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Abstract In some recent works we have developed a new functional calculus for
bounded and unbounded quaternionic operators acting on a quaternionic Banach
space. That functional calculus is based on the theory of slice regular functions and
on a Cauchy formula which holds for particular domains where the admissible func-
tions have power series expansions. In this paper, we use a new version of the Cauchy
formula with slice regular kernel to extend the validity of the quaternionic functional
calculus to functions defined on more general domains. Moreover, we show some of
the algebraic properties of the quaternionic functional calculus such as the S-spectral
radius theorem and the S-spectral mapping theorem. Our functional calculus is also
a natural tool to define the semigroup etA when A is a linear quaternionic operator.

Keywords Slice regular functions · Functional calculus · Spectral theory ·
Algebraic properties · S-spectral radius theorem · S-spectral mapping theorem ·
Semigroup of a linear quaternionic operator

Mathematics Subject Classification (2000) 47A10 · 47A60 · 30G35

1 Introduction

In the paper [13] a new theory of quaternionic regular functions, called slice regular,
has been introduced. The version of the Cauchy formula in [13] allows us to define a
functional calculus for quaternionic operators T = T0 + T1i + T2j + T3k, using slice
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regular functions defined on particular open sets containing the S-spectrum of T (see
[5, 6, 10]).

In the paper [11], the theory of quaternionic slice regular functions has been gen-
eralized to the Clifford algebras setting. Such a theory is a natural tool to define a
functional calculus for n-tuples of noncommuting operators, see [8] and [2, 3]. Even
though the algebraic properties of quaternions are different from those of the Clifford
numbers, we find very deep and unexpected analogies in the two functional calculi.
We can say that slice hyperholomorphy (that is slice regularity for quaternions and
slice monogenicity for the Clifford setting) offers a unified vision for the functional
calculus of a quaternionic operator and for n-tuples of (noncommuting) operators. In
this paper we treat the case of quaternionic operators and we generalize the results in
[5, 6, 10] to slice regular functions defined on open sets more general than the union
of balls and spherical shells with center at real points, as it was required in [5, 6, 10].

Our starting point to generalize the quaternionic functional calculus is the new
version of the Cauchy formula for slice regular functions proved in [7]. This gener-
alization of the quaternionic functional calculus allows us to prove some properties
such as the S-spectral radius theorem and the S-spectral mapping theorem. We also
provide the quaternionic evolution operator as an example.

Let us start by recalling the definition of slice regular (s-regular, for short) func-
tions (see [13]).

Let U ⊆ H be an open set and let f : U → H be a real differentiable function.
Let I ∈ S, where S is the sphere of purely imaginary unit quaternions. Let fI be the
restriction of f to the complex plane LI := R + IR passing through 1 and I and
denote by x + Iy an element on LI . We say that f is a (left) s-regular function if, for
every I ∈ S, we have

1

2

(
∂

∂x
+ I

∂

∂y

)
fI (x + Iy) = 0.

In the sequel we will denote by R(U) the set of (left) s-regular functions on the open
set U . We say that f is right s-regular function if for every I ∈ S, we have

1

2

(
∂

∂x
fI (x + Iy) + ∂

∂y
fI (x + Iy)I

)
= 0.

If T is a linear bounded quaternionic operator, its S-spectrum consists of all those
quaternions s = s0 + s1i + s2j + s3k such that the operator T 2 − 2s0T + |s|2 I is
not invertible, where I denotes the identity operator and |s|2 = s2

0 + s2
1 + s2

2 + s2
3 .

To define a functional calculus, in [5, 10] we used the following notion of functions
s-regular on the S-spectrum of operator T :

let T be a quaternionic linear bounded operator acting on a quaternionic Banach
space V . Let U ⊂ H be an open set that contains the S-spectrum of T , and such that

(a) ∂(U ∩LI ) is union of a finite number of rectifiable Jordan curves for every I ∈ S,
(b) σS(T ) is contained in a finite union of open balls Bi ⊆ U with center in real

points and of spherical shells Aj = {q ∈ H | rj < |q −αj | < Rj , rj ,Rj ∈ R
+} ⊆

U with center in real points αj , and whose boundaries do not intersect σS(T ).
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We say that a function f is (B,A)-locally s-regular on σS(T ) if there exists an open
set U ⊂ H, as above, such that U is contained on an open set on which f is s-regular.

We will denote by RB,A
σS(T ) the set of (B,A)-locally s-regular functions on σS(T ).

Let T be a quaternionic linear bounded operator and let f ∈ RB,A
σS(T ). Let U ⊂ H

be an open set as above. In [10] we have defined the functional calculus for T as

f (T ) = − 1

2π

∫
∂(U∩LI )

(T 2 − 2s0]T + |s|2 I)−1(T − sI) dsI f (s). (1)

The restrictions on the open set U were imposed by the need of using the power
series expansion of the s-regular function f to show that the integral (1) does not
depend on the open set U and on the choice of the imaginary unit I ∈ S. In this
paper we will show that formula (1) still holds when the hypothesis on the open set
U are weakened. With the new formulation of the quaternionic functional calculus it
is possible to prove that most of the properties that hold for the functional calculus in
the complex case, still hold in the quaternionic setting.

We conclude by recalling that among the possible approaches to a functional cal-
culus, there is one which makes use of functions with hypercomplex values and the
function theory that plays an important role to treat the case of n-tuples of operators
is the one of monogenic functions (see the classical book [1] for the theory of one
variable and [4] for the several variables case). Since the literature in this setting is
very wide we mention, without claim of completeness, the papers [14–17, 19, 21, 22]
and the literature therein.

2 The Quaternionic Functional Calculus

We begin with some preliminary considerations and definitions that will be useful in
the sequel. In the following we will denote by I the identity operator. The compo-
sition of operators, and in particular the powers T n of a quaternionic operator, are
defined in the usual way. An operator T is said to be invertible if there exists S such
that T S = ST = I and we will write S = T −1. We recall the definition of right linear
operators.

Definition 2.1 Let V be a right vector space on H. A map T : V → V is said to be a
right linear operator if

T (u + v) = T (u) + T (v),

T (us) = T (u)s

for all s ∈ H and all u,v ∈ V .

In the sequel, we will consider only two sided vector spaces V , otherwise the set
of right linear operators is not a (left or right) vector space. With this assumption, the
set End(V ) of right linear operators on V is both a left and a right vector space on H

with respect to the operations

(aT )(v) := aT (v), (T a)(v) := T (av).
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Definition 2.2 Let V be a bilateral quaternionic Banach space. We will denote by
B(V ) the bilateral Banach space of all right linear bounded operators T : V → V .

It is easy to verify that B(V ) is a Banach space endowed with its natural norm. It
is obvious that the set of all invertible elements in B(V ) is a group with respect to the
composition of operators defined in B(V ). The notion of left spectrum of T related to
the resolvent (sI −T )−1, that is σL(T ) = {s ∈ H : sI −T is not invertible}, is not the
right tool to define our functional calculus, and similarly for the right spectrum of T .
This is due to the fact that the resolvent operator used in the complex case to define the
functional calculus, i.e. (sI − T )−1, here has to be replaced by a different resolvent
operator that, in the sequel, will be called S-resolvent operator. Our quaternionic
functional calculus is based on the notion of S-spectrum defined below. For the proofs
of the following results on the S-spectrum of T , we refer the reader to [10].

Definition 2.3 (The S-spectrum and the S-resolvent sets) Let V be a quaternionic
Banach space and let T ∈ B(V ). We define the S-spectrum σS(T ) of T as:

σS(T ) = {s ∈ H : T 2 − 2Re[s]T + |s|2 I is not invertible},
where Re[s], |s| denote the real part and the module of the quaternion s, respectively.
The S-resolvent set ρS(T ) is defined by

ρS(T ) = H \ σS(T ).

The notion of S-spectrum of a quaternionic operator T is suggested by the defini-
tion of S-resolvent operator that is the kernel for the quaternionic functional calculus.

Definition 2.4 (The S-resolvent operator) Let V be a quaternionic Banach space and
let T ∈ B(V ). When s ∈ ρS(T ) we define the S-resolvent operator as

S−1(s, T ) := −(T 2 − 2Re[s]T + |s|2 I)−1(T − sI), (2)

where s is the conjugate of s ∈ H.

The S-resolvent operator (2) admits a power series expansion formula which is
the analogue of the series expansion (λe − B)−1 = ∑

n≥0 Bnλ−1−n of the classical
resolvent operator in the complex case, where B is a complex bounded linear opera-
tor, e is the identity operator and the series converges in the uniform topology in the
space of all bounded linear operators for ‖B‖ < |λ|. In the quaternionic case we have
the following.

Theorem 2.5 (Power series expansion of the S-resolvent operator) Let V be a
quaternionic Banach space and let T ∈ B(V ). If s ∈ ρS(T ), then the following equal-
ity: ∑

n≥0

T ns−1−n = −(T 2 − 2Re[s]T + |s|2 I)−1(T − sI) (3)

holds for ‖T ‖ < |s|.
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Theorem 2.6 (The S-resolvent equation) Let V be a quaternionic Banach space and
let T ∈ B(V ). If s ∈ ρS(T ), then the S-resolvent operator defined in (2) satisfies the
equation

S−1(s, T )s − T S−1(s, T ) = I.

The fact that the spectrum of bounded linear operators in the complex case is a non
empty compact set still holds for the S-spectrum of a linear bounded quaternionic
operator as the following result shows.

Theorem 2.7 (Compactness of S-spectrum) Let V be a quaternionic Banach space
and let T ∈ B(V ). Then the S-spectrum σS(T ) is a compact nonempty set contained
in {s ∈ H : |s| ≤ ‖T ‖}.

We denote by S the set of unit purely imaginary quaternions, i.e.

S = {q = x1i + x2j + x3k : x2
1 + x2

2 + x2
3 = 1}.

To each quaternion p it is possible to uniquely associate an element on the sphere S:

Ip =
{

Im[p]
|Im[p]| if Im[p] 
= 0,

any element of S otherwise.

The imaginary unit Ip determines the complex plane LIp containing p.

Definition 2.8 Given p ∈ H, p = Re[p] + Ip|Im[p]| we denote by [p] the set of all
elements of the form Re[q] + J |Im[p]| when J varies in S. We say that [p] is the
2-sphere defined by p.

Remark 2.9 The set [p] is a 2-sphere which is reduced to the point p when p ∈ R.

We can now describe the structure of the S-spectrum:

Theorem 2.10 (Structure of the S-spectrum) Let V be a quaternionic Banach space
and let T ∈ B(V ). If p ∈ H belongs to σS(T ), then all the elements of the 2-sphere
[p] are contained in σS(T ).

We point out that in the Riesz-Dunford functional calculus (see for example [12]
and [20]) a crucial tool is the resolvent equation

(λe − B)−1 − (μe − B)−1 = −(λ − μ)(λe − B)−1(μe − B)−1, (4)

where B is a complex linear operator acting on complex Banach space and λ and μ

belong to the resolvent set of B . In the quaternionic case the analogue of the resol-
vent equation would be the following: take s and p ∈ ρS(T ) so from the S-resolvent
equation we get

S−1(s, T )s − T S−1(s, T ) = S−1(p,T )p − T S−1(p,T ),
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but the noncommutative setting does not allow us to get an analogue of the expres-
sion (4). This fact does not compromise the development of the quaternionic func-
tional calculus. As we shall see, most of the results that are based on (4) for the
Riesz-Dunford functional calculus, can be proved also in our case overcoming this
difficulty.

We now state a structure formula for s-regular functions, see [7], which will be
used in the sequel and which is the analogue of the structure formula for s-monogenic
functions proved by the authors in [3].

Lemma 2.11 (The structure formula for s-regular functions) Let U ⊆ H be a domain
such that U ∩ R 
= ∅, U ∩ LI is a domain for all I ∈ S and U contains the 2-sphere
[q] defined by q whenever q ∈ U . Let f : U → H be an s-regular function. Set the
positions: u = Re[q], v = |Im[q]|. Then for all q ∈ U and I ∈ S the following formula
holds:

f (q) = 1

2

[
1 − IqI

]
f (u + Iv) + 1

2

[
1 + IqI

]
f (u − Iv). (5)

Remark 2.12 Define the functions

ηI : U ∩ LI → H, ηI (u, v) := 1

2
[f (u + Iv) + f (u − Iv)],

and

θI : U ∩ LI → H, θI (u, v) := 1

2
I [f (u − Iv) − f (u + Iv)].

We have the following identity:

1

2

[
1 − IqI

]
f (u + Iv) + 1

2

[
1 + IqI

]
f (u − Iv) = ηI (u, v) + IqθI (u, v), (6)

moreover, see Theorem 2.26 in [7], the quaternionic valued functions ηI (u, v) and
θI (u, v) are independent of I ∈ S.

We now state the Cauchy formula with s-regular kernel proved in [7].

Theorem 2.13 (The Cauchy formula with s-regular kernel) Let f ∈ R(W) where W

is an open set in H. Let U ⊂ H be a domain such that: U ⊂ W , [q] ⊂ U for every
q ∈ U , U ∩ R 
= ∅, U ∩ LI is a domain for every I ∈ S, and ∂(U ∩ LI ) is union of
a finite number of rectifiable Jordan curves for every I ∈ S. Set dsI = ds/I . Then, if
q ∈ U , we have

f (q) = 1

2π

∫
∂(U∩LI )

S−1(s, q)dsI f (s), (7)

where S−1(s, q) is defined by

S−1(s, q) = −(q2 − 2qRe[s] + |s|2)−1(q − s)
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and the integral (7) does not depend on the choice of the imaginary unit I ∈ S and
on U .

If f is a right s-regular function on W and U is as above, then we have the fol-
lowing integral formula:

f (q) = 1

2π

∫
∂(U∩LI )

f (s)dsI S̃
−1(s, q) = − 1

2π

∫
∂(U∩LI )

f (s)dsI S
−1(q, s), (8)

where

S̃−1(s, q) := (s2 − 2sRe[q] + |q|2)−1(s − q) = −S−1(q, s)

and the integral (8) does not depend on the choice of the imaginary unit I ∈ S and
on U .

Remark 2.14 In our Cauchy formula for s-regular quaternionic functions (7) it is al-
ways possible to replace, at least formally, the variable q by a quaternionic operator
T = T0 + T1i + T2j + T3k. This substitution is not always possible in other func-
tion theories. For example, if one considers the Fueter’s notion of regular functions
for quaternions, the substitution q → T in the Cauchy-Fueter kernel is not allowed,
unless the component of the quaternionic operator T
, 
 = 0, . . . ,3 commute. This
is the reason for which the definition of the “Fueter functional calculus” has some
obstructions (see [9]).

Remark 2.15 In the Cauchy formula (7) the kernel −(q2 − 2qRe[s] + |s|2)−1(q − s)

has been obtained by summing the Cauchy kernel series
∑

n≥0 qns−1−n when the
series converges. Thanks to Theorem 2.5 the sum of the series

∑
n≥0 T ns−1−n is

formally obtained by substituting the quaternion q by T , also when the components
of T do not commute.

This is the reason for which our functional calculus can be developed in a natural
way starting from the Cauchy formula (7).

We are now in the position to introduce the admissible functions to define the
quaternionic functional calculus.

Definition 2.16 Let V be a quaternionic Banach space, T ∈ B(V ) and let U ⊂ H be
a domain that contains the S-spectrum σS(T ) and such:

(i) [q] ⊂ U for every q ∈ U ,
(ii) U ∩ R 
= ∅,

(iii) U ∩ LI is a domain for every I ∈ S,
(iv) ∂(U ∩ LI ) is union of a finite number of rectifiable Jordan curves for every

I ∈ S.

A function f ∈ R(W), where W is an open set in H, is said to be locally s-regular on
σS(T ) if there exists a domain U ⊂ H, satisfying (i)–(iv) and such that U ⊂ W , on
which f is s-regular. We will denote by RσS(T ) the set of locally s-regular functions
on σS(T ).
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Remark 2.17 Let W is an open set in R
n+1 and let f ∈ R(W). In the Cauchy for-

mula (7) the open set U ⊂ W need not to be necessarily connected. Indeed for-
mula (7) obviously holds when U = ⋃r

i=1 Ui , Ui ∩ Uj = ∅ when i 
= j where Ui

are as in Definition 2.16 for all i = 1, . . . , r and the boundaries of Ui ∩ LI con-
sists of a finite number of continuously differentiable Jordan curves for I ∈ S for all
i = 1, . . . , r . So when we choose f ∈ RσS(T ) the related open set U need not to be
connected. In the sequel we will state our results relating them to a domain U but our
results obviously hold for open sets U = ⋃r

i=1 Ui as above.

The Hahn–Banach theorem holds for right (or left) vector spaces on H. The proof
is very similar to the one for the complex case. We recall the result and its proof
below, for sake of completeness. We will use it for the proof of an important theorem
that allows us to define the quaternionic functional calculus.

Theorem 2.18 (The quaternionic version of the Hahn-Banach theorem) Let V0 be a
right subspace of a right vector space V on H. Suppose that p is a seminorm on V

and let φ be a linear and continuous functional on V0 such that

|〈φ,v〉| ≤ p(v), ∀v ∈ V0. (9)

Then it is possible to extend φ to a linear and continuous functional on V satisfying
the estimate (9) for all v ∈ V .

Proof Note that, for any quaternion q we have q = q0 + q1i + q2j + q3k =
z1(q) + z2(q)j , where z1, z2 ∈ C = R + Ri and qj = −z2(q) + z1(q)j , so q =
z1(q) − z1(qj)j . The functional φ can be written as φ = φ0 + φ1i + φ2j + φ3k =
ψ1(φ) + ψ2(φ)j , with ψ1(φ) = φ0 + φ1i and ψ2(φ) = φ2 + φ3i which are complex
functionals. It is immediate that

〈φ,v〉 = 〈ψ1, v〉 − 〈ψ1, vj 〉j, ∀v ∈ V0,

where ψ1 is a C-linear functional. So we can apply the complex version of the Hahn–
Banach theorem to deduce the existence of a functional ψ̃1 that extends ψ1 to the
whole of V (as a complex vector space). The functional 
 given by

〈
,v〉 = 〈ψ̃1, v〉 − 〈ψ̃1, vj 〉j
is defined on V and it is the extension that satisfies estimate (9) for all v ∈ V . �

The following result is an immediate consequence of the quaternionic version of
the Hahn-Banach theorem. Its proof mimics the analogous proof in the complex case.

Corollary 2.19 Let V be a right vector space on H and let v ∈ V . If 〈φ,v〉 = 0 for
every linear and continuous functional φ in V ′, then v = 0.

Theorem 2.20 Let V be a quaternionic Banach space, T ∈ B(V ) and f ∈ RσS(T ).
Let U ⊂ H be a domain as in Definition 2.16. Set dsI = ds/I . Then the integral

1

2π

∫
∂(U∩LI )

S−1(s, T )dsI f (s), (10)
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where S−1(s, T ) is the S-resolvent operator, does not depend on the choice of the
imaginary unit I ∈ S and on U .

Proof We first observe that the function S−1(s, q) is right s-regular in the variable s

in its domain of definition. In fact, by a direct computation, setting s = x + Iy we
have

∂

∂x
S−1(s, q) = (q2 − 2qx + x2 + y2)−2(−2q + 2x)(q − x + Iy)

+ (q2 − 2qx + x2 + y2)−1,

∂

∂y
S−1(s, q) = (q2 − 2qx + x2 + y2)−22v(q − x + Iy)

− (q2 − 2qx + x2 + y2)−1I.

Easy calculations show that

∂

∂x
S−1(s, q) + ∂

∂y
S−1(s, q)I = 0, ∀I ∈ S

which proves the assertion.
Now observe that we can replace q with an operator T ∈ B(V ) in the Cauchy

formula (7), thanks to Theorem 2.5. For every linear and continuous functional φ ∈
V ′, consider the duality 〈φ,S−1(s, T )v〉, for v ∈ V and define the function

g(s) := 〈φ,S−1(s, T )v〉, for v ∈ V, φ ∈ V ′.

The function g remains right s-regular in the variable s on the complement of σS(T )

and since g(s) → 0 as s → ∞ we have that g is s-regular also at infinity. Suppose
that U is as in Definition 2.16 so that ∂(U ∩ LI ) does not cross the S-spectrum of T

for every I ∈ S. The fact that, for fixed I ∈ S, the integral

1

2π

∫
∂(U∩LI )

g(s)dsI f (s) (11)

does not depend on U follows from the Cauchy theorem. By Corollary 2.19 also the
integral (10) does not depend on U . We now prove that the integral (11) does not
depend on I ∈ S. Since g is a right s-regular function on the complement of the S-
spectrum of T , we can consider an open set U ′ such that U

′ ⊂ ρS(T ) and [q] ⊂ U ′
whenever q ∈ U ′. Suppose that ∂U ⊂ U ′ where U is as above so, in particular, it
contains [s] whenever s ∈ U . Choose J ∈ S, J 
= I and represent g(s) by the Cauchy
integral formula (8) as

g(s) = − 1

2π

∫
∂(U ′∩LJ )−

g(t) dtJ S−1(s, t), (12)

where the boundary ∂(U ′ ∩ LJ )− is oriented clockwise to include the points [s] ∈
∂(U ∩LJ ) (recalling that the singularities of S−1(s, t) correspond to the 2-sphere [s])



610 F. Colombo, I. Sabadini

and to exclude the points belonging to the S-spectrum of T . Taking into account the
orientation of ∂(U ′ ∩ LJ )− we can rewrite the integral (12) as

g(s) = 1

2π

∫
∂(U ′∩LJ )

g(t) dtJ S−1(s, t). (13)

Let us now plug the expression of g(s) in (13) into the integral (11) to obtain

1

2π

∫
∂(U∩LI )

g(s) dsI f (s)

= 1

2π

∫
∂(U∩LI )

[
1

2π

∫
∂(U ′∩LJ )

g(t) dtJ S−1(s, t)

]
dsI f (s)

= 1

2π

∫
∂(U ′∩LJ )

g(t) dtJ

[
1

2π

∫
∂(U∩LI )

S−1(s, t) dsI f (s)

]
, (14)

where we have used the Fubini theorem. Now observe that, in general, ∂(U ′ ∩ LJ )

consists of a finite number of Jordan curves inside and possibly outside U ∩ LJ , but
the integral

1

2π

∫
∂(U∩LI )

S−1(s, t) dsI f (s)

equals f (t) for those t ∈ ∂(U ′ ∩ LJ ) belonging to U ∩ LJ . Thus we obtain:

1

2π

∫
∂(U ′∩LJ )

g(t) dtJ

[
1

2π

∫
∂(U∩LI )

S−1(s, t) dsI f (s)

]

= 1

2π

∫
∂(U ′∩LJ )

g(t) dtJ f (t). (15)

So from (14) and (15) we can write

1

2π

∫
∂(U∩LI )

g(s) dsI f (s) = 1

2π

∫
∂(U ′∩LJ )

g(t) dtJ f (t). (16)

Now observe that ∂(U ′ ∩ LJ ) is positively oriented and surrounds the S-spectrum
of T . By the first part of the statement in (16) we can substitute ∂(U ′ ∩ LJ ) by
∂(U ∩LJ ) because of the independence of the integral on the open set U and we get:

1

2π

∫
∂(U∩LI )

g(s) dsI f (s) = 1

2π

∫
∂(U∩LJ )

g(t) dtJ f (t),

that is

1

2π

∫
∂(U∩LI )

〈φ,S−1(s, T )v〉dsI f (s)

= 1

2π

∫
∂(U∩LJ )

〈φ,S−1(t, T )v〉dtJ f (t), for every v ∈ V, φ ∈ V ′, I, J ∈ S.

Thus by Corollary 2.19 the integral (10) does not depend on I ∈ S. �
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Thanks to Theorem 2.20 the following definition of the quaternionic functional
calculus is well posed.

Definition 2.21 Let V be a quaternionic Banach space, T ∈ B(V ) and f ∈ RσS(T ).
Let U ⊂ H be a domain as in Definition 2.16 and set I ∈ S. Set dsI = ds/I . We
define

f (T ) = 1

2π

∫
∂(U∩LI )

S−1(s, T ) dsI f (s). (17)

From Definition 2.21 it easily follows that

Proposition 2.22 Let V be a quaternionic Banach space, T ∈ B(V ) and let f ,
g ∈ RσS(T ). Then

(f + g)(T ) = f (T ) + g(T ), (fp)(T ) = f (T )p, for all p ∈ H.

2.1 Some Comments

It is possible to give an easy proof of Theorem 2.20. This proof is of limited validity,
but follows by a direct computation. It applies only in the case the functions we
consider admit power series expansions on U . We recall this important fact: s-regular
functions admit Taylor series expansions only on balls centered at real points and
they admit Laurent series expansions only on spherical shells centered at real points.

Let us consider the case in which the domain U is contained in a ball B(α, r) ⊂ H

centered in a real point α and of radius r > 0 in which the s-regular function f admits
a power series expansion.

Lemma 2.23 Let V be a quaternionic Banach space, T ∈ B(V ). Suppose that f is
an s-regular function such that

f (s) =
∑
m≥0

(s − α)mam, ∀s ∈ B(α, r), α ∈ R, am ∈ H, r > 0 (18)

and assume that σS(T ) ⊂ U ⊂ B(α, r) where U is as in Definition 2.16. Then

1

2π

∫
∂(U∩LI )

S−1(s, T ) dsI f (s) (19)

does not depend on the choice of the imaginary unit I ∈ S and on U .

Proof In B(α, r) the Taylor expansion of f has the form (18) where the elements am

are fixed quaternions and do not depend on the particular plane LI . Now observe that

f (s) =
∑
m≥0

(s − α)mam =
∑
m≥0

m∑
j=0

(
m

j

)
sj (−α)m−j am.
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Consider the integral (19) and replace the power series expansion for f . By the ab-
solute and uniform convergence we get

1

2π

∫
∂(U∩LI )

S−1(s, T ) dsI f (s)

= 1

2π

∑
m≥0

m∑
j=0

(
m

j

)(∫
∂(U∩LI )

S−1(s, T ) dsI s
j

)
(−α)m−j am. (20)

Now consider the integral
∫

∂(U∩LI )

S−1(s, T ) dsI s
j

and observe that sj is s-regular everywhere so we can deform the integration path in
such a way that S−1(s, T ) admits the power series expansion (3) in a suitable ball
B(0, r). We have:

1

2π

∑
n≥0

T n

∫
∂(B(0,r)∩LI )

s−1−n+j dsI = T j , (21)

since ∫
∂(B(0,r)∩LI )

dsI s
−n−1+j = 0 if n 
= j,

(22)∫
∂(B(0,r)∩LI )

dsI s
−n−1+j = 2π if n = j.

The standard Cauchy theorem on the complex plane LI shows that the above integral
(21) is not affected if we replace ∂(B(0, r) ∩ LI ) by ∂(U ∩ LI ), so

1

2π

∫
∂(U∩LI )

S−1(s, T ) dsI s
j = T j .

We conclude that the integral (20) does not depend on U and on I ∈ S because the
coefficient (−α)j−mam are independent of I ∈ S. �

As we did in [10], consider the open sets U ⊂ H that contain the S-spectrum of T ,
and such that

(a) ∂(U ∩LI ) is union of a finite number of rectifiable Jordan curves for every I ∈ S,
(b) σS(T ) is contained in a finite union of open balls Bi ⊆ U with center in real

points and of spherical shells Aj = {q ∈ H | rj < |q −αj | < Rj , rj ,Rj ∈ R
+} ⊆

U with center in real points αj , and whose boundaries do not intersect σS(T ).

Since an analogue of Lemma 2.23 holds also for Laurent power series expansions, in
[10] we could prove that for open sets U ⊃ σS(T ) satisfying (a) and (b) the integral
(10) does not depend on the choice of the imaginary unit I ∈ S and on U .
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3 The S-Spectral Radius

In this section we give the definition of S-spectral radius which is the analogue of the
spectral radius for the Riesz-Dunford case. The main result of this section is Theo-
rem 3.10. This theorem is based on the S-spectral mapping theorem for the powers
T n, n ∈ N, of a quaternionic bounded linear operator T , which can be proved using
some algebraic properties of quaternionic polynomials. In Sect. 4 we will generalize
the S-spectral mapping theorem to a wider class of s-regular functions.

Definition 3.1 (The S-spectral radius of T ) Let V be a quaternionic Banach space
and T ∈ B(V ). We call S-spectral radius of T the non negative real number

rS(T ) := sup{|s| : s ∈ σS(T )}.

Before we can state and prove the S-spectral radius theorem, we need two prelim-
inary lemmas on quaternionic polynomials. For the sequel, it is useful to recall that
any quaternion q = Re[q] + Iq |Im[q]| is associated to the 2-sphere defined by [q]
which reduces to q only when q is real.

Lemma 3.2 Let n ∈ N and q , s ∈ H. Let

P2n(q) := q2n − 2Re[sn]qn + |sn|2.

Then

P2n(q) = Q2n−2(q)(q2 − 2Re[s]q + |s|2) = (q2 − 2Re[s]q + |s|2)Q2n−2(q), (23)

where Q2n−2(q) is a polynomial of degree 2n − 2 in q .

Proof First of all we observe that

P2n(s) = s2n − 2Re[sn]sn + |sn|2 = s2n − (sn + s̄n)sn + snsn = 0.

Moreover, the substitution of s by any s′ on the same 2-sphere leaves the coefficients
of the polynomial P2n(q) unchanged, and P2n(s

′) = 0. We conclude, see [18], that
the whole 2-sphere defined by s is solution to the equation P2n(q) = 0. The statement
follows from the factorization theorem, see [18], and the fact that the second degree
polynomial q2 − 2Re[s]q + |s|2 has real coefficients. �

Lemma 3.3 Let n ∈ N and q , p ∈ H. Let λj , j = 0,1, . . . , n − 1 be the solutions of
λn = p in the complex plane LIp . Then

q2n − 2Re[p]qn + |p|2 =
n−1∏
j=0

(q2 − 2Re[λj ]q + |λj |2). (24)
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Proof The equation λn = p can be solved in the complex plane x + Ipy containing
p = p0 + Ipp1 where it admits n solutions λj = λj0 + Ipλj1, j = 0,1, . . . , n − 1.
By reason of degree, these are the only solutions to the equation in the complex
plane LIp . Note that if we take any p′ = p0 + Ip1, I ∈ S in the 2-sphere of p then
the solutions to the equation λn = p′ are λ′

j = λj0 + Iλj1, j = 0,1, . . . , n− 1, I ∈ S.

We consider the polynomial P2n(q) = q2n − 2Re[p]qn + |p|2 and we observe that
q = λj is a root of P2n(q) = 0, in fact

P2n(λj ) = λ2n
j − 2Re[p]λn

j + |p|2 = p2 − 2Re[p]p + |p|2 = 0.

The substitution of p by p′ on the same 2-sphere leaves P2n unchanged and it is im-
mediate that P2n(λ

′
j ) = 0 when I varies in S. This proves that the roots of P2n(q) = 0

lye on the 2-spheres of λj , j = 0, . . . , n − 1. The statement follows from the factor-
ization theorem, see [18]. �

Let us introduce an important subclass of R(U), (the set of s-regular functions
on U ) for the purpose to guarantee that the product of two s-regular functions is still
an s-regular function.

Definition 3.4 Let U ⊂ H be an open set. We define

N (U) = {f ∈ R(U) | f (U ∩ LI ) ⊆ LI ,∀I ∈ S}.

Remark 3.5 Observe that if f is a polynomial (resp. a convergent series on U ) with
real coefficients, then f ∈ N (H) (resp. f ∈ N (U)).

Definition 3.6 Let V be a quaternionic Banach space and let T ∈ B(V ). We will
denote by NσS(T ) the set of functions for which there exists a domain U ⊂ H as
in Definition 2.16 and such that f ∈ N (U), where U is contained in the set of s-
regularity of f .

Lemma 3.7 Let U ⊂ H be an open set. Let f ∈ N (U), g ∈ R(U), then fg ∈ R(U).
In particular, if f,g ∈ N (U), then fg ∈ N (U)

Proof Consider I ∈ S and set z = x + Iy. The restriction fI (z) of f equals F(z)

with F : U ∩ LI → LI holomorphic and we have that:
(

∂

∂x
+ I

∂

∂y

)
(fg)(z) = ∂F

∂x
(z)g(z) + F(z)

∂g

∂x
(z) + I

∂F

∂y
(z)g(z) + IF (z)

∂g

∂y
(z)

and since I commutes with F(z) we obtain:
(

∂

∂x
+ I

∂

∂y

)
(fg)(z) =

(∂F

∂x
(z) + I

∂F

∂y
(z)

)
g(z) + F(z)

( ∂g

∂x
(z) + I

∂g

∂y
(z)

)
= 0.

The second part of the statement follows from the fact that both f and g take LI to
itself for all I ∈ S. �
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The following result is an important property of our functional calculus and will
be used to prove our S-spectral mapping theorem.

Theorem 3.8 Let V be a quaternionic Banach space and let T ∈ B(V ). If φ ∈ NσS(T )

and g ∈ RσS(T ), then (φg)(T ) = φ(T )g(T ).

Proof Denote by U a domain as in Definition 2.16 on which both φ and g are s-
regular. Observe that φg is s-regular on U thanks to Lemma 3.7. Let G1 and G2 be
two open sets as in Definition 2.16 such that G1 ∪ ∂G1 ⊂ G2 and G2 ∪ ∂G2 ⊂ U .
Take s ∈ ∂(G1 ∩ LI ) and t ∈ ∂(G2 ∩ LI ) and observe that, for I ∈ S, we have

g(s) = 1

2π

∫
∂(G2∩LI )

S−1(t, s) dtI g(t).

Now consider

(φg)(T ) = 1

2π

∫
∂(G1∩LI )

S−1(s, T ) dsIφ(s)g(s)

= 1

2π

∫
∂(G1∩LI )

S−1(s, T ) dsIφ(s)

[
1

2π

∫
∂(G2∩LI )

S−1(t, s) dtI g(t)

]

for the vectorial version of the Fubini theorem we have

(φg)(T ) = 1

2π

∫
∂(G2∩LI )

[
1

2π

∫
∂(G1∩LI )

S−1(s, T ) dsIφ(s)S−1(t, s)

]
dtI g(t).

Finally, observe that S−1(t, s) is s-regular in the variable s on the S-spectrum of T

and φ(s)S−1(t, s) is s-regular in the variable s thanks to Lemma 3.7, so we have

(φg)(T ) = 1

2π

∫
∂(G2∩LI )

φ(T )S−1(t, T )dtI g(t) = φ(T )g(T ),

where we have taken φ(T ) out of the integral. �

Theorem 3.9 (A particular case of the S-spectral mapping theorem) Let V be a
quaternionic Banach space and let T ∈ B(V ). Then

σS(T n) = (σS(T ))n = {sn ∈ H : s ∈ σS(T )}.
Proof Recall that

σS(T ) = {s ∈ H : T 2 − 2Re[s]T + |s|2 I is not invertible}
and

σS(T n) = {p ∈ H : T 2n − 2Re[p]T n + |p|2 I is not invertible}.
Since, by Lemma 3.2 and Theorem 3.8, the operator T 2n − 2Re[sn]T n + |sn|2 I can
be factorized as

T 2n − 2Re[sn]T n + |sn|2 I = Q2n−2(T )(T 2 − 2Re[s]T + |s|2 I),
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we deduce that if T 2 − 2Re[s]T + |s|2 I is not injective also T 2n − 2Re[sn]T n +
|sn|2 I is not injective. This proves that (σS(T ))n ⊆ σS(T n). Let us now consider
p ∈ σS(T n). By Lemma 3.3 and Theorem 3.8 we can write

T 2n − 2Re[p]T n + |p|2 I =
n−1∏
j=0

(T 2 − 2Re[λj ]T + |λj |2 I),

and since T 2n −2Re[p]T n +|p|2 I is not invertible at least one of the operators T 2 −
2Re[λj ]T + |λj |2 I for some j is not invertible, proving that σS(T n) ⊆ (σS(T ))n. �

We can now conclude this section with the S-spectral radius theorem.

Theorem 3.10 (The S-spectral radius theorem) Let V be a quaternionic Banach
space, let T ∈ B(V ) and let rS(T ) be its S-spectral radius. Then

rS(T ) = lim
n→∞‖T n‖1/n.

Proof For every s ∈ H such that |s| > rS(T ) the series
∑

n≥0 T ns−1−n converges in
B(V ) to the S-resolvent operator S−1(s, T ). So the sequence T ns−1−n is bounded in
the norm of B(V ) and

lim sup
n→∞

‖T n‖1/n ≤ rS(T ). (25)

Theorem 3.9 implies σS(T n) = (σS(T ))n, so we have

(rS(T ))n = rS(T n) ≤ ‖T n‖,
from which we get

rS(T ) ≤ lim inf‖T n‖1/n. (26)

From (25), (26) we obtain

rS(T ) ≤ lim inf
n→∞ ‖T n‖1/n ≤ lim sup

n→∞
‖T n‖1/n ≤ rS(T ). (27)

The chain of inequalities (27) also proves the existence of the limit. �

4 The S-Spectral Mapping and the Composition Theorems

We collect in the following Lemma some useful properties of s-regular functions that
will be used to prove the main results of this section.

Lemma 4.1 Let U ⊂ H be an open set.

a) Suppose that P(q),Q(q) are polynomials in the quaternionic variable q with
real coefficients and assume that Q(q) has no zeros in U . Define F(q) =
(Q(q))−1P(q) (or F(q) = P(q)(Q(q))−1) then F ∈ N (U).
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b) If f ∈ N (U) then f 2 ∈ N (U).
c) Let U , U ′ be two open sets in H and f ∈ N (U ′), g ∈ N (U) with g(U) ⊆ U ′.

Then f (g(q)) is s-regular in U .

Proof Part a) trivially follows by replacing q by z = x + Iy and observing that
(

∂

∂x
+ I

∂

∂y

)
F(x + Iy) = 0

for all I ∈ S. To prove b), consider LI for any I ∈ S and the restriction fI (z) = F(z),
where F : U ∩LI → LI is a holomorphic function. This implies that also the function
f 2 belongs to N (U). Finally, to prove c) set q = x + Iy. By hypothesis, g(x + Iy) =
α(x, y) + Iβ(x, y), where α and β are real valued functions and

f (g(x + Iy)) = f (α(x, y) + Iβ(x, y)) ⊆ LI .

The function f (g(x + Iy)) is holomorphic on each plane LI thus it satisfies the
condition (

∂

∂x
+ I

∂

∂y

)
f (g(x + Iy)) = 0

for all I ∈ S and so f (g(q)) is s-regular. �

Theorem 4.2 (The general version of the S-spectral mapping theorem) Let V be a
quaternionic Banach space, T ∈ B(V ) and f ∈ NσS(T ). Then

σS(f (T )) = f (σS(T )) = {f (s) : s ∈ σS(T )}.

Proof Since f ∈ NσS(T ), there exists a domain U ⊂ H containing σS(T ), satisfying
the requirements in Definition 2.16 and such that f ∈ N (U). Let us fix λ ∈ σS(T ).
For q 
∈ [λ], let us define the function g̃(q) by

g̃(q) = (q2 − 2Re[λ]q + |λ|2)−1(f 2(q) − 2Re[f (λ)]f (q) + |f (λ)|2).
Observe that the assumption f ∈ N (U) implies that f 2 ∈ N (U) by Lemma 4.1(b),
so also f 2(q) − 2Re[f (λ)]f (q) + |f (λ)|2 ∈ N (U). The function (q2 − 2Re[λ]q +
|λ|2)−1 ∈ N (U \ {[λ]}), by Lemma 4.1(a), thus g̃(q) ∈ N (U \ {[λ]}) by Lemma 3.7.
We can extend g̃(q) to an s-regular function whose domain is U : if the 2-sphere [λ]
is not reduced to a real point, then we define

g(q) =
{

g̃(q) if q 
∈ [λ],
∂
∂x

f (μ)
f (μ)−f (μ)

μ−μ
if q = μ = λ0 + Iλ1 ∈ [λ], I ∈ S.

If the 2-sphere [λ] is reduced to the real point λ, we define

g(q) =
{

g̃(q) if q 
= λ,

( ∂
∂x

f (λ))2 if q = λ ∈ R.
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Let us consider the first case. Given the 2-sphere [λ], on each plane LI , I ∈ S the
function g̃ has the two singularities λ0 ± Iλ1 ∈ [λ]. If we set z = x + Iy, we can
compute the limit of g̃ on the plane LI for z → μ = λ0 + Iλ1 and for z → μ =
λ0 − Iλ1. Observe that f restricted to the plane LI is a holomorphic function from
U ∩ LI with values in the complex plane LI , and, by Remark 2.12, f (λ0 + Iλ1) =
ηK(λ0, λ1) + IθK(λ0, λ1). However, by their definition, ηK, θK : U ∩ LK → LK for
all K ∈ S, so ηK, θK are real valued functions η, θ depending only on λ0, λ1 and
we can write f (λ0 + Iλ1) = η(λ0, λ1) + Iθ(λ0, λ1). We deduce that Re[f (λ)] =
Re[f (μ)] and |f (λ)|2 = |f (μ)|2 for any choice of μ and λ on the same 2-sphere. So
we have:

lim
z→μ

gI (z) = lim
z→μ

(z2 − 2Re[μ]z + |μ|2)−1(f 2(z) − 2Re[f (μ)]f (z) + |f (μ)|2)

= lim
z→μ

(f (z) − f (μ))(f (z) − f (μ))

(z − μ)(z − μ)
= f ′(μ)

f (μ) − f (μ)

μ − μ
,

and similarly we can calculate the limit when z → μ. Note that the derivative f ′(μ)

coincides with ∂
∂x

f (μ) since f is an s-regular function (see [7]). In the second case,
assume that λ ∈ R. Consider any J ∈ S and the restriction of f to the plane LJ . Then
f : U ∩ LJ → LJ is a holomorphic function and f (λ) ∈ R, indeed f (λ) ∈ LJ for all
J ∈ S. Let us set z = x + Jy. We have:

lim
z→λ

gJ (z) = lim
z→λ

(z2 − 2Re[λ]z + |λ|2)−1(f 2(z) − 2Re[f (λ)]f (z) + |f (λ)|2)

= lim
z→λ

(f (z) − f (λ))2

(z − λ)2
= f ′(λ)2,

so the value of the limit is independent of the plane LJ . The function gI : U ∩ LI →
LI is extended by continuity to U ∩ LI , so it is holomorphic on U ∩ LI for all I ∈ S.
We conclude that the function g : U → H is an s-regular function.

Now, using the auxiliary function g, defined on U and s-regular, thanks to Theo-
rem 3.8 we can write

f 2(T ) − 2Re[f (λ)]f (T ) + |f (λ)|2 I = (T 2 − 2Re[λ]T + |λ|2 I)g(T ).

If f 2(T ) − 2Re[f (λ)]f (T ) + |f (λ)|2 I admits a bounded inverse

B := (f 2(T ) − 2Re[f (λ)]f (T ) + |f (λ)|2 I)−1 ∈ B(V )

then we have

(T 2 − 2Re[λ]T + |λ|2 I)g(T )B = I,

i.e. g(T )B is the inverse of T 2 − 2Re[λ]T + |λ|2 I . Thus f (σS(T )) ⊆ σS(f (T )).
Now we take p ∈ σS(f (T )) such that p 
∈ f (σS(T )). We define the function

h(q) := (f 2(q) − 2Re[p]f (q) + |p|2)−1
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which is s-regular on σS(T ). By Theorem 3.8 we obtain

h(T )(f 2(T ) − 2Re[p]f (T ) + |p|2 I) = I

this means that p 
∈ σS(f (T )), but this contradicts the assumption. So
p ∈ f (σS(T )). �

Theorem 4.3 Let V be a quaternionic Banach space and let T ∈ B(V ). Assume that
fn ∈ RσS(T ), for all n ∈ N and let U ⊃ σS(T ) be as in Definition 2.16. If fn converges
uniformly to f on U ∩ LI , I ∈ S, then fn(T ) converges to f (T ) in B(V ).

Proof Let W be a domain as in Definition 2.16 such that σS(T ) ⊂ W ⊂ U . Then
fn → f converges uniformly on ∂(W ∩ LI ) and consequently

fn(T ) = 1

2π

∫
∂(W∩LI )

S−1(s, T ) dsI fn(s)

converges in the uniform topology of operators to

f (T ) = 1

2π

∫
∂(W∩LI )

S−1(s, T ) dsI f (s). �

Theorem 4.4 Let V be a quaternionic Banach space and let T ∈ B(V ). Suppose
that f ∈ NσS(T ), φ ∈ Nf (σS(T )) and define F(s) = φ(f (s)). Then F ∈ RσS(T ) and
F(T ) = φ(f (T )).

Proof The statement F ∈ RσS(T ) follows from Lemma 4.1(c). Let U ⊃ σS(f (T ))

be a domain as in Definition 2.16 whose boundary is denoted by ∂U . Suppose that
U ∪ ∂U is contained in the domain in which φ is s-regular. Let W be a neighborhood
of σS(T ) as in Definition 2.16 whose boundary is denoted by ∂W and suppose that
W ∪∂W is contained in the domain where f is s-regular. Finally suppose that f (W ∪
∂W) ⊂ U . Let I ∈ S and define the operator

S−1(λ,f (T )) = 1

2π

∫
∂(U∩LI )

S−1(s, T ) dsI S−1(λ,f (s)),

where

S−1(λ,f (s)) = −(f (s)2 − 2Re[λ]f (s) + |λ|2)−1(f (s) − λ). (28)

By applying Lemmas 4.1 and 3.7 and with some easy calculation it follows that
S−1(λ,f (s)) is s-regular in the variable s and it is right s-regular in the variable λ.

Take λ ∈ R, so that also S(λ,f (s)) is an s-regular function and observe that

S−1(λ,f (s))S(λ,f (s)) = S(λ,f (s))S−1(λ,f (s)) = 1

so by Theorem 3.8 the operator S−1(λ,f (T )) satisfy the equation:

S(λ,f (T ))S−1(λ,f (T )) = S−1(λ,f (T ))S(λ,f (T )) = I. (29)
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Observe also that when λ is not necessarily a real number, identity (29) remains valid
as it can be easily shown by replacing S−1(λ,f (T )) and S(λ,f (T )) by their explicit
expressions

S−1(λ,f (T )) = −(f (T )2 − 2Re[λ]f (T ) + |λ|2)−1(f (T ) − λ)

and

S(λ,f (T )) = −(f (T ) − λ)−1(f (T )2 − 2Re[λ]f (T ) + |λ|2)
in (29) and verifying that we get an identity. Consequently we obtain

φ(f (T )) = 1

2π

∫
∂(W∩LI )

S−1(λ,f (T )) dλIφ(λ)

= 1

2π

∫
∂(W∩LI )

(
1

2π

∫
∂(U∩LI )

S−1(s, T ) dsI S
−1(λ,f (s))

)
dλIφ(λ)

= 1

2π

∫
∂(U∩LI )

S−1(s, T ) dsI

(
1

2π

∫
∂(W∩LI )

S−1(λ,f (s)) dλIφ(λ)

)

= 1

2π

∫
∂(U∩LI )

S−1(s, T ) dsIφ(f (s))

= 1

2π

∫
∂(U∩LI )

S−1(s, T ) dsIF (s) = F(T ),

so this concludes the proof. �

5 Functional Calculus for Unbounded Operators

Let V be a quaternionic Banach space and T = T0 +∑3
j=1 ejTj where Tj : D(Tj ) →

V are linear operators for j = 0,1,1,3 where at least one of the Tj ’s is an unbounded
operator, D(Tj ) denotes the domain of Tj . In this case we have to define the extended
S-spectrum of T as

σS(T ) := σS(T ) ∪ {∞}.
Let us consider H = H ∪ {∞} endowed with the natural topology. Precisely, a set is
open if and only if it is union of open discs D(q, r) with center at points in q ∈ H

and radius r , for some r , and/or union of sets the form D′(∞, r) ∪ {∞}, for some r ,
where D′(∞, r) = {q ∈ H | |q| > r}.

We recall the following definitions:

Definition 5.1 We say that f is an s-regular function at ∞ if f (q) is an s-regular
function in a set D′(∞, r) and limq→∞ f (q) exists and it is finite. We define f (∞)

to be the value of this limit.

Remark 5.2 We now that if T is a linear and bounded quaternionic operator then
σS(T ) is a compact nonempty set, but for unbounded operators, as in the classical
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case, the S-spectrum can be σS(T ) = ∅, σS(T ) = H; moreover σS(T ) can be bounded
or unbounded. In the sequel we will assume that ρS(T ) 
= ∅.

Definition 5.3 Let V be a quaternionic Banach space. We consider the linear closed
densely defined operator T : D(T ) ⊂ V → V where D(T ) denotes the domain of T .
Let us assume that

1) D(T ) is dense in V ,
2) T − sI is densely defined in V ,
3) D(T 2) ⊂ D(T ) is dense in V ,
4) T 2 − 2T Re[s] + |s|2 I is one-to-one with range V .

The S-resolvent operator is defined by

S−1(s, T ) = −(T 2 − 2T Re[s] + |s|2 I)−1(T − sI). (30)

Observe that the operator S−1(s, T ) is the restriction to the dense subspace D(T )

of V of a bounded linear operator defined on V . This fact follows by the commutation
relation (T 2 − 2T Re[s] + |s|2 I)−1T v = T (T 2 − 2T Re[s] + |s|2 I)−1v which holds
for all v ∈ D(T ) since the polynomial operator T 2 − 2T Re[s] + |s|2 I : D(T 2) → V

has real coefficients. The operator T (T 2 − 2T Re[s] + |s|2 I)−1 : V → D(T ) is con-
tinuous for those s ∈ H such that (T 2 − 2T Re[s] + |s|2 I)−1 ∈ B(V ). We will intend
the operator in (30) extended to all V as S−1(s, T ) := (T 2 − 2T Re[s] + |s|2 I)−1s −
T (T 2 − 2T Re[s] + |s|2 I)−1. So the S-resolvent set ρS(T ) of T consists of those
s ∈ H such that S−1(s, T ) ∈ B(V ) and the S-spectrum σS(T ) of T is defined by
σS(T ) = H \ ρS(T ).

Definition 5.4 Let T : D(T ) → V be a linear closed operator as in Definition 5.3.
Let U ⊂ H be an open set that contains the S-spectrum of T . Suppose that U also
satisfies the condition i)–iv) in Definition 2.16. Assume that U and ∞ are contained
in an open set in which f is s-regular. A function f is said to be locally s-regular
on σS(T ) if there exists an open set U as above such that f is s-regular on U and at
infinity.

We will denote by RσS(T ) the set of locally s-regular functions on σS(T ).

Remark 5.5 As we have pointed out in Remark 2.17, the open set U related to f ∈
RσS(T ) need not to be connected. Moreover, as in the classical functional calculus,
U can depend on f and can be unbounded.

Definition 5.6 Consider k ∈ H and the homeomorphism

� : H → H

defined by

p = �(s) = (s − k)−1, �(∞) = 0, �(k) = ∞.
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Definition 5.7 Let T : D(T ) → V be a linear closed operator as in Definition 5.3
with ρS(T ) ∩ R 
= ∅ and suppose that f ∈ RσS(T ). Let us consider

φ(p) := f (�−1(p))

and the operator defined by

A := (T − kI)−1, for some k ∈ ρS(T ) ∩ R.

We define the operator f (T ) as

f (T ) = φ(A). (31)

Remark 5.8 Observe that, if k ∈ R, we have that:

i) the function φ = f (�−1(p)) is s-regular because it is the composition of the
function f which is s-regular and �−1(p) = p−1 + k which is s-regular with real
coefficients;

ii) in the case k ∈ ρS(T ) ∩ R we have that (T − kI)−1 = −S−1(k, T ).

To prove the fundamental Theorem 5.10 we need the following result proved
in [5].

Theorem 5.9 If k ∈ ρS(T ) ∩ R 
= ∅ and �, φ are as above, then �(σS(T )) =
σS(A) and φ(p) = f (�−1(p)) determines a one-to-one correspondence between
f ∈ RσS(T ) and φ ∈ RσS(A). The relation between the S-resolvent operators of T

and of A is given by

S−1(s, T ) = pI − S−1(p,A)p2. (32)

The proof of the next important result is analogous to the one of Theorem 4.12 in
[8]; but thanks to the Cauchy formula with s-regular kernel (2.13) we can replace the
functional calculus in Definition 3.15 in [8] with the one in Definition 2.21 that holds
for more general domains.

Theorem 5.10 Let V be a quaternionic Banach space and let T : D(T ) → V be
a linear closed operator as in Definition 5.3 with ρS(T ) ∩ R 
= ∅ and suppose that
f ∈ RσS(T ). We have the following:

i) The operator f (T ) defined in (31) is independent of k ∈ ρS(T ) ∩ R.
ii) Let W be an open set as in Definition 5.4 such that σS(T ) ⊂ W and let f be an

s-regular function on W ∪ ∂W . Let I ∈ S and W ∩ LI be such that its boundary
∂(W ∩ LI ) is positively oriented and consists of a finite number of rectifiable
Jordan curves. Then

f (T ) = f (∞)I + 1

2π

∫
∂(W∩LI )

S−1(s, T )dsI f (s). (33)



On Some Properties of the Quaternionic Functional Calculus 623

Proof Part i) of the statement follows from the validity of formula (33) since the
integral is independent of k.

To prove part ii), consider k ∈ ρS(T ) ∩ R and assume that the set W is such that
k 
∈ (W ∩ LI ), ∀I ∈ S. Otherwise, by the Cauchy theorem, we can replace W by W ′,
on which f is s-regular, such that k 
∈ (W ′ ∩ LI ), without altering the value of the
integral (33). Moreover, the integral (33) is independent of the choice of I ∈ S.

We have that V ∩ LI := �−1(W ∩ LI ) is an open set that contains σS(T ) and its
boundary ∂(V ∩LI ) = �−1(∂(W ∩LI )) is positively oriented and consists of a finite
number of rectifiable Jordan curves. Using the relation (32) we have

1

2π

∫
∂(W∩LI )

S−1(s, T )dsI f (s)

= − 1

2π

∫
∂(V ∩LI )

(
pI − S−1(p,A)p2

)
p−2dpIφ(p)

= − 1

2π

∫
∂(V ∩LI )

p−1dpIφ(p) + 1

2π

∫
∂(V ∩LI )

S−1(p,A)dpIφ(p)

= −Iφ(0) + φ(A)

now by definition φ(A) = f (T ) and φ(0) = f (∞) we obtain

1

2π

∫
∂(W∩LI )

S−1(s, T )dsI f (s) = −If (∞) + f (T ). �

In the following theorem we show some algebraic properties that can be deduced
easily.

Theorem 5.11 Let V be a quaternionic Banach space and let T : D(T ) → V be a
linear closed operator as in Definition 5.3 with ρS(T ) ∩ R 
= ∅. If f and g ∈ RσS(T ),
then

(f + g)(T ) = f (T ) + g(T ).

If g ∈ RσS(T ) and f ∈ NσS(T ), then

(fg)(T ) = f (T )g(T ).

Proof Observe that fg ∈ RσS(T ) thanks to Lemma 3.7. Let φ(μ) = f (�−1(μ)) and
ψ(μ) = g(�−1(μ)). Thanks to Lemma 3.7 and Lemma 4.1 the product φψ is s-
regular. By definition we have

f (T ) = φ(A), g(T ) = ψ(A).

By Theorem 3.8 we get

(φ + ψ)(A) = φ(A) + ψ(A), (φψ)(A) = φ(A)ψ(A)

so we get the statement. �
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Theorem 5.12 Let V be a quaternionic Banach space and let T : D(T ) → V be a
linear closed operator as in Definition 5.3 with ρS(T ) ∩ R 
= ∅. If f ∈ NσS(T ), then

σS(f (T )) = f (σS(T )).

Proof Let φ(μ) = f (�−1(μ)). For the S-spectral mapping theorem we have
φ(σS(A)) = σS(φ(A)) and for Theorem 5.9 we also have �(σS(T )) = σS(A). So
we obtain

φ(�(σS(T )) = φ(σS(A)) = σS(φ(A)) = σS(f (T )).

On the other hand

φ(�(σS(T )) = f (�−1(�(σS(T ))) = f (σS(T )). �

6 Examples

In this subsection we collect some examples which give an idea of the applications of
our functional calculus especially to the theory of quaternionic evolution operators.
The material of this subsection is still under investigation and is the subject of a
forthcoming paper.

We begin with an application of Theorems 5.10 and 5.12.

Example 6.1 Let V be a quaternionic Banach space. Let T : D(T ) → V be a linear
closed operator as in Definition 5.3 such that T −1 is a bounded operator. From the
definition of S-resolvent operator we get S−1(0, T ) = −T −1 so 0 belongs to ρS(T ).
Moreover the function f (q) = q−1 is s-regular in neighborhood W of σS(T ) such
that 0 
∈ W . Since f (q) = q−1 → 0 as q → ∞, for Theorem 5.10, we have

T −1 = 1

2π

∫
∂(W∩LI )

S−1(s, T )dsI s
−1

and thanks to Theorem 5.12 we obtain:

σS(T −1) = {λ−1 : λ ∈ σS(T )}.

Definition 6.2 A family {U (t)}t≥0 of quaternionic bounded linear operators on a
quaternionic Banach space V will be called a strongly continuous semigroup if

• U (t + τ) = U (t)U (τ ), t, τ ≥ 0,
• U (0) = I ,
• for every v ∈ V , U (t)v is continuous in t ∈ [0,∞].
If, in addition, the map t → U (t) is continuous in the uniform operator topology, the
family {U (t)}t≥0 is called a uniformly continuous semigroup in B(V ).
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Example 6.3 (Evolution operator) Let V be a quaternionic Banach space, A ∈ B(V )

and let U ⊃ σS(A) be a domain as in the Definition 2.16. Define the operator (for
t ≥ 0)

etA = 1

2π

∫
∂(U∩LI )

S−1(s,A)dsI e
ts . (34)

We want to present here just one last result that shows the strong analogy of
our quaternionic functional calculus with the Riesz-Dunford functional calculus. An
important tool to study the theory of semigroups is its Laplace transform. In the
complex case, the Laplace transform of the semigroup etB is the resolvent operator
(λe −B)−1, where B is a complex operator. As it is shown by the following result, in
the quaternionic case the Laplace transform of the semigroup etA is the S-resolvent
operator S−1(s,A). We anticipate the differentiability property of the semigroup etA.

Lemma 6.4 Let A ∈ B(V ) and let U ⊃ σS(A) be a domain as in the Definition 2.16.
Let etA be the operator defined in (34). Then

d

dt
etA = AetA.

Proof Take h ∈ R. From definition (34) we get

e(t+h)A − etA

h
= 1

2π

∫
∂(U∩LI )

S−1(s,A)dsI
(e(t+h)s − ets)s

h
s−1

now consider the fact that for any t , h ∈ R and for any quaternion s ∈ H we have
that ets and ehs commute between them and with s, moreover e(t+h)s = etsehs holds.
Thus we have

e(t+h)A − etA

h
= 1

2π

∫
∂(U∩LI )

S−1(s,A)dsI se
ts (ehs − 1)

h
s−1.

Taking the limit for h → 0 we get

lim
h→0

e(t+h)A − etA

h
= AetA. �

We can now prove the following result.

Theorem 6.5 Let A ∈ B(V ) and set U (t) = etA. Then for s0 > ‖A‖ the S-resolvent
operator is given by

S−1(s,A) =
∫ +∞

0
U (t)e−ts dt.

Proof We have to prove that

S(s,A)

∫ ∞

0
U (t)e−ts dt = I,
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where

S(s,A) = −(A − sI)−1(A2 − 2s0A + |s|2 I).

Take θ > 0 and consider

S(s,A)

∫ θ

0
U (t)e−ts dt = −(A − sI)−1(A2 − 2s0A + |s|2 I)

∫ θ

0
etAe−ts dt.

Since every bounded linear operator commutes with the integral, we get

S(s,A)

∫ θ

0
etAe−ts dt = −

∫ θ

0
(A − sI)−1(A2 − 2s0A + |s|2 I)etAe−ts dt. (35)

Thanks to Lemma 6.4 we obtain the identities

(A − sI)−1(A2 − 2s0A + |s|2 I)etAe−ts

= (A − sI)−1etA(A2 − As − As + ssI)e−ts

= (A − sI)−1{etAA(A − sI)e−ts − etA(A − sI)se−ts
}

= (A − sI)−1
{

d

dt
etA(A − sI)e−ts + etA(A − sI)

d

dt
e−ts

}

= d

dt
[(A − sI)−1etA(A − sI)e−ts]. (36)

So by identity (36) we can write (35) as

S(s,A)

∫ θ

0
etAe−ts dt = −

∫ θ

0

d

dt
[(A − sI)−1etA(A − sI)e−ts]dt

= I − (A − sI)−1eθA(A − sI)e−sθ .

Observe that

‖(A − sI)−1eθA(A − sI)e−sθ‖
≤ ‖(A − sI)−1‖‖eθA‖‖(A − sI)‖‖e−sθ‖
≤ ‖(A − sI)−1‖‖(A − sI)‖ eθ‖A‖e−s0θ → 0

for θ → +∞ because we have assumed s0 > ‖A‖. So we get the statement. �
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