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Abstract We establish a connection between the absolute continuity of elliptic mea-
sure associated with a second order divergence form operator with bounded measur-
able coefficients with the solvability of an end-point BMO Dirichlet problem. We
show that these two notions are equivalent. As a consequence we obtain an end-point
perturbation result, i.e., the solvability of the BMO Dirichlet problem implies Lp

solvability for all p > p0.
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1 Introduction

We shall prove an equivalence between solvability of certain end-point (BMO)
Dirichlet boundary value problems for second order elliptic operators and a quan-
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tifiable absolute continuity of the elliptic measure associated with these operators.
More precisely, we consider here the Dirichlet problem for divergence form (not
necessarily symmetric) elliptic operators L = divA∇ , where A = (aij (X)) is a ma-
trix of bounded measurable functions for which there exists a λ > 0 such that
λ−1|ξ |2 <

∑
aij ξiξj < λ|ξ |2. The Lp Dirichlet problem for L asks for solvability

in a domain �, in the sense of non-tangential convergence and a priori Lp estimates,
of the problem: Lu = 0 in � with u = f on ∂�.

Let us recall [10] a fundamental property of the harmonic extension to R
+
n of func-

tions of bounded mean oscillation on R
n: If f ∈ BMO, then the Poisson extension

u(x, t) = Pt ∗ f (x) has the property that t |∇u|2 dx dt is a Carleson measure. (Car-
leson measures are defined in Sect. 2, below.) In fact, the Carleson measure norm of
this extension and the BMO norm of f are equivalent.

In [9], this fundamental property was shown to hold for the harmonic functions
in the class of Lipschitz domains. The key fact here is that harmonic measure on
Lipschitz domains is always mutually absolutely continuous with respect to surface
measure, by a well-known result of [4].

In [19], further connections between Carleson measure properties of solutions to
very general second order divergence form elliptic equations and absolute continu-
ity were established. There it was shown that if all bounded solutions to L = divA∇
are arbitrarily well-approximated by continuous functions satisfying an L1 version
of the Carleson measure property, then in fact the elliptic measure belongs to A∞
with respect to surface measure. This approximation property was shown (in [19])
to follow from a certain norm equivalence between two different classical quanti-
ties associated with the solution of an elliptic equation: the nontangential maximal
function, measuring size, and the square function, measuring the size of oscilla-
tions.

These results, from the Carleson measure properties of harmonic functions in the
upper half-space, to theorems such as those in [19] which specifically connect ab-
solute continuity of the representing measures associated with second order diver-
gence form operators to Carleson measure conditions, led us to a conjecture concern-
ing solvability of the Dirichlet problem with data in BMO.

Specifically, we are interested in properties of the elliptic measure of an opera-
tor L = divA∇ which determine that it belongs to the Muckenhoupt A∞ class with
respect to the surface measure on the boundary of the domain of solvability. On the
one hand, A∞ is a “perturbable” condition, in the sense that A∞ = ⋃

Ap = ⋃
Bp .

And when the density of harmonic measure with respect to surface measure belongs
to Bp , it turns out that the Dirichlet problem is solvable with data in Lq , where
1/q + 1/p = 1. (Again, see Sect. 2 for the definitions.) On the other hand, a bound-
ary value problem which is equivalent to A∞ would have to be “perturbable” as
well: solving it would have to imply solvability of the Dirichlet problem in some Lq .
Clearly L∞ cannot be such a perturbable end-point space: all solutions satisfy a max-
imum principle, a precise version of the L∞ Dirichlet problem. In the end, perturbing
from a BMO problem seems quite natural.

We will use a variety of properties of solutions to divergence form elliptic opera-
tors with bounded measurable coefficients. The De Giorgi-Nash-Moser theory of the
late 1950s and early 1960s assures us that weak solutions to these equations are in
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fact Hölder continuous. Further properties of solutions, of the elliptic measure whose
existence is guaranteed by the maximum principle and the Riesz representation the-
orem, and of the relationship of this measure to the Green’s function were developed
in the 1970s and 1980s. For the basic properties of solutions to divergence form op-
erators with bounded measurable coefficients, as in [20] or [1], one can consult the
introduction of [19] where many primary references are cited, and where the issues
for the non-symmetric situation are discussed. See also the related work [11, 13, 14,
18].

2 Definitions and Statements of Main Theorems

Let us begin by introducing Carleson measures and square functions on domains
which are locally given by the graph of a function. We shall assume that our do-
mains are Lipschitz, even though it is possible to formulate and prove these re-
sults with less stringent geometric conditions on the domain. Most likely, the min-
imal geometric conditions required would be chord-arc and nontangentially accessi-
ble.1

Definition 2.1 Z ⊂ R
n is an M-cylinder of diameter d if there exists a coordinate

system (x, t) such that

Z = {(x, t) : |x| ≤ d, −2Md ≤ t ≤ 2Md}

and for s > 0,

sZ = {(x, t) : |x| < sd, −2Md ≤ t ≤ 2Md}.

Definition 2.2 � ⊂ R
n is a Lipschitz domain with Lipschitz “character” (M,N,C0)

if there exists a positive scale r0 and at most N cylinders {Zj }Nj=1 of diameter d , with
r0
C0

≤ d ≤ C0r0 such that

(i) 8Zj ∩ ∂� is the graph of a Lipschitz function φj ,

‖φj‖∞ ≤ M, φj (0) = 0,

(ii)

∂� =
⋃

j

(Zj ∩ ∂�),

(iii)

Zj ∩ � ⊃
{

(x, t) : |x| < d, dist ((x, t), ∂�) ≤ d

2

}

.

1This was pointed out to us by M. Badger.
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If Q ∈ ∂� and

Br(Q) = {x : |x − Q| ≤ r}
then �r(Q) denotes the surface ball Br(Q) ∩ ∂� and T (�r) = � ∩ Br(Q) is the
called the Carleson region above �r(Q).

Definition 2.3 Let T (�r) be a Carleson region associated with a surface ball �r in
∂�. A measure μ in � is Carleson if there exists a constant C = C(r0) such that for
all r ≤ r0,

μ(T (�r)) ≤ Cσ(�r).

For such measure μ we denote by ‖μ‖Car the number

‖μ‖Car = sup
�⊂∂�

(
σ(�)−1μ(T (�))

)1/2
.

Definition 2.4 A cone of aperture a is a non-tangential approach region for Q ∈ ∂�

of the form

	(Q) = {X ∈ � : |X − Q| ≤ a dist(X, ∂�)}.
Sometimes it is necessary to truncate the height of 	 by h. Then 	h(Q) = 	(Q) ∩
Bh(Q).

We remind the reader that L will stand for L = divA∇ where the matrix A has
bounded measurable coefficients ai,j and is strongly elliptic: there exists λ such that
for all ξ ∈ R

n\{0},
λ|ξ |2 ≤

∑
ai,j ξiξj ≤ λ−1|ξ |2.

Definition 2.5 If � ⊂ R
n, and u is a solution to L, the square function in Q ∈ ∂�

relative to a family of cones 	 is

Su(Q) =
(∫

	(Q)

|∇u(X)|2δ(X)2−n dX

)1/2

,

and the non-tangential maximal function at Q relative to 	 is

Nu(Q) = sup{|u(X)| : X ∈ 	(Q)}.
Here δ(X) = dist(X, ∂�). We also consider truncated versions of these operators
which we denote by Shu(Q) and Nh(Q), respectively; the only difference in the def-
inition is that the nontangential cone 	(Q) is replaced by the truncated cone 	h(Q).

Definition 2.6 The Dirichlet problem with the Lp(∂�,dσ) data is solvable for L if
the solution u for continuous boundary data f satisfies the estimate

‖N(u)‖Lp(∂�,dσ) � ‖f ‖Lp(∂�,dσ), (2.1)

where the implied constant does not depend on the given function.
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Definition 2.7 If dμ and dν are finite measures on the boundary of �, then dμ

belongs to A∞ with respect to dν if for all ε there exists an η such that, for every
surface ball � and subset E ⊂ �, whenever ν(E)/ν(�) < η, then μ(E)/μ(�) < ε.

This space was investigated in [2], where various equivalent definitions were
given. In particular, dμ ∈ A∞(dν) if and only if dν ∈ A∞(dμ).

Let us specialize this definition to the domain �, to surface measure dσ and to
the elliptic measure dωL associated with some divergence form operator L. We are
assuming that dωL is evaluated at some fixed point P in the interior of � so that a
solution to L with continuous data f at the point P is represented by this measure:
this means that u(P ) = ∫

∂�
f (y) dωL(y). If dω belongs to A∞(dσ ), then there is

a density function: dωL(y) = k(y) dσ . The a priori estimate of Definition 2.6 turns
out to be equivalent to the fact that the density k(y) satisfies a reverse Hölder es-
timate Bp′ . For general q > 1, the density k is said to belong to Bq(dσ) if there
exists a constant C such that for every surface ball �, ((σ (�))−1

∫
�

kq dσ)1/q <

Cσ(�))−1
∫
�

k dσ . The relationship between the reverse Hölder classes and A∞ is
[2, 12]

A∞(∂�,dσ) =
⋃

p>1

Bq(∂�,dσ).

Definition 2.8 We say that a function f : ∂� → R belongs to BMO with respect to
the surface measure dσ if

sup
I⊂∂�

σ(I)−1
∫

I

|f − fI |2 dσ < ∞.

Here fI = σ(I)−1
∫
I
f dσ . We denote by ‖f ‖BMO(p) the number

‖f ‖BMO(p) = sup
I⊂∂�

(

σ(I)−1
∫

I

|f − fI |p dσ

)1/p

.

It can be shown for any 1 ≤ p < ∞ that ‖f ‖BMO(2) < ∞ if and only if
‖f ‖BMO(p) < ∞. Moreover, ‖ · ‖BMO(p) and ‖ · ‖BMO(2) are equivalent in the sense
that there is a constant C > 0 such that the inequality

C−1‖f ‖BMO(p) ≤ ‖f ‖BMO(2) ≤ C‖f ‖BMO(p) (2.2)

holds for any BMO function f .

This definition can be modified further. Instead of using the difference f − fI in
the definition of the BMO norm one can take

‖f ‖BMO∗(p) = sup
I⊂∂�

inf
cI ∈R

(

σ(I)−1
∫

I

|f − cI |p dσ

)1/p

. (2.3)

Again, it can be shown that this gives an equivalent norm, i.e., there is C > 0 such
that

C−1‖f ‖BMO∗(p) ≤ ‖f ‖BMO(2) ≤ C‖f ‖BMO∗(p).
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Definition 2.9 The BMO Dirichlet problem is solvable for L if the solution u for
continuous boundary data f satisfies

‖|∇u|2δ(X)dX‖Car � ‖f ‖BMO(2).

Equivalently, there exists a constant C such that for all continuous f ,

sup
�⊂∂�

σ(�)−1
∫∫

T (�)

|∇u|2δ(X)dX ≤ C sup
I⊂∂�

σ(I)−1
∫

I

|f − fI |2 dσ. (2.4)

Remark 2.1 It follows from our results that even though we define BMO-solvability
in Definition 2.9 only for continuous boundary data, the solution can be defined for
any BMO function f : ∂� → R, and moreover the estimate (2.4) will hold. In addi-
tion, such a solution u will have a well-defined nontangential maximal function N(u)

for almost every point Q ∈ ∂� and in the nontangential sense

f (Q) = lim
X→Q,X∈	(Q)

u(X), for a.e. Q ∈ ∂�.

We now state our main results.

Theorem 2.1 Let � be a Lipschitz domain and L be a divergence form elliptic oper-
ator with bounded coefficients satisfying the strong ellipticity hypothesis.

If the elliptic measure dωL associated with L is in A∞(∂�,dσ) then the BMO
Dirichlet problem is solvable for L, with in fact equivalence of the two norms in the
estimate (2.4).

Conversely, if the estimate (2.4) holds for all continuous functions f with con-
stants only depending on the Lipschitz character of the domain � and the ellipticity
constant of L, then the elliptic measure dωL belongs to A∞(∂�,dσ).

Remark 2.2 The closure of continuous functions in BMO norm is the VMO class
[21]. From the proof of the theorem, we will see that A∞ is actually equivalent to
solvability of a VMO-Dirichlet problem.

Recall that if a Dirichlet problem for an elliptic operator L is Lp solvable for
some p ∈ (1,∞), then it is solvable for all Lq p − ε < q < ∞, which shows that the
“solvability” is stable under small perturbations.

Theorem 2.1 implies the same kind of stability result for the end-point BMO prob-
lem on the Lp interpolation scale.

Theorem 2.2 (Stability of BMO solvability) Let � be a Lipschitz domain and L be
a divergence form elliptic operator with bounded coefficients satisfying the strong
ellipticity hypothesis.

Assume that the estimate (2.4) holds. Then there exist p0 > 1 such that the Lp

Dirichlet problem for L is solvable for all p0 < p < ∞.
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3 Proofs

Proof of Theorem 2.1 We establish the A∞ property of dωL by assuming the estimate
(2.4) holds uniformly for continuous data.

The elliptic measure for L will be abbreviated dω and is evaluated at a fixed
interior point, P0, of the domain �.

Let � be a surface ball on the boundary of � of radius r . Let �′ be another surface
ball of radius r separated from � by a distance of r . By assumption, if Lu = 0 and
u = f on the boundary, we have

σ(�′)−1
∫∫

T (�′)
|∇u|2δ(X)dX � ‖f ‖BMO. (3.5)

Let us now assume that f is a positive and continuous function supported in �.
Recall that Sru(Q) denotes the square function defined using cones truncated at

height r . We claim that there exists a constant C such that for all Q ∈ �′,

ω(�)−1
∫

�

f dω ≤ CSru(Q). (3.6)

To establish this claim, we introduce a little more notation.
For Q ∈ �′, set 	j (Q) = 	(Q)∩B2−j r (Q)\B2−j−1r (Q), a slice of the cone 	(Q)

at height 2−j r .
By Lemma 5.8 (see also 5.13) of [17], we have the following Poincaré type esti-

mate, which was established using Sobolev embedding and boundary Cacciopoli to
exploit the fact that u vanishes on �′:

(2j r)−2
∫

	j (Q)

u2 dX �
∫∫

	j (Q)

|∇u|2δ(X)dX. (3.7)

Let A′ denote a point in T (�′) whose distance to the boundary of � is approxi-
mately r . By the comparison theorem for solutions which vanish at the boundary, and
with G(X) denoting the Green’s function for L with pole at P0 in �,

u(X)

G(X)
≈ u(A′)

G(A′)
, (3.8)

for all X ∈ 	(Q) ∩ T (�′).
We use this to estimate the square function:

S2
r u(Q) ≥

∞∑

j=0

∫

	j

δ(X)2−n|∇u|2 dX (3.9)

≥ u2(A′)
G2(A′)

∞∑

j

(2−j r)n
∫

	j

G2(X)dX. (3.10)

Now let Aj be a nontangential point in 	j , so that |Aj −Q| ≈ 2−j r . By Harnack,
G(X) ≈ G(Aj ) for all X ∈ 	j (Q). Moreover, again by Harnack, there is constant
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C > 1 for which G(Aj−1) < CG(Aj ). Thus,

u2(A′)
G2(A′)

∞∑

j=0

G2(Aj ) � S2
r u(Q), (3.11)

and now since G(A′) ≤ CjG(Aj ), we can sum this series and we find that

u2(A′) � S2
r u(Q). (3.12)

Since, by properties of harmonic measure, we also know that u(A′) ≈ ω(�)−1 ×∫
�

f dω, this proves (3.6).
For any such f , positive, continuous and supported in �, the estimate in 3.5 im-

plies that, for some constant C0,

(

ω(�)−1
∫

�

f dω

)2

≤ C2
0‖f ‖2

BMO. (3.13)

We now establish absolute continuity of the elliptic measure. Suppose that
σ(�) = r and that ε is given. Let E ⊂ � be an open set. We shall find an η such
that σ(E)/σ(�) < η implies that ω(E)/ω(�) < ε.

Let h = χE , the characteristic function of E. If M(h) is the Hardy-Littlewood
maximal function of h with respect to surface measure on the boundary of �, define
(as in [15]) the BMO function

f = max{0,1 + δ logM(h)}, (3.14)

where δ is to be determined. The function f has a structure which is typical of BMO
functions; see [3] for this characterization. Also, this particular choice of BMO func-
tion was exploited in [15] in their proof of weak convergence in H 1. It has the fol-
lowing properties:

• f ≥ 0,
• ‖f ‖BMO ≤ δ,
• f = 1 on E.

Observe that if x /∈ 2�, then M(h)(x) < σ(E)/σ(�) < η. For any δ, if we choose
η sufficiently small, the function 1 + δ logM(h) will be negative, and thus f = 0
outside 2�.

Using a standard mollification process (as in [21]) we can find a family ft of
continuous functions, t > 0 such that:

• ft → f in Lp,

• for all t, there exists a C such that ‖ft‖BMO ≤ C‖f ‖BMO,

• support of ft is contained in 3�.

Because f ≥ 1 on E, (3.13) implies that

ω(E)

ω(3�)
≤ ω(3�)−1

∫

3�

f dω = ω(3�)−1 lim
t→0+

∫

3�

ft dω
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≤ C0 lim sup
t→0+

‖ft‖BMO. (3.15)

Hence by (3.15)

ω(E)

ω(3�)
≤ C1‖f ‖BMO.

Now we choose δ so that 2C1δ < ε, where C1 is the constant in the estimate above,
and this gives that

ω(E)

ω(�)
< Mε, (3.16)

where M depends on the doubling constant of the measure ω.
Now that absolute continuity is established, the exact same argument gives A∞.

The function f , constructed in (3.14), will have the same properties as before, except
that, for general sets E, f ≥ 1 a.e. dσ on E, and hence a.e. dω on E by absolute
continuity.

Before turning to the proof of the converse, we note the following corollary of this
argument.

Suppose that the Dirichlet problem for L with data in Lp is solvable in the sense
that an a priori estimate in terms of square functions holds:

‖S(u)‖Lp(∂�,dσ) � ‖f ‖Lp(∂�,dσ).

Then the argument above shows that also

‖N(u)‖Lp(∂�,dσ) � ‖f ‖Lp(∂�,dσ).

This can be derived from (3.6) as follows. Let f be positive and supported in a
surface ball � of radius r , and let �′ be as above. Then

(

ω(�)−1
∫

�

f dω

)p

≤ Cσ(�)−1
∫

�′
S

p
r (u) dσ ≤ Cσ(�)−1

∫

�′
f p dσ (3.17)

shows that dω is absolutely continuous with respect to dσ and the density belongs
to Bq , where 1/p + 1/q = 1.

Proof of the Converse This part of the proof of Theorem 2.1 uses ideas in Fabes-Neri
[9], where the authors showed that the BMO Dirichlet problem was solvable for the
Laplacian in Lipschitz domains.

By assumption, since dωL ∈ A∞(∂�,dσ), there is p0 > 1 such that the Dirichlet
problem (Dp) for L is solvable for all p0 < p ≤ ∞.

Consider f ∈ BMO(∂�). We will establish that
∫∫

T (�)

|∇u|2δ(X)dX ≤ Cσ(�)‖f ‖2
BMO. (3.18)

Consider any � ⊂ ∂� a surface ball of radius r . Let us denote by �̃ and enlargement
of � such that 3� ⊂ �̃ ⊂ 5�. We will write the solution u of the Dirichlet problem
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for boundary data f as u1 + u2 + u3, where u1, u2 solve

Lu1 = 0, u1
∣
∣
∂�

= (f − f�̃)χ�̃,

Lu2 = 0, u2
∣
∣
∂�

= (f − f�̃)χ∂�\�̃,

u3 = f�̃ in �.

Here f�̃ denotes as before the average of f over the set �̃, and χ�̃ is the characteristic
function of the set �̃.

We first estimate u1. We claim that
∫∫

T (�)

|∇u1|2δ(X)dX ≤ C

∫

�̃

S2
r (u1) dσ. (3.19)

Let us denote by �X the set {Q ∈ ∂�;X ∈ 	(Q)}. It follows that σ(�X ∩ �̃) ≈
δ(X)n−1. Hence

∫∫

T (�)

|∇u1|2δ(X)dX ≤ C

∫∫

T (�)

δ(X)2−n|∇u1|2σ(�X ∩ �̃) dX

≤ C

∫

Q∈�̃

∫

	r (Q)

δ(X)2−n|∇u1|2 dX dσ

≤ C

∫

�̃

S2
r (u1) dσ. (3.20)

By the Hölder inequality for sufficiently large p (such that the Lp Dirichlet prob-
lem is solvable on �)

∫

�̃

S2
r (u1) dσ ≤ σ(�̃)

p−2
p

(∫

�̃

Sp(u1) dσ

)2/p

≤ Cσ(�)
p−2
p

(∫

�̃

|u1|p dσ

)2/p

. (3.21)

The last inequality uses solvability of the Dirichlet problem in Lp , which implies that
the Lp norm of the square function is comparable to the Lp norm of the boundary
data. We put (3.19) and (3.21) together to obtain an estimate

∫∫

T (�)

|∇u1|2δ(X)dX ≤ Cσ(�)
p−2
p

(∫

�̃

|f − f�̃|p dσ

)2/p

≤ Cσ(�)‖f ‖2
BMO(p). (3.22)

This is the desired estimate for u1. Now we handle u2. This function is a solution of
the equation Lu2 = 0 with Dirichlet boundary data f2 := f −(f −f�̃)χ�̃. Let us call
by f +

2 and f −
2 the positive and negative part of the function f2, that is f2 = f +

2 −f −
2

and f +
2 , f −

2 ≥ 0. We denote by u±
2 the solution of the Dirichlet problem

Lu±
2 = 0 in �, u±

2

∣
∣
∂�

= f ±
2 .
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Hence u±
2 ≥ 0 and u2 = u+

2 − u−
2 . We claim the following

Lemma 3.1 There exists C > 0 depending only on the ellipticity of the operator L

such that for any X ∈ �

(

δ(X)−n

∫

B(X,δ(X)/2)

|∇u±
2 (Y )|2 dY

)1/2

≤ C

δ(X)

∫

∂�

f ±
2 (Q)dωX(Q). (3.23)

Here ωX is the elliptic measure for the operator L at the point X.

This statement is a consequence of the Poincaré inequality that allows us to estimate
the integral of a gradient by an average of (u±

2 − u±
2 (X))2 over a slightly larger ball

and by the Harnack inequality that implies u±
2 (Y ) ≈ u±

2 (X) for Y ∈ B(X, δ(X)/2).
Notice that the integral

∫
∂�

f ±
2 (Q)dωX(Q) equals the value of u±

2 at the point X.
Let us set

v2(X) =
∫

∂�

|f2(Q)|dωX(Q) =
∫

∂�

(f +
2 (Q) + f −

2 (Q))dωX(Q). (3.24)

It follows that v2(X) = u+
2 (X) + u−

2 (X).

Lemma 3.2 There exist C,ε > 0 depending only on the ellipticity constant of the
operator L such that for all x ∈ T (�):

• v2(X) ≤ C‖f ‖BMO,
• v2(X) ≤ C‖f ‖BMO (

δ(X)
r

)ε . Here r is the radius of the surface ball �.

We postpone the proof of this lemma until we show how it gives us the desired esti-
mate.

To do that we consider a standard “dyadic” decomposition of the Carleson region
T (�). What this means is that T (�) can be written as a union of disjoint regions In,
n = 1,2,3, . . . , such that for each region In the diameter of the region d = diam(In)

is comparable to the distance dist(In, ∂�), and the volume of the region is comparable
to dn. For each region In we denote by xn a point inside In. It follows that

∫∫

T (�)

|∇u±
2 |2δ(X)dX

≤
∑

n

∫∫

In

|∇u±
2 |2δ(X)dX ≤ C

∑

n

δ(xn)
|u±

2 (xn)|
δ(xn)2

δ(xn)
n

≤ C

∫

T (�)

|u±
2 (X)|2
δ(X)

dX ≤ C

(

r−2ε

∫

T (�)

δ(X)2ε−1 dX

)

‖f ‖2
BMO. (3.25)

Here we used Lemma 3.1 for the last estimate in the first line of (3.25) and Lemma 3.2
for the last estimate in the second line (clearly u±

2 (X) ≤ v2(X)).
Since r−2ε

∫
T (�)

δ(X)2ε−1 dX ≤ Crn−1 ≈ σ(�), we see that (3.22) and (3.25)
together imply the estimate (3.18) we sought (the function u3 is constant, hence the
required estimate hold trivially).
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Proof of Lemma 3.2 The first estimate of the lemma, namely that v2(X) ≤
C‖f ‖BMO, essentially follows from the lemma on p. 35 in [9]. As stated there,

v2(X) =
∫

∂�\�̃
|f − f�̃|K(X,Q)dσ(Q),

for some kernel K(X,Q) (a Radon-Nikodym derivative of the elliptic measure ωX).
Fabes and Neri then use the fact that K ∈ B2(dσ )2 to establish the estimate. By
looking at their proof we see that it is enough to have K ∈ Bq for some q > 1. This
holds, as we assume that ωX ∈ A∞(dσ ) = ⋃

q>1 Bq(dσ).

The further improvement in the estimate v2(X) ≤ C‖f ‖BMO (
δ(X)

r
)ε is a conse-

quence of Di Giorgi-Nash-Moser theory. Nonnegative solutions u of L in the region
T (�̃) which vanish on 2� satisfy

u(X) ≤ C

( |X − Q|
r

)ε

sup
T (2�)

u, for any X ∈ T (�).

Here ε only depends on the ellipticity constant of the operator L, and Q is the center
of the ball �. (See, for example, (1.9) in [19] for reference). From this the estimate
follows, as we can move point Q around (within �) as our function vanishes on
�̃ ⊃ 3�. �

Now we prove the reverse estimate to (3.18). We want to show that

‖f ‖2
BMO∗(dσ ) ≤ C sup

�⊂∂�

∫∫

T (�)

|∇u|2δ(X)
dX

σ(�)
. (3.26)

In this case it is more convenient to use (2.3) to define the BMO norm. We first prove
the following:

sup
�⊂∂�

inf
c�

σ (�)−1
∫

�

|f − c�|dσ

≤ C sup
�⊂∂�

(

inf
c�

ω(�)−1
∫

�

|f − c�|p dω

)1/p

. (3.27)

Here ω = ωX0 is the elliptic measure for the operator L at some (fixed) interior
point X0. This inequality implies that a BMO function with respect to the surface
measure σ is also a BMO function with respect to the elliptic measure ω. Indeed, let
dσ = k dω. The fact ω ∈ A∞(dσ ) implies that σ ∈ A∞(dω) = ⋃

q>1 Bq(dω). Hence
there exists q > 1 such that k satisfies the reverse Hölder inequality

(

ω(�)−1
∫

�

kq dω

)1/q

≤ Cω(�)−1
∫

�

k dω for all � ⊂ ∂�. (3.28)

2We denote by Bq the class of Gehring weights. The weights in this class satisfy the reverse Hölder
inequality with exponent q .
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It follows that

σ(�)−1
∫

�

|f − c�|dσ

= σ(�)−1
∫

�

|f − c�|k dω

≤ σ(�)−1
(∫

�

kq dω

)1/q (∫

�

|f − c�|p dω

)1/p

≤ Cσ(�)−1ω(�)1/q−1
(∫

�

k dω

)(∫

�

|f − c�|p dω

)1/p

(3.29)

= C

(

ω(�)−1
∫

�

|f − c�|p dω

)1/p

. (3.30)

This gives (3.27). It also follows that it suffices to prove (3.26) with dω measure on
the left-hand side instead of dσ . �

In what follows we use the following lemma from [16].

Lemma 3.3 Let X0 be a fixed point inside a Lipschitz domain �, ωX0 the elliptic
measure for an operator L at X0 and G(·, ·) the Green’s function for L. Then for any
open surface ball �r ⊂ ∂� of radius r such that δ(X0) ≥ 2r and

G(X0, Y )rn−2 ≈ ω(�r), (3.31)

where Y ∈ � such that dist(Y,�r) ≈ δ(Y ) = r . The precise constants in the estimate
(3.31) only depend on the ellipticity of L and the Lipschitz character of domain �.

The following lemma is crucial for the proof.

Lemma 3.4 There exists C > 0 such that for all f ∈ BMO(dω)

‖f ‖BMO∗(dω) ≤ C sup
�⊂∂�

(∫∫

T (�)

|∇u|2G(X0,X)
dX

ω(�)

)1/2

. (3.32)

Assume for the moment the lemma is true. By using Lemma 3.3 we get that

∫∫

T (�)

|∇u|2G(X0,X)dX ≤ C

∫∫

T (�)

|∇u|2δ(X)2−nω(�X)dX, (3.33)

where �X is as before the set {Q ∈ ∂�;X ∈ 	(Q)}. By changing the order of inte-
gration we get that

∫∫

T (�)

|∇u|2δ(X)2−nω(�X)dX ≤
∫

�̃

S2
r u(Q)dω(Q). (3.34)
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Combining (3.32)–(3.34) we get that

‖f ‖BMO∗(dω) ≤ sup
�⊂∂�

(∫

�

S2
r u(Q)

dω(Q)

ω(�)

)1/2

. (3.35)

Now we use the same trick as above to change the measure back from ω to σ . Again
using the reverse Hölder inequality (now for k−1) we get that

sup
�r⊂∂�

(∫

�r

S2
r u(Q)

dω(Q)

ω(�r)

)1/2

≤ C sup
�r⊂∂�

(∫

�r

S
q
r u(Q)

dσ(Q)

σ(�r)

)1/q

for some q > 2.

Finally, there exists C > 0

sup
�r⊂∂�

(∫

�r

S
q
r u(Q)

dσ(Q)

σ(�r)

)1/q

≤ C sup
�r⊂∂�

(∫

�r

S2
r u(Q)

dσ(Q)

σ(�r)

)1/2

= C sup
�⊂∂�

(∫∫

T (�)

|∇u|2δ(X)
dX

σ(�)

)1/2

. (3.36)

The first estimate in (3.36) follows from the BMO John-Nirenberg argument (the
same way as (2.2) is established). This concludes the proof of Theorem 2.1 (modulo
Lemma 3.4).

Proof of Lemma 3.4 We fix a surface ball � ⊂ ∂� of radius r and center Q. As
before, we consider a point X0 inside � such that δ(X0) ≥ 5r . Finally, let us denote
by D the domain � ∩ B(Q,4r). We pick a point X ∈ D such that dist(X, ∂D) ≈ 2r .
We denote by ν the elliptic measure for the operator L on the domain D with pole
at X.

We study the relations between measures ω and ν. The following lemma holds

Lemma 3.5 For any measurable set E ⊂ �

ω(E)

ω(�)
≤ Cν(E), (3.37)

where the constant C > 0 only depends on the ellipticity constant and the Lipschitz
character of the domain �.

It suffices to establish (3.37) for all balls �′ ⊂ �, as the general statement for all
measurable sets E follows by a covering lemma. For both balls �′ and � we find
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points Y ′ and Y , respectively, such that dist(Y ′, ∂�′) ≈ δ(Y ′) = r ′ and dist(Y, ∂�) ≈
δ(Y ) = r , where r ′ and r are the radii of these balls. According to Lemma 3.3,

ω(�′) ≈ G�(X0, Y
′)(r ′)n−2, and ν(�′) ≈ GD(X,Y ′)(r ′)n−2.

Hence

ω(�′)
ν(�′)

≈ G�(X0, Y
′)

GD(X,Y ′)
≈ G�(X0, Y )

GD(X,Y )
.

The last relation comes from the comparison principle for two positive solutions
v(·) = G�(X0, ·) and w(·) = GD(X, ·) that vanish at the boundary. Finally,

ω(�′)
ν(�′)

≈ G�(X0, Y )

GD(X,Y )
≈ ω(�)rn−2

ν(�)rn−2
,

again by using Lemma 3.3. However, ν(�) = O(1), since the measure ν is doubling,
and ν(∂D) = 1. Hence Lemma 3.5 follows.

By Lemma 3.5 we see that for any c� ∈ R

∫

�

|f − c�|2 dω

ω(�)
≤ C

∫

�

|f − c�|2 dν ≤ C

∫

∂D
|u − c�|2 dν. (3.38)

Since ν is the natural (elliptic) measure for the domain D it follows that the L2(dν)

Dirichlet problem is always solvable in this domain (see [5–7]). This implies that the
L2(dν) norm of the square function is comparable with the L2(dν) of the (normal-
ized) boundary data, i.e.,

inf
c�∈R

∫

∂D
|u − c�|2 dν ≈

∫

∂D
S2udν ≈

∫∫

�\Br/8(X)

|∇u(Y )|2GD(X,Y )dY. (3.39)

Finally, we claim that

GD(X,Y ) ≤ G�(X,Y ) ≈ G�(X0, Y )

ω(�)
, for all Y ∈ � \ Br/8(X). (3.40)

Combining estimates (3.38)–(3.40), we obtain Lemma 3.4. The first estimate of
(3.40) is simply a maximum principle, as GD(X,Y ) vanishes on the whole ∂D, and
G�(X,Y ) is positive at a portion of this boundary. Both functions have the same
pole at X. The relation G�(X,Y ) ≈ G�(X0,Y )

ω(�)
can be established as follows. For Y ∈

� \ Br/8(X) such that δ(Y ) ≥ r , Lemma 3.3 implies that G�(X0, Y ) ≈ rn−2ω(�).
On the other hand, G�(X,Y ) ≈ rn−2 as Y is of distance r from the pole and also r

away from the boundary. For Y near the boundary we use the comparison principle
(since both functions vanish at ∂�. This gives

G�(X,Y )

G�(X0, Y )
≈ G�(X,Y ′)

G�(X0, Y ′)

for all Y,Y ′ ∈ � \ Br/8(X). This establishes (3.40) and concludes the proof of Theo-
rem 2.1. �
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Proof of Theorem 2.2 By Theorem 2.1 it follows that dωL ∈ A∞(∂�,dσ). Since

A∞(∂�,dσ) =
⋃

p>1

Bp(∂�,dσ),

we see that dωL ∈ Bp(∂�,dσ) for some p > 1. From this the claim follows
since dωL ∈ Bp(∂�,dσ) implies the solvability of the Lp′

Dirichlet problem. The
range of solvability (p0,∞) can be then obtained by realizing that Bp(∂�,dσ) ⊂
Bq(∂�,dσ) for q < p.

Proof of Remark 2.1 Indeed, by Theorem 2.2, given that (2.4) holds, the Lp Dirichlet
boundary value problem is solvable for some large p < ∞. Consider now an arbitrary
BMO function f : ∂� → R. As we argue in (3.15), there exists a sequence of continu-
ous functions fn : ∂� → R such that fn → f in Lp(∂�) and ‖fn‖BMO ≤ C‖f ‖BMO
for some C > 0 independent of n.

For each fn we can solve the continuous Dirichlet boundary value problem, which
will give us solutions un such that

‖N(un)‖Lp(∂�) ≤ C‖fn‖Lp(∂�) ≤ C‖f ‖BMO.

In addition,

‖N(un − um)‖Lp(∂�) ≤ C‖fn − fm‖Lp(∂�) → 0, as n,m → ∞,

since fn → f in Lp , and (2.1) holds. This implies that the sequence (un)n∈N is locally
uniformly Cauchy in L∞

loc(�), hence

u(X) = lim
n→∞un(X), for X ∈ �

is pointwise well-defined.
We claim that this u is a weak solution to Lu = 0. That is,

∫

�

A(X)∇u(X).∇ψ(X)dX = 0, for all ψ ∈ C∞
0 (�). (3.41)

To see this, fix a compact set K ⊂ �. By the dominated convergence theorem we
know that

un → u, in any Lp(K), p < ∞.

Hence for any K ′ ⊂⊂ K , by Cacciopoli we have that
∫

K ′
|∇(un − um)(X)|2 dX ≤ CK,K ′

∫

K

|(un − um)(X)|2 dX → 0, as n,m → ∞.

It follows that ∇un converges locally uniformly in L2, from which we get that u

belongs to W
1,2
loc (�) and ∇un → ∇u in L2

loc(�). Therefore (3.41) follows, as we
already know that (3.41) holds for every un and we can pass to the limit n → ∞.
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Hence with the use of Fatou’s lemma (see Appendix B of [8] for details) we get
that N(u − un) → 0 in Lp(∂�) as n → ∞. This implies that ‖N(u)‖Lp < ∞, so
N(u)(Q) < ∞ a.e. for Q ∈ ∂�, and also one has existence of nontangential limits
a.e.: limX→Q,X∈	(Q) u(X).

Finally, we also get that (2.4) will also hold for u by the limiting argument, since
it holds for each un:

sup
�⊂∂�

σ(�)−1
∫∫

T (�)

|∇un|2δ(X)dX � sup
I⊂∂�

σ(I)−1
∫

I

|fn − fn,I |2 dσ. (3.42)

Notice that taking the limsup on the right-hand side of (3.42) yields just a multiple of
the BMO norm of f , as ‖fn‖BMO ≤ C‖f ‖BMO. On the left-hand side we may take
the limit

σ(�)−1
∫∫

T (�)\Cε

|∇un|2δ(X)dX → σ(�)−1
∫∫

T (�)\Cε

|∇u|2δ(X)dX, n → ∞,

since ∇un → ∇u in L2
loc(�). Here Cε = {X ∈ � : dist(X, ∂�) < ε}. It follows that

for any ε > 0

sup
�⊂∂�

σ(�)−1
∫∫

T (�)\Cε

|∇u|2δ(X)dX � ‖f ‖2
BMO. (3.43)

As the constant in (3.43) does not depend on ε we get the required estimate on the
whole T (�). In fact, it can be shown that equivalence holds between the two quanti-
ties in (2.4). �
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