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Abstract Let M be a compact manifold of dimension n, P = P(h) a semiclassical
pseudodifferential operator on M , and u = u(h) an L2 normalized family of functions
such that P(h)u(h) is O(h) in L2(M) as h ↓ 0. Let H ⊂ M be a compact submanifold
of M . In a previous article, the second-named author proved estimates on the Lp

norms, p ≥ 2, of u restricted to H , under the assumption that the u are semiclassically
localized and under some natural structural assumptions about the principal symbol
of P . These estimates are of the form Ch−δ(n,k,p) where k = dimH (except for a
logarithmic divergence in the case k = n − 2, p = 2). When H is a hypersurface,
i.e., k = n − 1, we have δ(n,n − 1, 2) = 1/4, which is sharp when M is the round
n-sphere and H is an equator.

In this article, we assume that H is a hypersurface, and make the additional geo-
metric assumption that H is curved (in the sense of Definition 2.6 below) with respect
to the bicharacteristic flow of P . Under this assumption we improve the estimate from
δ = 1/4 to 1/6, generalizing work of Burq–Gérard–Tzvetkov and Hu for Laplace
eigenfunctions. To do this we apply the Melrose–Taylor theorem, as adapted by Pan
and Sogge, for Fourier integral operators with folding canonical relations.
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1 Introduction

Let M be a compact manifold of dimension n and P = P(h) a semiclassical
pseudodifferential operator on M parameterized by the positive number h ∈ (0, h0].
Suppose that u = u(h) is an O(h) quasimode, i.e., an L2-normalized family of func-
tions, defined for some subset of (0, h0] accumulating at 0, such that P(h)u(h) is
O(h) in L2(M). We assume P has real principal symbol p(x, ξ) and that its full sym-
bol is smooth in h. We also put technical assumptions on p(x, ξ) (see Definitions 2.5
and 2.6) and assume u is localized (see Definition 2.1). One important special case is
when P(h) = h2�−1 where � is the Laplacian with respect to a Riemannian metric
on M . Then u(h) is an approximate eigenfunction with eigenvalue h−2:

(� − h−2)u(h) = O(h−1) in L2(M).

Other cases of interest are discussed in [13], where this framework was introduced.
The aim of this paper is to bound the extent to which u(h) can concentrate as

h → 0 by estimating the Lp norm of u restricted to hypersurfaces, in a manner that
is sharp (up to a constant independent of h) as h → 0. In particular, we wish to relate
the degree of concentration to the geometry of the hypersurface to the bicharacteristic
flow of P(h).

There are a number of ways to study concentration of eigenfunctions. One
can, for example, study semiclassical measures as in Gérard–Leichtnam [9], Zel-
ditch [19], Zelditch–Zworski [20], Anantharaman [1], Anantharaman–Koch–Non-
nenmacher [3], Anantharaman–Nonnenmacher [2]. The aim of these studies is gener-
ally to prove nonconcentration theorems under geometric conditions on the geodesic
flow (such as Anosov flow).

In 1988 Sogge [16] produced sharp Lp estimates for spectral clusters (and there-
fore eigenfunctions) of elliptic operators, comparing the size of the Lp norm over the
full manifold to the L2 norm in terms of powers of the eigenvalue λ. Tataru [18] in
1998 proved estimates for restrictions of solutions of second-order hyperbolic equa-
tions to the boundary, as well as to interior hypersurfaces. These results imply cor-
responding results for approximate eigenfunctions of second-order elliptic operators,
by considering the special case of time-independent operators and time-harmonic so-
lutions. In 2007 Burq, Gérard, and Tzvetkov [6] proved estimates for general subman-
ifolds and Laplacian eigenfunctions. Their estimates are sharp for subsequences of
spherical harmonics. For high p these estimates are optimized by eigenfunctions con-
centrating at a point. For low p the optimizing examples are eigenfunctions concen-
trating in a small tube around a stable periodic geodesic. Like Tataru, Burq, Gérard,
and Tzvetkov [6] were able to obtain better estimates for small p in dimension two
when the submanifold is a curve with positive geodesic curvature. Hu [12] obtained a
similar result for hypersurfaces in n dimensions where the hypersurface has positive
curvature. In the special case of a flat two- or three-dimensional torus Bourgain and
Rudnick obtain an improved nonconcentration result for curved hypersurfaces [4].
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Fig. 1 δ(p) plotted against 1/p

for a general hypersurface and
for a hypersurface curved with
respect to the flow

In 2010 Tacy [17] extended results of Tataru and Burq–Gérard–Tzvetkov on
Laplacian eigenfunctions to quasimodes of semiclassical operators. This extension
uses the semiclassical framework set up in Burq–Gérard–Tzvetkov [5] and Koch–
Tataru–Zworski [13]. The main result of [17] is the following, where we refer to
Definitions 2.1 and 2.5 for the precise definitions of localization and admissibility.

Theorem 1.1 Let (M,g) be a smooth manifold without boundary and let H be a
smooth embedded hypersurface. Let u(h) be a family of L2 normalized functions that
satisfy P(h)u(h) = OL2(h) for P(h) a semiclassical operator with symbol p(x, ξ).
Assume further that u satisfies the localization property and that the symbol p(x, ξ)

is admissible. Then

‖u(h)‖Lp(H) � h−δ(n,p),

δ(n,p) =
{

n−1
2 − n−1

p
, 2n

n−1 ≤ p ≤ ∞,
n−1

4 − n−2
2p

, 2 ≤ p ≤ 2n
n−1 .

(1)

Remark 1.2 We have only given the results of [17] pertaining to hypersurfaces.
Higher codimension submanifolds were also treated there.

The present paper extends the improved estimates of Tataru, Burq–Gérard–
Tzvetkov and Hu for curved hypersurfaces (see Definition 2.6) to the semiclassical
regime, framing the geometric conditions in terms of the classical (bicharacteristic)
flow. To motivate the condition of curvature, recall that the classical flow defined by{

ẋ = ∂ξp(x, ξ)

ξ̇ = −∂xp(x, ξ)
(2)

describes the movement in phase space of a classical particle with classical Hamil-
tonian p(x, ξ). For the model case of the Laplacian the flow defined by (2) is the
geodesic flow. In the semiclassical regime we wish to find estimates that link the
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properties of this classical flow to concentrations of quasimodes. Intuitively we can
think of highly localized packets moving on trajectories defined by the flow. The more
time a packet spends near a hypersurface the move concentration we would expect
to see there. In [13] and [17] it is shown that for a hypersurface T with boundary
defining function1 t , if at some point (x0, ξ0) we have ṫ 
= 0 (hence locally T is a
‘time slice’ for the flow), where the dot indicates derivative with respect to bicharac-
teristic flow, and if u is a quasimode sufficiently localized near (x0, ξ0), then u does
not concentrate on T . That is, if χ ∈ C∞

0 (Rn × R
n) is a cutoff function with small

enough support around (x0, ξ0) then

‖χ(x,hD)u(h)‖L2(T ) � ‖u(h)‖L2(M) . (3)

However, for a general hypersurface H , with boundary defining function r , a bichar-
acteristic may stay inside H , allowing considerable concentration of an associated
wave packet on H . As shown in [13] and [17], concentration (as measured by L2

norm) could be as bad as ∼ h−1/2 assuming just the localization condition and as-
sumption (A1) below, while additionally assuming (A2) introduces dispersion effects
which reduces the concentration to ∼ h−1/4. To improve on this, we need to rule out
bicharacteristics that stay inside H . A natural assumption to make is that the pro-
jections of bicharacteristics are only simply tangent to H . In local coordinates this
is the same as saying that whenever a bicharacteristic is tangent to H , i.e., ṙ(x0, ξ0)

vanishes, x0 ∈ H , then the normal acceleration r̈(x0, ξ0) is nonzero. We phrase this
by saying that H is curved with respect to the bicharacteristic flow.

Under this additional assumption, which we label (A3) in Definition 2.6, we show
that the concentration is at most ∼ h−1/6:

Theorem 1.3 Let M , H , P(h), and u(h) be as in Theorem 1.1. If H is curved with
respect to the flow given by p(x, ξ), i.e., satisfies assumption (A3) in Definition 2.6,
then the estimate (1) for p = 2 can be improved from δ = 1/4 to δ̃ = 1/6. By interpo-
lation with the result for p = 2n/(n − 1), we obtain

‖u(h)‖Lp(H) � h−δ̃(n,p), 2 ≤ p ≤ 2n

n − 1
,

δ̃(n,p) = n − 1

3
− 2n − 3

3p
,

(4)

under assumption (A3).

Remark 1.4 For p ≥ 2n/(n − 1) there is no improvement in the curved case. In this
case the ‖ · ‖Lp(H) norm is maximized by functions that concentrate at points so we
would not expect the geometry of the hypersurface to affect such estimates.

1We say that the real function t is a boundary defining function for T if T = {t = 0} and if t vanishes
simply at T , i.e., dt 
= 0 at H ′ .
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2 Semiclassical Analysis

We work with semiclassical pseudodifferential operators (for a full introduction see
[5, 8], or [13]). Such operators are defined by their symbol p(x, ξ,h) and a quantiza-
tion procedure

P(h)u(h) = p(x,hD,h)u(h) = 1

(2πh)n

∫
e

i
h
〈x−y,ξ〉p(x, ξ,h)u(y,h)dξdy

where h is a small parameter. Because we will assume that u(h) is localized (Defini-
tion 2.1), it is harmless to assume that p is a C∞

c function of (x, ξ), and for simplicity
we take it to be smooth in h ∈ [0, h0]. By abuse of notation we denote the principal
symbol p(x, ξ,0) by p(x, ξ), and we will write p(x,hD) for p(x,hD,h).

Following [13], we assume that our family of quasimodes p(x,hD)u(h) =
OL2(h) is semiclassically localized:

Definition 2.1 A function u(h) depending parametrically on h is localized if there
exists χ ∈ C∞

c (T 	M) such that

u(h) = χ(x,hD)u(h) + OC∞(h∞).

Remark 2.2 On a non-compact manifold we can still define a localized function u(h)

by replacing C∞ with the space of Schwartz functions S .

Remark 2.3 For the rest of this paper we assume that all quasimodes u = u(h) have
a parametric dependence on h and for ease of notation suppress the h from our ex-
pressions.

Localization is compatible with the assumption that p(x,hD)u = OL2(h): that is,
if χ ∈ C∞

c (T 	M) then

p(x,hD)u = OL2(h) ⇒ p(x,hD)(χ(x,hD)u) = OL2(h).

Using this localization assumption we are able to turn the global problem into a local
problem on small patches in T 	M . If χ ∈ Cc(T

	M) is such that

u = χ(x,hD)u + OC∞(h∞)

then, using compactness of the support of χ , we can write

χ(x, ξ) =
N∑

i=1

χi(x, ξ)

for some N < ∞ where each χi has arbitrarily small support. In this fashion we
reduce estimating ‖χ(x,hD)u‖Lp(H) to estimates on ‖χi(x,hD)u‖Lp(H) (the error
term OC∞(h∞) is of course trivial to estimate). Due to this localization we can re-
place M with R

n, H with R
n−1 and T 	M with R

n × R
n. We work in local Fermi

coordinates (y, r) where H = {(y, r) | r = 0}.
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Still following [13], we further reduce this problem to localizing around points
(x0, ξ0) where p(x0, ξ0) = 0. To achieve this we use Lemma 2.1 of [13] which shows
that if |p(x, ξ)| ≥ 1/C on a local patch then we can invert p(x,hD) up to order h∞.
That is, choosing χ(x, ξ) supported on this patch, we can find some q(x,hD) such
that

q(x,hD)p(x,hD)χ(x,hD) = χ(x,hD) + OL2→L2(h
∞)

and

p(x,hD)q(x,hD)χ(x,hD) = χ(x,hD) + OL2→L2(h
∞).

So if p(x,hD)u = OL2(h) and |p(x, ξ)| > 1/C we can invert p(x,hD) to get

χ(x,hD)u = OL2(h).

We can combine this estimate with the following ‘semiclassical Sobolev inequal-
ity’ (see [5, 8], or [13] for proof) to obtain hypersurface restriction estimates.

Lemma 2.4 (semiclassical Sobolev estimates) Suppose that a family u = u(h) satis-
fies the localization condition. Then for 1 ≤ q ≤ p ≤ ∞

‖u‖Lp � hn(1/p−1/q) ‖u‖Lq + O(h∞).

To get the L2 norm of the restriction of u to H we use Lemma 2.4 in only the r

coordinates. This is justified as localization in T 	
R

n implies localization in T 	
R

n−1

(see [17]). We have

‖u(y,0)‖L2
y
� ‖u(y, r)‖L∞

r L2
y
� h− 1

2 ‖u(y, z)‖L2
zL

2
y
. (5)

So, if |p(x, ξ)| ≥ 1/C, and Pu = OL2(h), the L2 norm of u when restricted to a

hypersurface H containing x0 is O(h
1
2 ). This is significantly better than the L2 es-

timate given by Theorem 1.3. Consequently we can ignore regions where p(x, ξ) is
bounded away from zero.

To get better estimates when p(x0, ξ0) = 0 than what can be obtained from
Lemma 2.4 (which uses only localization), we need to make assumptions on the func-
tion p (to prevent p vanishing identically, for example, in which case the assumption
Pu = O(h) is vacuous!). Our first assumption (A1) is that p vanishes simply on each
cotangent fiber:

(A1) for any point (x0, ξ0) such that p(x0, ξ0) = 0, we have ∂ξp(x0, ξ0) 
= 0.

Our second condition is a geometric condition on the characteristic variety. The
condition eliminates examples such as p(x, ξ) = ξ1, i.e., P = hDx1 , for which we
cannot estimate ‖u‖L2(H) by better than the h−1/2 estimate given by Lemma 2.4
alone. Let us note that (A1) implies that the set

{ξ | p(x0, ξ) = 0} ⊂ T 	
x0

M (6)

is a smooth hypersurface in T 	
x0

M .
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(A2) For each x0 ∈ M , the second fundamental form of (6) is positive definite.

Definition 2.5 A symbol p(x, ξ) is admissible if it satisfies condition (A1) and (A2).

In addition we make the geometric assumption of curvature with respect to the
flow.

Definition 2.6 A hypersurface H of M is curved with respect to the flow if the
projection of the bicharacteristic flow to M is at most simply tangent to H , or in
other words, if for one (and hence any) boundary defining function r for H , we have

(A3) For any (x0, ξ0), ṙ(x0, ξ0) = 0 implies that r̈(x0, ξ0) 
= 0.

Remark 2.7 In the case P(h) = h2�−1, where � is the Laplacian on M with respect
to a Riemannian metric, assumptions (A1) and (A2) are satisfied, and (A3) is satisfied
iff H has positive definite second fundamental form. Thus, in this case our result
reduces to that of Burq–Gérard–Tzvetkov [6] (n = 2) and Hu [12] (n ≥ 2).

3 Evolution Equation

Using the argument in the previous section we can assume that p(x0, ξ0) = 0. As-
sumption (A1) then tells us that ∂ξp(x0, ξ0) 
= 0. Let us choose coordinates x = (y, r)

where y ∈ R
n−1 and r ∈ R is a boundary defining function for H . Let ξ = (η, ν) be

the dual coordinates. If ∂νp(x0, ξ0) 
= 0 then we have ṙ 
= 0 and, as mentioned in the
Introduction (see (3)), u does not concentrate at H at all. So we may assume that
∂νp(x0, ξ0) = 0, in which case (A1) gives ∂ηp(x0, ξ0) 
= 0. By a linear change of y

coordinates we can assume that ∂η1p(x0, ξ0) 
= 0 and ∂ηj
p(x0, ξ0) = 0 for j ≥ 2.

Now we apply the implicit function theorem and deduce that the characteristic
variety {p = 0} implicitly defines ξ1 as a smooth function of (x, ξ2, . . . , ξn):

p = 0 =⇒ ξ1 = a(x, ξ2, . . . , ξn). (7)

We shall now write x1 = t and think of it as a time variable. We write x = (t, x̄) and
similarly, ξ1 = τ and ξ = (τ, ξ̄ ). We also write y = (t, y′) and η = (τ, η′). Thus x =
(t, y′, r) and correspondingly ξ = (τ, η′, ν). We write T for the ‘initial’ hypersurface
{t = 0}, and recall that H = {r = 0}. We assume that t = 0 at (x0, ξ0) and write
(x0, ξ0) = ((0, x̄0), ξ0) = ((0, y′

0,0), (τ0, η
′
0, ν0)).

As a consequence of (7), we have

p = e(x, ξ)
(
τ − a(x, ξ̄ )

)
near (x0, ξ0), where e(x0, ξ0) 
= 0. By localizing suitably we may assume that e 
= 0
on the support of our localizing function χ . The condition Pu = O(h) in L2 then
implies that

e(x,hDx)
(
hDt − a(x,hDx̄)

)
u = OL2(M)(h)
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and using the local invertibility modulo O(h∞) of e(x,hDx), we find that(
hDt − a(x,hDx̄)

)
u = hf (t, x̄) (8)

where ‖f ‖L2(M) = O(1).
We view (8) as an evolution equation for u, which determines u given the ‘ini-

tial data’ u(0, x̄) and the inhomogeneous term f (t, x̄). This determines a family of
solution operators Us(t), such that Us(t) is the solution operator for the evolution
equation (

hDt − a(s + t, x̄, hDx̄)
)
u = 0, u(0, x̄) = u(x̄).

Using Duhamel’s principle we write

u(t, x̄) = U0(t)u(0, x̄) + i

∫ t

0
Us(t − s)f (s, x̄)ds.

Now let RH be the operation of restriction to the hypersurface H , and let Ws(t) =
RH ◦ Us(t). Also, let u0 = u(0, x̄) be the restriction of u to the initial hypersurface
T = {t = 0}. We then have

u(t, y′,0) = W0(t)u0 + i

∫ t

0
Ws(t − s)f (s, x̄)ds.

Using Minkowski’s inequality we have

‖u‖L2(H) �
(∫

‖W0(t)u0‖2
L2

y′
dt

)1/2

+
∫

R

(∫
‖Ws(t − s)f (s, x̄)‖2

L2
y′

dt

)1/2

ds. (9)

We recall from (3) (with H ′ = T ) that ‖u0‖L2(T ) � ‖u‖L2(M). Therefore, to prove
Theorem 1.3, i.e., obtain a L2 bound of

‖u‖L2(H) � h−1/6 ‖u‖L2(M)

it suffices to obtain (∫
‖W0(t)u0‖2

L2
y′

dt

)1/2

� h−1/6 ‖u0‖L2(T ) (10)

and an estimate, uniform in s, of the form

(∫
‖Ws(t − s)f ‖2

L2
y′

dt

)1/2

� h−1/6 ‖f ‖L2(T ) . (11)

For each s we will show that (11), and therefore (10), holds with a constant that de-
pends only on the seminorms of a(x, ξ̄ ). In fact, the estimates are uniform given uni-
form bounds on a finite number of derivatives of a, and given uniform lower bounds
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on the nondegeneracies involved in the computation in Sect. 5—see Remark 5.5. Such
uniform bounds hold provided that the patch size is chosen sufficiently small. There-
fore we only address the estimate for W0(t), which we denote by W(t) from here on.
To obtain this estimate we view W(t), thought of as a single operator from L2(T ) to
L2(H) instead of as a family parameterized by t , as a Fourier integral operator.

4 Fourier Integral Representation

We need to express the solution operator for the evolution equation

hDt − a(t, x̄, hDx̄) = 0 (12)

as a Fourier integral operator. We will then be able to transfer properties of the flow
to properties of the phase function defining the operator U(t).

Proposition 4.1 Suppose U(t) : L2(Rd) → L2(Rd) satisfies

hDtU(t) − A(t)U(t) = 0, U(0) = Id

where A(t) is a semiclassical pseudodifferential operator such that the symbol
a(t, x̄, η) of A(t) is real and is smooth in h. Then there exists some t0 > 0 inde-
pendent of h such that for 0 ≤ t ≤ t0

U(t)u(x̄) = 1

(2πh)d

∫ ∫
e

i
h
(φ(t,x̄,ξ̄ )−w̄·ξ̄ )b(t, x̄, ξ̄ , h)u(w̄)dw̄dξ̄ + E(t)u(x̄)

where

∂tφ(t, x̄, ξ̄ ) − a(t, x̄, ∂x̄φ(t, x̄, ξ̄ )) = 0, φ(0, x̄, ξ̄ ) = x̄ · ξ̄ ,

b(t, x̄, ξ̄ , h) ∈ C∞
c (R × T 	

R
d × R) and

E(t) = O(h∞) : S ′ → S.

Proof This is in fact the normal parametrix construction yielding the eikonal equation
for the phase function. See [8] Sect. 10.2. �

Recall that W(t) = RH ◦ U(t) so we have

W(t)f (y′) = 1

(2πh)n−1

∫∫
e

i
h
(φ(t,(y′,0),ξ̄ )−w̄·ξ̄ )b(t, y′, η,h)f (w̄)dw̄dξ̄ .

In what follows we will write φ(t, y′, η′, ν) for φ(t, (y′,0), ξ̄ ) (recall that ξ̄ =
(η′, ν)). We want to estimate the operator norm of W(t) regarded as a single operator
acting from L2(T ) to L2(H). Note that W(t) = Z ◦ Fh where Fh is the semiclassical
Fourier transform:

Fhf (ξ̄ ) = 1

(2πh)
n−1

2

∫
e− i

h
ξ̄ ·v̄f (v̄)dv̄
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and the operator Z is given by

Zg(t, y′) = 1

(2πh)
n−1

2

∫∫
e

i
h
φ(t,y′,η′,ν)b(t, y′, η′, ν, h)g(η′, ν) dη′ dν.

As ‖Fhf ‖L2 = ‖f ‖L2 it is enough to estimate L2 → L2 operator norm of Z. To
estimate the operator norm of Z we view it as a semiclassical Fourier integral operator
and analyze its canonical relation.

5 Canonical Relation

To prove Theorem 1.3 we need to show that the operator norm of Z is bounded by
Ch−1/6. To do this we use the following theorem of Pan and Sogge [15] which is the
analogue for oscillatory integral operators of Melrose and Taylor’s [14] theorem on
Fourier integral operators with folding canonical relations.

Theorem 5.1 Let the oscillatory integral operator Tλ be defined by

Tλf (x) =
∫

Rd

eiλψ(x,y)β(x, y)f (y)dy

where β ∈ C∞
0 (Rd × R

d) and the phase function ψ ∈ C∞(Rd × R
d) is real. If the

left and right projections from the associated canonical relation

Cψ = {(x,ψ ′
x(x, y), y,−ψ ′

y(x, y))}
are at most folding singularities then

‖Tλf ‖L2(Rd ) � λ− d
2 +1/6 ‖f ‖L2(Rd ) .

Let us recall (see, for example, [10]) that a smooth map F : R
d → R

d has a folding
singularity at x ∈ R

d if

(i) dF(x) is rank d − 1,
(ii) the function detdF vanishes simply at x, implying in particular that locally near

x, the set of y ∈ R
d such that dF(y) has rank d − 1 is a smooth hypersurface S

containing x, and
(iii) the kernel of dF(x) is not contained in the tangent space to S:

TxS + kerdF(x) = TxR
d .

Given (i) an equivalent condition to (ii) and (iii) is that, if v is a nonzero element of
kerdF(x), then

Dv(detdF(x)) 
= 0. (13)

The operator Z is a Fourier integral operator with canonical relation

C = {
(t, y′, ∂tφ, ∂y′φ,η′, ν,−∂η′φ,−∂νφ)

}
.
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The left and right projections on C are represented in local coordinates by

πL : (t, y′, η′, ν) �→ (t, y′, ∂tφ, ∂y′φ)

and

πR : (t, y′, η′, ν) �→ (η′, ν, ∂η′φ, ∂νφ)

(where we removed the irrelevant minus signs from πR for notational convenience).
The matrix dπL takes the form

dπL =
⎛
⎜⎝ Id 0

∗ B

⎞
⎟⎠

where

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2
tη′φ ∂2

tνφ

∂2
y′η′φ ∂2

y′νφ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

At (x0, ξ0) we have ∂2
y′η′φ = Id, ∂2

tη′φ = ∂η′a = 0, ∂2
y′νφ = 0 and ∂2

tνφ = ∂νa = 0, so
we get

B =
⎛
⎝ 0 0

Id 0

⎞
⎠ at (x0, ξ0).

It is clear that the vector field ∂ν is in the kernel of dπL(x0, ξ0). Moreover, detdπL

is given by ∂2
tνφ · det(∂2

y′η′φ) plus terms vanishing to second-order at (x0, ξ0). To
show that πL has a fold at (x0, ξ0) we need by (13) to show that ∂ν(detdπL) is
nonzero at (x0, ξ0). Due to the vanishing of both ‘off-diagonal’ terms ∂2

tη′φ and

∂2
y′νφ, the nonvanishing of ∂ν(detdπL) at (x0, ξ0) is equivalent to the nonvanishing

of ∂ν(∂
2
tνφ) = ∂3

tννφ.
The matrix dπR takes the form

dπR =
⎛
⎜⎝ 0 Id

D ∗

⎞
⎟⎠
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D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2
η′tφ ∂2

y′η′φ

∂2
νtφ ∂2

νy′φ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

and we see that ∂t is in the kernel of dπR(x0, ξ0). To show that πR has a fold at
(x0, ξ0) we need by (13) to show that ∂t (detdπL) is nonzero at (x0, ξ0). As above,
due to the vanishing of the ‘off-diagonal’ terms ∂2

tη′φ and ∂2
y′νφ, the nonvanishing of

∂t (detdπL) at (x0, ξ0) is equivalent to the nonvanishing of ∂t (∂
2
tνφ) = ∂3

t tνφ.
The proof of Theorem 1.3 is therefore completed by the following lemma:

Lemma 5.2 Under assumptions (A1), (A2), and (A3), we have

∂3
tννφ(x0, ξ0) 
= 0, and ∂3

t tνφ(x0, ξ0) 
= 0.

Remark 5.3 To simplify notation we write (x0, ξ0) for the argument of φ correspond-
ing to this point, although (0, y′

0,0, τ0, η
′
0, ν0) would be more accurate.

Proof We use the Hamilton–Jacobi equation

∂tφ(t, x̄, η′, ν) = a
(
t, x̄, ∂x̄φ(t, x̄, η′, ν)

)
. (14)

Since at t = 0 we have φ(0, x̄, η′, ν) = y′ · η′ + rν (recall that x̄ = (y′, r)), we have

∂3
tννφ(0, x̄, η′, ν) = ∂2

ννa(0, x̄, η′, ν).

Now we apply assumption (A2): it says that the second fundamental form of the
submanifold {τ = a(x, ξ̄0)} ⊂ Tx0M is positive definite. Since ∂ξ̄ a = 0 at (x0, ξ̄0),
the second fundamental form of this submanifold at (x0, ξ0) is given by the matrix of
second derivatives of a:

hij (ξ0) = ∂2
ξi ξj

a(x0, ξ̄0), 2 ≤ i, j ≤ n.

Therefore, ∂2
ννa 
= 0 at (x0, ξ̄0), showing that πL has a fold singularity at (x0, ξ0).

To treat the term ∂3
t tνφ(x0, ξ0), we differentiate (14) in t , obtaining

∂2
t t φ = ∂ta + ∂ξ̄ a · ∂2

x̄t φ.

Using (14) again on the term ∂2
x̄t φ we obtain

∂2
t tφ = ∂ta + ∂ξ̄ a · (∂x̄a + ∂ξ̄ a · ∂2

x̄x̄φ
)
.

We evaluate this at t = 0 since the next derivative to be applied, namely ∂ν , is tangent
to {t = 0}. At t = 0, we have ∂2

x̄x̄φ = 0, so we get

∂2
t t φ

∣∣∣
t=0

= ∂ta + ∂ξ̄ a · ∂x̄a.
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Now when we differentiate in ν, we get

∂3
t tνφ(x0, ξ0) = ∂2

tνa(x0, ξ̄0) + ∂2
ξ̄ ν

a(x0, ξ̄0) · ∂x̄a(x0, ξ̄0) (15)

since ∂ξ̄ a(x0, ξ̄0) = 0.
At this point we remind the reader that we have chosen coordinates (t, y′, r) and

(τ, η′, ν) = (τ, ξ̄ ) such that

∂ξ̄p(x0, ξ0) = 0

and

τ0 − a(t0, x̄0, ξ̄0) = 0.

It follows that ⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ξ a(x0, ξ̄0) = 0

∂τp(x0.ξ0) = e(x0, ξ0)

∂x̄p(x0, ξ0) = −e(x0, ξ0)∂x̄a(x0, ξ̄0)

∂tp(x0, ξ0) = −e(x0, ξ0)∂ta(x0, ξ0).

(16)

Now we apply assumption (A3), which says that r̈ 
= 0. We express r̈ in terms
of a. We have

ṙ = ∂νp = ∂ν

(
e(τ − a)

)
.

Differentiating a second time and using the flow identities

ẋ = ∂ξp(x, ξ), ξ̇ = −∂xp(x, ξ),

we have

r̈ =
(
∂τp∂t + ∂ξ̄p∂x̄ − ∂tp∂τ − ∂x̄p∂ξ̄

)(
(τ − a)∂νe − e∂νa

)
.

At (x0, ξ0) using the identities given in (16) we can simplify this to

r̈(x0, ξ0) = −e
(
∂2
νta(x0, ξ̄0) + ∂x̄a(x0, ξ̄0) · ∂2

νξ̄
a(x0, ξ̄0)

)
. (17)

Therefore, combining (15) and (17), we find

∂3
t tνφ(x0, ξ0) = − r̈(x0, ξ0)

e(x0, ξ0)

= 0.

This shows that πR has a fold singularity at (x0, ξ0) and completes the proof. �

Remark 5.4 It is easy to see from the calculations above that assumption (A3) is
equivalent to the statement that πR has a folding singularity. Similarly, assumption
(A2) is equivalent to the statement that πL has a folding singularity for every hyper-
surface H whose tangent space Tx0H at x0 contains ∂ξp(x0, ξ0)∂x , i.e., the tangent
vector of the projected bicharacteristic through (x0, ξ0).
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Remark 5.5 According to [7], Theorem 2.2, one obtains uniform bounds of the form
Ch−1/6 on the norms of the operators Ws given by (11) provided that there are uni-
form bounds on a finite number of derivatives of the symbol of Ws , and uniform lower
bounds on the determinant of ∂2

y′η′φ, ∂ν(∂
2
tνφ), and ∂t (∂

2
tνφ). These lower bounds are

achieved simply by shrinking the patch size sufficiently and using continuity. Thus
we obtain a bound as in (11) uniformly in s, as desired.

6 Optimality of Theorem 1.3

All the estimates given by Theorem 1.3 are sharp. We study a simple local model
around (0,0) for a hypersurface curved with respect to the flow. Let H = {x | xn = 0}
and p(x, ξ) be given by

p(x, ξ) = ξ1 − xn −
n∑

i=2

ξ2
i .

Note that

ṫ = 1 ẏ′ = −2η′ ṙ = −2ν

τ̇ = 0 η̇′ = 0 ν̇ = 1.

Therefore the flow (x(s), ξ(s)) with initial point (0,0) is given by

t (s) = s y′(s) = 0 r(s) = −s2

τ(s) = 0 η′(s) = 0 ν(s) = s.

So we have that condition (A3) is clearly satisfied as r̈(0) = −2. We have

p(x,hD) = hDt − r − h2D2
r −

n−2∑
i=1

h2D2
y′ .

It is easier to develop a solution in Fourier space. Note that

Fh ◦ p(x,hD) ◦ F −1
h = τ − hDν − ν2 − η′ · η′.

As the semiclassical Fourier transform preserves L2 norms, if∥∥∥(τ − hDν − ν2 − η′ · η′)f
∥∥∥

L2
= OL2(h)

and u = F −1
h f , then

‖p(x,hD)u‖L2 = OL2(h).

We therefore seek a solution for

(τ − hDν − ν2 − η′ · η′)f = 0; (18)
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it is obvious that

g(τ, η′, ν) = e
i
h
( 1

3 ν3+ν(τ−η′·η′))

is a solution to (18). The natural scaling ν → h−1/3ν induces a scaling of τ → h−2/3τ

and η′ → h−1/3η′ and accordingly we place cutoff functions appropriate to that scale.
Let χ ∈ C∞

c (R) satisfy χ(0) = 1, χ ≥ 0, suppχ ⊂ [−1,1], and let

f (τ, η′, ν) = h− n−2
6 − 1

3 χ(|ν|)χ
( τ

εh2/3

)
χ

( |η′|
εh1/3

)
e

i
h
ψ(τ,η′,ν)

where

ψ(τ,η′, ν) = 1

3
ν3 + ν(τ − η′ · η′).

Now ‖f ‖L2 = OL2(1) and f satisfies (18) up to an O(h) error coming from the Dν

hitting the cutoff function χ(|ν|). We define the function u as

u = χ(|x|)F −1
h f.

Now RH u is given by

RH u(y) = h− n−2
6 − 1

3 χ(|y|)
(2πh)

n
2

∫
e

i
h
(tτ+y′·η′+ψ(τ,η′,ν))χ(ν)χ

( τ

εh2/3

)

× χ

( |η′|
εh1/3

)
dτdνdη′.

For |t | ≤ h1/3, ε small, the factor e
i
h
tτ does not oscillate significantly and can be

ignored. Similarly for |y′| ≤ h2/3 the factor e
i
h
y′·η′

does not oscillate significantly
and can also be ignored. On the other hand, there are oscillations in the ν variable.
We claim that the ν integral∫

e
i
h
(tτ+y′·η′+ψ(τ,η′,ν))χ(ν)χ

( τ

εh2/3

)
χ

( |η′|
εh1/3

)
dν (19)

is bounded below by ch1/3. To see this, we insert

1 = χ
( ν

Mh1/3

)
+ (1 − χ)

( ν

Mh1/3

)
,

and integrate by parts once to show that the 1 − χ term is O(M−1h1/3). On the
other hand, with the χ factor inserted into (19), then the eiν(τ−|η′|2)/h factor does
not oscillate for ε sufficiently small (relative to M−1), and can be ignored. We are
thereby reduced to studying the integral with only the eiν3/h oscillatory factor; Theo-
rem 7.7.18 of [11] applies and shows that, with the χ factor inserted, there is a lower
bound ch1/3 on (19), compared to which the 1−χ contribution is negligible for large
M . We conclude that

|RH u(t, y′)| ∼ h− n−2
6 − 1

3 − n
2 + n−2

3 + 2
3 + 1

3 = h− n−1
3
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for |t | ≤ h1/3, |y′| ≤ h2/3. Thus on this set we get a lower bound on the Lp norm:

‖u‖Lp([0,h1/3]t×B(0,h2/3)y′ ) ∼ h
− n−1

3 + 1
3p

+ 2(n−2)
3p = h

−( n−1
3 − 2n−3

3p
)

which saturates the estimate of Theorem 1.3.
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