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Abstract We prove a T b theorem on quasimetric spaces equipped with what we call
an upper doubling measure. This is a property that encompasses both the doubling
measures and those satisfying the upper power bound μ(B(x, r)) ≤ Crd . Our spaces
are only assumed to satisfy the geometric doubling property: every ball of radius r

can be covered by at most N balls of radius r/2. A key ingredient is the construction
of random systems of dyadic cubes in such spaces.
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1 Introduction

There is a wide range of T b theorems. The original formulations are by McIntosh
and Meyer [8] and David, Journé, and Semmes [4]. The arguments of [4] carry
over to a metric space—however, only if one is working with doubling measures.
In the introduction to their celebrated paper on the non-homogeneous T b theorem
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[11, p. 153], Nazarov, Treil, and Volberg point out that “a (more or less) complete
theory of Calderón–Zygmund operators on non-homogeneous spaces—can be devel-
oped in an abstract metric space with measure.” Although a number of results for
non-homogeneous singular integral operators (such as the weak-type L1 inequality
under a priori L2 boundedness [10], estimates on Lipschitz spaces [5], and a certain
restricted version of the T 1 theorem [1]—essentially with T 1, T ∗1 ∈ L∞, and only
on bounded spaces) have been established in quite general metric measure spaces, it
seems that the quoted remark has not been fully elaborated for the deeper aspects of
the theory. The goal of this paper is to close this gap, and in fact obtain a new level
of generality even in the context of R

n.
Let us describe our setting in more detail. We consider quasimetric spaces with the

following well-established postulate, which we refer to as geometric doubling: every
ball of radius r can be covered by at most N balls of radius r/2. This is essentially
the original definition of “a space of homogeneous nature” by Coifman and Weiss
[3, pp. 66–67], although this name is now commonly used for quasimetric spaces
equipped with a doubling measure, the “particularly important case” pointed out by
Coifman and Weiss immediately after their general definition. It is known that if
a metric space is geometrically doubling and complete, then it also supports some
doubling measures [7]; however, we do not assume completeness, and we regard our
measure of interest as given by the problem at hand, and not as something that one is
free to choose or construct.

We consider so-called upper doubling measures μ, introduced in [6], which con-
stitute a simultaneous generalization of doubling measures and those with the upper
power bound property μ(B(x, r)) ≤ Crd , which are the ones usually considered in
the literature on non-homogeneous analysis. But note that power bounded measures
are only different from, not more general than, the doubling measures. While the
original motivation behind the notion of upper doubling in [6] was to find a natural
unified framework for the doubling and power bounded theories, it also encapsulates
other examples of interest. Indeed, although it was not our specific goal, this gen-
eral framework allows to essentially recapture the recent T 1 theorem of Volberg and
Wick [13] for “Bergman-type” operators.

We now discuss the general strategy and some new aspects of the proof. We follow
the basic approach from [11] and try to adapt the treatment of their most general
cases to our situation. First, the assumption that μ is merely upper doubling causes,
for example, the effect that the bounds for μ(B(x, r)) depend not only on r but also
on x. We formulate the kernel estimates in a natural way adapted to this, and carry out
all the estimates with this extra generality. Second, the fact that we work in abstract
quasimetric spaces complicates many things. However, note that parts of the relevant
BMO and RBMO aspects of this theory were already dealt with in [6].

A key ingredient behind the proof of Nazarov et al. [11] is the random choice of a
system of dyadic cubes, so that certain “bad” situations can be handled by arguing that
their occurrence has only a small probability. It is then clear that we need something
similar in an abstract quasimetric space. For a system of dyadic cubes as such, there
is a well-known construction due to Christ [2], which serves as our starting point.
Even then, it is not obvious how to choose a random system, since the randomization
procedure of Nazarov et al. heavily relies on the action of the translation group on R

n.
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Our solution to this problem, which is based on randomly choosing new “centers”
for the dyadic cubes of generation k among the old centers of the smaller cubes
of generation k + 1, appears to be new, and it may also be of independent interest,
besides the present application to the T b theorem. In this respect, we note that a
family of dyadic systems in a quasi-metric space, rather than just a fixed one, was
already exploited by Verbitsky and Wheeden [14] in the context of weighted norm
inequalities, but they required the underlying space to have a group structure, so that
the new dyadic systems could still be obtained by simply shifting a given one, in
analogy to the Euclidean setting.

We shall also employ a closely related construction of random almost-coverings
of the space by balls of comparable radius, by which we mean that any given point
has a small probability of not being covered. The need for this is related to the fact
that, unlike in R

n, it now seems far more natural to formulate notions like the weak
boundedness property and the BMO space in terms of balls rather than cubes, and so
we essentially need to cut our dyadic cubes into comparable balls when estimating
the “diagonal” part of the operator.

In the following section, we give detailed statements of the results discussed here,
which are then proven in the rest of the paper. In the final section, we describe the
relation to the above-mentioned results of Volberg and Wick [13].

2 Preliminaries and the Main Result

We now give the detailed definitions, fix some notation and parameters, and then
formulate our main theorem, Theorem 2.3.

2.1 Geometrically Doubling Regular Quasimetric Spaces

Recall that a quasimetric is almost like a metric but the triangle inequality is replaced
by the requirement that for some A0 ≥ 1 it holds that ρ(x, y) ≤ A0(ρ(x, z)+ρ(z, y))

for all x, y, z ∈ X. A quasimetric space (X,ρ) is geometrically doubling if every open
ball B(x, r) = {y ∈ X : ρ(y, x) < r} can be covered by at most N balls of radius r/2.
We use this somewhat non-standard name to clearly differentiate this property from
other types of doubling properties. We adapt the convention that a ball B is equipped
with a fixed center cB ∈ X and radius rB > 0 (if no other notation is in place, we
use this). Also, we set n = log2 N , which can be viewed as (an upper bound for) a
geometric dimension of the space. Let us state the following well-known lemma.

Lemma 2.1 In a geometrically doubling quasimetric space, a ball B(x, r) can con-
tain the centers xi of at most Nα−n disjoint balls B(xi, αr) for α ∈ (0,1].

Note also that there is a uniform constant depending only on N and A0 so that all
subsets of X are geometrically doubling with this constant. Choosing N large enough
in the first place, let us use the same constant N everywhere.

For many purposes, quasimetrics are just as good as metrics, only somewhat more
annoying to deal with due to the presence of the additional constant in the triangle
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inequality. However, for some of the more delicate estimates, it seems to us that
general quasimetrics can be a bit too wild, and we always ask that our quasimetric ρ

satisfy the following regularity property: for every ε > 0 there exists A(ε) < ∞ so
that

ρ(x, y) ≤ (1 + ε)ρ(x, z) + A(ε)ρ(z, y).

Notice that this property is in particular satisfied by all positive powers of an honest
metric, and every quasimetric is equivalent to one of that form by a well-known result
of Macías and Segovia [9]. While it is easy to cook up irregular quasimetrics, it seems
that practically all reasonable examples of quasimetrics from applications already
satisfy the regularity property even without passing to an equivalent version. This is
in particular the case for all the examples of quasi-metrics pointed out by Coifman
and Weiss [3, p. 68].

Much of our subsequent assumptions will be essentially invariant under the change
to an equivalent quasimetric, which we explicitly exploit through the mentioned result
of Macías and Segovia, so that a large part of the proof can be carried out in an honest
metric space. However, we want to use indicators of balls (of the given quasimetric)
as test functions, and it is here that the general quasimetric balls seem to be somewhat
too arbitrary for our purposes.

2.2 Upper Doubling Measures

A Borel measure μ in a quasimetric space (X,ρ) is called upper doubling if there
exists a dominating function λ : X × (0,∞) → (0,∞) so that r �→ λ(x, r) is non-
decreasing, λ(x,2r) ≤ Cλλ(x, r) and μ(B(x, r)) ≤ λ(x, r) for all x ∈ X and r > 0.
The number d := log2 Cλ can be thought of as (an upper bound for) a dimension of
the measure μ, and it will play a similar role as the quantity denoted by the same
symbol in [11].

Lemma 2.2 We have for every ball B = B(cB, rB) and for every ε > 0 that

∫
X\B

ρ(x, cB)−ε

λ(cB,ρ(x, cB))
dμ(x) ≤ CλAεr

−ε
B ,

where Aε = 2ε/(2ε − 1).

Proof We calculate

∫
X\B

ρ(x, cB)−ε

λ(cB,ρ(x, cB))
dμ(x) =

∞∑
j=0

∫
2j rB≤ρ(x,cB)<2j+1rB

ρ(x, cB)−ε

λ(cB,ρ(x, cB))
dμ(x)

≤
∞∑

j=0

μ(B(cB,2j+1rB))

λ(cB,2j rB)

(
2j rB

)−ε

≤ Cλr
−ε
B

∞∑
j=0

2−εj = CλAεr
−ε
B ,
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where we used that λ is non-decreasing and μ(B(cB,2j+1rB)) ≤ λ(cB,2j+1rB) ≤
Cλλ(cB,2j rB). �

In what follows, we work in a geometrically doubling regular quasimetric space
(X,ρ) (with the constants N and n as above, and the related function A(ε)), which
is equipped with an upper doubling measure μ with the related majorant λ.

2.3 Standard Kernels and Calderón–Zygmund Operators

Define � = {(x, x) : x ∈ X}. A standard kernel is a mapping K : X2 \ � → C for
which we have for some α > 0 and c,C < ∞ that

|K(x,y)| ≤ C min

(
1

λ(x,ρ(x, y))
,

1

λ(y,ρ(x, y))

)
, x 	= y,

|K(x,y) − K(x′, y)| ≤ C
ρ(x, x′)α

ρ(x, y)αλ(x,ρ(x, y))
, ρ(x, y) ≥ cρ(x, x′),

and

|K(x,y) − K(x,y′)| ≤ C
ρ(y, y′)α

ρ(x, y)αλ(y,ρ(x, y))
, ρ(x, y) ≥ cρ(y, y′).

The smallest admissible C will be denoted by ‖K‖CZα ; it is understood that the
parameter c has been fixed, and it will not be indicated explicitly in this notation.

Let T : f �→ Tf be a linear operator acting on some functions f (which we shall
specify in more detail later). It is called a Calderón–Zygmund operator with kernel
K if

Tf (x) =
∫

X

K(x, y)f (y) dμ(y)

for x outside the support of f .

2.4 Accretivity

A function b ∈ L∞(μ) is called accretive if Re b ≥ a > 0 almost everywhere. We
can also make do with the following weaker form of accretivity: |∫

A
b dμ| ≥ aμ(A)

for all Borel sets A which satisfy the condition that B ⊂ A ⊂ CB for some ball
B = B(A), where C is some large constant which depends on the quasimetric ρ.
(One can, e.g., take C = 500 if dealing with metrics.)

The point is to have the above estimate whenever A is one of the “cubes” to be
constructed below, but there is no easy explicit description of what kind of sets they
actually are.

2.5 Weak Boundedness Property

An operator T is said to satisfy the weak boundedness property if |〈T χB,χB〉| ≤
Aμ(�B) for all balls B and for some fixed constants A > 0 and � > 1. Here 〈· , ·〉 is
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the bilinear duality 〈f,g〉 = ∫
fg dμ. Let us denote the smallest admissible constant

above by ‖T ‖WBP� .
Literature abounds in variants of the weak boundedness property, and it is some-

times of interest to replace the rough test functions χB by some more regular ones.
It is also possible in the present case. (We had originally not considered this ques-
tion, which was posed to one of us by E.M. Stein after a presentation of an earlier
version of this paper in SNS Pisa, March 2010.) Namely, suppose that for every ball
B and every ε ∈ (0,1] there is a function χ̃B,ε such that χB ≤ χ̃B,ε ≤ χ(1+ε)B , and
we have the estimate |〈T χ̃B,ε, χ̃B,ε〉| ≤ S(ε)Aμ(�B) with some S(ε) < ∞ indepen-
dent of the other quantities. We denote the smallest admissible A by ‖T ‖WBP�,S

.
Clearly, if T satisfies the weak boundedness property in the original sense, we may
take χ̃B,ε := χB and S(ε) := 1 for all ε > 0, and we have ‖T ‖WBP�,1 ≤ ‖T ‖WBP� .
Note that the generalized weak boundedness property simply asks the above inequal-
ity for some set of functions χ̃B,ε , regular or not. Depending on the structure of the
underlying space X, one may find such functions with different degrees of regularity.

In the T b theorem, the weak boundedness property is demanded from the operator
Mb2T Mb1 , where b1 and b2 are accretive functions and Mb : f �→ bf .

2.6 BMO and RBMO

We say that f ∈ L1
loc(μ) belongs to BMOp

κ (μ), if for any ball B ⊂ X there exists a
constant fB such that

(∫
B

|f − fB |p dμ

)1/p

≤ Lμ(κB)1/p,

where the constant L does not depend on B .
Let 
 > 1. A function f ∈ L1

loc(μ) belongs to RBMO(μ) if there exists a constant
L, and for every ball B , a constant fB , such that one has

∫
B

|f − fB |dμ ≤ Lμ(
B),

and, whenever B ⊂ B1 are two balls,

|fB − fB1 | ≤ L

(
1 +

∫
2B1\B

1

λ(cB, d(x, cB))
dμ(x)

)
.

We do not demand that fB be the average 〈f 〉B = 1
μ(B)

∫
B

f dμ, and this is actu-
ally important in the RBMO(μ)-condition. The useful thing here is that the space
RBMO(μ) is independent of the choice of parameter 
 > 1 and satisfies the John–
Nirenberg inequality. For these results in our setting, see [6]. The norms in these
spaces are defined in the obvious way as the best constant L.

We do not really need the RBMO(μ) space here as we formulate our main theo-
rem with respect to BMO2

κ(μ) rather than BMO1
κ(μ). However, some reductions are

possible here, and we comment on this after the formulation of our main theorem.
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2.7 Vinogradov Notation and Implicit Constants

The notation f � g is used synonymously with f ≤ Gg for some constant G. We
also use f ∼ g if f � g � f . We now specify the parameters on which the implied
constant G is allowed to depend in this notation. We let it depend on N and A0, which
are related to the space X, and on Cλ, which is related to the measure μ. Next, we let
G depend on c and α, the constants from the kernel estimates, and on the constant �

and the function S related to the weak boundedness property. Then we let G depend
on a, the constant related to the accretivity assumption of the test functions involved,
and on the L∞-norms of the same test functions. We also let G depend on the BMO
parameter κ . It is an inconvenient fact that one needs so many constants. Several
more auxiliary parameters will be built of the aforementioned ones. Also, there will
be quite a few other parameters that are not swallowed by this notation.

We now formulate our main theorem in full detail.

Theorem 2.3 Let (X,ρ) be a geometrically doubling regular quasimetric space
which is equipped with an upper doubling measure μ. Let T be an L2(μ)-bounded
Calderón–Zygmund operator with a standard kernel K , let b1 and b2 be two accre-
tive functions, let α > 0 and κ,� > 1 be constant, and S : (0,1] → (0,∞) a function.
Then

‖T ‖ � ‖T b1‖BMO2
κ (μ) + ‖T ∗b2‖BMO2

κ (μ) + ‖Mb2T Mb1‖WBP�,S
+ ‖K‖CZα ,

where the first three terms on the right are in turn dominated by ‖T ‖ + ‖K‖CZα .
Here all the estimates depend on the quasimetric space (X,ρ) through the con-

stants N , A0 and the function ε �→ A(ε), the measure μ through the constant Cλ,
the test functions b1 and b2 through the L∞-norms and the accretivity constants, the
constants c and α appearing in the standard estimates, as well as the constant � and
the function ε �→ S(ε) in the weak boundedness property.

Remark 2.4

(i) We have made the assumption that T is a priori known to be a bounded operator
on L2(μ), but one can reduce to this situation in several well-known ways (and
sometimes no reduction is necessary). In what follows, we shall take the two
BMO-norms, the weak boundedness constant, and the Calderón–Zygmund con-
stant to be 1, and show that ‖T ‖ � 1 with the conventions agreed upon above. It
will be clear from the proof that the dependence on the mentioned quantities is
of the asserted form. The converse direction of the theorem is standard.

(ii) At least in the case that ρ is an honest metric, one can work with the larger space
BMO1

κ(μ) too; see [11] and [6]. Here one passes through the RBMO(μ) space,
uses the John–Nirenberg inequality there, and then returns to the BMO2

κ(μ) set-
ting. In other words, T b1 ∈ BMO1

κ (μ) implies that actually T b1 ∈ BMO2
κ(μ).

(This utilizes the fact that T b1 is in the range of the Calderón–Zygmund opera-
tor T , e.g., via the weak boundedness property; nothing of this sort holds for a
general f ∈ BMO1

κ(μ).)
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(iii) As will be explained in the following section, all assumptions except possibly
for the weak boundedness property are stable under the change to an equivalent
quasimetric. Hence the only place where the regularity assumption on ρ plays a
role is in the balls involved in the weak boundedness property. We do not know
whether the theorem remains true if the weak boundedness property is assumed
with respect to balls of an irregular quasimetric. On the other hand, since these
balls could be quite wild, it is questionable if such a testing condition would
even be very useful.

3 Reduction to Metric Spaces

A result of Macías and Segovia (see the proof of [9, Theorem 2]) implies that there
is a metric d and a constant β ≥ 1 such that 2−βd(x, y)β ≤ ρ(x, y) ≤ 4βd(x, y)β for
all x, y ∈ X. Here 3A2

0 = 2β . One checks that (X,d) is then geometrically doubling
with the constant N16βn. Choosing N large enough in the first place lets us again
use the same constant for both spaces. The measure μ is also upper doubling with
respect to d with the function (x, r) �→ λ(x,4βrβ). As we no longer have any use for
the original λ, we replace it with this one.

It also follows that T b1 and T ∗b2 belong to the space BMO2
κ(μ) with respect to

d-balls, if we just simply replace the original κ by 8κ1/β . Of course, if the accretivity
is assumed in the form Re b ≥ a > 0, this requires no modifications. If we assume it
in the weaker form, one sees that we can, e.g., take C = 4000β . Then we have that
if Bd ⊂ A ⊂ 500Bd for some d-ball Bd , then Bρ ⊂ A ⊂ CBρ for some ρ-ball. The
proof that follows shows that the constant 500 works, as certain dyadic cubes with
respect to d are sets of this form.

There seems to be no easy way to immediately conclude the weak boundedness
property also for the d-balls. Thus, we shall not even attempt anything of this sort.
Instead, we shall explicitly use the quasimetric ρ in a certain random ball covering,
and as the reader will see, this circumvents the problem.

It remains to speak about the kernel estimates with respect to d and the new λ

(which works for d-balls). An easy calculation using the facts that λ is non-decreasing
and doubling shows that the first kernel estimate holds, just with a larger constant C.
The rest of the kernel estimates also hold, just with the original α replaced by βα

and demanding C to be large enough. This ends our reduction. As stated, from now
on for the most part we deal with just the metric space (X,d), and use the original ρ

only in one carefully indicated place.

4 Dyadic Systems of Cubes

We now provide a variant of Christ’s [2] construction of dyadic cubes in a metric
space. His original result was formulated assuming the presence of a doubling mea-
sure, but most of the argument actually employs geometric doubling only. However,
Christ only proved the covering property of his cubes in an a.e. sense with respect
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to the doubling reference measure. We want to avoid this, which leads us to the con-
struction of a system of “half-open” cubes, which exactly partition the whole space
at every length scale, just like in R

n.
The construction involves a parameter δ ≤ 1/1000. For each k ∈ Z we are given a

collection of points xk
α for which d(xk

α, xk
β) ≥ δk/8 for all α 	= β and minα d(x, xk

α) <

4δk for every x ∈ X. The parameters 1/8 and 4 are used simply because they will do
in a certain randomization procedure of points (see Sect. 10).

Let us construct a certain transitive relation ≤ among the pairs (k,α), follow-
ing [2]. For each (k,α) there exists at least one β for which d(xk

α, xk−1
β ) < 4δk−1.

Also, there exists at most one β for which d(xk
α, xk−1

β ) < δk−1/16. The ordering ≤
is constructed using the rules we now describe. Consider any pair (k,α). Check first
whether there exists β so that d(xk

α, xk−1
β ) < δk−1/16. If so, set (k,α) ≤ (k − 1, β)

and (k,α) 	≤ (k − 1, γ ) for γ 	= β . Otherwise, choose any β for which d(xk
α, xk−1

β ) <

4δk−1, and set (k,α) ≤ (k − 1, β) and (k,α) 	≤ (k − 1, γ ) for γ 	= β . Extend by tran-
sitivity to obtain a partial ordering.

The dyadic cubes of Christ are defined by

Qk
α =

⋃
(�,β)≤(k,α)

B(x�
β, δ�/100).

However, we aim to replace them by the “half-open” cubes advertised before.

One can easily check that Q
k

α ⊂ B(xk
α,5δk). Also, we have the property that if

� ≥ k, then either Q�
β ⊂ Qk

α or Q�
β ∩ Q

k

α = ∅—these still follow more or less as
in [2]. We now state and prove a number of lemmas relevant to our modification.

Lemma 4.1 For all k ∈ Z, the closures Q
k

α cover X.

Proof Let x ∈ X be arbitrary. For each m ≥ k we find some xm
β =: xm so that

d(xm,x) < 4δm. This especially implies that xm → x. We know that xm ∈ Qk
α(m)

for some α(m). We have d(xk
α(m), x) ≤ d(xk

α(m), xm) + d(xm,x) < 9δk . As X is ge-
ometrically doubling, this implies that α(m) can take only finitely many values. In
particular, one finds an infinite subsequence with xm ∈ Qk

α for some fixed α, and so

x ∈ Q
k

α . �

We then note that as the collection (Q
k

α)α is locally finite, any union of them is
closed. Let us then define the open dyadic cubes

Q̃k
α = X

∖ ⋃
β 	=α

Q
k

β,

and note that, by what we have already seen, it holds that Qk
α ⊂ Q̃k

α ⊂ Q
k

α .
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Lemma 4.2 If � ≥ k, we have

Q
k

α =
⋃

σ : (�,σ )≤(k,α)

Q
�

σ .

Proof As this is obvious for � = k, we take � > k. Write

Qk
α =

⋃
σ : (�,σ )≤(k,α)

Q�
σ ∪

⋃
(m,σ )≤(k,α)

m<�

B(xm
σ , δm/100).

As the union on the right-hand side is finite, we have

Q
k

α =
⋃

σ : (�,σ )≤(k,α)

Q
�

σ ∪
⋃

(m,σ )≤(k,α)

m<�

B(xm
σ , δm/100).

Thus, it suffices to prove that

⋃
(m,σ )≤(k,α)

m<�

B(xm
σ , δm/100) ⊂

⋃
σ : (�,σ )≤(k,α)

Q
�

σ .

Fix some (m,σ ) ≤ (k,α), where m < �, and consider a point x ∈ B(xm
σ , δm/100).

Since the sets (Q
�

β)β cover the whole X by Lemma 4.1, there is some β for which

x ∈ Q
�

β .
It remains to show that (�,β) ≤ (k,α). Fix the γ for which (�,β) ≤ (m + 1, γ ).

We have

d(xm
σ , xm+1

γ ) ≤ d(xm
σ , x) + d(x, x�

β) + d(x�
β, xm+1

γ )

≤ δm/100 + 5δ� + 5δm+1 < δm/50 < δm/16

proving that (m + 1, γ ) ≤ (m,σ ). Since (�,β) ≤ (m + 1, γ ) and (m,σ ) ≤ (k,α), it
holds that (�,β) ≤ (k,α). �

Lemma 4.3 If � ≥ k, then either Q̃�
β ⊂ Q̃k

α , or else Q̃�
β ∩ Q

k

α = ∅.

Proof Suppose that Q̃�
β ∩ Q

k

α 	= ∅. The previous lemma gives that Q̃�
β ∩ Q

�

σ 	= ∅ for
some (�, σ ) ≤ (k,α). By the definition of open cubes, we have to have β = σ , and
thus (�,β) ≤ (k,α). Since there is a unique α with this property, it has to be that

Q̃�
β ∩ Q

k

γ = ∅ for all γ 	= α. This implies that

Q̃�
β ⊂ X

∖ ⋃
γ 	=α

Q
k

γ = Q̃k
α.

�

We are now ready to construct the exact partition of X using “half-open” cubes.
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Theorem 4.4 There exist sets Q̂k
α , obtained from closed and open sets by finitely

many operations, such that Q̃k
α ⊂ Q̂k

α ⊂ Q
k

α ,

X =
⋃
α

Q̂k
α

for every k ∈ Z and if � ≥ k then either Q̂k
α ∩ Q̂�

β = ∅ or Q̂�
β ⊂ Q̂k

α . Moreover, for
every � ≥ k we have

Q̂k
α =

⋃
β: (�,β)≤(k,α)

Q̂�
β .

Proof We may assume that α ∈ N (just enumerate them for each k). For k = 0, define

Q̂0
0 = Q

0
0, Q̂0

α = Q
0
α

∖ α−1⋃
β=0

Q̂0
β, α ≥ 1.

For k < 0 define

Q̂k
α =

⋃
β: (0,β)≤(k,α)

Q̂0
β.

Finally, for k > 0 we proceed by induction as follows. Suppose that the cubes Q̂�
α ,

� ≤ k − 1, are already defined. For every α, consider the finitely many pairs (k,β) ≤
(k − 1, α), temporarily relabel them β = 0,1, . . . (up to some finite number), and set

Q̂k
0 = Q̂k−1

α ∩ Q
k

0, Q̂k
β = Q̂k−1

α ∩ Q
k

β

∖ β−1⋃
γ=0

Q̂k
γ , β ≥ 1.

All the properties follow. �

Note that it trivially holds that B(xk
α, δk/100) ⊂ Q̃k

α . Our final lemma concerning
solely these cubes will be of use later in the randomization procedure studied in detail
in Sect. 10.

Lemma 4.5 Let m ∈ N and ε > 0 be such that 500ε ≤ δm. Suppose that x ∈ Q
k

α is
such that d(x,X \ Q̃k

α) < εδk . Then for any chain

(k + m,σ) = (k + m,σk+m) ≤ · · · ≤ (k + 1, σk+1) ≤ (k, σk)

such that x ∈ Q
k+m

σk+m
, it holds that d(x

j
σj

, xi
σi

) ≥ δj /500 for all k ≤ j < i ≤ k + m.

Proof Let us denote, for brevity, x
j
σj

= xj , k ≤ j ≤ k + m. Assume that d(xj , xi) <

δj /500 for some k ≤ j < i ≤ k + m. Let us first consider the case σk = α. We have
B(xj , δ

j /100) ⊂ Q̃
j
σj

⊂ Q̃k
α , and thus
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δj /100 ≤ d(xj ,X \ Q̃k
α)

≤ d(x,X \ Q̃k
α) + d(x, xi) + d(xi, xj )

≤ εδk + 5δi + δj /500

≤ δj /500 + δj /200 + δj /500

= 9δj /1000

< δj/100,

which is a contradiction. Suppose that σk 	= α. Then x ∈ Q
k+m

σk+m
⊂ Q

k

σk
. On the other

hand, we have x ∈ Q
k

α ⊂ X \ Q̃k
σk

. This implies that d(x,X \ Q̃k
σk

) = 0 < εδk , so
we are in the identical situation with α replaced by σk , and the same conclusion
applies. �

We make the following important remark. In all that follows, all the cubes will be
“half-open”, but the hat notation is no longer applied.

5 Carleson’s Embedding Theorem and Martingale Difference Decompositions

We now state the Carleson embedding theorem and a related lemma in our setting.
We omit the short proof of the following lemma; it is a straightforward adaptation of
a known argument.

Lemma 5.1 Let ak
α ≥ 0 be non-negative numbers such that

∑
(�,β)≤(k,α)

a�
βμ(Q�

β) ≤ μ(Qk
α)

for every (k,α). Suppose we also have some other collection of non-negative numbers
bk
α ≥ 0 and b∗(x) = supQk

α�x bk
α , when x ∈ X. Then it holds that

∑
(k,α)

bk
αak

αμ(Qk
α) ≤

∫
X

b∗ dμ.

Theorem 5.2 (Carleson’s Embedding Theorem) Suppose we are given non-negative
numbers ak

α ≥ 0 such that

∑
(�,β)≤(k,α)

a�
βμ(Q�

β) ≤ μ(Qk
α)

for every (k,α). Then we have for every f ∈ L2(μ) that
∑
(k,α)

|〈f 〉Qk
α
|2ak

αμ(Qk
α) � ‖f ‖2

L2(μ)
.
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Proof Follows from the previous lemma and the fact that the dyadic maximal opera-
tor Md related to this set of cubes Qk

α is of strong type (2,2). �

We continue to define the martingale difference decomposition of a function f , a
tool fundamental to our study. Set

Ekf =
∑
α

〈f 〉Qk
α
χQk

α
,

EQk
α
f = χQk

α
Ekf,

�kf = Ek+1f − Ekf,

�Qk
α
f = χQk

α
�kf.

If b is accretive, one has the b-adapted versions Eb
k , Eb

Qk
α
, �b

k , and �b
Qk

α
:

Eb
kf =

∑
α

〈f 〉Qk
α
〈b〉−1

Qk
α
χQk

α
b,

Eb
Qk

α
f = χQk

α
Eb

k f,

�b
kf = Eb

k+1f − Eb
kf,

�b
Qk

α
f = χQk

α
�b

kf.

We have for any m the decompositions

f =
∑

(k,α):k≥m

�Qk
α
f +

∑
α

EQm
α
f =

∑
(k,α):k≥m

�b
Qk

α
f +

∑
α

Eb
Qm

α
f,

and it also holds that

‖f ‖2
L2(μ)

=
∑

(k,α):k≥m

‖�Qk
α
f ‖2

L2(μ)
+

∑
α

‖EQm
α
f ‖2

L2(μ)

∼
∑

(k,α):k≥m

‖�b
Qk

α
f ‖2

L2(μ)
+

∑
α

‖Eb
Qm

α
f ‖2

L2(μ)
.

Here the implied constants depend only on b via its accretivity constant and L∞-
norm. This last fact follows from some algebraic manipulations, Carleson’s embed-
ding theorem, and duality as in [11, Lemma 4.1].

In what follows we are given two dyadic systems D and D′ of “half-open” cubes
as constructed above, and we associate the accretive function b1 with D and the
accretive function b2 with D′. We denote the D-cubes by Qk

α and the D′-cubes by
Rm

γ . Since for many purposes this is too heavy a notation, we agree that �(Qk
α) = δk

and gen(Qk
α) = k (and similarly for the D′-cubes), and more often than not denote

simply Q = Qk
α and R = Rm

γ . Also, set C0 = 10, C1 = 1/100, and C3 = 4, so that

d(Qk
α) < C0δ

k , B(xk
α,C1δ

k) ⊂ Qk
α , and minα d(x, xk

α) < C3δ
k (and similarly for the

other grid D′). Note also that all these cubes are sets as in the definition of accretivity.
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We have now disposed of the preliminaries, and will begin the task of estimat-
ing the operator T . As the reader probably already knows, the idea is to write the
adapted martingale difference decompositions for two functions f and g with re-
spect to the grids D and D′, respectively, decompose 〈Tf,g〉, and study the various
pairings 〈T �

b1
Qf,�

b2
R g〉 thus introduced. Note that the theorems and lemmas formu-

lated below do not cover all the cases per se (we mostly consider �(Q) ≤ �(R) only),
but combined with symmetry they do. Everything will be brought together to prove
the T b theorem in the very end. We follow the outline given by the most general
aspects of [11], and the main contributions are in the details.

6 Separated Cubes

Here we deal with well-separated cubes Q ∈ D and R ∈ D′.

Lemma 6.1 Let Q ∈ D, R ∈ D′, �(Q) ≤ �(R), and d(Q,R) ≥ CC0�(Q). Let ϕQ

and ψR be L2(μ) functions supported by the cubes Q and R, respectively, and as-
sume

∫
ϕQ = 0. We have the estimate

|〈T ϕQ,ψR〉|

� �(Q)α

d(Q,R)α supz∈Q λ(z, d(Q,R))
μ(Q)1/2μ(R)1/2‖ϕQ‖L2(μ)‖ψR‖L2(μ).

Proof This follows from the second kernel estimate via the facts that ϕQ has zero
integral and d(Q,R) ≥ CC0�(Q). �

A reader familiar with the original proof may recall that a condition of the type
d(Q,R) ≥ �(Q)γ �(R)1−γ plays a key role. The correct choice for γ in our situation
has the same algebraic expression as in [11],

γ := α

2(α + d)
,

where we recall that d := log2 Cλ in our setting. We then have the familiar relation
γ d + γ α = α/2. Also, set D(Q,R) = �(Q) + �(R) + d(Q,R).

Lemma 6.2 Assume that Q ∈ D, R ∈ D′, �(Q) ≤ �(R), d(Q,R) ≥ CC0�(Q) and, in
addition, d(Q,R) ≥ �(Q)γ �(R)1−γ . Let ϕQ and ψR be L2(μ) functions supported
by the cubes Q and R, respectively, and assume

∫
ϕQ = 0. We have the estimate

|〈T ϕQ,ψR〉|

� �(Q)α/2�(R)α/2

D(Q,R)α supz∈Q λ(z,D(Q,R))
μ(Q)1/2μ(R)1/2‖ϕQ‖L2(μ)‖ψR‖L2(μ).

Proof Consider first the case d(Q,R) ≥ �(R). Then d(Q,R) ≥ D(Q,R)/3 and so
λ(z, d(Q,R)) ≥ λ(z,D(Q,R)/3) � λ(z,D(Q,R)) as λ is doubling. The estimate
then follows from the previous lemma.



Non-homogeneous T b Theorem and Random Dyadic Cubes 1085

Let us now assume that d(Q,R) ≤ �(R). Note that Cλ = 2d so that

C
−γ log2

�(R)
�(Q)

λ =
(

�(R)

�(Q)

)−γ d

.

We have

λ(z, �(R)) = λ(z, (�(R)/�(Q))γ �(Q)γ �(R)1−γ )

≤ C
γ log2

�(R)
�(Q)

+1

λ λ(z, �(Q)γ �(R)1−γ )

and thus

λ(z, d(Q,R)) ≥ λ(z, �(Q)γ �(R)1−γ )

� C
−γ log2

�(R)
�(Q)

λ λ(z, �(R))

=
(

�(R)

�(Q)

)−γ d

λ(z, �(R)).

This implies that

�(Q)α

d(Q,R)αλ(z, d(Q,R))
� �(Q)α

�(Q)γα�(R)(1−γ )α
(

�(R)
�(Q)

)−γ d
λ(z, �(R))

= �(Q)α−(γ d+γα)�(R)γ d+γα

�(R)αλ(z, �(R))

= �(Q)α/2�(R)α/2

�(R)αλ(z, �(R))
.

Furthermore, one now has �(R) ≥ D(Q,R)/3 so that the claim follows from the
previous lemma. �

We may now forget for the moment under which assumptions these estimates were
achieved, and just study the matrix that we got. Namely, let us define the matrix

TQR = �(Q)α/2�(R)α/2

D(Q,R)α supz∈Q λ(z,D(Q,R))
μ(Q)1/2μ(R)1/2,

if Q ∈ D, R ∈ D′, and �(Q) ≤ �(R), and

TQR = 0

otherwise.
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Proposition 6.3 Suppose we are given nonnegative constants xQ and yR for each
Q ∈ D and R ∈ D′. It holds that

∑
Q,R

TQRxQyR �
(∑

Q

x2
Q

)1/2(∑
R

y2
R

)1/2

.

Proof We assume first that �(Q) = δm�(R) for some m = 0,1,2, . . . and then also
that �(R) = δk for some k ∈ Z. Define the kernel

Km,k(x, y) =
∑

�(Q)=δk+m,�(R)=δk

TQRμ(Q)−1/2μ(R)−1/2χQ(x)χR(y)

and set

h1 =
∑

�(Q)=δk+m

μ(Q)−1/2xQχQ, h2 =
∑

�(R)=δk

μ(R)−1/2yRχR.

Note that

∑
�(Q)=δk+m,�(R)=δk

TQRxQyR =
∫

X

∫
X

Km,k(x, y)h1(x)h2(y) dμ(x)dμ(y)

and

( ∑
�(Q)=δk+m

x2
Q

)1/2

= ‖h1‖L2(μ) and

( ∑
�(R)=δk

y2
R

)1/2

= ‖h2‖L2(μ).

Writing out the definitions, one has

Km,k(x, y) =
∑

�(Q)=δk+m,�(R)=δk

�(Q)α/2�(R)α/2

D(Q,R)α supz∈Q λ(z,D(Q,R))
χQ(x)χR(y).

Consider some pair (x, y). Then there exists one and only one pair (Qx,Ry) for
which �(Qx) = δk+m, �(Ry) = δk , x ∈ Qx , and y ∈ Ry , and so

Km,k(x, y) = δαm/2δαk

D(Qx,Ry)α supz∈Qx
λ(z,D(Qx,Ry))

.

We want to prove that
∫

X

Km,k(x, y) dμ(x) � δαm/2 and
∫

X

Km,k(x, y) dμ(y) � δαm/2. (6.1)

Let us only deal with the first term in detail—it is actually the bit harder of the
two. The second integral is estimated basically in the same way as we now deal with
the first integral, but one does not have to go through the trouble of fiddling with
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the centers (just use directly that supz∈Qx
λ(z,D(Qx,Ry)) ≥ λ(x,D(Qx,Ry))). We

have
∫

X

Km,k(x, y) dμ(x) =
(∫

B(y,δk)

+
∫

X\B(y,δk)

)
Km,k(x, y) dμ(x).

Note that D(Qx,Ry) ≥ �(Ry) = δk , and so

∫
B(y,δk)

Km,k(x, y) dμ(x) ≤ δαm/2δαk

∫
B(y,δk)

dμ(x)

δαk supz∈Qx
λ(z, δk)

.

We have that Qx ⊂ B(y,2C0δ
k) for every x ∈ B(y, δk), and so supz∈Qx

λ(z, δk) ≥
infz∈B(y,2C0δ

k) λ(z, δk). This yields

∫
B(y,δk)

Km,k(x, y) dμ(x) ≤ δαm/2 μ(B(y, δk))

infz∈B(y,2C0δ
k) λ(z, δk)

.

We then have that B(y, δk) ⊂ B(z,3C0δ
k) for every z ∈ B(y,2C0δ

k), yielding that
μ(B(y, δk)) ≤ μ(B(z,3C0δ

k)) ≤ λ(z,3C0δ
k) � λ(z, δk). This gives that

∫
B(y,δk)

Km,k(x, y) dμ(x) � δαm/2.

We cannot directly employ Lemma 2.2 to deal with the integral over X \B(y, δk).
However, we can use its proof together with similar gimmicks as with the previous
term. Note that d(x, y) � D(Qx,Ry) to get that

∫
X\B(y,δk)

Km,k(x, y) dμ(x)

� δαm/2δαk

∞∑
j=0

∫
2j δk≤d(x,y)<2j+1δk

d(x, y)−α

supz∈Qx
λ(z, d(x, y))

dμ(x).

If 2j δk ≤ d(x, y) < 2j+1δk , we have Qx ⊂ B(y,C02j+2δk), and therefore it holds
that supz∈Qx

λ(z, d(x, y)) ≥ infz∈B(y,C02j+2δk) λ(z,2j δk). This establishes that

∫
X\B(y,δk)

Km,k(x, y) dμ(x) � δαm/2
∞∑

j=0

2−αj μ(B(y,2j+1δk))

infz∈B(y,C02j+2δk) λ(z,2j δk)
.

If z ∈ B(y,C02j+2δk), we have B(y,2j+1δk) ⊂ B(z,C02j+3δk), and thus it holds
μ(B(y,2j+1δk)) ≤ μ(B(z,C02j+3δk)) ≤ λ(z,C02j+3δk) � λ(z,2j δk). This proves
that ∫

X\B(y,δk)

Km,k(x, y) dμ(x) � δαm/2.
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We have established (6.1). Schur’s lemma then gives that
∫

X

∫
X

Km,k(x, y)h1(x)h2(y) dμ(x)dμ(y) � δαm/2‖h1‖L2(μ)‖h2‖L2(μ).

As noted above this is the same as

∑
�(Q)=δk+m,�(R)=δk

TQRxQyR � δαm/2
( ∑

�(Q)=δk+m

x2
Q

)1/2( ∑
�(R)=δk

y2
R

)1/2

.

Sum this over k ∈ Z, use the Cauchy–Schwarz inequality, and then sum over m =
0,1,2, . . . , to get that

∑
Q,R

TQRxQyR =
∑

�(Q)≤�(R)

TQRxQyR �
(∑

Q

x2
Q

)1/2(∑
R

y2
R

)1/2

.

�

7 Paraproducts and Cubes Well Inside Another Cube

We begin by proving the following lemma which is needed later in proving that a
certain paraproduct is bounded.

Lemma 7.1 Suppose that Q ∈ D is fixed and that b is some pseudoaccretive function.
It holds that

∑
R∈D′:R⊂Q

�(R)≤δr �(Q)

d(R,X\Q)≥CC0κ�(R)

‖�b
R(bϕ)‖2

L2(μ)
� μ(Q)‖ϕ‖2

BMO2
κ (μ)

if ϕ ∈ BMO2
κ(μ) and r is so large that

δr ≤ C1

CC0κ + C0 + C3
.

Here the implied constants are exceptionally allowed to depend on the function b

in the obvious way.

Proof We start by constructing a Whitney type decomposition using cubes and then
we shall associate with each such cube in the covering a certain ball—these balls, as
we shall see, will also have finite overlap (even when multiplied with the constant
κ) because of the geometry of the construction and also because X is geometrically
doubling.

We first prove that there exist cubes R ∈ D′ for which R ⊂ Q, �(R) = δr�(Q)

and d(R,X \ Q) ≥ CC0κ�(R). Denote the center of Q by z and recall that we
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have B(z,C1�(Q)) ⊂ Q. Choose some point w which is the center of a D′-cube
R of generation gen(Q) + r and satisfies d(w, z) < C3�(R). Suppose that x ∈ R ⊂
B(w,C0�(R)) and note that d(x, z) ≤ d(x,w) + d(w, z) < (C0 + C3)�(R), that is
R ⊂ B(z, (C0 + C3)�(R)). Suppose that y ∈ X \ Q and x ∈ R. In this case we have
d(y, z) ≥ C1�(Q) and d(x, z) < (C0 + C3)�(R), which yields

d(x, y) ≥ d(y, z) − d(x, z) ≥ (C1δ
−r − C0 − C3)�(R) ≥ CC0κ�(R).

Thus, d(R,X \ Q) ≥ CC0κ�(R). We choose all such cubes R. Then we choose all
those D′-cubes R of the next generation which are not subcubes of the previously
chosen cubes and which still satisfy the condition that d(R,X \ Q) ≥ CC0κ�(R).
We continue in this way and obtain a disjoint collection of D′-cubes R, which have
the property that any cube R′ in the sum

∑
R′∈D′:R′⊂Q

�(R′)≤δr �(Q)

d(R′,X\Q)≥CC0κ�(R′)

‖�b
R′(bϕ)‖L2(μ)

is contained in one of them. To exploit the BMO condition, though, we want a cov-
ering consisting of suitable balls. To this end, we associate with each chosen cube R

the ball BR = B(wR,C0�(R)) ⊃ R which is centered at the center wR of the cube R

and which has radius C0�(R).
We now wish to demonstrate that every x ∈ Q belongs to �1 balls κBR . We first

prove that x can belong to only �1 balls κBR associated with a fixed generation k ≥
gen(Q)+ r of the chosen cubes. Indeed, suppose that x ∈ κBRk

i
for some collection i.

This implies that wRk
i
∈ B(x,C0κδk) for all i. This means that the ball B(x,C0κδk)

contains the centers wRk
i

of the disjoint balls B(wRk
i
,C1δ

k) = B(wRk
i
,C1/(C0κ) ·

C0κδk). As X is geometrically doubling, we have that #i ≤ N(C1/(C0κ))−n � 1.
We then prove that if κBRk

i
∩ κBRl

j
	= ∅ (where Rk

i and Rl
j are chosen cubes,

k, l > r), then |k − l| � 1. This only utilizes the geometry of the construction. We
prove a certain auxiliary estimate from which this follows. Suppose that Rk is a cho-
sen cube of generation k > gen(Q) + r and that x ∈ κBRk . As Rk is a chosen cube,
its dyadic parent Rk∗ has to satisfy d(Rk∗,X \ Q) < CC0κδk−1. We take some point
y ∈ Rk∗ for which d(y,X \ Q) ≤ CC0κδk−1. Let wRk be the center of Rk and notice
that we now have

d(x,X \ Q) ≤ d(x, y) + d(y,X \ Q)

≤ d(x,wRk ) + d(y,wRk ) + d(y,X \ Q)

≤ C0κδk + C0δ
k−1 + CC0κδk−1

≤ 3CC0κδk−1.

To the other direction, it holds that (we have C ≥ 2)

d(x,X \ Q) ≥ d(wRk ,X \ Q) − d(x,wRk ) ≥ CC0κδk − C0κδk ≥ C0κδk.
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We have established that if R is a chosen cube for which gen(R) = k > gen(Q) + r ,
then

C0κδk ≤ d(x,X \ Q) ≤ 3CC0κδk−1

holds for all x ∈ κBR . Taking logarithms one sees that this fixes k to a certain finite
range.

We have now done more than enough to show that for every x ∈ Q one has #{R :
x ∈ κBR} � 1, which we use to conclude that

∑
R

μ(κBR) =
∫

Q

∑
R

χκBR
dμ � μ(Q),

where we sum over the chosen cubes R. We have
∑

R′∈D′:R′⊂Q

�(R′)≤δr �(Q)

d(R′,X\Q)≥CC0κ�(R′)

‖�b
R′(bϕ)‖2

L2(μ)
=

∑
R

∑
R′⊂R

‖�b
R′(χBR

b(ϕ − ϕBR
))‖2

L2(μ)

�
∑
R

∫
BR

|ϕ − ϕBR
|2 dμ

�
∑
R

μ(κBR)‖ϕ‖2
BMO2

κ (μ)

� μ(Q)‖ϕ‖2
BMO2

κ (μ)
.

�

Let us define the paraproduct

�f =
∑

R′∈D′

∑
Q′∈D:Q′⊂R′
�(Q′)=δr �(R′)

d(Q′,X\R′)≥CC0κ�(Q′)

(ER′b2)
−1 · ER′f · (�b1

Q′)∗(T ∗b2).

We shall always assume that r is at least as large as is required by the previous lemma.
However, we make several further assumptions about it later. Of course, basically it
could be fixed at the very beginning, and so it is not a problem if we let the implied
constants depend also on r .

Theorem 7.2 The paraproduct � is bounded on L2(μ).

Proof This follows from the previous lemma via the L2(μ) norm estimate related
to the adapted martingale difference decomposition, Carleson’s embedding theorem,
and the fact that (�

b1
Q′)∗(T ∗b2) = b−1

1 �
b1
Q′(b1T

∗b2). �

We introduce the concept of good cubes in more detail now. Recall the definition
of γ from the previous section. Consider a cube Q ∈ D. We say that Q is good if
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for any cube R ∈ D′ for which we have �(Q) ≤ δr�(R), we have either d(Q,R) ≥
�(Q)γ �(R)1−γ or d(Q,X \ R) ≥ �(Q)γ �(R)1−γ . We denote this set by Dgood, and
the rest are denoted by Dbad.

Let us now fix Q ∈ Dgood and R ∈ D′ so that Q ⊂ R and �(Q) < δr�(R). Let us
also fix the child R1 ⊂ R for which Q ⊂ R1 and let us denote the other children of R

by Ri . We have #i � 1. We assume that we are given two functions of the form

ϕQ =
∑

Qj ∈D:Qj ⊂Q

�(Qj )=δ�(Q)

AQj
χQj

b1

and

ψR =
∑

Ri∈D′:Ri⊂R

�(Ri)=δ�(R)

BRi
χRi

b2.

We demand that
∫

ϕQ dμ = 0. We aim to prove that

|〈(T − �∗)ϕQ,ψR〉| �
(

�(Q)

�(R)

)α/2(
μ(Q)

μ(R1)

)1/2

‖ϕQ‖L2(μ)‖ψR‖L2(μ). (7.1)

In the previous section our matrix looked a little bit different from that in [11].
However, (7.1) is exactly of the same form as in [11, Lemma 7.3]. We note that

〈ϕQ,�ψR〉 =
∑

R′∈D′

∑
Q′∈D:Q′⊂R′
�(Q′)=δr �(R′)

d(Q′,X\R′)≥CC0κ�(Q′)

〈ϕQ, (ER′b2)
−1 · ER′ψR · (�b1

Q′)∗(T ∗b2)〉

and that

〈ϕQ, (ER′b2)
−1 · ER′ψR · (�b1

Q′)∗(T ∗b2)〉 = 〈ψR〉R′

〈b2〉R′
〈�b1

Q′ϕQ,T ∗b2〉.

Since ϕQ is of this particular form and
∫

ϕQ dμ = 0 one sees that �
b1
Q′ϕQ = ϕQ if

Q′ is the same cube as Q and �
b1
Q′ϕQ = 0 otherwise. This implies in particular that

in the non-trivial situation one must also have R′ ⊂ R1 and then 〈ψR〉R′
〈b2〉R′ = BR1 . If

a suitable R′ ⊃ Q exists (and there can only be one) we thus have 〈ϕQ,�ψR〉 =
BR1〈T ϕQ,b2〉. Let us now demonstrate that, indeed, such an R′ exists provided that
we have chosen r to be large enough. As Q ∈ Dgood, Q ⊂ R, and �(Q) < δr�(R),
we must have some R′ ∈ D′ so that Q ⊂ R′ ⊂ R1 ⊂ R, �(Q) = δr�(R′) and
d(Q,X \ R′) ≥ �(Q)γ �(R′)1−γ . In particular, demanding that r is at least so large
that δ−(1−γ )r ≥ CC0κ , we have

d(Q,X \ R′) ≥ �(Q)γ �(R′)1−γ = �(Q)δ−r(1−γ ) ≥ CC0κ�(Q).

We have shown that 〈ϕQ,�ψR〉 = BR1〈T ϕQ,b2〉, and so
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〈(T − �∗)ϕQ,ψR〉 = 〈T ϕQ,ψR − BR1b2〉
= BR1〈T ϕQ, (χR1 − 1)b2〉 +

∑
i 	=1

BRi
〈T ϕQ,χRi

b2〉.

We handle the first term first. Let us calculate (choosing some arbitrary point
z ∈ Q)

|〈T ϕQ, (χR1 − 1)b2〉| =
∣∣∣∣
∫

X\R1

∫
Q

[K(x,y) − K(x, z)]ϕQ(y)b2(x) dμ(y)dμ(x)

∣∣∣∣

� �(Q)α‖ϕQ‖L1(μ)

∫
X\R1

d(x, z)−α

λ(z, d(x, z))
dμ(x)

≤ �(Q)α‖ϕQ‖L1(μ)

∫
X\B(z,d(Q,X\R1))

d(x, z)−α

λ(z, d(x, z))
dμ(x)

� �(Q)α‖ϕQ‖L1(μ)d(Q,X \ R1)
−α.

We used (for the kernel estimates) that d(y, z) ≤ C0�(Q) and d(x, z) ≥ d(Q,X \
R1) ≥ �(Q)γ �(R1)

1−γ ≥ CC0�(Q) as there is a gap of at least r in the generations
of Q and R1. We then use that d(Q,X\R1) ≥ �(Q)γ �(R1)

1−γ ≥ �(Q)1/2�(R1)
1/2 �

�(Q)1/2�(R)1/2 to get that

|〈T ϕQ, (χR1 − 1)b2〉| � �(Q)αμ(Q)1/2‖ϕQ‖L2(μ)�(Q)−α/2�(R)−α/2.

Note then that |BR1 | � ‖ψR‖L2(μ)μ(R1)
−1/2 to infer

|BR1 ||〈T ϕQ, (χR1 − 1)b2〉| �
(

�(Q)

�(R)

)α/2(
μ(Q)

μ(R1)

)1/2

‖ϕQ‖L2(μ)‖ψR‖L2(μ).

We then deal with the other #i � 1 terms. This time we have, using estimates from
Sect. 6 (see the proof of Lemma 6.2), for some fixed z ∈ Q that

|BRi
||〈T ϕQ,χRi

b2〉|

= |BRi
|
∣∣∣∣
∫

Ri

∫
Q

[K(x,y) − K(x, z)]ϕQ(y)b2(x) dμ(y)dμ(x)

∣∣∣∣

� ‖ϕQ‖L2(μ)‖ψR‖L2(μ)μ(Ri)
1/2μ(Q)1/2 �(Q)α

d(Q,Ri)αλ(z, d(Q,Ri))

� ‖ϕQ‖L2(μ)‖ψR‖L2(μ)μ(Ri)
1/2μ(Q)1/2 �(Q)α/2�(R)−α/2

λ(z, �(Ri))

=
(

�(Q)

�(R)

)α/2

μ(Q)1/2 μ(Ri)
1/2

λ(z, �(Ri))
‖ϕQ‖L2(μ)‖ψR‖L2(μ).

We make the following deduction which uses the doubling property of λ:

μ(Ri)
1/2

λ(z, �(Ri))
≤ μ(R)1/2

λ(z, �(Ri))
≤ λ(z,C0�(R))1/2

λ(z, �(Ri))
� 1

λ(z,C0�(R))1/2
≤ 1

μ(R1)1/2
.
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Insert this into the estimate from above to get that

|BRi
||〈T ϕQ,χRi

b2〉| �
(

�(Q)

�(R)

)α/2(
μ(Q)

μ(R1)

)1/2

‖ϕQ‖L2(μ)‖ψR‖L2(μ),

and (7.1) follows. Set

TQR =
(

�(Q)

�(R)

)α/2(
μ(Q)

μ(R1)

)1/2

,

if Q ∈ Dgood, Q ⊂ R and �(Q) < δr�(R), TQR = 0 otherwise.

Proposition 7.3 The matrix TQR generates a bounded operator on �2.

Proof This follows precisely as in [11, Lemma 7.4], as one just has to deal with the
measure μ not using any special assumptions about it. �

8 Random Almost-Covering by Balls

We construct a probabilistic covering of a large portion of the space with balls, start-
ing from some fixed size and going down in size but only for some controlled amount.
This will be used as a substitute for a certain auxiliary third dyadic grid used in [11,
Sect. 10.2] in connection with the weak boundedness property. Here we need to ex-
plicitly work with our original quasimetric ρ, the reason being that the weak bound-
edness property does not transfer to the d-balls in any obvious way.

Let 0 < ϑ < A−4
0 /32. For each k ∈ Z fix some maximal collection zk

α ∈ X for
which ρ(zk

α, zk
β) ≥ ϑk for all α 	= β . This time we use the following transitive re-

lation ≤. For each (k,α) there exists at least one β for which ρ(zk
α, zk−1

β ) < ϑk−1.

Also, there exists at most one β for which ρ(zk
α, zk−1

β ) < (2A0)
−1ϑk−1. The order-

ing ≤ is constructed using the rules we now describe. Consider any pair (k,α).
Check first whether there exists β so that ρ(zk

α, zk−1
β ) < (2A0)

−1ϑk−1. If so, set
(k,α) ≤ (k − 1, β) and (k,α) 	≤ (k − 1, γ ) for γ 	= β . Otherwise, choose any β for
which ρ(zk

α, zk−1
β ) < ϑk−1, and set (k,α) ≤ (k − 1, β) and (k,α) 	≤ (k − 1, γ ) for

γ 	= β . Extend by transitivity.
We introduce another relation ↘ now. Given any (k,α), pick one β for which

(k + 1, β) ≤ (k,α) and set (k,α) ↘ (k + 1, β) and (k,α) 	↘ (k + 1, γ ) for γ 	= β .
This is the relation which we shall randomize in a natural way, and in this way we
shall obtain in a random way a new collection of points for each level k. Indeed, we
shall essentially replace zk

α with zk+1
β if (k,α) ↘ (k + 1, β), and then remove some

points if they end up being too close to each other. Let us now do this in detail. We
define a probability P, on the family of all relations ↘ of the kind described, by
setting

P((k,α) ↘ (k + 1, β)) = 1

#{γ : (k + 1, γ ) ≤ (k,α)}
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for all (k + 1, β) ≤ (k,α), and requiring that such events for two different (k,α)

and (�, σ ) are independent. If (k,α) ↘ (k + 1, β), we set yk
α = zk+1

β . However, we

want to now obtain better separation between the points yk
α . To this end, we say

that yk
α and yk

β are in conflict if ρ(yk
α, yk

β) < (2A0)
−2ϑk . If such is the case, we

have ρ(zk
α, zk

β) < 3A2
0ϑ

k . As X is geometrically doubling, it follows that at most

finitely many pairs can conflict with a given pair (k,α). We enumerate the points yk
α

as yk
1 , yk

2 , . . . . We choose yk
1 and remove all the boundedly many points conflicting

with it. Next, choose the point with the smallest index in the remaining sequence, and
remove all the boundedly many points conflicting with it. Continue this by induction.
The final collection is now denoted by xk

α . By construction we have that

ρ
(
xk
α, xk

β

) ≥ (2A0)
−2ϑk, if α 	= β.

Observe also that for an arbitrary x ∈ X there exists xk
α so that ρ(x, xk

α) < 3A2
0ϑ

k .

Lemma 8.1 If (k + 1, β) ≤ (k,α), then P(zk+1
β = xk

α) ≥ π0 > 0.

Proof The event zk+1
β = xk

α requires that (k,α) ↘ (k + 1, β) and then that the point

yk
α = zk+1

β was not removed in the above described removal process. As X is ge-
ometrically doubling, we have that #{γ : (k + 1, γ ) ≤ (k, σ )} � 1 and so always
P((k, σ ) ↘ (k + 1, γ )) ≥ π ′

0 > 0 if (k + 1, γ ) ≤ (k, σ ). So all we need to prove
is that for any of the � 1 pairs (k, σ ) with the potential of conflicting with (k,α), we
have some γ so that (k + 1, γ ) ≤ (k, σ ) and ρ(zk+1

β , zk+1
γ ) ≥ (2A0)

−2ϑk , for then
there is a positive probability that (k, σ ) ↘ (k + 1, γ ) and no conflict with (k,α) will
arise.

Consider any such (k, σ ). There is zk+1
γ so that ρ(zk

σ , zk+1
γ ) < ϑk+1. In particular,

ρ(zk
σ , zk+1

γ ) < (2A0)
−1ϑk and so certainly (k + 1, γ ) ≤ (k, σ ). Note also that (k +

1, β) ≤ (k,α) 	= (k, σ ), and so ρ(zk+1
β , zk

σ ) ≥ (2A0)
−1ϑk . This yields that

ρ(zk+1
β , zk+1

γ ) ≥ A−1
0 ρ(zk+1

β , zk
σ ) − ρ(zk+1

γ , zk
σ ) ≥ [2−1A−2

0 − ϑ]ϑk > (2A0)
−2ϑk.

This proves the assertion. �

Take a new random variable τ , uniformly distributed on [1,2] and independent of
all the previous random quantities. Then define the random ρ-balls

Bk
α = B(xk

α, τA−4
0 ϑk/32).

We now note that P(x ∈ ⋃
α Bk

α) ≥ π0 > 0 for all x ∈ X and k ∈ Z. Indeed, for a
given x ∈ X there exists zk+1

β so that ρ(x, zk+1
β ) < ϑk+1 < A−4

0 ϑk/32, and P(zk+1
β =

xk
α) ≥ π0 as proved above. We also have

ρ(Bk
α,Bk

γ ) ≥ A−2
0 (2A0)

−2ϑk − 2−3A−4
0 ϑk = 2−3A−4

0 ϑk.

So we have separation for balls of the same generation.



Non-homogeneous T b Theorem and Random Dyadic Cubes 1095

We now make the final construction of the balls. We are given some small υ ∈
(0,1) and a fixed starting size k. We construct the level k balls Bk

α as above. We take
some small parameter ω ∈ (0,1) which we shall fix momentarily. We introduced the
random variable τ to make the proof of the following fact easy: it is unlikely for a
point to belong to the set

⋃
α(1 + ω)Bk

α \ Bk
α .

Let us spell this out. One notes that x ∈ (1 + ω)Bk
α can only happen for certain

boundedly many different α, where the bound depends on the geometric doubling
property. We then estimate the probability that x ∈ (1 + ω)Bk

α \ Bk
α for one of these

balls Bk
α . The mentioned inclusion happens if and only if

τϑk

32A4
0

≤ ρ
(
x, xk

α

)
< (1 + ω)

τϑk

32A4
0

.

This means that τ must belong to a certain interval of length

32A4
0ρ

(
x, xk

α

)
ϑ−k ω

1 + ω
≤ 4ω,

since necessarily ρ(x, xk
α) ≤ (8A4

0)
−1ϑk . Given the uniform distribution of τ on

[1,2], this implies that

P

(
x ∈

⋃
α

(1 + ω)Bk
α \ Bk

α

)
≤ η0 = η0(ω) � ω.

We now choose ω so small, and then M ∈ N so large, depending on υ , that

π0

π0 + η0
≥ 1 − υ/2, 1 − (1 − π0 − η0)

M >
1 − υ

1 − υ/2
.

Let further ε > 0 be so small, and then s ∈ N so large, that

(1 + ε)2 < 1 + ω/3, 2A(ε)ϑs < ω/3.

Then, ultimately, ω, M , and ε may be chosen as functions of υ , and s as a function
of υ and ϑ .

We now continue to make the above random ball covering with k replaced by k+ s

and X replaced by X \ ⋃
α(1 + ω)Bk

α . We repeat this procedure M times. We denote
the collection of balls we obtain by B.

We are in the following situation. At stage one a point belongs to some ball with
probability π1 ≥ π0 and to the ω-buffer of some ball with probability η1 ≤ η0. Thus,
a point belongs to none of these sets with probability 1 − π1 − η1. Note that subsets
of X are geometrically doubling with the same constant N , and thus a point belongs
to some ball at stage two with probability π2 ≥ π0 and to the ω-buffer of some ball
with probability η2 ≤ η0. We have this situation at every stage. Therefore, it holds
that
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P

(
x ∈

⋃
B∈B

B

)
= π1 + (1 − π1 − η1)π2 + · · · +

(
M−1∏
i=1

(1 − πi − ηi)

)
πM

≥ π0

M−1∑
i=0

(1 − π0 − η0)
i = π0

π0 + η0
[1 − (1 − π0 − η0)

M ]

> 1 − υ.

We got ρ-balls of generation k, k + s, . . . , k + (M − 1)s so that it is very likely
for a point to belong to one of them. Also, balls of the same generation k + ms are
2−3A−4

0 ϑk+ms -separated. Now we need to utilize the regularity of the quasimetric ρ.
Indeed, this is to guarantee that we can keep the buffer small but still separate balls
of different generations. Let us study two balls Bk+ms and Bk+ns of centers xk+ms

and xk+ns , where m < n. (We suppress the lower indices for this argument.) Choose
x ∈ Bk+ms and y ∈ Bk+ns . Let R and r be the radii of Bk+ms and Bk+ns , so that
r ≤ 2ϑsR. We have

(1 + ω)R ≤ ρ(xk+ms, xk+ns)

≤ (1 + ε)ρ(xk+ms, y) + A(ε)ρ(y, xk+ns)

≤ (1 + ε)2ρ(xk+ms, x) + (1 + ε)A(ε)ρ(x, y) + A(ε)ρ(y, xk+ns)

≤ (1 + ε)2R + (1 + ε)A(ε)ρ(x, y) + 2A(ε)ϑsR

≤ R + (2ω/3)R + (1 + ε)A(ε)ρ(x, y)

implying that ρ(x, y) ≥ cR, where c depends on ω and ε, thus ultimately on υ ,
whereas

Cϑk = 1

16A4
0

ϑk ≥ R > r ≥ 1

32A4
0

ϑk+(M−1)s = c(ϑ,υ)ϑk,

since also M and s depend only on ϑ and υ .
Let us now formulate the above given construction of the random almost-covering

by balls as a proposition.

Proposition 8.2 Let 0 < ϑ < A−4
0 /32, k ∈ Z, and υ ∈ (0,1) be given. Then we may

randomly construct a disjoint family B of ρ-balls as follows: if B,B ′ ∈ B are two
different balls, then

c(ϑ,υ)ϑk ≤ rB ≤ Cϑk, ρ
(
B,B ′) ≥ c(ϑ,υ)ϑk,

and for every x ∈ X,

P

(
x ∈

⋃
B∈B

B

)
> 1 − υ.



Non-homogeneous T b Theorem and Random Dyadic Cubes 1097

9 Estimates for Adjacent Cubes of Comparable Size

We are given adjacent (d(Q,R) < CC0 min(�(Q), �(R)) say) Q ∈ D and R ∈ D′
of comparable size, that is �(Q) ∼ �(R) (meaning |gen(Q) − gen(R)| ≤ r). We are
also given some fixed small ε > 0. We define � = Q ∩ R, δQ = {x : d(x,Q) ≤
ε�(Q) and d(x,X \ Q) ≤ ε�(Q)} and δR = {x : d(x,R) ≤ ε�(R) and d(x,X \ R) ≤
ε�(R)}. Also, set

Qb = Q ∩
⋃

R′∈D′:�(R′)∼�(Q)

δR′ (9.1)

and

Rb = R ∩
⋃

Q′∈D:�(Q′)∼�(R)

δQ′ . (9.2)

We define Qs = Q\�\ δR , Q∂ = Q\�\Qs , Rs = R \�\ δQ and R∂ = R \�\Rs .
Furthermore, set �̃ = � \ δQ \ δR . We now finally fix δ = A−4

0 /1000, and then fix
the smallest k for which δk ≤ �−1(8−1ε min(�(Q), �(R)))β . Consider some small
enough υ ∈ (0,1), and set ϑ = δ. Recall Proposition 8.2, that is, the random way to
construct a collection of ρ-balls B starting from the fixed level k with parameter υ

(and the related parameters ω, s, and M that all depend on υ but not on k). As we
have P(x ∈ ⋃

B∈B B) > 1 − υ for all x ∈ X, we have E(μ(�̃ \ ⋃
B∈B B)) < υμ(�̃).

So we may now fix some such ball covering B for which μ(�̃ \ ⋃
B∈B B) ≤ υμ(�̃)

as we have positive probability to obtain one. We now remove from the collection B
those balls that do not touch �̃.

First we want to estimate #B. Observe that diam(�) ≤ C0 min(�(Q), �(R)) and
fix some x0 ∈ �. If B ∈ B, fix some x ∈ B ∩ �. Denote the center of B by zB . Note
that

d(zB, x0) ≤ d(zB, x) + d(x, x0)

≤ 2ρ(zB, x)1/β + d(x, x0)

≤ 2δk/β + C0 min(�(Q), �(R))

< [2 + C0�
1/βδ−1/β8ε−1]δk/β

≤ 16C0�
1/βδ−1/βε−1δk/β .

This means that the d-ball B(x0,16C0�
1/βδ−1/βε−1δk/β) contains the centers zB of

the disjoint d-balls B(zB,4−1(A−4
0 δ(M−1)s/32)1/βδk/β). This implies that

#B ≤ N

(
ε

64C0

(
δ(M−1)s+1

32�A4
0

)1/β)−n

.

This is a dependence we can live with, as all the quantities in the upper bound will be
eventually fixed.
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Next, let us check that �B ⊂ � for every B ∈ B. There exists x ∈ B so that
d(x,X \ �) ≥ ε min(�(Q), �(R)) as B ∩ �̃ 	= ∅. If w ∈ �B , we have

d(x,X \ �) − d(w,X \ �) ≤ d(w,x)

≤ d(w, zB) + d(zB, x)

≤ 2ρ(w, zB)1/β + 2ρ(zB, x)1/β

≤ 4�1/βδk/β ≤ ε

2
min(�(Q), �(R)),

and so d(�B,X \ �) ≥ (1/2)ε min(�(Q), �(R)) > 0.
In a forthcoming decomposition we shall have plenty of separated terms. For these

the following lemma comes in handy, and we use it without further mention in what
follows.

Lemma 9.1 Let S1 and S2 be two sets so that we have d(S1) ∼ d(S2) and
d(S1, S2) � ε min(d(S1), d(S2)). Suppose we are also given functions ϕ and ψ so
that ‖ϕ‖L∞(μ) + ‖ψ‖L∞(μ) � 1, spt ϕ ⊂ S1 and spt ψ ⊂ S2. Then it holds that

|〈T ϕ,ψ〉| � ε−dμ(S1)
1/2μ(S2)

1/2.

Proof Using the first kernel estimate we have

|〈T ϕ,ψ〉| �
∫

S2

∫
S1

min

(
1

λ(x, d(x, y))
,

1

λ(y, d(x, y))

)
dμ(y)dμ(x).

It holds that λ(y, d(x, y)) ≥ λ(y, d(S1, S2)) � λ(y, εd(S1)) � ε−dλ(y, d(S1)) ≥
ε−dμ(S1). Similarly λ(x, d(x, y)) � ε−dμ(S2). Thus, it follows that

|〈T ϕ,ψ〉| � ε−d min(μ(S1),μ(S2)) ≤ ε−dμ(S1)
1/2μ(S2)

1/2. �

Recall that any two B,B ′ ∈ B are separated by a distance comparable to their
radii. Then the same is still true for some expanded balls (1 + ε′)B , which contain
the supports of the functions χ̃B := χ̃B,ε′ from the weak boundedness property. We
write

χ� =
∑
B∈B

χ̃B + χ̃�\⋃B, χ̃�\⋃B := χ� −
∑
B∈B

χ̃B ≤ χ�\⋃B;

note also that χ̃�\⋃B ≥ 0 since (1 + ε′)B ⊂ �B ⊂ �. Let further

χ̃�\⋃B = χ̃�\⋃B(χ�i
+ χ�Q

+ χ�R
) =: χ̃�i

+ χ̃�Q
+ χ̃�R

,

where � \ ⋃
B is a disjoint union of �i = �̃ \ ⋃

B and some sets �Q ⊂ Qb and
�R ⊂ Rb . We now decompose
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〈
T (χQb1),χRb2

〉 = 〈
T (χQb1),χR∂

b2
〉 + 〈

T (χQb1),χRs b2
〉

+ 〈
T (χQ∂

b1),χ�b2
〉 + 〈

T (χQs b1),χ�b2
〉

+ 〈
T (χ�b1), χ̃�\⋃Bb2

〉 + 〈
T (χ̃�\⋃Bb1),

∑
χ̃Bb2

〉

+
〈
T

(∑
χ̃Bb1

)
,
∑

χ̃Bb2

〉

= A + B + C + D + E + F + G.

Furthermore, we decompose

E = 〈T (χ�b1), χ̃�\⋃Bb2〉
= 〈T (χ�b1), χ̃�Q

b2〉 + 〈T (χ�b1), χ̃�R
b2〉 + 〈T (χ�b1), χ̃�i

b2〉
= E1 + E2 + E3

and

F =
〈
T (χ̃�\⋃Bb1),

∑
χ̃Bb2

〉

=
〈
T (χ̃�Q

b1),
∑

χ̃Bb2

〉
+

〈
T (χ̃�R

b1),
∑

χ̃Bb2

〉
+

〈
T (χ̃�i

b1),
∑

χ̃Bb2

〉

= F1 + F2 + F3.

We still write

G =
〈
T

(∑
χ̃Bb1

)
,
∑

χ̃Bb2

〉

=
∑
B

〈T (χ̃Bb1), χ̃Bb2〉 +
∑

B 	=B ′
〈T (χ̃Bb1), χ̃B ′b2〉

= G1 + G2.

Let us deal with these terms now. We have for the terms

A = 〈T (χQb1),χR∂
b2〉, C = 〈T (χQ∂

b1),χ�b2〉, E1 = 〈T (χ�b1), χ̃�Q
b2〉

and

E2 = 〈T (χ�b1), χ̃�R
b2〉, F1 =

〈
T (χ̃�Q

b1),
∑

χ̃Bb2

〉
,

F2 =
〈
T (χ̃�R

b1),
∑

χ̃Bb2

〉

that

|C| + |E1| + |F1| � ‖T ‖‖χQb
b1‖L2(μ)μ(R)1/2

and

|A| + |E2| + |F2| � ‖T ‖μ(Q)1/2‖χRb
b2‖L2(μ),
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where we have used the facts that |b1| ∼ 1 and |b2| ∼ 1. Next, we observe that for the
terms

E3 = 〈T (χ�b1), χ̃�i
b2〉 and F3 =

〈
T (χ̃�i

b1),
∑

χ̃Bb2

〉

we have

|E3| + |F3| � υ1/2‖T ‖μ(Q)1/2μ(R)1/2.

For the separated terms

B = 〈T (χQb1),χRs b2〉 and D = 〈T (χQs b1),χ�b2〉
we have the estimate

|B| + |D| � ε−dμ(Q)1/2μ(R)1/2.

It remains to deal with the term G. We invoke the weak boundedness property, the
fact that �B ⊂ � = Q ∩ R for all the boundedly many B ∈ B, and recall that the
parameter ε′ implicit in the functions χ̃B = χ̃B,ε′ only depends on υ to get that

|G1| =
∣∣∣∣
∑
B

〈T (χ̃Bb1), χ̃Bb2〉
∣∣∣∣ � C(ε,υ)μ(Q)1/2μ(R)1/2.

Using the separation of different balls (1 + ε′)B supporting the χ̃B , we also obtain
that

|G2| =
∣∣∣∣

∑
B 	=B ′

〈T (χ̃Bb1), χ̃B ′b2〉
∣∣∣∣ � C(ε,υ)μ(Q)1/2μ(R)1/2.

We now recapitulate what we have done in the form of a proposition.

Proposition 9.2 Let Q ∈ D and R ∈ D′ be two adjacent cubes of comparable size,
that is, d(Q,R) < CC0 min(�(Q), �(R)) and |gen(Q) − gen(R)| ≤ r . Let ε > 0 and
υ ∈ (0,1). It holds that

|〈T (χQb1),χRb2〉| � ‖T ‖‖χQb
b1‖L2(μ)μ(R)1/2 + ‖T ‖μ(Q)1/2‖χRb

b2‖L2(μ)

+ υ1/2‖T ‖μ(Q)1/2μ(R)1/2 + C(ε,υ)μ(Q)1/2μ(R)1/2,

where Qb and Rb are as in (9.1) and (9.2), respectively.

10 Random Dyadic Systems

We now randomize our dyadic grids. We first fix a reference system of dyadic points
(zk

α) and the relation ≤ essentially as in the case of the random ball covering (but
working with the metric d instead). Indeed, for each k ∈ Z fix some maximal col-
lection zk

α ∈ X for which d(zk
α, zk

β) ≥ δk for all α 	= β . For each (k,α) there ex-

ists at least one β for which d(zk
α, zk−1

β ) < δk−1. Also, there exists at most one β
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for which d(zk
α, zk−1

β ) < δk−1/2. The ordering ≤ is constructed using the rules we
now describe. Consider any pair (k,α). Check first whether there exists β so that
d(zk

α, zk−1
β ) < δk−1/2. If so, set (k,α) ≤ (k −1, β) and (k,α) 	≤ (k −1, γ ) for γ 	= β .

Otherwise, choose any β for which d(zk
α, zk−1

β ) < δk−1, and set (k,α) ≤ (k − 1, β)

and (k,α) 	≤ (k − 1, γ ) for γ 	= β . Extend by transitivity.
Next, we introduce the transitive relation ↘ exactly as before, and equipped with

the same probabilistic notions. The new dyadic points yk
α are built as before. The

points are said to conflict if d(yk
α, yk

β) < δk/4. Then we do the familiar removal pro-

cedure and get the final dyadic points xk
α , which satisfy d(xk

α, xk
β) ≥ δk/4 if α 	= β .

Observe also that for an arbitrary x ∈ X there exists xk
α so that d(x, xk

α) < 3δk . Using
these one may then build a new relation ≤′, similar to ≤ but related to these new
points, and the corresponding “half-open” cubes Qk

α .
Consider a given point x ∈ X. There exists β so that d(x, zk+1

β ) < δk+1 < δk/500.

Let (k + 1, β) ≤ (k,α). We have P(zk+1
β = xk

α) ≥ π0 > 0 by an analogue of
Lemma 8.1. In particular, final dyadic points of consecutive generations k and k + 1
may well end up close to each other in this sense. Recalling Lemma 4.5 this is relevant
for the proof of the next lemma.

Lemma 10.1 For some fixed x ∈ X and k ∈ Z, it holds

P(x ∈ δQk
α

for some α) � εη

for some η > 0.

Proof Recall the open and closed cubes Q̃k
α and Q

k

α and how they are related to the
“half-open” cubes (we no longer use the hat notation so it may be a bit confusing).
One advantage of these is that they are determined by the centers a little bit differently
from the “half-open” ones. Namely, to know these cubes for some generation M , it
suffices to know the centers x�

β for generations � ≥ M .
Fix the largest m so that 500ε ≤ δm. Now the point is to simply combine

Lemma 4.5 with the last observation preceding this lemma. Indeed, let the re-
lation ↘ be fixed from the level k + m up. Choose some σk+m so that x ∈
Q

k+m

σk+m
. We then randomly choose the relation ↘ between the levels k + m

and k + m − 1. We have P(d(xk+m
σk+m

, xk+m−1
β ) < δk+m−1/500 for some β) ≥ π0

so that P(d(xk+m
σk+m

, xk+m−1
β ) ≥ δk+m−1/500 for all β) ≤ 1 − π0 =: π1 < 1. Let

(k + m,σk+m) ≤′ (k + m − 1, σk+m−1). We again have P(d(xk+m−1
σk+m−1

, xk+m−2
β ) ≥

δk+m−2/500 for all β) ≤ π1 < 1. We continue this way. Let x ∈ Q
k

α . Lemma 4.5
implies together with independence that

P(d(x,X \ Q̃k
α) < εδk) ≤ P(d(xk+j

σk+j
, xk+j−1

σk+j−1
) ≥ δk+j−1/500 for all j = 1, . . . ,m)

≤ πm
1 = (δm)log(π1)/ log δ � εη,

where η = log(π1)/ log δ > 0. This was actually a conditional probability with the
condition that the relation ↘ was fixed in some way from the level k + m up, but as
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this was arbitrary, the same estimate holds without any conditionality. It remains to
note that what we have done actually proves the whole lemma. �

Theorem 10.2 For a fixed Qk
α we have under the random choice of the other dyadic

system that

P(Qk
α ∈ Dbad) � δrγ η.

Proof We make yet another assumption about the largeness of r . Namely, we assume
that r is so large that δr(1−γ ) < 1, say. Let Rk−s be the unique D′-cube of generation
k − s containing the center xk

α of Qk
α . We have that

d(Qk
α,X \ Rk−s) ≥ d(xk

α,X \ Rk−s) − C0δ
k.

If d(xk
α,X \ Rk−s) ≥ 2δkγ δ(k−s)(1−γ ), then d(Qk

α,X \ Rk−s) ≥ δkγ δ(k−s)(1−γ ) for
s ≥ r by the above inequality and the assumption that δr(1−γ ) < 1. Using a variant of
the previous lemma we thus get that

P(Qk
α ∈ Dbad) �

∞∑
s=r

(δγ η)s � δrγ η.
�

11 Synthesis

We now combine all these estimates to prove the non-trivial side of our main theorem,
Theorem 2.3. Indeed, we now prove that ‖T ‖ � 1. To this end, choose f and g so
that |〈Tf,g〉| ≥ (1/2)‖T ‖, ‖f ‖L2(μ) = ‖g‖L2(μ) = 1 and spt f ⊂ B(x0, δ

m), spt g ⊂
B(x1, δ

m) for some x0, x1 ∈ X and m ∈ Z. Write

f =
∑
Q∈D

gen(Q)≥m

�
b1
Qf +

∑
Q∈D

gen(Q)=m

E
b1
Q f = fgood + fbad,

where

fgood =
∑

Q∈Dgood

gen(Q)≥m

�
b1
Qf +

∑
Q∈D

gen(Q)=m

E
b1
Q f.

We write the similar decomposition also for g, and then estimate

|〈Tf,g〉| ≤ |〈Tfgood, ggood〉| + |〈Tfgood, gbad〉| + |〈Tfbad, g〉|.
Furthermore, we have

|〈Tfgood, ggood〉| ≤
∑∣∣〈T (

�
b1
Qf

)
,�

b2
R g

〉∣∣ +
∑∣∣〈T (

�
b1
Qf

)
,E

b2
R g

〉∣∣
+

∑∣∣〈T (
E

b1
Q f

)
,�

b2
R g

〉∣∣ +
∑∣∣〈T (

E
b1
Q f

)
,E

b2
R g

〉∣∣,
where we sum over the obvious sets.
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The first three series are similar so we only deal with the first one (by the above
theory, it suffices that the term with the smaller support has zero integral). To this
end, let us estimate the first series by (we agree that naturally all the time Q ∈ Dgood

and R ∈ D′
good)

( ∑
�(Q)∼�(R)

+
∑

�(Q)	∼�(R):Q∩R=∅
+

∑
�(Q)	∼�(R):Q∩R 	=∅

)
|〈T (�

b1
Qf ),�

b2
R g〉|.

The second series in the above decomposition is � ‖f ‖L2(μ)‖g‖L2(μ) = 1 by Sect. 6
(see Lemma 6.2 and Proposition 6.3), while the third series is � ‖f ‖L2(μ) ×
‖g‖L2(μ) = 1 by Sect. 7 (see (7.1), Theorem 7.2, and Proposition 7.3). We then write
the first series in the above decomposition in the form

∑
�(Q)∼�(R)

d(Q,R)≥CC0 min(�(Q),�(R))

|〈T (�
b1
Qf ),�

b2
R g〉|

+
∑

�(Q)∼�(R)

d(Q,R)<CC0 min(�(Q),�(R))

|〈T (�
b1
Qf ),�

b2
R g〉|

noting that the first series is � ‖f ‖L2(μ)‖g‖L2(μ) = 1 by the techniques used in
Sect. 6 (see the beginning of the proof of Lemma 6.2 and Proposition 6.3). For a
given cube Q there exists only � 1 cubes R such that �(Q) ∼ �(R) and d(Q,R) �
min(�(Q), �(R)). Thus, we have by Sect. 9 that (see Proposition 9.2)

∑
�(Q)∼�(R)

d(Q,R)<CC0 min(�(Q),�(R))

∣∣〈T (
�

b1
Qf

)
,�

b2
R g

〉∣∣

� ‖T ‖
( ∑

gen(Q)>m

|AQ|2‖χQb
b1‖2

L2(μ)

)1/2

+ ‖T ‖
( ∑

gen(R)>m

|BR|2‖χRb
b2‖2

L2(μ)

)1/2

+ υ1/2‖T ‖ + C(ε, ν),

where the constants AQ are related to the decomposition �
b1
Qf = ∑

AQ′χQ′b1,
where we sum over the subcubes Q′ of Q. The constants BR are similarly related
to g.

The fourth series involving the factors E
b1
Q f and E

b2
R g has no terms with zero

integral, but the point is that there are only � 1 nonzero terms as the functions f

and g are supported on balls of radius δm and gen(Q) = gen(R) = m in that sum.
One can deal with the well-separated terms using the first kernel estimate and use the
estimates of Sect. 9 for the rest (see Proposition 9.2). The net result is that
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(1/2)‖T ‖ ≤ |〈Tf,g〉|

� ‖T ‖
( ∑

gen(Q)≥m

|AQ|2‖χQb
b1‖2

L2(μ)

)1/2

+ ‖T ‖
( ∑

gen(R)≥m

|BR|2‖χRb
b2‖2

L2(μ)

)1/2

+ υ1/2‖T ‖ + ‖T ‖‖gbad‖L2(μ) + ‖T ‖‖fbad‖L2(μ) + C(ε, ν),

where the constants for the level m come from writing E
b1
Q f = AQχQb1 and E

b2
R g =

BRχRb2. Choosing r large enough, ε and υ small enough, and choosing the dyadic
grids D and D′ so that the first five terms (together with the implicit constants in
front) contribute less than (1/4)‖T ‖ yields that ‖T ‖ � 1 as desired. These details
follow pretty much as in [11] now that the lemmas in the previous section have been
proven.

Let us quickly sketch the details for completeness. We can estimate E‖fbad‖2
L2(μ)

(over the grids D and D′) by introducing the square function

Sh(x) =
∑
Q∈D

gen(Q)≥m

‖�b1
Qh‖2

L2(μ)
μ(Q)−1χQ +

∑
Q∈D

gen(Q)=m

‖Eb1
Q h‖2

L2(μ)
μ(Q)−1χQ.

The point is that
∫
X

Shdμ ∼ ‖h‖2
L2(μ)

for all h. By Theorem 10.2 we have for any

fixed grid D taking the expectation over the grids D′ that

E‖fbad‖2
L2(μ)

�
∫

X

ESfbad dμ � δrγ η

∫
X

Sf dμ � δrγ η‖f ‖2
L2(μ)

= δrγ η,

and then the same holds if we take the expectation over all the grids D and D′ too. We
now once and for all fix r to be so large that everything we have done above works and
that we have E‖fbad‖2

L2(μ)
≤ 2−100. The same argument shows that E‖gbad‖2

L2(μ)
≤

2−100.
To deal with the remaining terms, write

f k =
∑

gen(Q)=k

AQχQb1 and f k
b =

∑
gen(Q)=k

AQχQb
b1.

We have by Lemma 10.1 that EχQb
(x) � εηχQ(x) for all x ∈ X and for all Q in a

fixed grid D (taking the expectation over the grids D′), and thus

E

∑
k≥m

‖f k
b ‖2

L2(μ)
=

∑
k≥m

∫
X

E|f k
b |2 dμ � εη

∑
k≥m

‖f k‖2
L2(μ)

� εη‖f ‖2
L2(μ)

= εη.
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The same then holds if we take the expectation over all the grids D and D′ too. The
same argument shows that also (with the obvious notation)

E

∑
k≥m

‖gk
b‖2

L2(μ)
� εη.

This proves that we may choose the grids D and D′ so that

(1/2 − 2−50 − C4υ
1/2 − C5ε

η/2)‖T ‖ � C(ε,υ),

from which the claim follows by choosing the constants ε and υ properly.

12 Application to Bergman-Type Operators

Volberg and Wick [13] recently obtained a characterization of measures μ in the
unit ball B2n of C

n for which the analytic Besov–Sobolev space Bσ
2 (B2n) embeds

continuously into L2(μ). (More precisely, they completed the picture by settling the
remaining difficult case concerning σ ∈ (1/2, n/2).) Their proof goes through a new
T 1 theorem for what they call “Bergman-type” operators. Let us describe the situa-
tion to see that this application (although, unfortunately, not their abstract T 1 theorem
behind it) could also be obtained as a consequence of our theory.

The measures μ in [13] satisfy the upper power bound μ(B(x, r)) ≤ rm, except
possibly when B(x, r) ⊆ H , where H is a fixed open set. However, in the exceptional
case it holds that r ≤ δ(x) := d(x,Hc), and hence

μ
(
B(x, r)

) ≤ lim
ε→0+μ

(
B

(
x, δ(x) + ε

)) ≤ lim
ε→0+

(
δ(x) + ε

)m = δ(x)m.

Thus we find that their measures are actually upper doubling with

μ
(
B(x, r)

) ≤ max
(
δ(x)m, rm

) =: λ(x, r).

The Bergman-type kernels K(x,y) of [13] are required to have the pointwise es-
timate

|K(x,y)| ≤ C min

(
1

d(x, y)m
,

1

max(δ(x)m, δ(y)m)

)
,

where the upper bound is seen to be precisely the same

C min

(
1

λ(x, d(x, y))
,

1

λ(y, d(x, y))

)

as required by our theory. However, the Hölder-continuity estimate is only assumed
in the form

∣∣K(x,y) − K
(
x′, y

)∣∣ + ∣∣K(y,x) − K
(
y, x′)∣∣ ≤ Cd(x, x′)α

d(x, y)m+α
,
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for d(x, y) > 2d(x, x′), which is weaker than our condition when δ(x) � d(x, y).
Hence the abstract main result of Volberg and Wick [13, Theorem 1], is not as such
included in our theory, but consists of a different extension of the non-homogeneous
analysis of [11].

However, when it comes to the main application concerning the Besov–Sobolev
spaces [13, Theorem 2], the relevant kernel has the specific form

K(x,y) = (1 − x̄ · y)−m, x, y ∈ B̄2n ⊂ C
n.

Here x̄ stands for the componentwise complex conjugation, and dot designates the
usual dot product of n-vectors. Moreover, one equips B̄2n \ 1

2B2n with the regular
quasi-distance (see [12, Lemma 2.6])

d(x, y) := ||x| − |y|| +
∣∣∣∣1 − x̄ · y

|x| |y|
∣∣∣∣.

Finally, the set H related to the exceptional balls is now the open unit ball B2n. It is
noteworthy that δ(x) = d(x,Hc) = 1 − |x| is the same as the distance of x and Hc

in the Euclidean metric [12, Lemma 2.8].
In [13] it is checked that this kernel K , the quasi-metric d , and the set H indeed

satisfy the Bergman-type kernel estimates. We now observe that even the standard
estimates of our theory are verified. It is shown in [12, Eq. (6)] that |1 − x̄ · y| ≥
3−1d(x, y), and obviously |1 − x̄ · y| ≥ 1 − |x| = δ(x); similarly with y in place
of x. This confirms the first standard estimate, which we already knew. As for the
Hölder-continuity, the proof of [12, Proposition 2.13] contains the bound

∣∣K(x,y) − K
(
x′, y

)∣∣ �
(

d(x, x′)
|1 − x̄ · y|

)1/2 1

|1 − x̄ · y|m ,

for d(x, y) > Cd(x, x′), and it suffices to use |1 − x̄ · y| � d(x, y) in the first factor
and |1 − x̄ · y| � max(d(x, y), δ(x)) in the second. The Hölder estimate with respect
to the second variable is of course completely analogous.

In the formulation of their weak boundedness property and the BMO conditions,
Volberg and Wick use certain “cubes” [13, Sect. 7] which, just like in R

n with the
usual distance, can actually be viewed as balls with respect to an equivalent regular
quasimetric of �∞-type. So even this is compatible with our theory. Volberg and Wick
conclude their paper [13] with essentially the same remark, with which Nazarov,
Treil, and Volberg started theirs [11], that “these considerations can be extended to
the case of metric spaces.” And indeed they can!
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