1 corresponding to the eigenvalues of modulus 1, and let L denote the restriction
of Lf to W . If E is the subspace of P

n corresponding to the subspace W of R
n+1,

then, by use of the Jordan canonical form, A(x) ⊂ E and A(x′) ⊂ E. Together with
the inclusions above, this implies that A ∩ E �= ∅ and A′ ∩ E �= ∅. Hence UE :=
U ∩ E �= ∅ and U ′

E := U ′ ∩ E �= ∅ and if f |E denotes the restriction of f to E, then

f |E(UE) = f (U ∩ E) = f (U) ∩ E ⊂ U ∩ E = UE, (10.1)

and similarly f |E(U ′
E) ⊂ U ′

E.

Each Jordan block of L can have one of the following forms

(a)

⎛

⎜
⎜
⎜
⎝

λ 0 · · · 0
0 λ · · · 0

. . .

0 0 · · · λ

⎞

⎟
⎟
⎟
⎠

, (b)

⎛

⎜
⎜
⎜
⎝

R 0 · · · 0
0 R · · · 0

. . .

0 0 · · · R

⎞

⎟
⎟
⎟
⎠

,

(c)

⎛

⎜
⎜
⎜
⎝

λ 1 0 · · · 0
0 λ 1 · · · 0

. . .

0 0 0 · · · λ

⎞

⎟
⎟
⎟
⎠

, (d)

⎛

⎜
⎜
⎜
⎝

R I 0 · · · 0
0 R I · · · 0

. . .

0 0 0 · · · R

⎞

⎟
⎟
⎟
⎠

,

where R is a rotation matrix of the form
( cos θ − sin θ

sin θ cos θ

)
, 0 denotes the 2×2 zero matrix,

and I denotes the 2 × 2 identity matrix. Let VW = φ−1(UE) and V ′ = φ−1(U ′).
Case 1. L : W → W is an isometry. This is equivalent to saying that each Jordan

block of L is of type (a) or (b). The fact that |detL| = 1, and regarding L as acting on
the unit sphere in W , implies that L(VW) ⊂ VW is not possible unless VW = E, which
in turn implies that f |E(UE) ⊂ UE is not possible unless UE = E. Therefore, by
equation (10.1) we have UE = E and similarly U ′

E = E, which implies that U ∩U ′ �=
∅, contradicting what was stated above.

Case 2. There is at least one Jordan block in LE of the form (c) or (d). Define the
size of an m × m Jordan block B as m if B is of type (c) and m/2 if B is of type (d).
Let s be the maximum of the sizes of all (c) and (d) type Jordan blocks. Let Ŵ be the
subspace of R

n+1 consisting of all points (x0x1, . . . , xn) in homogeneous coordinates
with xi = 0 for all i not corresponding to the first row of a Jordan block of type (c)
and size s or to the first two rows of a Jordan block of type (d) and size s. Let Ê

be the projective subspace corresponding to Ŵ . If x ∈ U , then it is routine to check,
by iterating the Jordan canonical form and scaling so that the maximum modulus of
an eigenvalue is 1, that A(x) ⊂ Ê. Similarly, if x′ ∈ U ′, then A(x′) ⊂ Ê. Therefore
UÊ := U ∩ Ê �= ∅ and U ′̂

E
:= U ′ ∩ Ê �= ∅. As done above for E, if f |Ê denotes the

restriction of f to Ê, then f |Ê(UÊ) ⊂ UÊ, and f |Ê(U ′̂
E
) ⊂ U ′̂

E
. But Ŵ is invariant

under L and, if L̂ is the restriction of L to Ŵ , then L̂ is an isometry. We now arrive
at a contradiction exactly as was done in Case 1. �
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11 Duals and Adjoints

Recall that dP(·, ·) is the metric on P
n defined in Sect. 3.2. The hyperplane orthogonal

to p ∈ P is defined and denoted by

p⊥ = {q ∈ P
n : q⊥p}.

If (X, dX) denotes a compact metric space X with metric dX, then (H(X), hX) de-
notes the corresponding compact metric space that consists of the nonempty compact
subsets of X with the Hausdorff metric hX derived from dX, defined by

hX(B,C) = max
{

sup
b∈B

inf
c∈C

dX(b, c), sup
c∈C

inf
b∈B

dX(b, c)
}

for all B,C ∈ H. It is a standard result that if F = (X;f1, f2, . . . , fM) is a contractive
IFS, then F : H(X) → H(X) is a contraction with respect to the Hausdorff metric.

Definition 9 The dual space P̂n of P
n is the set of all hyperplanes of P

n, equivalently
P̂n = {p⊥ : p ∈ P

n}. The dual space is endowed with a metric d
P̂

defined by

d
P̂
(p⊥, q⊥) = dP(p, q)

for all p⊥, q⊥ ∈ P̂. The map D : Pn→ P̂n defined by

D(p) = p⊥

is called the duality map. The duality map can be extended to a map D : H(Pn) →
H(P̂n) between compact subsets of P

n and P̂n in the usual way.

Given a projective transformation f and any matrix Lf representing it, the matrix
Lf −1 := L−1

f represents the projective transformation f −1 that is the inverse of f . In
a similar fashion, define the adjoint f t and the adjoint inverse transformation f −t as
the projective transformations represented by the matrices

Lf t := Lt
f and Lf −t := (L−1

f )t = (Lt
f )−1,

respectively, where t denotes the transpose matrix. It is easy to check that the adjoint
and adjoint inverse are well defined. For a projective IFS F , the following related
iterated function systems will be used in this section.

(1) The adjoint of the projective IFS F is denoted by F t and defined to be

F t = (Pn;f t
1 , f t

2 , . . . , f t
M).

(2) The inverse of the projective IFS F is the projective IFS

F −1 = (Pn;f −1
1 , f −1

2 , . . . , f −1
M ).
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(3) If F = (Pn;f1, f2, . . . , fM) is a projective IFS then the corresponding hyper-
plane IFS is

F̂ = (P̂n;f1, f2, . . . , fM),

where fm : P̂n → P̂n is defined by fm(H) = {fm(q) |q ∈ H }. Notice that,
whereas F is associated with the compact metric space (Pn, dP), the hyperplane
IFS F̂ is associated with the compact metric space (P̂n, d

P̂
).

(4) The corresponding inverse hyperplane IFS is

F̂ −1 = (P̂n;f −1
1 , f −1

2 , . . . , f −1
M ),

where f −1
m : P̂n → P̂n is defined by f −1

m (H) = {f −1
m (q) |q ∈ H }.

Proposition 7 The duality map D is a continuous, bijective, inclusion preserving
isometry between compact metric spaces (Pn, dP) and (P̂n, d

P̂
) and also a continu-

ous, bijective, inclusion preserving isometry between (H(Pn), hP) and (H(P̂n), h
P̂
).

Moreover, the following diagrams commute for any projective transformation f and
any projective IFS F :

P
n

f t↓

D
P̂n

f −1

P
n

D
P̂n

H(Pn)

F t

D
H(P̂n)

F̂ −1

H(Pn)
D

H(P̂n).

Proof Clearly D maps P
n bijectively onto P̂n and H(Pn) bijectively onto H(P̂n). The

continuity of D and the inclusion preserving property are also clear. The definition
of d

P̂
in terms of dP implies that D is an isometry from P

n onto P̂n. The definition
of h

P̂
in terms of d

P̂
and the definition of hPn in terms of dP implies that D is an

isometry from H(Pn) onto H(P̂n). The compactness of (Pn, dP) implies that (P̂n, d
P̂
)

is a compact metric space.
To verify that the diagrams commute it is sufficient to show that, for all x ∈ P

n

and any projective transformation f , we have L−1
f (x⊥) = [Lt

f (x)]⊥. But, using the
ordinary Euclidean inner product,

L−1
f (x⊥) = {L−1

f y : 〈x, y〉 = 0} = {z : 〈x,Lf z〉 = 0}
= {z : 〈Lt

f x, z〉 = 0} = [Lt
f (x)]⊥. �

Let S(Pn) denote the set of all subsets of P
n (including the empty set).

Definition 10 The complementary dual of a set X ⊂ P
n is

X∗ = {q ∈ P
n : q⊥x for no x ∈ X}.
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For an IFS F define the operator F : S(Pn) → S(Pn) by

F (X) =
⋂

f ∈F
f −t (X),

for any X ∈ S(Pn).

Proposition 8 The map ∗ : S(Pn) → S(Pn) is an inclusion reversing function with
these properties:

1. The following diagram commutes

S(Pn)

F

∗
S(Pn)

F

S(Pn)
∗

S(Pn).

2. If F (X) ⊂ Y , then F t (Y ∗) ⊂ X∗.
3. If X is open, then X∗ is closed. If X is closed, then X∗ is open.

4. X
∗ ⊂ X∗.

Proof The fact that the diagrams commute is easy to verify. Since the other assertions
are also easy to check, we prove only statement (3). Since ∗ is inclusion reversing,
F (X) ⊂ Y implies that Y ∗ ⊂ [F (X)]∗ = F (X∗), the equality coming from the com-
muting diagram. The definition of F then yields F t (Y ∗) ⊂ X∗. �

Proposition 9 If F is a projective IFS, U ⊂ P
n is open, and F (U) ⊂ U, then V = U

∗

is open and F t (V ) ⊂ V .

Proof From statement (3) of Proposition 8 it follows that V is open. From F (U) ⊂ U

and from statement (2) of Proposition 8 it follows that F t (U∗) ⊂ U
∗
. By statement

(4) we have F t (V ) = F t (U
∗
) ⊂ F t (U∗) ⊂ U

∗ = V . �

Lemma 9 (Theorem 1 (1)⇔(5)) A projective IFS F has an attractor A that avoids
a hyperplane if and only if F t has an attractor At that avoids a hyperplane.

Proof Suppose statement (1) of Theorem 1 is true. By statement (2) of Theorem 1
there is a nonempty open set U and a hyperplane H such that F (U) ⊂ U and
H ∩ U = ∅. By Proposition 9 we have F t (V ) ⊂ V where V = U

∗
is open. More-

over, there is a hyperplane Ht such that Ht ∩ V = ∅: simply choose Ht = a⊥ for
any a ∈ A ⊂ U , where A is the attractor of F . By the definition of the dual comple-
ment, a⊥ ∩ U∗ = ∅ which, by statement (4) of Proposition 8, implies that a⊥ ∩ V =
a⊥ ∩ U

∗ = ∅. So, as long as V �= ∅, F t also satisfies statement (2) of Theorem 1. In
this case it follows that statement (1) of Theorem 1 is true for F t , and hence statement
(5) is true.
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We show that V �= ∅ by way of contradiction. If V = ∅, then by the definition of
the dual complement, every y ∈ P

n is orthogonal to some point in U, i.e.,

U
⊥ := {y : y ⊥ x for some x ∈ U} = P

n.

On the other hand, since U avoids some hyperplane y⊥, we arrive at the contradiction

y /∈ U
⊥

.
The converse in Lemma 9 is immediate because (F t )t = F . �

Definition 11 A set A ⊂ P̂n is called a hyperplane attractor of the projective IFS
F if it is an attractor of the IFS F̂ . A set R ⊂ P

n is said to be a repeller of the
projective IFS F if R is an attractor of the inverse IFS F −1. A set R ⊂ P̂n is said to
be a hyperplane repeller of the projective IFS F if it is a hyperplane attractor of the
inverse hyperplane IFS F̂ −1.

Proposition 10 The compact set A ⊂ P
n is an attractor of the projective IFS F t that

avoids a hyperplane if and only if D(A) is a hyperplane repeller of F that avoids a
point.

Proof Concerning the first of the two conditions in the definition of an attractor, we
have from the commuting diagram in Proposition 7 that F t (A) = A if and only if
F̂ −1(D(A)) = D(F t (A)) = D(A).

Concerning the second of the two conditions in the definition of an attractor, let
B be an arbitrary subset contained in the basin of attraction U of F t . With respect to
the Hausdorff metric, limk→∞(F t )k(B) = A if and only if

lim
k→∞ F̂ −1k

(D(B)) = lim
k→∞ D((F t )k(B)) = D( lim

k→∞(F t )k(B)) = D(A).

Also, the attractor D(A) of F̂ −1 avoids the point p if and only if the attractor A of
F t avoids the hyperplane p⊥. �

Lemma 10 Let f : P
n → P

n be a projective transformation with attractive fixed
point pf and corresponding invariant hyperplane Hf . If f −1 : P̂n → P̂n has an at-
tractive fixed point Ĥf , then Ĥf = Hf .

Proof There is some basis with respect to which f has matrix
(

L 0
0 1

)
. If f is rep-

resented by matrix Lf with respect to the standard basis, then there is an invertible
matrix M such that

Lf = M

(
L 0
0 1

)

M−1,

where L is a non-singular n × n matrix whose eigenvalues λ satisfy |λ| < 1. Then

L−1
f = M

(
L−1 0

0 1

)

M−1 and Lt
f = M−t

(
Lt 0
0 1

)

Mt.
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If x = (0,0, . . . ,0,1), then by Proposition 7

Ĥf = (M−t x)⊥ = M(x⊥) = Hf . �

Proposition 11 If F is a projective IFS and U is an open set such that U avoids a
hyperplane and F (U) ⊂ U , then F has an attractor A and U is contained in the
basin of attraction of A.

Proof We begin by noting that F (U) ⊂ U implies that {F k(U)}∞k=1 is a nested se-
quence of nonempty compact sets. So

Ã :=
∞⋂

k=1

F k(U)

is also a nonempty compact set. Using the continuity of F : H(Pn) → H(Pn), we
have F (Ã) = Ã.

If B ∈ H(P n) is such that B ⊂ U, then, given any ε > 0, there is a positive integer
K := K(ε) such that F K(ε)(B) ⊂ Ãε , the set Ã dilated by an open ball of radius ε.

In the next paragraph we are going to show that, for sufficiently small ε > 0,

there is a metric on Ãε such that F is contractive on Ãε. For now, assume that F is
contractive on Ãε . This implies, by Theorems 1 and 2, that F has a unique attractor
A and it is contained in Ãε . We now show that A = Ã. That F is contractive on Ãε

implies that F , considered as a mapping on H(Ãε), is a contraction with respect to the
Hausdorff metric. By the contraction mapping theorem, F has a unique fixed point,
so A = Ã. By choosing ε small enough that Ãε = Aε lies in the basin of attraction
of A, the fact that F K(B) ⊂ Ãε implies that limk→∞ F k(B) = A. Hence U lies in
the basin of attraction of A, which concludes the proof of Proposition 11.

To prove that F is contractive on Ãε for sufficiently small ε > 0, we follow the
steps in the construction of the metric in statement (4) of Theorem 1, starting from
the proof of Lemma 2. As in the proof of Lemma 2, let U = ⋃

α Uα , where the Uα

are the connected components of U . Let {Oi} be the set of Uα that have nonempty
intersection with Ã. Since Ã is compact and nonempty, we must have

Ãε ⊂
⋃

i

Oi

for all ε sufficiently small. We now follow the steps in the proof of Lemmas 2, 3,
up to and including Lemma 7, to construct a metric on a finite set of convex bodies
{Ci} such that

⋃
i Oi ⊂ ⋃

i Ci and such that F is contractive on
⋃

i Ci . Note that
the metric is constructed on a set containing

⋃
i Oi, which in turn contains Ãε . This

completes the proof. �

We can now prove Theorem 3.

Proof of Theorem 3 We prove the first statement of the theorem. The proof of the
second statement is identical with F replaced by F −1.
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Assume that projective IFS F has an attractor that avoids a hyperplane. By state-
ment (4) of Theorem 1, the IFS F t has an attractor that avoids a hyperplane. Then,
according to Proposition 10, F̂ −1 has an attractor that avoids a point. By the defini-
tion of hyperplane repeller, F has a hyperplane repeller that avoids a point.

Concerning the basin of attraction, let R denote the union of the hyperplanes in R
and let Q = P

n\R. We must show that Q = O, where O is the basin of attraction of
the attractor A of F .

First we show that O ⊂ Q, i.e., O ∩ R = ∅. Consider any f : P
n → P

n with
f ∈ F and f −1 : P̂n → P̂n. Since we have already shown that F̂ −1 has an attractor,
it satisfies all statements of Theorem 1. It then follows, exactly as in the proof of
Lemma 8, that f −1 : P̂n → P̂n has an attractive fixed point, a hyperplane Ĥf ∈ R ⊂
P̂n. Let

B =
∞⋃

k=1

⋃

f ∈F
(F̂ −1)k(Ĥf ) ⊂ P̂n and B =

⋃

H∈B
H.

The fact that Ĥf = Hf (Lemma 10) and Hf ∩ O = ∅ for all f ∈ F implies that
O ∩ B = ∅. We claim that B = R and hence B = R, which would complete the
proof that O ∩ R = ∅. Concerning the claim, because R is the attractor of F̂ −1, we
have that

R = lim
k→∞(F̂ −1)k

( ⋃

f ∈F
Ĥf

)

⊂ B.

Since Ĥf ∈ R for all f ∈ F, also B ⊂ R, which completes the proof of the claim.
Finally we show that Q ⊂ O . By statements (2) and (5) of Theorem 1, F t has an

attractor At that avoids a hyperplane. Consequently there is an open neighborhood
V of At and a metric such that F t is contractive on V , and V avoids a hyperplane.
In particular F t is a contraction on H(V ) with respect to the Hausdorff metric. Let λ

denote a contractivity factor for F t |V . Let ε > 0 be small enough that the closed set
At

ε (the dilation of At by a closed ball of radius ε, namely the set of all points whose
distance from At is less than or equal to ε) is contained in V . If hP(At

ε,A
t ) = ε, then

hP(F t (At
ε),A

t ) = hP(F t (At
ε), F t (At )) ≤ λhP(At

ε,A
t )) = λε.

It follows that F t (At
ε) ⊂ int(At

ε) and from Proposition 8 (2,3) that

F ((At
ε)

∗) ⊆ F (int((At
ε)

∗)) ⊂ (At
ε)

∗.

Let Qε := (At
ε)

∗. It follows from F (Qε) ⊂ Qε and Proposition 11 that Qε ⊂ O .
Let Rε = D(At

ε) and let Rε ⊂ P
n be the union of the hyperplanes in Rε. By Propo-

sition 10 and the definition of the dual complement, Qε = P
n\Rε and Q = P

n\R.
Since Qε ⊂ O it follows that Rε ⊂ P

n\O . Since D is continuous (Proposition 7)
and At

ε → At as ε → 0, it follows that Rε = D(At
ε) → D(At ) = R. Consequently

R ⊂ P
n\O, and therefore Q = P

n\R ⊂ O . �
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12 Geometrical Properties of Attractors

The Hausdorff dimension of the attractor of a projective IFS is invariant under the
projective group PGL(n + 1,R). This is so because any projective transformation is
bi-Lipschitz with respect to dP, that is, if f : P

n → P
n is a projective transformation,

then there exist two constants 0 < λ1 < λ2 < ∞ such that

λ1dP(x, y) ≤ dP(f (x), f (y)) ≤ λ2dP(x, y).

We omit the proof as it is a straightforward geometrical estimate.
The main focus of this section is another type of invariant that depends both on

the attractor and on a corresponding hyperplane repeller. It is a type of Conley in-
dex and is relevant to the study of parameter dependent families of projective IFSs
and the question of when there exists a continuous family of IFS’s whose attractors
interpolate a given set of projective attractors, as discussed in Example 4 in Sect. 4.
Ongoing studies suggest that this index has stability properties with respect to small
perturbations and that there does not exist a family of projective IFSs whose attractors
continuously interpolate between attractors with different indices.

Definition 12 Let F be a projective IFS with attractor A that avoids a hyperplane
and let R denote the union of the hyperplanes in the hyperplane repeller of F . The
index of F is

index(F ) = # connected components O of P
n\R such that A ∩ O �= ∅.

Namely, the index of a contractive projective IFS is the number of components of
the open set P

n\R which have nonempty intersection with its attractor. By statement
(1) of Theorem 3, we know that index(F ) will always equal a positive integer.

Definition 13 Let A denote a nonempty compact subset of P
n that avoids a hyper-

plane. If FA denotes the collection of all projective IFSs for which A is an attractor,
then the index of A is defined by the rule

index(A) = min
F ∈FA

{index(F )}.

If the collection FA is empty, then define index(A) = 0.

Note that an attractor A not only has a multitude of projective IFSs associated with
it, but it may also have a multitude of repellers associated with it. Clearly index(A)

is invariant under PGL(n + 1,R), the group of real projective transformations. The
following lemma shows that, for any positive integer, there exists a projective IFS F
that has that integer as index.

Proposition 12 Let F = (P1;f1, f2, f3, . . . , fM) be a projective IFS where, for
each m, the projective transformation fm is represented by the matrix

Lm :=
(

2mλ − 2m + 1 2m(m − 1
2 ) − mλ(2m − 1)

2λ − 2 2m − λ(2m − 1)

)

.
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Fig. 3 (Color online)
A projective IFS with index
equal to four. The attractor is
sketched in white, while the
union of the hyperplanes in the
hyperplane repeller is indicated
in red, blue, green, and gray

For any integer M > 1 and sufficiently large λ, the projective IFS has index(F ) = M.

Proof Topologically, the projective line P
1 is a circle. It is readily verified that

Lm =
(

λm m − 1
2

λ 1

)(
m m − 1

2
1 1

)−1

,

from which it can be easily checked that, for λ is sufficiently large, fm has at-

tractive fixed point xm = (
m
1

)
and repulsive fixed point ym = (m− 1

2
1

)
. In particular

Lm

(
m
1

) = λ
2

(
m
1

)
and Lm

(m− 1
2

1

) = (m− 1
2

1

)
. Note that the points xi, i = 1,2, . . . ,M, and

yi, i = 1,2, . . . ,M, interlace on the circle (projective line). Also, as λ increases, the
attractive fixed points xm become increasingly attractive.

Let Ik denote a very small interval that contains the attractive fixed point xk of fk ,
for k = 1,2, . . . ,M. When λ is sufficiently large, fm(

⋃
Ik) ⊂ Im ⊂ ⋃

Ik. It follows
that the attractor of F is a Cantor set contained in

⋃
Ik . Similarly, the hyperplane

repeller of F consists of another Cantor set that lies very close to the set of points
{k − 0.5 : k = 1,2, . . . ,M}. It follows that index(F ) = M . �

Another example is illustrated in Figure 3. In this case the underlying space has
dimension two and the IFS F has index(F ) = 4.

The previous result shows that the index of a contractive IFS can be any positive
integer. It does not state that the same is true for the index of an attractor. The follow-
ing Theorem 4 shows that the index of an attractor is a nontrivial invariant in that it is
not always the case that index(A) = 1. To prove it we need the following definition
and result.

Definition 14 A set C ⊂ P
n is called a Cantor set if it is the attractor of a contractive

IFS (Pn;f1, f2, . . . , fM), M ≥ 2, such that each point of C corresponds to an unique
string σ = σ1σ2 · · · ∈ {1,2, . . . ,M}∞ such that

x = ϕF (σ ) = lim
k→∞fσ1 ◦ fσ2 ◦ · · · ◦ fσk

(x0), (12.1)
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where x0 is any point in C.

Lemma 11 Let F = (P n;f1, f2, . . . , fM) be a projective IFS whose attractor is a
Cantor set C. Let the projective IFS

G = (Pn;fω1, fω2, . . . , fωL
)

have the same attractor C, where each fωl
is a finite composition of functions in F ,

i.e.,

fωl
= fσ l

1
◦ fσ l

2
◦ · · · ◦ fσ l

jl

in the obvious notation. Then F and G have the same hyperplane repeller and
index(F ) = index(G).

Proof We must show that RG = RF , where RF is the hyperplane repeller of F and
RG is the hyperplane repeller of G . Let σ = σ1σ2 · · · and ωl1ωl2 · · · be strings of
symbols in {1,2, . . . ,M}∞ and {ω1,ω2, . . . ,ωL}∞, respectively. Define

ψ : {ω1,ω2, . . . ,ωL}∞ → {1,2, . . . ,M}∞

by

ψ(ωl1ωl2 · · · ) = ζ(ωl1) ζ(ωl2) · · · where ζ(ωl) = σ l
1 σ l

2 · · ·σ l
jl
.

We claim that ψ is surjective. It is well known that the mapping ϕF :
{1,2, . . . ,M}∞ → C in (12.1) is a continuous bijection; see, for example, [2,
Chap. 4]. Let σ = σ1σ2 · · · ∈ {1,2, . . . ,M}∞ and let x = limk→∞ fσ1

◦ fσ2 ◦ · · · ◦
fσk

(x0). Since C is also the attractor of G it is likewise true that there is at least one
string ω = ωl1ωl2 · · · ∈ {ω1,ω2, . . . ,ωL}∞ such that

x = lim
k→∞fωl1

◦ fωl2
◦ · · · ◦ fωlk

(x0)

= lim
k→∞(f

σ
l1
1

◦ · · · ◦ f
σ

l1
jl1

) ◦ (f
σ

l2
1

◦ · · · ◦ f
σ

l2
jl2

) ◦ · · · ◦ (f
σ

lk
1

◦ · · · ◦ f
σ

lk
jlk

)(x0).

By the uniqueness of σ in (12.1), we have ψ(ω) = σ , showing that ψ is surjective.
We are now going to show that RF ⊆ RG . Let r ∈ RF . Note that the hyperplanes

of P are simply the points of P. Moreover, the hyperplane repeller RF of F is simply
the attractor of the IFS F̂ −1 := (P̂n;f −1

1 , f −1
2 , . . . , f −1

M ) and the hyperplane repeller

RG of G is the attractor of Ĝ−1 := (P̂n;f −1
ω1

, f −1
ω2

, . . . , f −1
ωL

). Let r0 be the attractive
fixed point of f −1

ω1
. Note that r0 lies in both RG and in RF . According to Theorems 1

and 3, both F̂ −1 and Ĝ−1 are contractive. Therefore

r = lim
k→∞f −1

σ1
◦ f −1

σ2
◦ · · · ◦ f −1

σk
(r0)

for some σ = σ1σ2 · · · ∈ {1,2, . . . ,M}∞. Since ψ is surjective, there is a string
ωl1ωl2 · · · ∈ {ω1,ω2, . . . ,ωL}∞ such that

r = lim
k→∞f −1

σ1
◦ f −1

σ2
◦ · · · ◦ f −1

σk
(r0)
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= lim
k→∞(f −1

σk
◦ fσk−1 ◦ · · · ◦ fσ1)

−1(r0)

= lim
m→∞(fωlm

◦ fωlm−1
◦ · · · ◦ fωl1

)−1(r0)

= lim
k→∞f −1

ωl1
◦ f −1

ωl2
◦ · · · ◦ f −1

ωlk
(r0) ∈ lim

k→∞(Ĝ−1)k(r0) = RG .

A similar, but easier, argument shows that RG ⊆ RF . Hence F and G have the same
hyperplane repeller. Since the attractors and hyperplane repellers of both are the same
we have index(F ) = index(G) by the definition of the index. �

Theorem 4 If F = (P1;f1, f2) is the projective IFS in Proposition 12 with M = 2,

λ = 10, and A is the attractor of F , then index(A) = 2.

Proof Let F̂ = (P1; f̂1, f̂2), where

f̂1 =
(

1
10 0
0 1

)

, f̂2 =
(

37 −18
54 −26

)

.

It is easy to check that f̂1 = f ◦ f1 ◦ f −1 and f̂2 = f ◦ f2 ◦ f −1 where f1 and f2 are
the functions in Proposition 12 when λ = 10, and f is the projective transformation

represented by the matrix Lf = ( 1 −1
1 − 1

2

)
. It is sufficient to show that if Â is the at-

tractor of F̂ , then index(Â) = 2. From here on the IFS F is not used, so we drop the
“hat” from F̂ , f̂1, f̂2, Â. Also to simplify notation, the set of points of the projective
line are taken to be P = R ∪ {∞}, where

(
x
1

)
is denoted as the fraction x and

(1
0

)
is

denoted as ∞. In this notation f1(x) = 1
10x and f2(x) = 37x−18

54x−26 when restricted to
R. The following are properties of F .

(1) The attractor C of F is a Cantor set.
(2) index(F ) = 2.
(3) The origin a = 0 is the attractive fixed point of f1 while its repulsive hyperplane

is ∞.
(4) The attractive fixed point of f2 is at c = 2/3 and its repulsive hyperplane is at

1/2.
(5) C ⊂ [a, b] ∪ [c, d], where b = 11

40 − 1
120

√
609 (= 0.069351) and d = 11

4 −
1
12

√
609 (= 0.69351) are the attractive fixed points of f1 ◦ f2 and f2 ◦ f1, re-

spectively.
(6) If h is any projective transformation taking C into itself, then h([a, b] ∪ [c, d]) ⊂

[a, b] ∪ [c, d].
(7) The symmetry group of C is trivial, i.e., the only projective transformation h such

that h(C) = C is the identity.

Property (1) is in the proof of Proposition 12, and property (2) is a consequence
of Proposition 12. Properties (3) and (4) are easily verified by direct calculation.
Property (5) can be verified by checking that F ([a, b] ∪ [c, d]) ⊂ [a, b] ∪ [c, d].

To prove property (6), let I denote a closed interval (on the projective line,
topologically a circle) that contains C. Its image h−1(I ) is also a closed inter-
val. Since h(C) ⊂ C, it follows that C ⊂ h−1(C). Since C contains {a, b, c, d}
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and some points between a and b, h−1(I ) must contain a, b and some points be-
tween a and b. It follows that h−1(I ) ⊃ [a, b]. Similarly h−1(I ) ⊃ [c, d]. There-
fore h−1(I ) ⊃ [a, b] ∪ [c, d], and hence h([a, b] ∪ [c, d]) ⊂ I . Now choose I to
be [a, d] to get (A) h([a, b] ∪ [c, d]) ⊂ [a, d]. Choose I to be [c, b] (by which we
mean the line segment that goes from c through d then ∞ = −∞ then through a to
end at b) to obtain (B) h([a, b] ∪ [c, d]) ⊂ [c, b]. It follows from (A) and (B) that
h([a, b] ∪ [c, d]) ⊂ [a, d] ∩ [c, b] = [a, b] ∪ [c, d].

To prove property (7), assume that h(C) = C. We will show that h must be the
identity. By property (6) h([a, b] ∪ [c, d]) = [a, b] ∪ [c, d]. Taking the complement,
we have h((b, c)∪ (d, a)) = (b, c)∪ (d, a), and so h([b, c] ∪ [d, a]) = [b, c] ∪ [d, a].
Hence

h([a, b] ∪ [c, d]) ∩ h([b, c] ∪ [d, a])
= ([a, b] ∪ [c, d]) ∩ ([b, c] ∪ [d, a]).

It follows that h({a, b, c, d}) = {a, b, c, d}. Any projective transformation that maps
{a, b, c, d} to itself must preserve the cross ratio of the four points, so the only possi-
bilities are (i) h(a) = a, h(b) = b, h(c) = c, h(d) = d , in which case h is the identity
map; (ii) h(a) = b, h(b) = a, h(c) = d , h(d) = c; (iii) h(a) = c, h(b) = d , h(c) = a,
h(d) = b, and (iv) h(a) = d , h(b) = c, h(c) = b, h(d) = a. In each case one can write
down the specific projective transformation, for example, (iii) is achieved by

h(x) = (d − c)(b − c)(x − a)

(b − a + d − c)(x − c) − (d − c)(b − c)
+ c.

The other two specific transformations can be deduced by permuting the symbols a,
b, c, d . In each of the cases (ii), (iii), and (iv) it is straightforward to check numerically
that h(x) does not map C into C. (One compares the union of closed intervals

[f1(a), f1(b)] ∪ [f1(c), f1(d)] ∪ [f2(a), f2(b)] ∪ [f2(c), f2(d)],
whose endpoints belong to C and which contains C, with the union

[h(f1(a)), h(f1(b))] ∪ [h(f1(c)), h(f1(d))]
∪[h(f2(a)), h(f2(b))] ∪ [h(f2(c)), h(f2(d))]).

It follows that h must be the identity map, as claimed.
Let G = (P1;g1, g2, . . . , gL) be any projective IFS with attractor equal to C. The

proof proceeds by showing the following: (‡) for any g ∈ G we have g = fσ1 ◦ fσ2 ◦
· · · ◦ fσk

, for some k, where each σi is either 1 or 2. Then, by Lemma 11, G has the
same hyperplane repeller as F , and hence index(G) = index(F ) = 2. So any IFS with
attractor C has index 2. This completes the proof of Theorem 4 because it shows that
any IFS with attractor C has index 2, i.e., index(C) = 2.

To prove claim (‡), consider the IFS H = ([a, b]∪ [c, d];f1, f2, g) where g is any
function in IFS G . By property (6) g([a, b]∪[c, d]) ⊂ [a, b]∪[c, d]. So H is indeed a
well-defined IFS. It follows immediately from the fact that both F and G have attrac-
tor equal to C that H also has attractor C. It cannot be the case that g([a, b]) ⊂ [a, b]
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and g([c, d]) ⊂ [c, d]) since then g would have two attractive fixed points, which is
impossible. Similarly, it cannot occur that g([c, d]) ⊂ [a, b] and g([a, b]) ⊂ [c, d]
for then g2 would have two attractive fixed points, which is also impossible. It cannot
occur that g(a) ⊂ [a, b] and g(b) ⊂ [c, d] for then g([a, b] ∪ [c, d]) would not be
contained in [a, b] ∪ [c, d], contrary to property (6). Similarly, we rule out the pos-
sibilities that g(a) ⊂ [c, d] and g(b) ⊂ [a, b]; that g(c) ⊂ [a, b] and g(d) ⊂ [c, d];
and that g(d) ⊂ [a, b] and g(c) ⊂ [c, d]. It follows that either g([a, b] ∪ [c, d]) ⊂
[a, b] ⊂ f1([a, d]), or g([a, b]∪ [c, d]) ⊂ [c, d] ⊂ f2([c, b]) where [c, b] denotes the
interval from c to ∞ then from −∞ to b. (Here, the containments [a, b] ⊂ f2([c, b])
and [c, d] ⊂ f2([c, b]) are readily verified by direct calculation.) It now follows that
either g(C) ⊂ C ∩ f1([a, d]) = f1(C) or g(C) ⊂ C ∩ f2([c, b]) = f2(C). Hence

g(C) ⊂ Cσ1 := fσ1(C)

for σ1 ∈ {1,2}. If g(C) = Cσ1 then h(C) = C where h is the projective transformation
f −1

σ1
◦ g. In this case property (7) implies that h must be the identity map. Therefore

g = fσ1 .

If, on the other hand, g(C) � fσ1(C), then we consider the IFS

Hσ1 = (fσ1([a, b] ∪ [c, d]);fσ1 ◦ f1 ◦ f −1
σ1

, fσ1 ◦ f2 ◦ f −1
σ1

, g ◦ f −1
σ1

).

It is readily checked that the functions that comprise this IFS indeed map fσ1([a, b]∪
[c, d]) into itself. The attractor of Hσ1 is Cσ1 = fσ1(C) because

Hσ1(Cσ1) = fσ1 ◦ f1 ◦ f −1
σ1

(fσ1(C)) ∪ fσ1 ◦ f2 ◦ f −1
σ1

(fσ1(C)) ∪ g ◦ f −1
σ1

(fσ1(C))

= fσ1(f1(C) ∪ f2(C)) ∪ g(C) = fσ1(C) ∪ g(C)

= Cσ1 (because g(C) ⊂ fσ1(C)).

Let

aσ1 < bσ1 < cσ1 < dσ1

denote the endpoints of the two intervals fσ1([a, b]) and fσ1([c, d]), and write our
new IFS as

Hσ1 = ([aσ1, bσ1] ∪ [cσ1, dσ1];f(σ1)1, f(σ1)2, gσ1),

where

f(σ1)σ2 = fσ1 ◦ fσ2 ◦ f −1
σ1

, and gσ1 = g ◦ f −1
σ1

.

Repeat our earlier argument to obtain

gσ1([aσ1 , bσ1] ∪ [cσ1, dσ1]) ⊂ fσ2([aσ1, bσ1] ∪ [cσ1, dσ1]),
and in particular that

gσ1(Cσ1) ⊂ Cσ1σ2 := f(σ1)σ2(Cσ1) = fσ1 ◦ fσ2 ◦ f −1
σ1

◦ fσ1(C) = fσ1 ◦ fσ2(C)
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for some σ2 ∈ {1,2}. If gσ1(Cσ1) = Cσ1σ2 then gσ1(fσ1(C)) = fσ1 ◦ fσ2(C) which
implies g ◦ f −1

σ1
◦ fσ1(C) = fσ1 ◦ fσ2(C) which implies, as above, that

g = fσ1 ◦ fσ2 .

If gσ1(Cσ1) � Cσ1σ2 then we construct a new projective IFS Hσ1σ2 in the obvious way
and continue the argument. If the process does not terminate with

g = fσ1 ◦ fσ2 ◦ · · · ◦ fσk

for some k, then g(C) is a singleton, which is impossible because g is invertible. We
conclude that

G = (P;fω1, fω2, . . . , fωL
)

where

fωl
= fσ l

1
◦ fσ l

2
◦ · · · ◦ fσ l

kl

in the obvious notation. This concludes the proof of claim (‡).
Now Lemma 11 implies index(G) = index(F ). So the index of any projective IFS

that has C as its attractor is 2. It follows that index(A) = 2. �

13 Remarks

Various remarks are placed in this section so as to avoid interrupting the flow of the
main development.

Remark 1 Example 3 in Sect. 4 illustrates that there exist non-contractive projective
IFSs that, nevertheless, have attractors. Such IFSs are not well understood and invite
further research.

Remark 2 It is well known [27] that if each function of an IFS is a contraction on a
complete metric space X, then F has a unique attractor in X. So statement (4) of the
Theorem 1 immediately implies the existence of an attractor A, but not that there is a
hyperplane H such that A ∩ H = ∅.

Remark 3 Let F be a contractive IFS. By Corollary 1, each f ∈ F has an invariant
hyperplane Hf . If all these invariant hyperplanes are identical, say Hf = H for all
f ∈ F , then the projective IFS F is equivalent to an affine IFS acting on the embed-
ded affine space P

n\H . More specifically, let G = (Rn;g1, g2, . . . , gM) be an affine
IFS where gi(x) = L′

i (x) + ti and where L′
i is the linear part and ti the translational

part. A corresponding projective IFS is F = (Pn;f1, f2, . . . , fM) where, for each i

the projective transformation fi is represented by the matrix Lfi
:

Lfi

⎛

⎜
⎜
⎝

x0
x1
.

xn

⎞

⎟
⎟
⎠ =

(
1 0
ti L

′
i

)
⎛

⎜
⎜
⎝

x0
x1
.

xn

⎞

⎟
⎟
⎠ .
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Here R
n corresponds to P\H with H the hyperplane x0 = 0. In this case the hyper-

plane repeller of F is H.

Remark 4 Straightforward geometrical comparisons between dK(x, y) and dP(x, y)

show that (i) the two metrics are bi-Lipschitz equivalent on any convex body con-
tained in int(K) and (ii) if f is any projective transformation on P

n then the metric
df (P) defined by df (P)(x, y) = dP(f (x), f (y)) for all x, y ∈ P

n is bi-Lipschitz equiv-
alent to dP. A consequence of assertions (i) and (ii) is that the value of the Hausdorff
dimension of any compact subset of int(K) is the same if it is computed using the
round metric dP or the Hilbert metric dK ; see [20, Corollary 2.4, p. 30], and its value
is invariant under the group of projective transformations on P

n. In particular, the
Hausdorff dimension of an attractor of a projective IFS is a projective invariant.

Remark 5 Theorem 1 provides conditions for the existence of a metric with respect
to which a projective IFS is contractive. In so doing, it invites other directions of
development, including IFS with place-dependent probabilities [9], graph-directed
IFS theory [24], projective fractal interpolation, and so on. In subsequent papers we
hope to describe a natural generalization of the joint spectral radius and applications
to digital imaging.

Remark 6 Definition 2 of the attractor of an IFS is a natural generalization of the
definition [2, p. 82] of the attractor of a contractive IFS. Another general definition,
in the context of iterated closed relations on a compact Hausdorff space, has been
given by McGehee [25]. He proves that his definition is equivalent to Definition 2,
for the case of contractive iterated function systems. However, readily constructed
examples show that McGehee’s definition of attractor is weaker than Definition 2.

Acknowledgements We thank David C. Wilson for many helpful discussions; he influenced the style
and contents of this paper and drew our attention to the Krein–Rutman theorem.
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