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Abstract Given compact Lie groups H ⊂ G, we study the space of G-invariant met-
rics on G/H with nonnegative sectional curvature. For an intermediate subgroup K

between H and G, we derive conditions under which enlarging the Lie algebra of K

maintains nonnegative curvature on G/H . Such an enlarging is possible if (K,H) is
a symmetric pair, which yields many new examples of nonnegatively curved homo-
geneous metrics. We provide other examples of spaces G/H with unexpectedly large
families of nonnegatively curved homogeneous metrics.
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Let H ⊂ G be compact Lie groups, with Lie algebras h ⊂ g, and let g0 be a bi-
invariant metric on G. The space G/H with the induced normal homogeneous met-
ric, denoted (G,g0)/H , has nonnegative sectional curvature. Little is known about
which other G-invariant metrics on G/H have nonnegative sectional curvature, ex-
cept in certain cases. In all cases where G/H admits a G-invariant metric of posi-
tive curvature, the problem has been studied along with the determination of which
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G-invariant metric has the best pinching constant; see [8–10]. When H is trivial, this
problem was solved for G = SO(3) and U(2) in [1], and partial results for G = SO(4)

were obtained in [4]. Henceforth, we identify G-invariant metrics on G/H with AdH -
invariant inner products on p = the g0-orthogonal complement of h in g.

In Sect. 1, it is an easy application of Cheeger’s method to prove that the solution
space is star-shaped. That is, if g is a G-invariant metric on G/H with nonnegative
curvature, then the inverse-linear path, g(t), from g(0) = g0|p to g(1) = g is through
nonnegatively curved G-invariant metrics. Here, a path of inner products on p is
called “inverse-linear” if the inverses of the associated path of symmetric matrices
form a straight line. This observation reduces our problem to an infinitesimal one:
first classify the directions, g′(0), one can move away from the normal homogeneous
metric such that the inverse-linear path g(t) appears (up to derivative information
at t = 0) to remain nonnegatively curved. Then, for each candidate direction, check
how far nonnegative curvature is maintained along that path. In Sect. 2, we derive
curvature variation formulas necessary to implement this strategy, inspired by power
series derived by Müter for curvature along an inverse-linear path [7].

In Sect. 3, we consider an intermediate subgroup K between H and G, with subal-
gebra k, so we have inclusions h ⊂ k ⊂ g. Write p = m⊕ s, where m is the orthogonal
compliment of h in k and s is the orthogonal compliment of k in g. The inverse-linear
path of G-invariant metrics on G/H which gradually enlarges k is described as fol-
lows for all A,B ∈ p:

gt (A,B) =
(

1

1 − t

)
· g0(A

m,Bm) + g0(A
s,Bs), (0.1)

where superscripts denote g0-orthogonal projections onto the corresponding spaces.
This variation scales the fibers of the Riemannian submersion (G,g0)/H →

(G,g0)/K . For t < 0, these fibers are shrunk, and gt has nonnegative curvature be-
cause it can be redescribed as a submersion metric obtained by a Cheeger deforma-
tion:

(G/H,gt ) = ((G/H,g0) × (K, (−1/t) · g0))/K.

For t > 0, these fibers are enlarged, and the situation is more complicated. We will
prove:

Theorem 0.1

(1) The metric gt has nonnegative curvature for small t > 0 if and only if there exists
C > 0 such that for all X,Y ∈ p, |[Xm, Ym]m| ≤ C · |[X,Y ]|.

(2) In particular, if (K,H) is a symmetric pair, then gt has nonnegative curvature
for small t > 0, and in fact for all t ∈ (−∞,1/4].

Part 2 provides a large class of new examples of homogeneous metrics with non-
negative curvature. Notice t = 1/4 corresponds to the scaling factor 1

1−1/4 = 4/3,

which appears elsewhere in the literature as an upper limit for enlarging the totally
geodesic fibers of certain Riemannian submersions while maintaining nonnegative
curvature, including Hopf fibrations [10–12], and fibrations of a compact Lie group



Homogeneous Metrics with Nonnegative Curvature 931

by cosets of an Abelian group [3]. Wallach proved in [13] that if (K,H) and (G,K)

are rank 1 symmetric pairs and if the triple (H,K,G) satisfies a certain “fatness”
property, then the metric gt has positive curvature for all t ∈ (−∞,1/4), t 	= 0. We
re-prove Wallach’s theorem in Sect. 3.

When H is trivial, gt is a left-invariant metric on G scaled up along k. Ziller posed
the question of when such a metric gt is nonnegatively curved [15]. The following
answer was found in [5]: the metric gt has nonnegative curvature for small t > 0 if
and only if the semi-simple part of k is an ideal of g; in particular, when g is simple,
only Abelian subalgebras can be enlarged.

When AdH acts irreducibly on p, there is only a one-parameter family of G-
invariant metrics on G/H (coming from scaling), all of which are obviously non-
negatively curved. If there exists an intermediate subalgebra k, between h and g, then
there exists at least a 2-parameter family of G-invariant metrics, and many spaces
with exactly 2-parameters arise from such an intermediate subalgebra; such spaces
were classified in [2]. Thus, Theorem 0.1 addresses the simplest nontrivial case of
our classification problem.

Next, in Chap. 4, we show that more arbitrary metric changes preserve nonnegative
curvature, assuming a hypothesis which is similar to (but much stronger than) that of
Theorem 0.1:

Theorem 0.2 If there exists C > 0 such that for all X,Y ∈ p,

|Xm ∧ Ym| ≤ C · |[X,Y ]|,

then any left invariant metric on G sufficiently close to g0 which is AdH -invariant
and is a constant multiple of g0 on s and h (but arbitrary on m) has nonnegative
sectional curvature on all planes contained in p; hence, the induced metric on G/H

has nonnegative sectional curvature. In particular, this hypothesis is satisfied by the
following chains H ⊂ K ⊂ G:

(1) Sp(2) ⊂ SU(4) ⊂ SU(5)

(2) SU(3) ⊂ SU(4) ∼= Spin(6) ⊂ Spin(7)

(3) G2 ⊂ Spin(7) ⊂ Spin(p + 8) for p ∈ {0,1}, where the second inclusion is the lift
of the standard inclusion SO(7) ⊂ SO(p + 8)

(4) Spin′(7) ⊂ Spin(8) ⊂ Spin(p + 9) for p ∈ {0,1,2}, where Spin′(7) ⊂ Spin(8) is
the image of the spin representation of Spin(7), and the second is again the lift of
SO(8) ⊂ SO(p + 9)

(5) SU(2) ⊂ SO(4) ⊂ G2 (here, SU(2) ⊂ SU(3) ⊂ G2, where SU(3) ⊂ G2 is the
isotropy group of S6 = G2/SU(3))

For the triples above, one is free to choose the initial direction g′(0) of the vari-
ation g(t) to be any AdH -invariant self-adjoint endomorphism of m. For the first,
third and fourth triples, the space of such endomorphisms is 1-dimensional, while for
the second triple it is 2-dimensional. For the fifth triple, the space is 6-dimensional,
but only 3-dimensional modulo G-equivariant isometry. In all examples, there is one
additional parameter for scaling s.
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Some other spaces are known to admit large-parameter families of nonnegatively
curved homogeneous metrics [8, 9], but unlike our new examples, these admit posi-
tively curved homogeneous metrics.

The statement about nonnegatively curved planes in G is remarkable on its own,
since such a metric cannot have nonnegative sectional curvature on all of G, unless
h is Abelian [5]. Moreover, when constructing nonnegatively curved metrics with
normal homogeneous collars, it is precisely the nonnegative curvature of these planes
which is needed [6].

The authors are pleased to thank Wolfgang Ziller for helpful conversations, and the
American Institute of Mathematics for hospitality and funding at a workshop on non-
negative curvature in September, 2007, where portions of this work were discussed.

1 Inverse-linear Paths

In this section, we prove as a quick application of Cheeger’s method:

Proposition 1.1 If g is a G-invariant metric on G/H with nonnegative curvature,
then the inverse-linear path, g(t), from g(0) = g0|p to g(1) = g is through nonnega-
tively curved G-invariant metrics.

The case H = {e} is found in [4]. We prove this by showing that any G-invariant
metric with nonnegative curvature on G/H is connected to the normal homogeneous
metric (G,g0)/H via a canonical path of nonnegatively curved G-invariant metrics.
See [4] for relevant background on Cheeger’s method, which is at the heart of the
proof.

Proof of Proposition 1.1 Let h be an AdH -invariant inner product on p. Let M de-
note G/H with the G-invariant metric induced by h. Assume that M has nonnegative
curvature. Consider the following family of nonnegatively curved Riemannian sub-
mersion metrics on M :

Mt =
(

M ×
(

G,
1

t
· g0

))/
G.

Here, G acts diagonally on M ×G as g � (p,a) = (g �p,ag−1). This family extends
smoothly at t = 0 to the original metric M0 = M . Notice that each Mt is G-invariant,
and is therefore induced by some AdH -invariant inner product, ht , on p. Let {ei}
denote a g0-orthonormal basis of p for which h is diagonalized, with eigenvalues {λi}.
Then the metrics ht , considered as symmetric matrices with respect to this basis,
evolve as follows:

ht = h(I + t · h)−1 = diag

{
λi

1 + tλi

}
.

Notice that Mt converges to a point at t → ∞, but t · Mt converges to the normal
homogeneous space (G,g0)/H .
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This shows there exists a path of nonnegatively curved G-invariant metrics joining
M to (G,g0)/H . We’d like to see that, up to re-parametrization and re-scaling, this
path is exactly the inverse-linear path, h̃s , from h̃0 = (G,g0)/H to h̃1 = M . The
initial direction of this inverse-linear path is � = (I − h−1), meaning that, in the
basis {ei}, we have:

h̃s = (I − s�)−1 = diag

{
1

1 − s(1 − λ−1
i )

}
.

It is straightforward now to check that s · h̃s = ht when s = 1
1+t

. �

2 Curvature Variation Formulas

Proposition 1.1 suggests an infinitesimal strategy for classifying the G-invariant met-
rics with nonnegative curvature on G/H . The first step is to classify the directions, � ,
in which one can move away from a fixed normal homogeneous metric such that cur-
vature variation formulas predict that nonnegative curvature is maintained along the
inverse-linear path in that direction. In this section, we derive the relevant curvature
variation formulas.

A path gt of AdH -invariant inner products on p can be described in terms of g0|p
as:

gt (A,B) = g0(�tA,B)

for all A,B ∈ p, where �t is a family of g0-self-adjoint, AdH -invariant, positive-
definite endomorphism of p. We henceforth assume the path is inverse-linear, which
means that t �→ �−1

t is linear, so that:

�t = (I − t · �)−1 (2.1)

for some g0-self-adjoint, AdH -invariant map � : p → p. Notice that � = d
dt

|t=0�t .
It is useful to henceforth extend �t and � to be endomorphisms of all of g by

defining each �t to be the identity on h and defining � to be zero on h. Notice that
(2.1) still holds for these extensions.

For X,Y ∈ p ∼= TH (G/H), we let k(t) denote the unnormalized sectional curva-
ture with respect to gt of the vectors �−1

t X and �−1
t Y . The domain of k is the open

interval of t’s for which �t represents a non-degenerate metric, which depends on the
eigenvalues of � . Notice that k(0) = 0 if and only if [X,Y ] = 0. For such initially-
zero curvature planes, we will now exhibit a power series expression for k(t). It is
useful to label the following expressions:

A = [�X,Y ] + [X,�Y ],
D0 = [�X,�Y ] − �A.
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Proposition 2.1 If X,Y ∈ p commute, then k(0) = k′(0) = 0, k′′(0) = 3
2 |Ah|2, and

(1/6)k′′′(0) = 〈A − (3/2)Ah, [�X,�Y ]〉 + 〈[�X,X],�[�Y,Y ]〉
− 〈[X,�Y ],�A〉 − 〈[�X,Y ],�[�X,Y ]〉,

and for all t in the domain of k,

k(t) = t2 · (1/2)k′′(0) + t3 · (1/6)k′′′(0) − 3

4
t4 · |Dp

0 |2gt
.

Definition 2.2 We refer to � (or to the inverse-linear metric variation it determines)
as infinitesimally nonnegative if for all X,Y ∈ p, there exists ε > 0 such that k(t) ≥ 0
for t ∈ [0, ε).

This is clearly true for pairs X,Y which don’t commute, so it is equivalent to check
the condition for pairs which do commute. This gives:

Proposition 2.3 � is infinitesimally nonnegative if and only if for all X,Y ∈ p such
that [X,Y ] = 0 and Ah = 0, we have that k′′′(0) ≥ 0, and k′′′(0) = 0 implies that
D

p

0 = 0.

By Proposition 1.1, one will locate all of the nonnegatively curved G-invariant
metrics on G/H by searching only along infinitesimally nonnegative paths. This ap-
proach was used in [4] (in the case where H is trivial) to restrict the space of possible
nonnegatively curved left-invariant metrics on G.

Proposition 2.1 is a special case of a power-series for k(t), which we now derive,
which does not assume that X,Y commute. For this general power series, it is useful
to denote:

A = [�X,Y ] + [X,�Y ],
B = [�X,�Y ],
C = [�X,Y ] − [X,�Y ],
D = �2[X,Y ] + B − �A

With this notation we have:

Proposition 2.4 For any X,Y ∈ p and all t in the domain of k,

k(t) = α + βt + γ t2 + δt3 − 3

4
t4 · |Dp|2gt

.

where

α = |[X,Y ]h|2 + 1

4
|[X,Y ]p|2
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β = −3

4
〈�[X,Y ], [X,Y ]〉 − 3

2
〈[X,Y ]h,A〉

γ = −3

4
|�[X,Y ]|2 + 3

2
〈�[X,Y ],A〉 − 3

2
〈[X,Y ]m,B〉 + 3

4
|Ah|2

δ = −3

4
〈�3[X,Y ], [X,Y ]〉 + 3

2
〈�2[X,Y ],A〉 − 3

2
〈�[X,Y ],B〉

− 3

4
〈�A,A〉 − 1

4
〈�C,C〉 + 〈�[�X,X], [�Y,Y ]〉 + 〈A,B〉 − 3

2
〈Ah,B〉.

Proof By O’Neill’s formula, k(t) = κ(t) + A(t), where κ(t) is the unnormalized
sectional curvature of �−1

t X and �−1
t Y in the left-invariant metric on G determined

by �t , and A(t) is the O’Neill term. Using the expression �−1
t = I − t� , we have:

4

3
A(t) = |[�−1

t X,�−1
t Y ]h|2 = |[X − t�X,Y − t�Y ]h|2

= |[X,Y ]h − tAh + t2Bh|2

= |[X,Y ]h|2 − 2t〈[X,Y ]h,A〉 + t2
(
|Ah|2 + 2〈[X,Y ]h,B〉

)

− 2t3〈Ah,B〉 + t4|Bh|2. (2.2)

It is proven in [4] that κ(t) = α + βt + γ t2 + δt3 − 3
4 t4|D|2gt

, where

α = 1

4
|[X,Y ]|2

β = −3

4
〈�[X,Y ], [X,Y ]〉

γ = −3

4
|�[X,Y ]|2 + 3

2
〈�[X,Y ],A〉 − 3

2
〈[X,Y ],B〉

δ = −3

4
〈�3[X,Y ], [X,Y ]〉 + 3

2
〈�2[X,Y ],A〉 − 3

2
〈�[X,Y ],B〉

− 3

4
〈�A,A〉 − 1

4
〈�C,C〉 + 〈�[�X,X], [�Y,Y ]〉 + 〈A,B〉.

The above expression for γ is simpler than the one found in [4]; to achieve this
simplification, use the Jacobi identity to write 〈[�X,X], [�Y,Y ]〉 = 〈[X,Y ],B〉 −
〈[X,�Y ], [�X,Y ]〉.

It is straightforward to combine the above power series for A(t) and κ(t). Notice
that the t4-term of k(t) = κ(t) + A(t) is �(t) = 3

4 t4(|Bh| − |D|2gt
), which simplifies

because:

|Bh|2 − |D|2gt
= |Dh|2 − (|Dh|2gt

+ |Dp|2gt
) = |Dh|2 − (|Dh|2 + |Dp|2gt

)

= −|Dp|2gt
. �
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3 Scaling Up an Intermediate Subalgebra

In this section, we study and prove Theorem 0.1, which provides conditions un-
der which enlarging an intermediate subalgebra maintains nonnegative curvature on
G/H .

Suppose K is an intermediate subgroup between H and G, with Lie algebra k,
so we have inclusions h ⊂ k ⊂ g. Write p = m ⊕ s, where m is the orthogonal com-
pliment of h in k and s is the orthogonal compliment of k in g. Let � denote the
projection onto m, so that �(A) = Am for all A ∈ g. Notice that � determines the
inverse-linear path, gt , of G-invariant metrics on G/H described in (0.1), which grad-
ually enlarges the fibers of the Riemannian submersion (G,g0)/H → (G,g0)/K .

We seek conditions under which gt has nonnegative curvature for small t > 0.
When (K,H) is a symmetric pair, it is easy to show that � is infinitesimally nonneg-
ative, which provides evidence for Theorem 0.1. To fully prove this proposition, we
require a power series expression for k(t).

Let X,Y ∈ p = m ⊕ s, and denote

M = [Xm, Ym], S = [Xs, Y s].
With this notation, Proposition 2.4 simplifies to:

k(t) =
(
a|Mh|2 + b〈Mh, Sh〉 + |Sh|2

)
+

(
a|Mm|2 + b〈Mm, Sm〉 + c|Sm|2

)

+ 1

4
|[X,Y ]s|2

= T1 + T2 + T3,

where,

a = 1 − 3t + 3t2 − t3, b = 2 − 3t,

a = 1

4
− 3

4
· t + 3

4
· t2 − 1

4
t3, b = 1

2
− 3

2 · t, c = 1

4
− 3t

4(1−t)
.

(3.1)

Proof of Theorem 0.1 Using Cauchy-Swartz, T1 ≥ 0 when t ≤ 4/3 because the dis-
criminant is nonnegative:

4a − b
2 = 3t2 − 4t3 ≥ 0.

If (K,H) is a symmetric pair, then Mm = 0, so T2 = c|Sm|2, which is nonnegative
for t ≤ 1/4. This proves part (2) of the theorem.

For part (1), first assume there exists C > 0 such that for all X,Y ∈ p, |Mm| ≤
C · |[X,Y ]|. Notice that if t < 1/2, then

T1 ≥ 1

10
|Mh + Sh|2 = 1

10
|[X,Y ]h|2.

This is because

T1 − 1

10
|Mh + Sh|2 =

(
a − 1

10

)
|Mh|2 +

(
b − 2

10

)
〈Mh, Sh〉 +

(
1 − 1

10

)
|Sh|2,
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which is nonnegative because the discriminant is nonnegative:

 = 4

(
a − 1

10

)(
1 − 1

10

)
−

(
b − 2

10

)2

= 9

5
t2 − 18

5
t3 ≥ 0.

For T2 we have:

T2 ≥ a|Mm|2 − b|Mm| · |Sm| + c|Sm|2 ≥ g(t) · |Mm|2,

where g(t) = 4ac−b2

4c
= t3(t−1)

1−4t
. Notice g(t) is a negative-valued function with

limt→0 g(t) = 0.
In summary, for t < 1/2 we have:

k(t) = T1 + T2 + T3 ≥ 1

10
|[X,Y ]h|2 + g(t)|Mm|2 + 1

4
|[X,Y ]s|2. (3.2)

At time t = 0, T2 = 1
4 |Mm + Sm|2, which indicates that for small t > 0, T2 can

only be negative when Mm is close to −Sm. To make this precise, define “dist” as:

dist(A,B) = max {|∠(A,B)|, |1 − |A|/|B||} .

Given ε > 0, we claim there exists δ,K > 0 such that if dist(Mm,−Sm) > ε, then
T2

|Mm+Sm|2 ≥ K for all t ∈ [0, δ]. In particular T2 ≥ 0 (and therefore k(t) ≥ 0) for

t ∈ [0, δ]. To see this, notice that T2
|Mm+Sm|2 remains unchanged when Mm and Sm

are both scaled by the same factor, so one can assume that the smaller of their lengths
equals 1. If the larger of their lengths is ≥ 10, then it is easy to explicitly find δ,K as
above. When the larger of their lengths is ≤ 10, a compactness argument suffices to
find δ,K .

So it remains to consider the case where dist(Mm,−Sm) < ε, with ε > 0 chosen
such that

|[X,Y ]m|2 = |Mm + Sm|2 ≤ 1

2C2
|Mm|2.

In this case, we have by hypothesis:

|Mm|2 ≤ C2 ·
(
|[X,Y ]h|2 + |[X,Y ]m|2 + |[X,Y ]s|2

)

≤ C2 ·
(

|[X,Y ]h|2 + 1

2C2
|Mm|2 + |[X,Y ]s|2

)
.

Solving this shows that |Mm|2 ≤ 2C2(|[X,Y ]h|2 + |[X,Y ]s|2). Combining this with
(3.2) shows that k(t) is nonnegative for all t small enough that 2g(t)C2 < 1/10.

The other direction of part (1) of the theorem follows from similar arguments. �

Next, we recover an important theorem due to Wallach, from which he construct
his well-known non-normal homogeneous metrics of positive curvature [13]. Recall
that the triplet (H,K,G) determines a “fat homogeneous bundle” if [A,B] 	= 0 for
all non-zero A ∈ m and B ∈ s; see [14] for a survey of literature on fat bundles.
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Proposition 3.1 (Wallach) If (K,H) and (G,K) are rank 1 symmetric pairs, and
(H,K,G) determines a fat homogeneous bundle, then gt has positive curvature for
all t ∈ (−∞,1/4), t 	= 0.

Proof For linearly independent X,Y ∈ p, if k(t) = 0 at some non-zero t ∈ (−∞,1/4),
then the proof of part (2) of Theorem 0.1 implies that M = [Xm, Ym] = 0 and
S = [Xs, Y s] = 0 and [X,Y ]s = 0. So the rank one hypothesis implies that Xm ‖ Ym

and Xs ‖ Y s. Thus, after a change of basis of span{X,Y }, we can assume that X ∈ m

and Y ∈ s. But then the fact that [X,Y ]s = [X,Y ] = 0 contradicts fatness. �

Under the hypotheses of the above proposition, if k(0) = 0, it is not hard to see
that k′′(0) > 0; that is, all initially zero-curvature planes become positively curved to
second order. Since the even derivatives of k(t) are insensitive to the sign of � , it
does not matter here whether t increases or decreases from zero; in either case, the
A-tensor makes all initially zero curvature planes become positively curved to second
order.

4 Further Examples

In this section, we prove Theorem 0.2, which gives examples of left invariant met-
rics with many nonnegatively curved planes and, as a consequence, homogeneous
spaces with unexpectedly large families of nonnegatively curved homogeneous met-
rics. Consider compact Lie groups H ⊂ K ⊂ G with Lie algebras h ⊂ k ⊂ g, and
decompose g = h ⊕ p = h ⊕ m ⊕ s, as in the previous section.

Proposition 4.1 If there exists C > 0 such that for all X,Y ∈ p,

|Xm ∧ Ym| ≤ C · |[X,Y ]|,
then any inverse-linear variation �t = (I − t�)−1 of left-invariant AdH -invariant
metrics on G for which �|s = �|h = 0 is through metrics which for sufficiently small
t have the property that all planes in p are nonnegatively curved.

The hypothesis of the proposition is clearly stronger than the condition of The-
orem 0.1 under which m can only be scaled up preserving nonnegative curvature.
Under this stronger hypothesis, the proposition says that arbitrary small changes can
be made the metric on m, and it not only gives information about the metric on G/H ,
but also on G.

This proposition clearly implies the first part Theorem 0.2 since any metric close
to the normal homogeneous one can be joined by an inverse linear path in that neigh-
borhood.

Proof Let X,Y ∈ p. As in Chap. 2, we have for the curvature of the left-invariant
metric on G:

κ(t) = α + βt + γ t2 + δt3 − 3

4
t4|D|2gt

,
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where the coefficients {α,β, γ , δ} are defined in terms of the expressions A,B,C,D.
Notice that |Ak| ≤ λ1 · |Xm ∧ Ym|, where λ1 is the norm of the linear map

∧2m → k defined as x ∧ y �→ [�x,y] + [x,�y].
Similarly, |B| ≤ λ2 · |Xm ∧Ym|, where λ2 is the norm of the linear map ∧2m → k

defined as x ∧ y �→ [�x,�y].
Next, define E = − 1

4 〈�C,C〉 + 〈�[�X,X], [�Y,Y ]〉, which equals two of the
terms in the definition of δ. We claim that |E| ≤ λ3 · |Xm ∧ Ym|2 for some con-
stant λ3. To see this, first consider the symmetric linear map ρ : m × m → k de-
fined as ρ(x, y) = 1

2 ([�x,y] − [x,�y]). Next consider the multi-linear map � :
∧2m × ∧2m → k which is defined as

�(x ∧ y, z ∧ w) := 〈�ρ(x, z), ρ(y,w)〉 − 〈�ρ(x,w),ρ(y, z)〉.
Since �(Xm ∧ Ym,Xm ∧ Ym) = E, we may take λ3 to be the norm of �.

Since the coefficients {β,γ , δ} and the term D are defined in terms of the above-
bounded expressions, it is a straightforward to use Cauchy-Schwartz to bound their
norms and thereby show that there exists a constant λ′ such that

|β|, |γ |, |δ|, |D| ≤ λ′ ·
(
|[X,Y ]|2 + |[X,Y ]| · |Xm ∧ Ym| + |Xm ∧ Ym|2

)

≤ λ · |[X,Y ]|2,
where λ = λ′(1 + C + C2). In fact, the above bound for |D| also holds for |D|gt as
long at t is small enough that gt is bounded in terms of g0. Thus:

κ(t) = α + βt + γ t2 + δt3 − 3

4
t4|D|2gt

≥ 1

4
|[X,Y ]|2 − (t + t2 + t3 + t4)λ · |[X,Y ]|2

which is clearly nonnegative for sufficiently small t > 0. �

It only remains to prove that the subgroups chains from Theorem 0.2 satisfy the
inequality condition of the above proposition.

Proposition 4.2 The following triples satisfy the hypothesis of Proposition 4.1.

(1) Sp(2) ⊂ SU(4) ⊂ SU(5),
(2) SU(3) ⊂ SU(4) ∼= Spin(6) ⊂ Spin(7),
(3) G2 ⊂ Spin(7) ⊂ Spin(p + 8) for p ∈ {0,1}, where the second inclusion is the lift

of the inclusion SO(7) ⊂ SO(p + 8),
(4) Spin′(7) ⊂ Spin(8) ⊂ Spin(p + 9) for p ∈ {0,1,2}, where Spin′(7) ⊂ Spin(8) is

the image of the spin representation of Spin(7), and the second is again the lift of
SO(8) ⊂ SO(p + 9).

Proof We denote the groups in all cases as H ⊂ K ⊂ G. Suppose this hypothesis
is not satisfied. Then there exist sequences {Xr} and {Yr} in m ⊕ s such that Xm

r ,
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Ym
r ∈ m is an orthonormal pair, and lim[Xr,Yr ] = 0. Passing to a subsequence, we

may assume that Xm := limXm
r and Ym := limYm

r exist, and we let

B := [Xm, Ym] ∈ k.

Since K/H is a sphere and hence the normal homogeneous metric has positive cur-
vature, it follows that B 	= 0. Also, 0 = lim[Xr,Yr ]k = lim[Xm

r , Ym
r ] + [Xs

r , Y s
r ]k, so

that

B = − lim[Xs
r , Y s

r ]k,
so that, in particular, we may assume that [Xs

r , Y s
r ]k 	= 0 for all r .

For the first triple, K/H = Spin(6)/Spin(5) ∼= SO(6)/SO(5), so that we may re-
gard Xm, Ym ∈ so(5)⊥ ⊂ so(6), hence B = [Xm, Ym] ∈ so(5) ⊂ so(6) is a matrix of
real rank 2, so that its centralizer is isomorphic to so(2) ⊕ so(4).

On the other hand, if we regard [Xs
r , Y s

r ]u(4) ∈ u(4) ⊂ su(5) as a complex ma-
trix where Xs

r , Y s
r ∈ su(4)⊥ ⊂ su(5), then one verifies that [Xs

r , Y s
r ]u(4) is con-

jugate to a unique element of the form diag(λr
1i, λ

r
2i,0,0) with λr

1 ≥ λr
2. But

lim[Xs
r , Y s

r ]u(4) = −B 	= 0 ∈ su(4) exists, so that this limit is conjugate to an element
of the form diag(λi,−λi,0,0) with λ > 0, whose centralizer in su(4) is isomorphic
to s(su(2) ⊕ u(1) ⊕ u(1)). But the centralizer of B is isomorphic to so(2) ⊕ so(4)

which yields the desired contradiction in this case.
For all of the remaining cases we have G/K = Spin(m)/Spin(n) with the inclusion

K ⊂ G induced by the inclusion SO(n) ⊂ SO(m) for some (n,m). It follows that for
all X,Y ∈ s = so(n)⊥, [X,Y ]k ∈ so(n) is a matrix which has rank at most 2(m − n).
Therefore, since B = − lim[Xs

r , Y s
r ] 	= 0, it follows that 0 	= B ∈ so(n) is a matrix of

such a rank.
For the second triple, the rank of B ∈ so(6) equals 2(m − n) = 2, hence its cen-

tralizer is isomorphic to so(2) ⊕ so(4) ⊂ so(6).
On the other hand, for Xm, Ym ∈ su(3)⊥ ⊂ su(4), it is straightforward to verify

that B = [Xm, Ym] ∈ su(4) is not regular, hence B is conjugate to an element of the
form diag(λ1i, λ2i, λ3i,0) ∈ su(4) with λ1 + λ2 + λ3 = 0. Therefore, the centralizer
of B is either s(u(1) ⊕ u(1) ⊕ u(1) ⊕ u(1)) or s(u(2) ⊕ u(1) ⊕ u(1)), none of which
is isomorphic to so(2)⊕ so(4) which is a contradiction and finishes the proof for this
example.

For the third triple, we will show that for any orthonormal pair Xm, Ym ∈ m, the
rank of B = [Xm, Ym] ∈ so(7) equals 6 which will give the desired contradiction
as 2(m − n) = 2(p + 1) ≤ 4. For this, we regard G2 as the automorphism group of
the octonions O which leaves 1 ∈ O and hence its orthogonal complement Im(O)

invariant, and this representation of G2 on R7 ∼= Im(O) lifts to the inclusions g2 ⊂
so(Im(O)) and G2 ⊂ Spin(7). Then

so(Im(O)) = g2 ⊕ {adq : Im(O) −→ Im(O)}
is an orthogonal decomposition, where adq : Im(O) → Im(O) is given by adq(x) :=
q · x − x · q since the second summand is G2-equivariantly isomorphic to Im(O).

Thus, it remains to show that for an orthonormal pair q, q ′ ∈ Im(O), the rank of
[adq, adq ′ ] ∈ so(Im(O)) equals 6. Since G2 acts transitively on orthonormal pairs, we



Homogeneous Metrics with Nonnegative Curvature 941

may assume that q = i and q ′ = j . Now it is straightforward to verify that the kernel
of [adi, adj ] : Im(O) → Im(O) is spanned by k ∈ H and is thus one-dimensional.

A similar argument applies to the last case. The orthogonal complement of
so(7)′ ⊂ so(8) consists of {Lq | q ∈ Im(O)}, where Lq : O → O denotes left multipli-
cation. Assuming w.l.o.g. that Xm = Li and Ym = Lj , it is straightforward to verify
that B = [Li,Lj ] ∈ so(8) is regular, contradicting that 2(m − n) = 2(p + 1) ≤ 6 by
assumption. �

Proposition 4.3 The triple SU(2) ⊂ SO(4) ⊂ G2 satisfies the hypothesis of
Lemma 4.1.

Proof We decompose the Lie algebra g2 according to the symmetric pair decompo-
sition of G2/SO(4) as

g2 = (sp(1)3 ⊕ sp(1)1) ⊕ H
2,

where sp(1)3 ⊂ sp(2) is the Lie algebra spanned by

E0 :=
(

3i

i

)
, E+ :=

(
0

√
3

−√
3 2j

)
, E− :=

(
0

√
3i√

3i 2k

)

and acts on H
2 from the left, whereas sp(1)1 = Im(H) acts via scalar multiplication

from the right. Indeed, one verifies the bracket relations

[E0,E±] = ±2E∓ and [E+,E−] = 2E0.

Since sp(1)1 is the subalgebra which is contained in su(3) ⊂ g2, it follows that
in our case, m = sp(1)3 and s = H

2. Thus, we have to show that there cannot be
sequences of vectors of the form

Xn := E+ + ρn�vn and Yn := E− + ρ′
n �wn (4.1)

with unit vectors �vn, �wn ∈ H
2 and ρn,ρ

′
n ≥ 0 such that lim[Xn,Yn] = 0. By contra-

diction, we assume that such a sequence of vectors exists and thus may assume that
the unit vectors �v := lim �vn and �w := lim �wn exist. Then we have

0 = lim〈E0, [Xn,Yn]〉 = lim〈[E0,Xn], Yn〉
= lim〈2E− + ρnE0 · �vn,E− + ρ′

n �wn〉
= 2‖E−‖2 + limρnρ

′
n〈E0 · �vn, �wn〉.

From this we conclude that

lim infρnρ
′
n > 0 and 〈E0 · �v, �w〉 ≤ 0. (4.2)

Next, for q ∈ sp(1)1, we have

0 = lim〈[Xn,Yn], q〉 = lim〈Xn, [Yn, q]〉 = limρnρ
′
n〈�vn, �wn · q〉,
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and since lim infρnρ
′
n > 0, it follows that

〈�v, �w · q〉 = 0 for all q ∈ sp(1)1 = Im(H). (4.3)

Finally,

0 = lim[Xn,Yn]s = lim(ρ′
nE+ �wn − ρnE−�vn).

By (4.2), we may assume that ρ′
n > 0 for all n. Moreover, limE−�vn = E−�v 	= 0 and

limE+ �wn = E+ �w 	= 0 since E± are regular matrices, so that

0 = E+ �w − c2E−�v, where c2 := lim ρn

ρ′
n

∈ (0,∞). (4.4)

We shall now finish our contradiction by showing that there cannot exist unit vec-
tors �v, �w ∈ H

2 satisfying (4.2), (4.3) and (4.4). Namely, �w = c2E−1+ E−�v by (4.4), and
using the invariance of these conditions under scalar multiplication from the right, we
may assume w.l.o.g. that

�v =
(

λ

z1 + z2j

)
, and �w = c2E−1+ E−�v = c2

(− 4√
3
z1k + ( 4√

3
z2 − λ)i

z1i + z2k

)
,

where λ ≥ 0, c > 0 and z1, z2 ∈ C. Next, (4.3) holds if for all q ∈ sp(1)1,

0 = 〈�v, �w · q〉

= c2 Re

((
λ

(
− 4√

3
z1k +

(
4√
3
z2 − λ

)
i

)
+ (z1 − z2j)(z1i + z2k)

)
q

)

= c2 Re

((
λ

(
4√
3
z2 − λ

)
+ |z1|2 − |z2|2

)
i + 2z1

(
z2 − 2√

3
λ

)
k

)
q

)
.

If we substitute q = i, q = j and q = k, we get therefore the equations

λ

(
4√
3

Re(z2) − λ

)
+ |z1|2 − |z2|2 = 0, and z1

(
z2 − 2√

3
λ

)
= 0. (4.5)

If z1 	= 0, then by the second equation we have z2 = Re(z2) = 2√
3
λ. Substituting this

into the first equation of (4.5) implies that 1
3λ2 + |z1|2 = 0, which is impossible for

z1 	= 0.
Therefore, we conclude from (4.5) that

z1 = 0, and |z2|2 = λ

(
4√
3

Re(z2) − λ

)
. (4.6)

Finally, we calculate from (4.6)

〈E0 · �v, �w〉 = c2
〈
E0

(
λ

z2j

)
,

(
( 4√

3
z2 − λ)i

z2k

)〉

= c2
〈(

3λi

z2k

)
,

(
( 4√

3
z2 − λ)i

z2k

)〉
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= c2
(

3λ

(
4√
3

Re(z2) − λ

)
︸ ︷︷ ︸

=|z2|2 by (4.6)

+|z2|2
)

= 4c2|z2|2.
Since 4c2|z2|2 = 〈E0 · �v, �w〉 ≤ 0 by (4.2) and c > 0, we conclude that z2 = 0, and
thus λ = 0 by (4.6), i.e. �v = �w = 0. On the other hand, �v and �w must be unit vectors
which is a contradiction. �
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