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Rectifiability of Sets of Finite Perimeter in Carnot
Groups: Existence of a Tangent Hyperplane
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Abstract We consider sets of locally finite perimeter in Carnot groups. We show
that if E is a set of locally finite perimeter in a Carnot group G then, for almost
every x ∈ G with respect to the perimeter measure of E, some tangent of E at x is a
vertical halfspace. This is a partial extension of a theorem of Franchi-Serapioni-Serra
Cassano in step 2 Carnot groups: they show in Math. Ann. 321, 479–531, 2001 and
J. Geom. Anal. 13, 421–466, 2003 that, for almost every x, E has a unique tangent at
x, and this tangent is a vertical halfspace.
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1 Introduction

The differentiability properties of functions and the rectifiability properties of sets are
classical themes of Real Analysis and Geometric Measure Theory, with many mutual
connections. In the context of stratified Carnot groups, the first problem has been
solved, within the category of Lipschitz maps, in a deep work of Pansu [37]; here we
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are interested in the second problem, in the class of sets E of locally finite perimeter:
if we denote by X1, . . . ,Xm an orthonormal basis of the horizontal layer of the Lie
algebra g of left-invariant vector fields of the Carnot group G, this class of sets is
defined by the property that the distributional derivatives X11E, . . . ,Xm1E are rep-
resentable by Radon measures in G. This notion, which extends the classical one de-
veloped and deeply studied by De Giorgi in [12] and [13] (see also [4]), is compatible
with the Carnot-Carathéodory (subriemannian) distance d induced by X1, . . . ,Xm; in
this context the total variation |D1E | of the R

m-valued measure (X11E, . . . ,Xm1E)

plays the role of surface measure associated to d . Our interest in this topic was also
motivated by the recent papers [7, 8], where sets of finite perimeter in Carnot groups
(and in particular in the Heisenberg groups) are used to study a new notion of dif-
ferentiability for maps with values in L1, with the aim of finding examples of spaces
which cannot be bi-Lipschitz embedded into L1.

The first basic properties of the class of sets of finite perimeter (and of BV func-
tions as well), such as compactness, global and local isoperimetric inequalities, have
been proved in [21]; then, in a series of papers [18, 19], Franchi, Serapioni and Serra
Cassano made a more precise analysis of this class of sets, first in the Heisenberg
groups H

n and then in all step 2 Carnot groups (using also some measure-theoretic
properties proved, in a more general context, in [1], see also Theorem 4.16). As in
the work of De Giorgi, the crucial problem is the analysis of tangent sets to E at a
point x̄, i.e. all limits

lim
i→∞ δ1/ri (x̄

−1E),

where (ri) ↓ 0 and convergence occurs locally in measure (here δr : G → G denote
the intrinsic dilations of the group). In [19] it is proved that for |D1E |-a.e. x̄ there
exists a unit vector νE(x̄) ∈ Sm−1, that we shall call horizontal normal, such that

m∑

i=1

νE,i(x̄)Xi1E ≥ 0 and
m∑

i=1

ξi(x̄)Xi1E = 0 ∀ξ ⊥ νE(x̄). (1.1)

We shall call these sets with constant horizontal normal (identified, in the coordinates
relative to the basis X1, . . . ,Xm, by the vector νE(x̄)): the question is whether (1.1)
implies additional information on the derivative of E along vector fields Y that do not
belong to the horizontal layer: even though m < n = dim(g), this can be expected,
having in mind that the Lie algebra generated by X1, . . . ,Xm is the whole of g. The
main result of [19] is the proof that, in all step 2 groups, (1.1) implies [Xi,Xj ]1E = 0
for all i, j = 1, . . . ,m. As a consequence, up to a left translation E is really, when
seen in exponential coordinates, an halfspace:

{
x ∈ R

n :
m∑

i=1

νE,i(x̄)xi ≥ 0

}
.

We shall call it vertical halfspace, keeping in mind that there is no dependence on the
coordinates xm+1, . . . , xn. This fact leads to a complete classification of the tangent
sets and has relevant consequences, as in the classical theory, on the representation
of |D1E | in terms of the spherical Hausdorff measure and on the rectifiability, in a
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suitable intrinsic sense, of the measure-theoretic boundary of E, see [19] for more
precise informations.

On the other hand, still in [19], it is proved that for general Carnot groups the
conditions (1.1) do not characterize vertical halfspaces: an explicit example is pro-
vided in a step 3 group of Engel type (see also Sect. 7). Basically, because of this
obstruction, the results of [19] are limited to step 2 groups.

The classification and even the regularity properties of sets E with a constant
horizontal normal is a challenging and, so far, completely open question. However,
recently we found a way to bypass this difficulty and, in this paper, we show the
following result:

Theorem 1.2 Suppose E ⊆ G has locally finite perimeter. Then, for |D1E |-a.e.
x̄ ∈ G a vertical halfspace H belongs to the tangents to E at x̄.

Of course Theorem 1.2 does not provide yet a complete solution of the rectifia-
bility problem: indeed, even though the direction νE(x̄) of the halfspace H depends
on x̄ only, we know that x̄−1E is close on an infinitesimal sequence of scales to H ,
but we are not able to show that this happens on all sufficiently small scales. What
is still missing is some monotonicity/stability argument that singles out halfspaces as
the only possible tangents, wherever they are tangent (see also the discussion in Re-
mark 5.5). In a similar context, namely the rectifiability of measures having a spher-
ical density, this is precisely the phenomenon discovered by Preiss in [39]: we took
some ideas from this paper, adapting them to the setting of Carnot groups, to obtain
our result. For these reasons, the complete solution of the rectifiability problem seems
to be related to the following question (we denote by volG the Haar measure of the
group and by e the identity of the group): let E ⊂ G be a set with a constant hori-
zontal normal ν ∈ Sm−1 and let H be a vertical halfspace with the same horizontal
normal; if

lim inf
R→+∞

volG((E�H) ∩ BR(e))

volG(BR(e))
= 0,

is it true that E is a vertical halfspace? However, as pointed out to us by Vittone, the
answer to this question is negative, see (7.5), so that new ideas seem to be needed to
prove the uniqueness, at |D1E |-a.e. point, of the tangent set.

In order to illustrate the main ideas behind the proof of our result, let us call regular
directions of E the vector fields Z in the Lie algebra g such that Z1E is representable
by a Radon measure, and invariant directions those for which the measure is 0. Our
strategy of proof rests mainly on the following observations: the first one (Proposi-
tion 4.7) is that the adjoint operator Adexp(Y ) : g → g maps regular directions into
regular directions whenever Y is an invariant direction. If

X :=
m∑

i=1

νE,i(x̄)Xi ∈ g,

we look at the vector space spanned by Adexp(Y )(X), as Y varies among the invari-
ant directions, and use this fact to show that any set with constant horizontal normal
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must have a regular direction Z not belonging to the vector space spanned by the in-
variant directions and X (which contains at least the horizontal layer). This is proved
in Proposition 2.17 in purely geometric terms in general Lie groups, and Proposi-
tion 2.18 provides a more explicit expression of the new regular directions generated,
in Carnot groups, with this procedure.

Then, the second main observation is that if a regular direction Z for a set F has
no component in the horizontal layer, then the tangents to F at x̄ are invariant along
a new direction depending on Z for most points x̄; this follows (Lemma 5.8) by a
simple scaling argument, taking into account that the Lie algebra dilations δr shrink
more, as r ↓ 0, in the non-horizontal directions. Therefore, at many points, a tangent
to a set with constant horizontal normal has a new invariant direction. Having gained
this new direction, this procedure can be restarted: the adjoint can be used to generate
a new regular direction, then a tangent will have a new invariant direction, and so on.

In this way, we show in Theorem 5.2 that if we iterate the tangent operator suffi-
ciently many times (the number depending on the Lie algebra stratification only) we
do get a vertical halfspace. This means that we consider a tangent set E1 to E at x̄,
then a tangent E2 to E1 at a suitable point x̄1 in the support of |D1E1 |, and so on.
At this stage we borrow some ideas from [39] to conclude that, at |D1E |-a.e. point
x̄, iterated tangents are tangent to the initial set: this is accomplished in Sect. 6 and
leads to the proof of Theorem 1.2.

2 Main Notions

2.1 Vector Fields, Divergence, X-Derivative

Throughout this section, we will denote by M a smooth differentiable manifold with
topological dimension n, endowed with a n-differential volume form volM (eventu-
ally M will be a Lie group G, and volM the right Haar measure).

For x ∈ M , the fiber TxM of the tangent bundle T M is a derivation of germs of
C∞ functions at x (i.e., an R-linear application from C∞(x) → R that satisfies the
Leibnitz rule). If F : M → N is smooth and x ∈ M , we shall denote by dFx : TxM →
TF(x)N its differential, defined as follows: the pull back operator u �→ F ∗

x (u) := u◦F

maps C∞(F (x)) into C∞(x); thus, for v ∈ TxM we have that

dFx(v)(u) := v(u ◦ F)(x), u ∈ C∞(F (x))

defines an element of TF(x)N .
We denote by �(T M) the linear space of smooth vector fields, i.e. smooth sections

of the tangent bundle T M ; we will typically use the notation X, Y, Z to denote them.
We use the notation [X,Y ]f := X(Yf ) − Y(Xf ) for the Lie bracket, that induces on
�(T M) an infinite-dimensional Lie algebra structure.

If F : M → N is smooth and invertible and X ∈ �(T M), the push forward vector
field F∗X ∈ �(T N) is defined by the identity (F∗X)F(x) = dFx(Xx). Equivalently,

(F∗X)u := [X(u ◦ F)] ◦ F−1 ∀u ∈ C∞(M). (2.1)
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The push-forward commutes with the Lie bracket, namely

[F∗X,F∗Y ] = F∗[X,Y ] ∀X, Y ∈ �(T M). (2.2)

If F : M → N is smooth and σ is a smooth curve on M , then

dFσ(t)(σ
′(t)) = (F ◦ σ)′(t), (2.3)

where σ ′(t) ∈ Tσ(t)M and (F ◦ σ)′(t) ∈ TF(σ(t))N are the tangent vector fields along
the two curves, in M and N . If u ∈ C∞(M), identifying Tu(p)R with R itself, given
X ∈ �(T M), we have

dup(X) = Xp(u).

Now we use the volume form to define the divergence as follows:

∫

M

Xud volM = −
∫

M

udivX d volM ∀u ∈ C∞
c (M). (2.4)

When (M,g) is a Riemannian manifold and volM is the volume form induced by g,
then an explicit expression of this differential operator can be obtained in terms of
the components of X, and (2.4) corresponds to the divergence theorem on manifolds.
We won’t need either a Riemannian structure or an explicit expression of divX in the
sequel, and for this reason we have chosen a definition based on (2.4): this emphasizes
the dependence of divX on volM only. By applying this identity to a divergence-free
vector field X, we obtain

∫

M

uXv d volM = −
∫

M

vXud volM ∀u, v ∈ C∞
c (M). (2.5)

This motivates the following classical definition.

Definition 2.6 (X-distributional derivative) Let u ∈ L1
loc(M) and let X ∈ �(T M) be

divergence-free. We denote by Xu the distribution

〈Xu,v〉 := −
∫

M

uXv d volM, v ∈ C∞
c (M).

If f ∈ L1
loc(M), we write Xu = f if 〈Xu,v〉 = ∫

M
vf d volM for all v ∈ C∞

c (M).
Analogously, if μ is a Radon measure in M , we write Xu = μ if 〈Xu,v〉 = ∫

M
v dμ

for all v ∈ C∞
c (M).

According to (2.5) (still valid when u ∈ C1(M)), the distributional definition of
Xu is equivalent to the classical one whenever u ∈ C1(M).

In Euclidean spaces, the X-derivative of characteristic functions of nice domains
can be easily computed (and of course the result could be extended to manifolds, but
we won’t need this extension).
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2.2 X-Derivative of Nice Functions and Domains

If u is a C1 function in R
n, then Xu can be calculated as the scalar product between

X and the gradient of u:

Xu = 〈X,∇u〉. (2.7)

Assume that E ⊂ Rn is locally the sub-level set of the C1 function f and that X ∈
�(T Rn) is divergence-free. Then, for any v ∈ C∞

c (Rn) we can apply the Gauss–
Green formula to the vector field vX, whose divergence is Xv, to obtain

∫

E

Xv dx =
∫

∂E

〈vX,νeu
E 〉dHn−1,

where νeu
E is the unit (Euclidean) outer normal to E. This proves that

X1E = −〈X,νeu
E 〉Hn−1�∂E.

However, we have an explicit formula for the unit (Euclidean) outer normal to E, it
is νeu

E (x) = ∇f (x)/|∇f (x)|, so, by (2.7),

〈X,νeu
E 〉 =

〈
X,

∇f

|∇f |
〉

= 〈X,∇f 〉
|∇f | = Xf

|∇f | .

Thus

X1E = − Xf

|∇f |H
n−1�∂E. (2.8)

2.3 Flow of a Vector Field

Given X ∈ �(T M) we can consider the associated flow, i.e., the solution 	X : M ×
R → M of the following ODE

{
d
dt

	X(p, t) = X	X(p,t),

	X(p,0) = p.
(2.9)

Notice that the smoothness of X ensures uniqueness, and therefore the semigroup
property

	X(x, t + s) = 	X(	X(x, t), s) ∀t, s ∈ R, ∀x ∈ M (2.10)

but not global existence; it will be guaranteed, however, in all cases considered in this
paper. We obviously have

d

dt
(u ◦ 	X)(p, t) = (Xu)(	X(p, t)) ∀u ∈ C1(M). (2.11)
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An obvious consequence of this identity is that, for a C1 function u, Xu = 0 implies
that u is constant along the flow, i.e. u◦	X(·, t) = u for all t ∈ R. A similar statement
holds even for distributional derivatives along vector fields. For simplicity, let us state
and prove this result for divergence-free vector fields only.

Theorem 2.12 Let u ∈ L1
loc(M) be satisfying Xu = 0 in the sense of distributions.

Then, for all t ∈ R, u = u ◦ 	X(·, t) volM -a.e. in M .

Proof Let g ∈ C1
c (M); we need to show that the map t �→ ∫

M
gu ◦ 	X(·, t) d volM

is independent of t . Indeed, the semigroup property (2.10), and the fact that X is
divergence-free yield

∫

M

gu ◦ 	X(·, t + s) d volM −
∫

M

gu ◦ 	X(·, t) d volM

=
∫

M

ug ◦ 	X(·,−t − s) d volM −
∫

M

ug ◦ 	X(·,−t) d volM

=
∫

M

ug ◦ 	X(	X(·,−s),−t) d volM −
∫

M

ug ◦ 	X(·,−t) d volM

= −s

∫

M

uX(g ◦ 	X(·,−t)) d volM +o(s) = o(s). �

Remark 2.13 We notice also that the flow is volM -measure preserving (i.e.
volM(	X(·, t)−1(A)) = volM(A) for all Borel sets A ⊆ M and t ∈ R) if and only
if divX is equal to 0. Indeed, if f ∈ C1

c (M), the measure preserving property gives
that

∫
M

f (	X(x, t)) d volM(x) is independent of t . A time differentiation and (2.11)
then give

0 =
∫

M

d

dt
f (	X(x, t)) d volM(x) =

∫

M

Xf (	X(x, t)) d volM(x)

=
∫

M

Xf (y)d volM(y).

Therefore
∫
M

f divX d volM = 0 for all f ∈ C1
c (M), and X is divergence-free. The

proof of the converse implication is similar, and analogous to the one of Theo-
rem 2.12.

2.4 Lie Groups

Let G be a Lie group, i.e. a differentiable n-dimensional manifold with a smooth
group operation. We shall denote by e the identity of the group, by Rg(h) := hg the
right translation, and by Lg(h) := gh the left translation. We shall also denote by
volG the volume form and, at the same time, the right-invariant Haar measure.

Forced to make a choice, we follow the majority of the literature focusing on the
left invariant vector fields, i.e. the vector fields X ∈ �(T G) such that (Lg)∗X = X,
so that (dLg)xX = XLg(x) for all x ∈ G. In differential terms, we have

X(f ◦ Lg)(x) = Xf (Lg(x)) ∀x, g ∈ G.
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Thanks to (2.2) with F = Lg , the class of left invariant vector fields is easily seen to
be closed under the Lie bracket, and we shall denote by g ⊆ �(T G) the Lie algebra
of left invariant vector fields. We will typically use the notations U, V, W to denote
subspaces of g.

Note that, after fixing a vector v ∈ TeG, we can construct a left invariant vector
field X defining Xg := (Lg)∗v for any g ∈ G. This construction is an isomorphism
between the set g of all left invariant vector fields and TeG, and proves that g is a
n-dimensional subspace of �(T G).

Let X ∈ g and let us denote, as usual in the theory, by exp(tX) the flow of X

at time t starting from e (that is, exp(tX) := 	X(e, t) = 	tX(e,1)); then, the curve
g exp(tX) is the flow starting at g: indeed, since X is left invariant, setting for sim-
plicity γ (t) := exp(tX) and γg(t) := gγ (t), we have

d

dt
γg(t) = d

dt
(Lg(γ (t))) = (dLg)γ (t)

d

dt
γ (t) = (dLg)γ (t)X = Xγg(t).

This implies that 	X(·, t) = Rexp(tX) and so the flow preserves the right Haar
measure, and the left translation preserves the flow lines. By Remark 2.13 it follows
that all X ∈ g are divergence-free, and Theorem 2.12 gives

f ◦ Rexp(tX) = f ∀t ∈ R ⇐⇒ Xf = 0 (2.14)

whenever f ∈ L1
loc(G).

Before stating the next proposition, we recall the definition of the adjoint. For
k ∈ G, the conjugation map

Ck : G → G

g �→ Ck(g) := kgk−1 (2.15)

is the composition of Lk with Rk−1 . The adjoint operator k �→ Adk maps G in GL(g)

as follows:

Adk(X) := (Ck)∗X, so that Adk(X)f (x) = X(f ◦ Ck)(C
−1
k (x)). (2.16)

The definition is well posed because Adk(X) is left invariant whenever X is left
invariant: for all g ∈ G we have indeed

Adk(X)(f ◦ Lg)(x) = X(f ◦ Lg ◦ Ck)(k
−1xk) = X(f ◦ Rk−1 ◦ Lgk)(k

−1xk)

= X(f ◦ Rk−1)(gxk).

On the other hand

Adk(X)f (Lg(x)) = X(f ◦ Ck)(k
−1gxk) = X(f ◦ Rk−1)(gxk).

Proposition 2.17 Assume that G is a connected, simply connected nilpotent Lie
group. Let g′ be a Lie subalgebra of g satisfying dim(g′) + 2 ≤ dim(g), and assume
that W := g′ ⊕ {RX} generates the whole Lie algebra g for some X /∈ g′. Then, there
exists k ∈ exp(g′) such that Adk(X) /∈ W .
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Proof Note that g′ is a finite-dimensional sub-algebra and that exp is, under the sim-
ple connectedness assumption, a homeomorphism, hence K := exp(g′) is a closed
(proper) Lie subgroup of G. Therefore, we can consider the quotient manifold G/K,
in fact the homogeneous space of right cosets: it consists of the equivalence classes
of G induced by the relation

x ∼ y ⇐⇒ y−1x ∈ K.

We shall denote by π : G → G/K the canonical projection. The natural topology of
G/K is determined by the requirement that π should be continuous and open. Let
m denote some vector space of g such that g = g′ ⊕ m. The sub-manifold exp(m)

is referred as a local cross section for K at the origin, and it can be used to give
a differentiable structure to G/K. In fact, let Z1, . . . ,Zr be a basis of m, then the
mapping

(x1, . . . , xr ) �→ π(g exp(x1Z1 + · · · + xrZr))

is a homomorphism of an open set of R
r onto a neighborhood of gK in G/K. Then it

is easy (see [24] for details) to see that with these charts, G/K is an analytic manifold.
In particular, π restrict to exp(m) is a local diffeomorphism into G/K and dπ(X) �= 0
since the projection of X on m is non zero.

Notice, that by our assumption on the dimension of g′, the topological dimen-
sion of G/K is at least 2. Now, if the statement were false, taking into account that
Adk(g

′) ⊆ g′, we would have Adk(W) ⊆ W for all k ∈ K. By the definition of adjoint
operator as composition of the differentials of right and left translations, the above
would be equivalent to say that

(Rk)∗((Lk−1)∗(Y )) ∈ W ∀Y ∈ W, k ∈ K.

Since the vector fields in W are left invariant (i.e. (Lg)∗Y = Y for all Y ∈ W ), this
condition would say that W is K-right invariant, and we can write this condition in
the form d(Rk)x(Wx) ⊂ Wxk for all x ∈ G and k ∈ K.

Now, let us consider the subspaces dπx(Wx) of Tπ(x)G/K: they are all 1-
dimensional, thanks to the fact that dim(W) = 1 + dim(g′), and they depend only
on π(x): indeed, K-right invariance and the identity π ◦ Rk = π give

dπx(Yx) = dπxk(d(Rk)x(Yx)) ∈ dπxk(Wxk)

for all Y ∈ W and k ∈ K. Therefore we can define a (smooth) 1-dimensional distrib-
ution W/K in G/K by (W/K)y := dπx(Wx), where x is any element of π−1(y). In
particular W/K would be tangent to a 1-dimensional foliation F of G/K that has at
least codimension 1, since G/K has at least dimension 2. Letting F ′ be the foliation
of G whose leaves are the inverse images via π of leaves of F , we find that still F ′
has codimension at least 1, and W is tangent to the leaves of F ′. But this contra-
dicts the fact that W generates g: in fact, the only sub-manifold to which W could be
tangent is all the manifold G. �

In the following proposition we provide a characterization of the vector space
spanned by Adexp(Y )(X), where Y varies in a Lie subalgebra of g. This improved
version of Proposition 2.18 was pointed out to us by V. Magnani.
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Proposition 2.18 Let g be a nilpotent Lie algebra, let g′ ⊂ g be a Lie algebra and let
X ∈ g. Then

span
({Adexp(Y )(X) : Y ∈ g

′}) = [g′,X] + [g′, [g′,X]] + [g′, [g′, [g′,X]]] + · · · .

Proof Let us denote by S the space span({Adexp(Y )(X) : Y ∈ g′}). Obviously S con-
tains X and all vector fields Adexp(rY )(X) for r ≥ 0 and Y ∈ g′. Now, denoting
by L(g) the linear maps from g to g, let us recall the formula (see [29], page 54)
Adexp(Y ) = eadY , where ad· : g → End(g) is the operator adY (X) = [Y,X] and the
exponential eA is defined for any A ∈ L(g), by eA := ∑∞

i=0 Ai/i! ∈ L(g). Therefore

Adexp(Y ) X = X + [Y,X] + 1

2
[Y, [Y,X]] + · · · . (2.19)

Let ν be the dimension of g′ and let (Y1, . . . , Yν) be a basis of g′. Taking into account
the identity (2.19), for all Y = ∑ν

1 rjYj ∈ g′, we define

	(r1, . . . , rν) := Adexp(
∑ν

1 rj Yj ) X − X

=
s−1∑

k=1

1

k!

(
ν∑

j=1

rj adYj

)k

X

=
s−1∑

k=1

1

k!
ν∑

j1,...,jk=1

rj1 · · · rjk

(
adYj1 · · · adYjk

)
X ∈ S.

Since this polynomial takes its values in S, it turns out that all its coefficients belong
to S. In particular, we have

adYi(X) = ∂ri 	(0) ∈ S and
(

adYi adYj + adYj adYi

)
X = 2∂ri ∂rj 	(0) ∈ S .

The Jacobi identity can be read as adU adW − adW adU = ad[U,W ], so that
(

adYi adYj + adYj adYi

)
X = 2 adYi adYjX + ad[Yj ,Yi]X.

It follows that (adYi adYj )X ∈ S, and this proves that [g′,X] + [g′, [g′,X]] ⊂ S. By
induction, let us suppose that

uk−1 := [g′,X] + [g′, [g′,X]] + · · · + [g′, [g′, . . . , [g′
︸ ︷︷ ︸

(k−1) times

,X] · · · ] ⊂ S

for some k ≥ 3. In general we have

∂ri1
· · · ∂rik

	(0) = 1

k!
∑

σ

(
adYjσ(1)

· · · adYjσ(k)

)
X ∈ S, (2.20)

where the sum runs on all permutations σ of k elements. By the Jacobi identity
(

adYjσ(1)
· · · adYjσ(k)

)
X − (

adYjη(1)
· · · adYjη(k)

)
X ∈ uk−1
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if σ ◦ η−1 is a transposition. Then, by the inductive assumption, we can iterate
transpositions in (adYjσ(1)

· · · adYjσ(k)
)X to write it as (adYj1 · · · adYjk

)X + Wσ

with Wσ ∈ S. Then, from (2.20) we get (adYj1 · · · adYjk
)X ∈ S. This shows that

(adYj1 · · · adYjk
)X ∈ S, so that uk ⊂ S, and this proves the inclusion

[g′,X] + [g′, [g′,X]] + [g′, [g′, [g′,X]]] + · · · ⊂ span{AdexpY X | Y ∈ g
′}.

Observing that the opposite inclusion trivially holds, we are led to our claim. �

2.5 Carnot Groups

A Carnot group G of step s ≥ 1 is a connected, simply connected Lie group whose
Lie algebra g admits a step s stratification: this means that we can write

g = V1 ⊕ · · · ⊕ Vs

with [Vj ,V1] = Vj+1, i ≤ j ≤ s, Vs �= {0} and Vs+1 = {0}. We keep the notation
n = ∑

i dimVi for the topological dimension of G, and denote by

Q :=
s∑

i=1

i dimVi

the so-called homogeneous dimension of G. We denote by δλ : g → g the family of
inhomogeneous dilations defined by

δλ

(
s∑

i=1

vi

)
:=

s∑

i=1

λivi, λ ≥ 0,

where X = ∑s
i=1 vi with vi ∈ Vi , 1 ≤ i ≤ s. The dilations δλ belong to GL(g) and

are uniquely determined by the homogeneity conditions

δλX = λkX ∀X ∈ Vk, 1 ≤ k ≤ s.

We denote by m the dimension of V1 and we fix an inner product in V1 and an
orthonormal basis X1, . . . ,Xm of V1. This basis of V1 induces the so-called Carnot-
Caratheodory left invariant distance d in G, defined as follows:

d2(x, y) := inf

{∫ 1

0

m∑

i=1

|ai(t)|2 dt : γ (0) = x, γ (1) = y

}
,

where the infimum is made among all Lipschitz curves γ : [0,1] → G such that
γ ′(t) = ∑m

1 ai(t)(Xi)γ (t) for a.e. t ∈ [0,1] (the so-called horizontal curves).
For Carnot groups, it is well known that the map exp : g → G is a diffeomor-

phism, so any element g ∈ G can represented as exp(X) for some unique X ∈ g, and
therefore uniquely written in the form

exp

(
s∑

i=1

vi

)
, vi ∈ Vi, 1 ≤ i ≤ s. (2.21)
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This representation allows to define a family indexed by λ ≥ 0 of intrinsic dilations
δλ : G → G, by

δλ

(
exp

(
s∑

i=1

vi

))
:= exp

(
s∑

i=1

λivi

)
(i.e. exp◦δλ = δλ ◦ exp.)

We have kept the same notation δλ for both dilations (in g and in G) because no
ambiguity will arise. Obviously, δλ ◦ δη = δλη, and the Baker-Campbell-Hausdorff
formula gives

δλ(xy) = δλ(x)δλ(y) ∀x, y ∈ G.

Moreover, the Carnot-Caratheodory distance is well-behaved under these dilations,
namely

d(δλx, δλy) = λd(x, y) ∀x, y ∈ G.

Besides δλ ◦ exp = exp ◦ δλ, another useful relation between dilations in G and dila-
tions in g is δλX = (δλ)∗X, namely

X(u ◦ δλ)(g) = (δλX)u(δλg) ∀g ∈ G, λ ≥ 0. (2.22)

We have indeed

X(u ◦ δλ)(g) = d

dt
u ◦ δλ(g exp(tX))

∣∣∣∣
t=0

= d

dt
u(δλgδλ exp(tX))

∣∣∣∣
t=0

= d

dt
u(δλg exp(tδλX))

∣∣∣∣
t=0

= (δλX)u(δλg).

3 Measure-Theoretic Tools

In this section we specify the notions of convergence used in this paper (at the level of
sets and of measures), and point out some useful facts concerning Radon measures.
The results quoted without an explicit reference are all quite standard, and can be
found for instance in [4] and those concerning Hausdorff measures in metric spaces
in [14] or [3].

Haar, Lebesgue and Hausdorff Measures Carnot groups are nilpotent and so uni-
modular, therefore the right and left Haar measures coincide, up to constant multiples.
We fix one of them and denote it by volG.

We shall denote by Hk (resp. Sk) the Hausdorff (resp. spherical Hausdorff) k-
dimensional measure; these measures depend on the distance, and, unless otherwise
stated, to build them we will use the Carnot-Caratheodory distance in G and the
Euclidean distance in Euclidean spaces.

Using the left translation and scaling invariance of the Carnot-Caratheodory dis-
tance one can easily check that the Haar measures of G are a constant multiple of the
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spherical Hausdorff measure SQ and of HQ. In exponential coordinates, all these
measures are a constant multiple of the Lebesgue measure Ln in R

n, namely

volG

({
exp

(
n∑

i=1

xiXi

)
: (x1, . . . , xn) ∈ A

})
= cLn(A) for all Borel sets A ⊆ R

n

for some constant c. Using this fact, one can easily prove that

volG(δλ(A)) = λQ volG(A) (3.1)

for all Borel sets A ⊆ G.
The following implication will be useful: for μ nonnegative Radon measure, t > 0

and B ⊆ G Borel, we have

lim sup
r↓0

μ(Br(x))

ωkrk
≥ t ∀x ∈ B =⇒ μ(B) ≥ tSk(B),

where ωk is the Lebesgue measure of the unit ball in R
k (it appears as a normalization

constant in the definitions of Hk and Sk , in order to ensure the identity Hk = Sk =
Lk in R

k). In particular we obtain that

{
x ∈ G : lim sup

r↓0

μ(Br(x))

rk
> 0

}
is σ -finite with respect to Sk. (3.2)

Characteristic Functions, Convergence in Measure For any set E we shall denote
by 1E the characteristic function of E (1 on E, 0 on G \E); within the class of Borel
sets of G, the convergence we consider is the so-called local convergence in measure
(equivalent to the L1

loc convergence of the characteristic functions), namely:

Eh → E ⇐⇒ volG
(
K ∩ [(Eh \ E) ∪ (E \ Eh)]

) = 0 for all K ⊆ G compact.

Radon Measures and their Convergence The class M(G) of Radon measures in G

coincides with the class of 0 order distributions in G, namely those distributions T

such that, for any bounded open set � ⊆ G there exists C(�) ∈ [0,+∞) satisfying

|〈T ,g〉| ≤ C(�) sup |g| ∀g ∈ C1
c (�).

These distributions can be uniquely extended to Cc(G), and their action can be repre-
sented, thanks to Riesz theorem, through an integral with respect to a σ -additive set
function μ defined on bounded Borel sets. Thanks to this fact, the action of these dis-
tributions can be extended even up to bounded Borel functions with compact support.
We will typically use both viewpoints in this paper (for instance the first one plays a
role in the definition of distributional derivative, while the second one is essential to
obtain differentiation results). If μ is a nonnegative Radon measure we shall denote

suppμ := {x ∈ G : μ(Br(x)) > 0 ∀r > 0}.
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The only convergence we use in M(G) is the weak∗ one induced by the duality
with Cc(G), namely μh → μ if

lim
h→∞

∫

G

udμh =
∫

G

udμ ∀u ∈ Cc(G).

Push-Forward If f : G → G is a proper Borel map, then f −1(B) is a bounded
Borel set whenever B is a bounded Borel set. The push-forward measure f�μ is then
defined by

f�μ(B) := μ(f −1(B)).

In integral terms, this definition corresponds to
∫

G

udf�μ :=
∫

G

u ◦ f dμ

whenever the integrals make sense (for instance u Borel, bounded and compactly
supported).

Vector-Valued Radon Measures We will also consider R
m-valued Radon measures,

representable as (μ1, . . . ,μm) with μi ∈ M(G). The total variation of |μ| of an R
m-

valued measure μ is the smallest nonnegative measure ν defined on Borel sets of G

such that ν(B) ≥ |μ(B)| for all bounded Borel set B; it can be explicitly defined by

|μ|(B) := sup

{ ∞∑

i=1

|μ(Bi)| : (Bi) Borel partition of B, Bi bounded

}
.

Push forward and convergence in Mm(G) can be defined componentwise. Useful
relations between convergence and total variation are:

lim inf
n→∞ |μn|(A) ≥ |μ|(A) for all A ⊆ G open, (3.3)

sup
n→∞

|μn|(K) < +∞ for all K ⊆ G compact, (3.4)

whenever μn → μ in Mm(G).

Asymptotically Doubling Measures A nonnegative Radon measure μ in G is said
to be asymptotically doubling if

lim sup
r↓0

μ(B2r (x))

μ(Br(x))
< +∞ for μ-a.e. x ∈ G.

For asymptotically doubling measures all the standard results of Lebesgue differen-
tiation theory hold: for instance, for any Borel set A, μ-a.e. point x ∈ A is a density
point of A, namely

lim
r↓0

μ(A ∩ Br(x))

μ(Br(x))
= 1.
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The same result holds for any set A, provided we replace μ by the outer measure μ∗,
defined for any A ⊆ G by

μ∗(A) := inf{μ(B) : B Borel, B ⊇ A}.

It follows directly from the definition that μ∗ is subadditive. Moreover, let (Bn) be a
minimizing sequence and let B the intersection of all sets Bn: then B is a Borel set,
B ⊇ A and μ∗(A) = μ(B). Furthermore, for all Borel sets C we have μ∗(A ∩ C) =
μ(B ∩C) (if not, adding the strict inequality μ∗(A∩C) < μ(B ∩C) to μ∗(A \C) ≤
μ(B \ C) would give a contradiction). Choosing C = Br(x), with x density point of
B , we obtain

lim
r↓0

μ∗(A ∩ Br(x))

μ(Br(x))
= lim

r↓0

μ(B ∩ Br(x))

μ(Br(x))
= 1.

This proves that the set of points of A that are not density points is contained in a
μ-negligible Borel set. We will also be using in the proof of Theorem 6.4 the fact that
μ∗ is countably subadditive, namely μ∗(A) ≤ ∑

i μ
∗(Ai) for all sequences (Ai) with

A ⊆ ⋃
i Ai .

We recall the following result, proved in Theorem 2.8.17 of [14]:

Theorem 3.5 (Differentiation) Assume that μ is asymptotically doubling and ν ∈
M(G) is absolutely continuous with respect to μ. Then the limit

f (x) := lim
r↓0

ν(Br(x))

μ(Br(x))

exists and is finite for μ-a.e. x ∈ suppμ.
In addition, f ∈ L1

loc(μ) and ν = f μ, i.e. ν(B) = ∫
B

f dμ for all bounded Borel
sets B ⊆ G.

The proof given in [14] covers much more general situations; the reader already
acquainted with the theory of differentiation with respect to doubling measures can
easily realize that the results extend to asymptotically doubling ones by consider the
localized (in G × (0,+∞)) maximal operators:

MB,rν(x) := sup
s∈(0,r)

ν(Bs(x))

μ(Bs(x))
, x ∈ B,

where ν is any nonnegative Radon measure in G. Thanks to the asymptotic doubling
property, one can find a family of Borel sets Bh ⊆ suppμ whose union covers G,
constants Ch ≥ 1 and radii rh > 0 such that μ(B3r (x)) ≤ Chμ(Br(x)) for x ∈ Bh

and r ∈ (0, rh). For the operators MBh,rh , the uniform doubling property on Bh and
a covering lemma yield the weak L1 estimate μ(E ∩ {MBh,rhν > t}) ≤ t−1Chν(E)

(for E ⊆ Bh Borel, t > 0). This leads to the differentiation result on all Bh, and then
μ-a.e. on G.
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4 Sets of Locally Finite Perimeter

In this section we recall a few useful facts about sets of finite perimeter, considering
also sets whose derivative along non-horizontal directions is a measure.

Definition 4.1 (Regular and invariant directions) Let f ∈ L1
loc(G).

We shall denote by Reg(f ) the vector subspace of g made by vectors X such that
Xf is representable by a Radon measure.

We shall denote by Inv(f ) the subspace of Reg(f ) corresponding to the vector
fields X such that Xf = 0, and by Inv0(f ) the subset made by homogeneous direc-
tions, i.e.

Inv0(f ) := Inv(f ) ∩
s⋃

i=1

Vi.

Notice that, according to (2.14),

f ◦ Rexp(tX) = f ∀t ∈ R, X ∈ Inv(f ).

We will mostly consider regular and invariant directions of characteristic func-
tions, therefore we set

Reg(E) := Reg(1E), Inv(E) := Inv(1E), Inv0(E) := Inv0(1E).

We can now naturally define halfspaces by requiring invariance along a codimen-
sion 1 space of directions, and monotonicity along the remaining direction; if this
direction is horizontal, we call these sets vertical halfspaces.

Definition 4.2 (Vertical halfspaces) We say that a Borel set H ⊆ G is a vertical
halfspace if Inv0(H) ⊇ ⋃s

2 Vi , V1 ∩ Inv0(H) is a codimension one subspace of V1
and X1H ≥ 0 for some X ∈ V1, with X1H �= 0.

Since

span(Inv0(H)) =
s⊕

i=1

Vi ∩ Inv0(H), (4.3)

we can equivalently say that H is an halfspace if span(Inv0(H)) is a codimension 1
subspace of g, V1 ∩ span(Inv0(H)) is a codimension 1 subspace of V1 and X1H ≥ 0
for some X ∈ V1: indeed, (4.3) forces, whenever the codimension is 1, all subspaces
Vi ∩ Inv0(H) to coincide with Vi , with just one exception.

Let us recall that m denotes the dimension of V1, and that X1, . . . ,Xm is a given
orthonormal basis of V1. With this notation, vertical halfspaces can be characterized
as follows:

Proposition 4.4 (Characterization of vertical halfspaces) H ⊆ G is a vertical half-
space if and only if there exist c ∈ R and a unit vector ν ∈ Sm−1 such that H = Hc,ν ,



Tangent Hyperplane in Carnot Groups 525

where

Hc,ν := exp

({
m∑

i=1

aiXi +
s∑

i=2

vi : vi ∈ Vi, a ∈ R
m,

m∑

i=1

aiνi ≤ c

})
. (4.5)

Proof Let us denote by ν ∈ Sm−1 the unique vector such that the vector Y = ∑
i νiXi

is orthogonal to all invariant directions in V1. Let us work in exponential coordinates,
with the function

(x1, . . . , xn) �→ exp

(
n∑

i=1

xivi

)
,

and let H̃ ⊂ Rn be the set H in these coordinates. Here (v1, . . . , vn) is a basis of g

compatible with the stratification: this means that, if mi are the dimensions of Vi , with
1 ≤ i ≤ s, l0 = 0 and li = ∑i

1 mj , then vli−1+1, . . . , vli is a basis of Vi . By the Baker-
Campbell-Hausdorff formula, in these coordinates the vector fields vi correspond
to ∂xi

for ls−1 + 1 ≤ i ≤ ls = n, and Theorem 2.12 gives that 1
H̃

does not depend
on xls−1+1, . . . , xn. For ls−2 + 1 ≤ i ≤ ls−1 the vector fields vi − ∂xi

, still in these
coordinates, are given by the sum of polynomials multiplied by ∂xj

, with ls−1 +
1 ≤ j ≤ ls . As a consequence ∂xi

1
H̃

= 0 and we can apply Theorem 2.12 again to
obtain that 1

H̃
does not depend on xls−2+1, . . . , xls−1 either. Continuing in this way

we obtain that 1
H̃

depends on (x1, . . . , xm1) only. Furthermore,
∑

i ξi∂xi
1

H̃
is equal

to 0 if ξ ⊥ ν, and it is nonnegative if ξ = ν. Then, a classical Euclidean argument
(it appears in De Giorgi’s rectifiability proof [13], see also the proof of this result in
Theorem 3.59 of [4]) shows that 1

H̃
depends on

∑m
1 νixi only, and it is a monotone

function of this quantity. This immediately gives (4.5). �

Remark 4.6 An analogous computation in exponential coordinates shows that
Inv(f ) = g if and only if f is equivalent to a constant.

In the next proposition we point out useful stability properties of Reg(f ) and
Inv(f ).

Proposition 4.7 Let f ∈ L1
loc(G). Then Reg(f ), Inv(f ), Inv0(f ) are invariant under

left translations, and Inv0(f ) is invariant under intrinsic dilations. Moreover:

(i) Inv(f ) is a Lie subalgebra of g and [Inv0(f ), Inv0(f )] ⊂ Inv0(f );
(ii) If X ∈ Inv(f ) and k = exp(X), then Adk maps Reg(f ) into Reg(f ) and Inv(f )

into Inv(f ). More precisely

Adk(Y )f = (Rk−1)�Yf ∀Y ∈ Reg(f ). (4.8)

Proof The proof of the invariance is simple, so we omit it.
(i) We simply notice that for all X, Y ∈ Inv(f ) we have

∫

G

f [X,Y ]g d volG = −〈Xf,Yg〉 + 〈Yf,Xg〉 = 0 ∀g ∈ C∞
c (G).
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The second stated property follows by the fact that [Vi,Vj ] ⊂ Vi+j .
(ii) Let Y ∈ Reg(f ) and Z = Adk(Y ). For g ∈ C∞

c (G) and k ∈ G we have (taking
into account the left invariance of Y )

Zg(x) = Y(g ◦ Ck)(C
−1
k (x)) = Y(g ◦ Rk−1)(Lk ◦ Ck−1(x)) = Y(g ◦ Rk−1)(Rk(x)).

Therefore (Zg) ◦ Rk−1 = Y(g ◦ Rk−1) and a change of variables gives

∫

G

f Zg d volG =
∫

G

f ◦ Rk−1Y(g ◦ Rk−1) d volG .

Now, if k = exp(X) with X ∈ Inv(f ), we have f ◦ Rk−1 = f , and this gives (4.8). �

Remark 4.9 Let X ∈ Reg(f ) and assume that Xf ≥ 0; then, combining (2.19) with
(4.8), we obtain

Xf +
s−1∑

i=1

t i

i! adi
Y (X)f ≥ 0 ∀t ∈ R, ∀Y ∈ Inv(f ).

Since t can be chosen arbitrarily large, this implies that

ads−1
Y (X)f ≥ 0 ∀Y ∈ Inv(f ).

In particular, if s is even, by applying the same inequality with −Y in place of Y we
get

ads−1
Y (X) ∈ Inv(f ). (4.10)

Definition 4.11 (Sets of locally finite perimeter) The main object of investigation of
this paper is the class of sets of locally finite perimeter, i.e. those Borel sets E such
that X1E is a Radon measure for any X ∈ V1.

Still using the orthonormal basis of V1, for f ∈ L1
loc(G) with Xif ∈ M(G) we

can define the R
m-valued Radon measure

Df := (X1f, . . . ,Xmf ). (4.12)

Two very basic properties that will play a role in the sequel are:

Df = 0 =⇒ f is (equivalent to) a constant (4.13)

sup
n

∫

�

|fn|d volG +|Dfn|(�) < +∞ ∀� � G

=⇒ (fn) relatively compact in L1
loc. (4.14)

The proof of the first one can be obtained combining Proposition 4.7 (that gives that
Inv(f ) = g with Remark 4.6). The second one has been proved in [21].
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Definition 4.15 (De Giorgi’s reduced boundary) Let E ⊆ G be a set of locally finite
perimeter. We denote by F E the set of points x ∈ supp |D1E | where:

(i) the limit νE(x) = (νE,1(x), . . . , νE,m(x)) := lim
r↓0

D1E(Br(x))

|D1E |(Br(x))
exists;

(ii) |νE(x)| = 1.

The following result has been obtained in [1].

Theorem 4.16 Let E ⊆ G be a set of locally finite perimeter. Then |D1E | is asymp-
totically doubling, and more precisely the following property holds: for |D1E |-a.e.
x ∈ G there exists r̄(x) > 0 satisfying

lGrQ−1 ≤ |D1E |(Br(x)) ≤ LGrQ−1 ∀r ∈ (0, r̄(x)), (4.17)

with lG, LG ∈ (0,∞) depending on G only. As a consequence |D1E | is concentrated
on F E, i.e., |D1E |(G \ F E) = 0.

Actually, the result in [1] is valid in all Ahlfors Q-regular metric spaces for which a
Poincaré inequality holds (in this context, obviously including all Lie groups, still the
measure |D1E | makes sense, see [32]); (4.17) also implies that the measure |D1E |
can also be bounded from above and below by the spherical Hausdorff measure SQ−1,
namely

lG

ωQ−1
SQ−1(A ∩ F E) ≤ |D1E |(A) ≤ LG

ωQ−1
SQ−1(A ∩ F E) (4.18)

for all Borel sets A ⊆ G (since Hk ≤ Sk ≤ 2kHk , similar inequalities hold with
HQ−1). In general doubling metric spaces, where no natural dimension Q exists, the
asymptotic doubling property of |D1E | and a suitable representation of it in terms of
Hausdorff measures have been obtained in [2].

5 Iterated Tangents Are Halfspaces

In this section we show that if we iterate sufficiently many times the tangent operator
we do get a vertical halfspace. Let us begin with a precise definition of tangent set.

Definition 5.1 (Tangent set) Let E ⊆ G be a set of locally finite perimeter and
x ∈ F E. We denote by Tan(E,x) all limit points, in the topology of local conver-
gence in measure, of the translated and rescaled family of sets {δ1/r (x

−1E)}r>0 as
r ↓ 0.

If F ∈ Tan(E,x) we say that F is tangent to E at x. We also set

Tan(E) :=
⋃

x∈F E

Tan(E,x).



528 L. Ambrosio et al.

It is also useful to consider iterated tangents; to this aim, still for x ∈ F E, we
define Tan1(E,x) := Tan(E,x) and

Tank+1(E,x) :=
⋃{

Tan(F ) : F ∈ Tank(E,x)
}
.

The result we shall prove in this section is an intermediate step towards Theo-
rem 1.2:

Theorem 5.2 Let E ⊆ G be a set with locally finite perimeter. Then, for |D1E |-a.e.
x ∈ G we have (with the notation (4.5))

H0,νE(x) ∈ Tank(E,x) with k := 1 + 2(n − m).

Notice that, by Theorem 4.16, we need only to consider points x ∈ F E. Our start-
ing point is the following proposition, obtained in [19], showing that the tangent set
at points in the reduced boundary is always invariant along codimension 1 subspace
of V1, and monotone along the remaining horizontal direction.

Proposition 5.3 Let E ⊆ G be a set of locally finite perimeter. Then, for all x̄ ∈ F E

the following properties hold:

(i) 0 < lim inf
r↓0

|D1E |(Br(x̄))/rQ−1 ≤ lim sup
r↓0

|D1E |(Br(x̄))/rQ−1 < +∞;

(ii) Tan(E, x̄) �= ∅ and, for all F ∈ Tan(E, x̄), we have that e ∈ supp |D1F | and

νF = νE(x̄), |D1F |-a.e. in G.

In particular V1 ∩ Inv0(F ) coincides with the codimension 1 subspace of V1

{
m∑

i=1

aiXi :
m∑

i=1

aiνE,i(x̄) = 0

}

and, setting, Xx := ∑m
i=1 νE,i(x̄)(Xi)x ∈ g, X1F is a nonnegative Radon mea-

sure.

In groups of step 2, in [19] it is proved that constancy of νE characterizes vertical
subspaces. We provide here a different proof of this fact, based on the properties of
the adjoint operator, and in particular on Remark 4.9.

Proposition 5.4 Let E ⊂ G be a set with locally finite perimeter, and assume that νE

is (equivalent to) a constant. Then, if G is a step 2 group, E is a vertical halfspace.

Proof Let us denote by ξ the constant value of νE , and set X := ∑
i ξiXi . Then

X1E ≥ 0 and Inv(E) contains all vectors Y = ∑
i ηiXi with η ∈ R

m perpendicular
to ξ . From (4.10) we get [Y,X]1E = 0 for any Y ∈ Inv(E) ∩ V1, and since these
commutators, together with the commutators {[Y1, Y2] : Yi ∈ Inv(E) ∩ V1}, span the
whole of V2, the proof is achieved. �
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Remark 5.5 The following simple example, that we learned from F. Serra Cassano,
shows that the sign condition is essential for the validity of the classification result,
even in the first Heisenberg group H

1. Choosing exponential coordinates (x, y, t),
and the vector fields X1 := ∂x + 2y∂t and X2 := ∂y − 2x∂t , the function

f (x, y, t) := g(t + 2xy)

(with g smooth) satisfies X1f = 4yg′(t + 2xy) and X2f = 0. Therefore the sets
Et := {f < t} are X2-invariant and are not halfspaces. The same example can be
used to show that there is no local version of Proposition 5.4, because the sets Et

locally may satisfy X11Et ≥ 0 or X11Et ≤ 0 (depending on the sign of g′ and y), but
are not locally halfspaces.

The non-locality appears also in our argument: indeed, the proof of (4.10) depends
on the sign condition of Adexp(tX2)(X1)1E with t arbitrarily large, and this is the
right translate, by exp(tX2), of X11E . The proof given in [19] depends, instead, on
the possibility of joining two different points in H1 by following integral lines of
X2 in both directions, and integral lines of X1 in just one direction: an inspection of
the proof reveals that these paths can not be confined in a bounded region, even if the
initial and final point are confined within a small region. In this sense, Proposition 5.4
could be considered as a kind of Liouville theorem.

Let f ∈ L1
loc(G) and X ∈ g; then, for all r > 0 we have the identity

δ1/rX(f ◦ δr ) = r−Q(δ1/r )�(Xf ) (5.6)

in the sense of distributions. Indeed, writing in brief Xr := δ1/rX, if g ∈ C∞
c (G),

from (2.22) we get Xr(g ◦ δr ) = (Xg) ◦ δr ; as a consequence (3.1) gives

〈Xr(f ◦ δr ), g〉 = −
∫

G

(f ◦ δr )Xrg d volG = −r−Q

∫

G

f (Xrg) ◦ δ1/r d volG

= −r−Q

∫

G

f X(g ◦ δ1/r ) d volQ = 〈r−Q(δ1/r )�(Xf ), g〉. (5.7)

The first crucial lemma shows that if X ∈ Reg(E) belongs to
⊕s

2 Vi , then the
tangents to E at |D1E |-a.e. x are invariant under Y , where Y is the “higher degree
part” of X induced by the stratification of g. The underlying reason for this fact is that
the intrinsic dilations behave quite differently in the X direction and in the horizontal
direction.

Lemma 5.8 Let F be a set with locally finite perimeter, X ∈ Reg(F ), μ = X1F and
assume that X = ∑l

i=2 vi with vi ∈ Vi and l ≤ s. Then, for |D1F |-a.e. x, vl ∈ Inv0(L)

for all L ∈ Tan(F, x).

Proof From (3.2) we know that the set N of points x such that
lim supr↓0 r2−Q|μ|(Br(x)) is positive is σ -finite with respect to SQ−2, and there-
fore SQ−1-negligible and |D1F |-negligible (recall (4.18)). We will prove that the
statement holds at any x ∈ (F F) \ N and we shall assume, up to a left translation,
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that x = e. Given any g ∈ C1
c (G), let R be such that supp(g) � BR(e); (5.6) with

f = 1F gives
∫

G

1δ1/rF Xrg d volG = rl−Q

∫

G

g ◦ δ1/r dμ

with Xr := rlδ1/rX, so that Xr → vl as r ↓ 0. Now, notice that l ≥ 2, and that the
right hand side can be bounded with

sup |g|rl−Q|μ|(BRr(e)) = O(rl−Q)o(rQ−2) = o(1).

So, passing to the limit as r ↓ 0 along a suitable sequence, we obtain that vl1L = 0
for all L ∈ Tan(F, e). �

The invariance of Inv0 under left translations and scaling shows that Inv0(F ) con-
tains Inv0(E) for all F ∈ Tan(E). Let us define codimension of Inv0(E) in g as the
codimension of its linear span; we know that this codimension is at least 1 (because
the codimension within V1 is 1) for all tangent sets, and it is equal to 1 precisely for
vertical halfspaces, thanks to Proposition 4.4.

The second crucial lemma shows that, when the codimension of Inv0(E) in g is at
least 2, a double tangent strictly increases, at |D1E |-a.e. point, the set Inv0(E). The
strategy is to find first a tangent set F with Reg(F ) � span(Inv0(E)) (this is based on
the geometric Proposition 2.17 and Proposition 4.7) and then on the application of the
previous lemma, which turns a regular direction of F into an invariant homogeneous
direction of a tangent to F .

Lemma 5.9 (Improvement of Inv0(E)) Let E ⊆ G be a set of locally finite perimeter
and assume that

dim
(
span(Inv0(E))

) ≤ n − 2.

Then, for all x̄ ∈ F E, Inv0(L) � Inv0(E) for some L ∈ Tan2(E, x̄).

Proof (Step 1) We show first the existence of Z ∈ g \ [span(Inv0(E)) + V1] such
that Z ∈ Reg(F ) for all F ∈ Tan(E, x̄). To this aim, we apply Proposition 2.17 with
g′ := span(Inv0(E)) (recall that, by Proposition 4.7(i), g′ is a Lie algebra) and X :=∑m

1 νE,i(x̄)Xi to obtain Y ∈ g′ such that

Z := Adexp(Y )(X) /∈ span(Inv0(E)) ⊕ {RX} = span(Inv0(E)) + V1.

Then, since Inv0(F ) contains Inv0(E) for all F ∈ Tan(F, x̄), we have that Y ∈
Inv(F ), therefore Proposition 4.7(ii) shows that Z ∈ Reg(F ) for all F ∈ Tan(E, x̄).

(Step 2) Now, let F ∈ Tan(E, x̄), Z /∈ span(Inv0(E)) + V1 given by the previous
step, and set μ = Z1F . Possibly removing from Z its horizontal component we can
write Z = vi1 + · · · + vil with ij ≥ 2 and vij ∈ Vij . Then, vik /∈ Inv0(E) for at least
one k ∈ {1, . . . , l}, and let us choose the largest one with this property. Then, setting
Z′ = vi1 + · · · + vik , since vij ∈ Inv0(E) ⊆ Inv0(F ) for all k < j ≤ l, we still have
Z′1F = μ. By Lemma 5.8 we can find L ∈ Tan(F ) with vik1L = 0, i.e. vik ∈ Inv0(L).
Since vik /∈ Inv0(E), we have proved that Inv0(L) strictly contains Inv0(E). �
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Proof of Theorem 5.2 Recall that m = dim(V1). Sets in Tan(E, x̄) are invariant,
thanks to Proposition 5.3, in at least m − 1 directions. Let us define

ik := max{dim(span(Inv0(F ))) : F ∈ Tank(E, x̄)}.
Then i1 ≥ m − 1 and we proved in Lemma 5.9 that ik+2 > ik as long as there exists
F ∈ Tank(E, x̄) with dim(span(Inv0(F ))) ≤ n − 2. By iterating k times, with k ≤
2(n − m), the tangent operator we find F ∈ Tank(E, x̄) with dim(span(Inv0(F ))) ≥
n − 1.

We know from Proposition 5.3 that e ∈ supp |D1F |, that the codimension of
Inv0(F ) is exactly 1, and precisely that

V1 ∩ Inv0(F ) =
{

m∑

i=1

aiXi :
m∑

i=1

aiνE,i(x̄) = 0

}

and that
∑

i νE,i(x̄)Xi1F ≥ 0. Therefore Proposition 4.4 gives F = H0,νE(x̄). �

6 Iterated Tangents Are Tangent

In this section we complete the proof of Theorem 1.2. Taking into account the state-
ment of Theorem 5.2, we need only to prove the following result.

Theorem 6.1 Let E ⊆ G be a set with locally finite perimeter. Then, for |D1E |-a.e.
x ∈ G we have

∞⋃

k=2

Tank(E,x) ⊆ Tan(E,x).

In turn, this result follows by an analogous one involving tangents to measures,
proved in [39] in the Euclidean case; we just adapt the argument to Carnot groups and
to vector-valued measures. In the sequel we shall denote by Ix,r (y) := δ1/r (x

−1y) the
composition δ1/r ◦ Lx−1 .

We say that a measure μ ∈ Mm(G) is asymptotically q-regular if

0 < lim inf
r↓0

|μ|(Br(x))

rq
≤ lim sup

r↓0

|μ|(Br(x))

rq
< +∞ for |μ|-a.e. x ∈ G. (6.2)

Notice that asymptotically q-regular measures are asymptotically doubling, and that
the perimeter measure |D1E | is asymptotically (Q − 1)-regular, thanks to Theo-
rem 4.16.

Definition 6.3 (Tangents to a measure) Let μ ∈ Mm(G) be asymptotically q-regular.
We shall denote by Tan(μ,x) the family of all measures ν ∈ Mm(G) that are weak∗
limit points as r ↓ 0 of the family of measures r−q(Ix,r )�μ.
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Theorem 6.4 Let μ ∈ Mm(G) be asymptotically q-regular. Then, for |μ|-a.e. x, the
following property holds:

Tan(ν, y) ⊆ Tan(μ,x) ∀ν ∈ Tan(μ,x), y ∈ supp |ν|.

The connection between Theorem 6.1 and Theorem 6.4 rests on the following
observation:

L ∈ Tan(F, x) ⇐⇒ D1L ∈ Tan(D1F , x) \ {0} (6.5)

for all x ∈ F F . The implication ⇒ in (6.5) is easy, because a simple scaling argument
gives

L = lim
i→∞ δ1/ri (x

−1F) =⇒ D1L = lim
i→∞ r

1−Q
i (Ix,ri )�D1F . (6.6)

Therefore L ∈ Tan(F, x) implies D1L ∈ Tan(D1F , x); clearly D1L �= 0 because x ∈
F F .

Now we prove the harder implication ⇐ in (6.5): assume, up to a left translation,
that x = e, and that D1L �= 0 is the weak∗ limit of r

1−Q
i (Ie,ri )�D1F , with ri ↓ 0;

now, set Fi := δ1/ri F , so that D1Fi
= r

1−Q
i (Ie,ri )�D1F , and by the compactness

properties of sets of finite perimeter (see (4.14)) assume with no loss of generality
that Fi → L′ locally in measure, so that L′ ∈ Tan(F, e). Then r

1−Q
i (Ie,ri )�D1F =

D1Fi
weakly∗ converge to D1L′ : indeed, the convergence in the sense of distributions

is obvious, and since the total variations are locally uniformly bounded, we have
weak∗ convergence as well. It follows that D1L = D1L′ . Since 1L − 1L′ has zero
horizontal distributional derivative, by (4.13) it must be (equivalent to) a constant;
this can happen only when either L = L′ or L = G \ L′; but the second possibility is
ruled out because it would imply that D1L = −D1L′ and that D1L = 0. This proves
that L = L′ ∈ Tan(F, e).

Proof of Theorem 6.1 At any point x ∈ F E where the property stated in Theo-
rem 6.4 holds with μ = D1E we may consider any F ∈ Tan(E,x) and L ∈ Tan(F, y)

for some y ∈ F F ; then, by (6.5) we know that D1F ∈ Tan(D1E,x) and D1L ∈
Tan(D1F , y) \ {0}; as a consequence, Theorem 6.4 gives D1L ∈ Tan(D1E,x) \ {0},
hence (6.5) again gives that L ∈ Tan(E,x). This proves that Tan2(E,x) ⊆ Tan(E,x),
and therefore Tan3(E,x) ⊆ Tan2(E,x), and so on. �

The rest of this section is devoted to the proof of Theorem 6.4. We will follow
with minor variants (because we are dealing with vector-valued measures) the proof
given in Mattila’s book [31]. Before proceeding to the proof of Theorem 6.4 we state
a simple lemma.

Lemma 6.7 Assume that A ⊂ G and a ∈ A is a density point for A relative to |μ|∗,
i.e.

lim
r↓0

|μ|∗(Br(a) ∩ A)

|μ|(Br(a))
= 1. (6.8)
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If, for some ri ↓ 0 and λi ≥ 0 the measures λi(Ia,ri )�μ weakly∗ converge to ν, then

lim
i→∞

d(aδri y,A)

ri
= 0 ∀y ∈ supp |ν|.

Proof Let τ := d(y, e) and let us argue by contradiction. If the statement were false,
τ would be positive and there would exist ε ∈ (0, τ ) such that d(aδri y,A) > εri for
infinitely many values of i. Possibly extracting a subsequence, let us assume that this
happens for all i: we know that

Bεri (aδri y) ⊆ G \ A (6.9)

and since ε < τ we have

Bεri (aδri y) ⊆ Bτri (aδri y) ⊆ B2τri (a). (6.10)

Now use, in this order, the definition of density point, (6.9), (6.10) and (3.3) to get

1 = lim
i→∞

|μ|∗(B2τri (a)) ∩ A)

|μ|(B2τri (a))
≤ lim sup

i→∞
|μ|(B2τri (a) \ Bεri (aδri y))

|μ|(B2τri (a))

= lim sup
i→∞

|μ|(B2τri (a))) − |μ|(Bεri (aδri y))

|μ|(B2τri (a))
= 1 − lim inf

i→∞
|μ|(Bεri (aδri y))

|μ|(B2τri (a))

= 1 − lim inf
i→∞

(Ia,ri )�|μ|(Bε(y))

(Ia,ri )�|μ|(B2τ (e))
≤ 1 − lim infi→∞ |λi(Ia,ri )�μ|(Bε(y))

lim supi→∞ |λi(Ia,ri )�μ|(B2τ (e))

≤ 1 − |ν|(Bε(y))

lim supi→∞ |λi(Ia,ri )�μ|(B2τ (e))
.

But, |ν|(Bε(y)) > 0 because y ∈ supp |ν|, and the lim sup is finite by (3.4). This con-
tradiction concludes the proof of the lemma. �

Proof of Theorem 6.4 For ν, ν′ ∈ Mm(G), define

dR(ν, ν′) := sup

{∫

G

φ dν −
∫

G

φ dν′ : φ ∈ DR

}
,

where

DR := {
φ ∈ Cc(BR(e)) : sup |φ| ≤ 1 and |φ(x) − φ(y)| ≤ d(x, y) ∀x, y ∈ G

}
.

It is well known, and easy to check, that dR induces the weak∗ convergence in all
bounded sets of Mm(BR(e)). We define a distance d̄ in Mm(G) by

d̄(μ, ν) :=
∞∑

R=1

2−R min
{
1, dR(μ, ν)

}
.

Let x be a point where the limsup in (6.2) is finite; now we check that, for all infini-
tesimal sequences (ri) ⊂ (0,+∞), we have

ν = weak∗- lim
i→∞ r

−q
i (Ix,ri )�μ ⇐⇒ lim

i→∞ d̄(ν, r
−q
i (Ix,ri )�μ) = 0. (6.11)
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The implication ⇒ is obvious, because d̄-convergence is equivalent to dR-conver-
gence for all R, and all weakly∗-convergent sequences are locally uniformly bounded
(see (3.4)). The implication ⇐ is analogous, but it depends on our choice of x, which
ensures the property

sup
i∈N

r
−q
i |(Ix,ri )�μ|(BR(e)) = sup

i∈N

r
−q
i |μ|(BRri (x)) ≤ Rq lim sup

r↓0

|μ|(Br(x))

rq
< +∞.

This property ensures that r
−q
i (Ix,ri )�μ is bounded in all Mm(BR(e)) for all R > 0,

and enables to pass from dR-convergence to weak∗ convergence in all balls BR(e).
Thanks to the equivalence stated in (6.11), by a diagonal argument it suffices to

prove that, for |μ|-a.e. x, the following property holds: for all ν ∈ Tan(μ,x), y ∈
supp |ν| and r > 0 we have r−q(Iy,r )�ν ∈ Tan(μ,x). But since the operation σ �→
r−q(Ie,r )�σ is easily seen to map Tan(μ,x) into Tan(μ,x), and Iy,r = Ie,r ◦ Iy,1, we
need just to show that:

(*) for |μ|-a.e. x the following property holds: for all ν ∈ Tan(μ,x) and all y ∈
supp |ν|, we have (Iy,1)�ν ∈ Tan(μ,x).

Heuristically, this property holds at “Lebesgue” points of the multivalued map
x �→ Tan(μ,x), thanks to the identity

Iδ1/r (x
−1y),1 ◦ Ix,r = Iy,r . (6.12)

Indeed, this identity implies that tangents to μ at x on the scale r are close to tangents
to μ at y on the scale r when d(x, y) � r .

Let us consider the set R of points where the property (*) fails: for all x ∈ R there
exist a measure ν ∈ Tan(μ,x) and a point y ∈ supp |ν| such that (Iy,1)�ν /∈ Tan(μ,x).
This implies, thanks to the implication ⇐ in (6.11), the existence of integers z, k ≥ 1
such that the measure (Iy,1)�ν is 1/k far (relative to d̄) from the set r−q(Ix,r )�μ :
r ∈ (0,1/z)}. Set

Az,k := {
x ∈ G : ∃ν ∈ Tan(μ,x), ∃y ∈ supp |ν| such that

d((Iy,1)�ν, r−q(Ix,r )�μ) > 1/k, ∀r ∈ (0,1/z)
}
.

Since R is contained in the union of these sets, to conclude the proof it suffices to
show that |μ|∗(Az,k) = 0 for any z, k ≥ 1.

Suppose by contradiction |μ|∗(Az,k) �= 0 for some z, k ≥ 1 and let us fix these
two parameters; it is not difficult to check that we can cover the space Mm(G) with
a family {Bl} of sets satisfying

d̄(ν, ν′) <
1

2k
∀ν, ν′ ∈ Bl. (6.13)

Let us now consider the sets

Az,k,l := {
x ∈ G : ∃ν ∈ Tan(μ,x), ∃y ∈ supp |ν| such that (Iy,1)�ν ∈ Bl,

d((Iy,1)�ν, r−q(Ix,r )�μ) > 1/k, ∀r ∈ (0,1/z)
}
.



Tangent Hyperplane in Carnot Groups 535

Since
⋃

l Az,k,l contains Az,k and |μ|∗ is countably subadditive, at least one of these
sets satisfies |μ|∗(Az,k,l) > 0. Let us fix l with this property, and let us denote Az,k,l

by A.
Since |μ|∗(A) > 0 and |μ| is asymptotically doubling, we can find a ∈ A which is

a density point of A relative to |μ|∗. From now on also the point a will be fixed, and so
an associated measure νa ∈ Tan(μ,a), a point ya ∈ supp |νa| satisfying (Iya,1)�νa ∈
Bl and

d((Iya,1)�νa, r
−q(Ia,r )�μ) >

1

k
, ∀r ∈ (0,1/m). (6.14)

We can also write νa = limi→∞ r
−q
i (Ia,ri )�μ, for suitable ri ↓ 0, and clearly (6.14)

implies that ya �= e.
Let us consider the points a · δri ya and their distance from A and take ai ∈ A such

that dist(aδri ya, ai) ≤ dist(aδri ya,A)+ri/i. Lemma 6.7 yields that dist(aδri ya, ai) =
o(ri) as i → ∞, and so δ1/ri (a

−1ai) → ya . Now, (6.12) shows that Iδ1/ri
(a−1ai ),1 ◦

Ia,ri = Iai ,ri , so that

lim
i→∞ r

−q
i (Iai ,ri )�μ = lim

i→∞ r
−q
i (Iδ1/ri

(a−1ai ),1)�(Ia,ri )�μ

= lim
i→∞(Iδ1/ri

(a−1ai ),1)�
(
r
−q
i (Ia,ri )�μ

) = (Iya,1)�νa.

So, we can fix i sufficiently large such that ri < 1/z and

d(r
−q
i (Iai ,ri )�μ, (Iya,1)�νa) <

1

2k
. (6.15)

Since ai ∈ A = Az,k,l , we can find a measure ν′ ∈ Tan(μ,ai) and a point y′ ∈
supp |ν′| with (Iy′,1)�ν′ ∈ Bl such that

1

k
< d(r

−q
i (Iai ,ri )�μ, (Iy′,1)�ν

′).

By applying the triangle inequality we obtain

1

k
< d(r

−q
i (Iai ,ri )�μ, (Iya,1)�νa) + d((Iya,1)�νa, (Iy′,1)�ν

′) <
1

2k
+ 1

2k
,

where we used (6.15) and our choice (6.13) of Bl . The contradiction ends the proof
of the theorem. �

7 The Engel Cone Example

In this section we revisit the example in [19] of a set with a constant normal which
is not a vertical halfspace, and we show why the improvement procedure does not
work, at least at some points, in this case.
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7.1 The Engel Group

Let us recall the definition of Engel Lie algebra and group.
Let E be the Carnot group whose Lie algebra is g = V1 ⊕ V2 ⊕ V3 with V1 =

span{X1,X2}, V2 = {RX3} and V3 = {RX4}, the only non zero commutation rela-
tions being

[X1,X2] = −X3, [X1,X3] = −X4. (7.1)

An explicit representation of the vector fields in R
4 is:

X1 = ∂1,

X2 = ∂2 − x1∂3 + x2
1

2
∂4,

X3 = ∂3 − x1∂4,

X4 = ∂4.

Clearly E is a Carnot group with step s = 3, topological dimension n = 4, homo-
geneous dimension Q = 2 ·1+1 ·2+1 ·3 = 7, and dimension of the horizontal layer
m = 2. From now on, we shall use the coordinates above to denote the elements of
the group.

7.2 A Cone in the Engel Group

For any α > 0, let P = Pα : R
4 → R be the polynomial

P(x) = αx3
2 + 2x4,

whose gradient is

∇P(x) = (0,3αx2
2 ,0,2).

In particular all level sets {P = c} of P are obviously graphs of smooth functions
depending on (x1, x2, x3). The derivative of P is particularly simple along the vector
fields of the horizontal layer: indeed, we have

X1P(x) = ∂1(αx3
2 + 2x4) = 0

and

X2P(x) =
[
∂2 − x1∂3 + x2

1

2
∂4

]
(αx3

2 + 2x4)

= 3αx2
2 + x2

1 ≥ 0.

Hence

X1P(x) = 0, X2P(x) = x2
1 + 3αx2

2 ∀x ∈ R
4. (7.2)



Tangent Hyperplane in Carnot Groups 537

We define

C := {x ∈ R
4 : P(x) ≤ 0},

whose boundary ∂C is the set {P = 0}. Notice that, due to the (intrinsic) homogeneity
of degree 3 of the polynomial, the set C is a cone, i.e. δrC = C for all r > 0.

We shall denote by νeu
C (x) = ∇P(x)/|∇P(x)| the unit (Euclidean) outer normal

to C. We also have the expansion

|∇P |(x) =
√

4 + 9α2x4
2

= 2 + 9

2
α2x4

2 + O(d4(x,0)).

Thanks to Sect. 2.2 the set C has locally finite perimeter, and more precisely we have
the formula (2.8) (throughout this section Hk is the Hausdorff measure induced by
the Euclidean distance)

Z1C = − ZP

|∇P |H
3�∂C ∀Z ∈ g. (7.3)

In particular (7.2) and (7.3) give

D1C = (X11C,X21C) = (0,1)X21C = −x2
1 + 3αx2

2

|∇P(x)| (0,1)H3�∂C.

It follows that

|D1C | = x2
1 + 3αx2

2

|∇P(x)| H3�∂C (7.4)

and that the horizontal normal, that is the vector field νC = (0,1), is constant, so that
all points of supp |D1C | belong to F C.

Since we proved in Lemma 5.8 that non-horizontal regular directions Z for
E give rise, after blow-up, to invariant directions, at least at points x̄ where
|Z1E |(Br(x̄))/rQ−2 is infinitesimal as r ↓ 0, and since the cone is self-similar un-
der blow-up at x̄ = 0, it must happen that |Z1C |(Br(0))/rQ−2 is not infinitesimal as
r ↓ 0 for any non-horizontal regular directions Z (actually, for the cone C, all direc-
tions are regular). Let us show explicitly this fact for Z := Adexp(X1)(X2): taking into
account the commutator relations (7.1) and

Z := Adexp(X1) X2 = X2 + [X1,X2] + 1

2
[X1, [X1,X2]]

= X2 − X3 + 1

2
X4

= ∂2 − x1∂3 + x2
1

2
∂4 − ∂3 + x1∂4 + ∂4

= ∂2 − (1 + x1)∂3 + (1 + x1)
2

2
∂4.
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We can now compute the derivative along the vector field Z:

ZP(x) =
[
∂2 − (1 + x1)∂3 + (1 + x1)

2

2
∂4

]
(αx3

2 + 2x4)

= 3αx2
2 + (1 + x1)

2

= 1 + O(d(x,0)).

Intuitively, the quotient |Z1C |(Br(0))/|D1C |(Br(0)) tends to +∞ as r ↓ 0 be-
cause of the relations (7.3) and (7.4), and the fact that ZP(0) �= 0 (notice that the
factor |∇P | is close to 2 near to the origin). Let us make a more precise analysis:
according to the ball-box theorem, balls Br(0) are comparable to the boxes

Qr := [−r, r]2 × [−r2, r2] × [−r3, r3],
so we will compute the density on these boxes, rather than on balls. We shall assume,
for the sake of simplicity, that α ∈ (0,2]. The homogeneity of C and the fact that
0 ∈ F C give |D1C |(Qr) = cr6 for some positive constant c. The function

x4 = −αx3
2 := g(x1, x2, x3),

whose graph is ∂C, has absolute value strictly less than r3, thus Qr ∩ ∂C is the graph
of g on the “basis” [−r, r]2 × [−r2, r2] of the box Qr . Moreover, since g has zero
gradient at the origin,

H3(Qr ∩ ∂C) =
∫

[−r,r]2×[−r2,r2]

√
1 + |∇g|2dL3

∼
∫

[−r,r]2×[−r2,r2]
1dL3

= L3([−r, r]2 × [−r2, r2]) = 8r4.

From (7.3) we obtain |Z1C |(Qr) = 4r4 +o(r4) and we conclude that |Z1C |(Br(0))/

|D1C |(Br(0)) ∼ r−2.

7.3 A Counterexample to Asymptotic Stability of Halfspaces

Let us consider the set

E := {
(x1, x2, x3, x4) ∈ E : x2 + arctan(x4) > 0

}
. (7.5)

Since X11E = 0 and X21E ≥ 0 this set has a constant horizontal normal, and clearly
it is not an halfspace. On the other hand, it is not difficult to check that the inclusions

{
x2 >

π

2

}
⊆ E ⊆

{
x2 > −π

2

}

imply that E is asymptotic at infinity to the halfspace {x2 > 0}.
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7.4 Other Constant Normal Sets in the Engel Group

We present here another family of sets that have constant horizontal normal. This
time we have a dependence on two parameters a, b ∈ R. Let Pa,b : R

4 → R be the
polynomial

Pa,b(x) = 2ax4 − bx3 + x2.

Since ∂2Pa,b �= 0, all level sets {Pa,b = c} of Pa,b are obviously smooth manifolds.
Note that when both a and b are zero, the sub-level sets are vertical halfspaces. In

general, the derivatives along the vector fields of the horizontal layer are

X1P(x) = 0, X2P(x) = ax2
1 + bx1 + 1 ∀x ∈ R

4. (7.6)

So, if (a, b) is close to (1,0) then ax2
1 + bx1 + 1 is a perturbation of x2

1 + 1 that is
strictly greater than 0. Thus X2P(x) > 0 for any (a, b) in a neighborhood of (1,0). In
other words the sub-level sets have constant horizontal normal. However, these sets
are not cones, except when they are vertical halfspaces.

Acknowledgements We thank V. Magnani and A. Martini for some useful comments on a preliminary
version of this paper.
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