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Abstract
Microfluidic technology has advantages in producing high-quality droplets with monodispersity which is promising in 
chemical engineering, biological medicine and so on. An in-depth study on the underlying mechanism of droplet formation 
in microfluidics is of great significance, and to understand it, numerical simulation is highly beneficial. This article reviews 
the substantial numerical methods used to study the fluid dynamics in microfluidic droplet formation, mainly including the 
continuum methods and mesoscale methods. Moreover, the principles of various methods and their applications in droplets 
formation in microfluidics have been thoroughly discussed, establishing the guidelines to further promote the numerical 
research in microfluidic droplet formation. The potential directions of numerical modelling for droplet formation in micro-
fluidics are also given.
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Introduction

The droplets generated by traditional methods, such as high-
speed stirring method, layer-by-layer assembly method, and 
membrane emulsification method, encounter great difficul-
ties to meet the requirements of uniform size and precise 
control (Han and Chen 2021; Lee et al. 2016). Microfluid-
ics has good prospects in the preparation of highly mono-
dispersed droplets with good quality (Cybulski et al. 2019; 
Chen et al. 2014b; Morozov and Leshansky 2019; Chen et al. 
2015b; Cao et al. 2009). It has been widely used in drug 
delivery (Fontana et al. 2016; Sattari et al. 2020), biological 
assays (Guo et al. 2012; Dressler et al. 2017), chemical syn-
thesis (Kaminski and Garstecki 2017; Liu and Jiang 2017), 
fusion energy (Liu et al. 2014; Gao and Chen 2019) and 
medical diagnosis (Theberge et al. 2010; Agresti et al. 2010; 

KöSter et al. 2008). The droplet-based microfluidic technol-
ogy refers to the method of generating droplets individually 
in tiny geometric structures (Wu et al. 2017; Rahimi et al. 
2020; Hao et al. 2022). The interfacial tension and viscosity 
dominate the flow on a micro scale which is different from 
the conventional emulsification approaches (Woerner 2012; 
Yu et al. 2022). Precise control over the size of the droplets 
and their formation frequency can be achieved by imple-
menting different microchannels, adjusting the flow rate, 
viscosity and interfacial tension ratio between the phases 
or by applying external force (Yu et al. 2021; Wang et al. 
2022; Wei Gao 2020). Similar to the processes in micrograv-
ity environments, gravity is insignificant during the droplet 
formation through microfluidics. Microfluidic device can be 
regarded as an 'equivalent system' for the study of heat and 
mass transfer in microgravity environment (Malekzadeh and 
Roohi 2015; Galbiati and Andreini 1994). And the numeri-
cal methods reviewed in this work is also applicable in solv-
ing the problems in microgravity environments (Girard et al. 
2006; Sheikholeslam Noori et al. 2020).

Generally, the experimental approaches are conventional 
methods for studying the droplet generation mechanisms 
(Yu et al. 2022; Chen et al. 2015a). However, experimental 
approaches have intrinsic limitations, such as the complex 
fabrication, measurement errors, as well as facting the dif-
ficulty while obtaining the detailed information on the fluid 
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fields. Comparatively, computational fluid dynamics (CFD) 
has the advantages of low cost, simple operation, and strong 
repeatability, etc. Moreover, the detailed physical quantities 
during the droplet formation in the microchannels, such as 
local pressure, velocity and temperature, can be obtained 
through CFD (Santra et al. 2021; Chen et al. 2022). Hence, 
CFD plays an important role in developing the theoretical 
knowledge of multiphase flow (Wörner 2012). There are 
various kinds of numerical methods to simulate the mul-
tiphase flow. These methods can be generally classified into 
interface tracking method and interface capturing method 
that mainly differ from each other based on the meshes and 
interfaces. The computational meshes of interface tracking 
method fully or partly rely on the moving interface and are 
cut or reconnected with the development of the interfaces. 
On the contrary, the interface evolves through the meshes in 
the interface capturing methods. Hence, complicated mesh-
ing operation is usually not required. The interface capturing 
method is ideal for simulating the immiscible fluids (Han 
and Chen 2021).

This paper first reviews the mechanisms of droplet forma-
tion by passive and active microfluidic methods, then intro-
duces the principles of continuum methods and mesoscale 
methods, including interface tracking method, interface 
capturing method, and lattice Boltzmann method. Numeri-
cal simulation on droplet generation by various methods is 
comprehensively reviewed. Finally, the recent advances and 
future scope of numerical simulation on droplet formation 
and of droplet dynamics in microfluidics are summarized.

Fundamentals of Microfluidic Droplet 
Formation Methods

Microfluidic technology exhibits superiority in high con-
trollability, small volume, fast response speed, and low cost 
(Ding et al. 2019; Payne et al. 2020; Wang et al. 2020c). The 
droplet generation methods can generally be classified into 
two types: passive method and active method, according to 

whether the interface breakup is driven by external force 
(Han and Chen 2021; Amirifar et al. 2021; Manshadi et al. 
2021). The external force is not required to produce drop-
lets for passive methods, wherein the viscous force, inertial 
force, and buoyancy force are utilized to break the dispersed 
phase into droplets (Anna and Lynn 2016). The most applied 
configurations of microchannels in passive methods mainly 
include the T-junction (Liu et  al. 2016), flow-focusing 
(Zhang et al. 2018; Yu et al. 2019a), co-flowing (Liu et al. 
2017) and step emulsification (Liu et al. 2021). On the other 
hand, the active method, which relies on external energy to 
enlarge the area of the interface, are mainly the magnetic-
driven (He et al. 2020), mechanical-driven (Zhu and Wang 
2017), thermal-driven (Park et al. 2011), and electric-driven 
(Teo et al. 2020; Li and Zhang 2020), etc. Extra equipment, 
except the microfluidic chip, is required to generate the 
external fields. Table 1 summarizes the droplet formation 
methods and their salient features.

Passive Method of Droplet Formation

T‑Junction Microchannel

The structure of T-junction microchannel is shown in 
Fig. 1(a) (Thorsen et al. 2001). The dispersed phase (DP) 
flows perpendicularly towards the continuous phase (CP) 
and meets the continuous phase at the T-junction. Another 
class of T-junction is also demonstrated in Fig. 1(a) that the 
continuous phase is supplied from the perpendicular channel 
while the dispersed phase is supplied from the straight chan-
nel (Laborie et al. 2015). The pressure gradient in the contin-
uous phase as well as the flow of the continuous phase result 
in the distortion of the interface until the interfacial tension 
becomes insufficient to maintain the stability (Garstecki et al. 
2006). The dispersed phase breaks up, and thus droplets are 
generated. Thorsen et al. (2001) reported the mechanism of 
droplet formation in the T-junction microchannels and found 
that the size of the droplet formed have been inversely pro-
portional to the shear force of the continuous phase. With a 

Table 1  Comparison of different droplet formation methods

Methods Droplet formation Features and characteristics

Passive methods T-junction Depend on geometry; Pressure difference; Cross-flow; Simple
Co-flowing Flow in the same direction; Kelvin–Helmholtz instability; Dripping type and jetting type
Flow-focusing The focusing orifice; A sudden change in pressure
Step emulsification Two-dimensional space to three-dimensional space; Laplace pressure difference; Volume 

fraction of dispersed phase can be adjusted over a wide range
Active methods Electric field Controlled by electric field; EWOD and DEP; Beneficial for the precise control of single 

droplet; More complex than the passive method
Magnetic field Controlled by magnetic field; Magnetic fluid; Volumetric dynamic response of special 

fluid
Thermal field Resistor heating at the node and local heating by focusing laser beam; Interfacial tension
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lower pressure difference between the continuous phase and 
the dispersed phase, the continuous droplets can be formed 
in the continuous phase. Whereas, the dispersed phase can-
not flow out of the junction, with high-pressure continuous 
phase. Besides, when the pressure of the dispersed phase is 
too high, instead of forming droplets, the parallel flow with 
stable interface is formed. The double T-junction is used to 
generate the double emulsion droplet, as shown in Fig. 1(f).

Co‑Flowing Microchannel

In the co-flowing microchannel, the continuous phase enters 
from the same side of the dispersed phase, surrounding and 
squeezing the dispersed phase, as illustrated in Fig. 1(b), 
(g). The droplets generation in the co-flowing microchannel 
is due to the fluctuation at the interface, namely Rayleigh-
Plateau instability (Shahin and Mortazavi 2017; Deng et al. 
2017; Zhang et al. 2021b). The interfacial tension suppresses 
the Rayleigh-Plateau instability, and hence the droplets can 
only be formed when the interface is elongated sufficiently in 
the continuous phase (Garstecki et al. 2005). The co-flowing 
microchannel was first reported by Cramer et al. (2004) by 

inserting the stainless steel capillary coaxially into another 
axisymmetric component. The experimental results showed 
that there are two flow regimes in the co-flowing microchan-
nel: dripping and jetting, and the transition from dripping 
type to jetting type is dependent on the critical velocity.

Flow‑Focusing Microchannel

Compared with the co-flowing microchannel, a nozzle-like 
structure, namely an orifice, is configured at downstream of 
inlets, as is shown in Fig. 1(c), (h), which produces a sud-
den change in pressure and induces a hydrodynamic focus-
ing effect on the dispersed phase. The continuous phase 
squeezes the dispersed phase which is deformed into a long 
liquid thread while flowing through the orifice (Shi et al. 
2014; Gupta et al. 2014). Eventually, the interface breaks 
into droplets under the effect of Rayleigh-Plateau instabil-
ity (Utada et al. 2007; Yu et al. 2019b). Anna and Mayer 
(2006) constructed a planar flow-focusing microchannel 
by soft lithography and found that the diameter of droplets 
was significantly smaller than the width of the main chan-
nel. Therefore, compared with the co-flowing microfluidic 

Fig. 1  Schematics of the passive 
microfluidic for droplet forma-
tion: single droplet: a T-junction 
b Co-flowing c Flow-focusing d 
Flow-focusing e Step emulsi-
fication, and double droplet: 
f T-junction g Co-flowing h 
Flow-focusing i Cross-junction 
(CP is the continuous phase, DP 
is the dispersed phase, SP is the 
shell phase)
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device, by adjusting the structure of the orifice, the size 
of droplets generated in flow-focusing device can be fur-
ther controlled. The quasi two-dimensional cross-junction 
devices (Fig. 1(d), (i)) are also regarded as flow-focusing 
devices (Sontti and Atta 2020; Du et al. 2016; Abate et al. 
2011) since the decrease in the cross-section area of the out-
let branch induce the hydrodynamic focusing effect as well.

Step Emulsification Microchannel

Step emulsification is a novel method that uses the Laplace 
pressure difference (Sugiura et al. 2001) to break the dis-
persed phase into droplets when it flows through the chan-
nel with a confinement gradient (Wang et al. 2018; Lian 
et al. 2019a). A typical step emulsification droplet maker 
(Kawakatsu et al. 1997; Ge et al. 2021; Li et al. 2015) is illus-
trated in Fig. 1(e). The significant advantage of step emulsifi-
cation is that the volume fraction of the dispersed phase can 
be adjusted over a wide range, even up to 93% (Priest et al. 
2006). By soft lithography, the scale up of the step emulsi-
fication can easily be achieved. For example, a parallelized 
microfluidic device is proposed by Dangla et al. (2013) using 
multiple-step emulsification droplet makers with the gradi-
ent of confinement in which the droplet formation originates 
from the Laplace pressure jump. According to Montessori 
et al. (2018), in addition to the pressure gradient of the dis-
persed phase fluid, interface fracture can also be attributed to  
the passive flow of the continuous phase and the inertia of the 
dispersed phase. Sugiura et al. (2000) found that the droplet  
size is insensitive to the flow rate of the dispersed phase 
in step-emulsification. The step-emulsification can also be 
configured in a tandem way to produces double emulsions 
(Fig. 1(j)) (Eggersdorfer et al. 2017; Ofner et al. 2019).

Active Method of Droplet Generation

Electric Field

Electrowetting On dielectric (EWOD) (Pollack et al. 2000; 
Lee et  al. 2002) and Dielectrophoresis (DEP) method 
(Zhang et al. 2019) are two commonly used electric-driven 
droplet producing methods. In EWOD method, as shown 
in Fig. 2(a), the contact angle is modified by the electric 
field. A certain pressure difference is generated locally in 
the fluid, resulting in local deformation and instability of the 
interface. The droplets generated by the EWOD method are 
easily post-processed such as transported, mixed, and split. 
DEP method refers to the class of droplet formation caused 
by the migration of electrolyte fluid under the action of het-
erogeneous electric field. Similar to EWOD method, DEP 
method is also beneficial for the analysis of a single droplet 
attributed to the precise control of a single droplet by the 
electric field. Usually, electrode fabrication and integration, 

applied voltage and surface modification are required in 
electric-driven droplet generation, resulting in difficulties 
in chip fabrication and additional instruments compared to 
the passive droplet generation method as-mentioned above.

Magnetic Field

The application of magnetic force in the formation and con-
trol of droplets mainly depends on the volumetric dynamic 
response of special fluid (magnetic fluid) to a magnetic field 
(Qiu et al. 2014). A magnetic fluid is a liquid containing the 
suspended magnetic particles, such as ferrofluid. Ferrofluids 
can be either water-based or oil-based, and can be used as both 
dispersed and continuous phases. The formation of droplets 
through magnetic force control in the microchannel is reported 
in T-junction (Tan et al. 2010) and flow-focusing device (Yan 
et al. 2015). The ferrofluid droplet generated under a square 
wave magnetic field is shown in Fig. 2(b). As the magnetic 
flux density increases, smaller droplets are generated.

V

(a)

DP(Ferrofluid)DP(Ferrofluid)

(b)

(c)

(d)

Electrode

Uniform magnetic field

Heater

Laser

Fig. 2  Schematics of the active microfluidic for droplet formation. a 
electric field; b magnetic field; c resistance heating; d laser local heating
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Thermal Control

Energy sources of thermal controlled droplet formation and 
manipulation include the resistor heating at nodes and the 
local heating by focusing laser beam. The essence of ther-
mal control methods is the dependence between the fluid 
properties and its temperature. The viscosity and interfacial 
tension of most fluids decrease with the increasing tempera-
ture and thus result in the dependence of capillary number 
with temperature. Nguyen et al. (2007) introduced resist-
ance heating in a flow-focusing device as shown in Fig. 2(c). 
Both the droplet formation mode and droplet size can be 
controlled. With fluid temperatures ranging from 25 ℃ to 
70 ℃, the diameter of the droplet can be more than twice 
its original size. Figure 2(d) shows that droplet formation 
process is controlled by locally heating the microchannel 
with a focused laser beam (Baroud et al. 2007).

Numerical Methods for Droplet Formation 
in Microfluidic

Depending on the length scales of the simulation in micro-
fluidic system, the numerical methods can be classified 
into two groups, i.e. the continuum methods and mesoscale 
methods. The continuum methods, which are the traditional 
CFD methods, are based on the standard continuum assump-
tion. The fluid is regarded as a continuum and follows the 
macroscopic conservation laws for mass, momentum and 
energy, e.g. the Navier–Stokes equation. The continuum 
methods performs well in the scale of tens or hundreds of 
micrometer. Based on the description of the interface evolu-
tion, the continuum methods can be classified into interface 
tracking method and interface capturing method. However, 
the continuum methods are difficult in dealing with the cru-
cial microscopic interactions in the microfluidic system. The 
mesoscale methods, such as dissipative particle dynamics 
(DPD) (Miskin and Jaeger 2012) and the lattice Boltzmann 
method (LBM) (Zhang 2011), are relatively easier to incor-
porate intermolecular interactions in the microfluidic sys-
tem. Since the DPD is seldomly used in the microfluidic 
system, only the LBM method and its application is intro-
duced in this review.

Continuum Methods

Interface Tracking Method

The interface tracking method belongs to the class of Lagran-
gian methods, including the boundary integral method, finite 
element method, immersed boundary method and front track-
ing method. These methods track the movement of the inter-
face directly through mark points, as shown in Fig. 3.

Boundary‑Integral Method (BIM) BIM has been proposed 
by Youngren and Acrivos in 1970s (Youngren and Acrivos 
2006) which is often used to deal with low speed multiphase 
flow. The boundary integral method converts the Stokes 
equation and continuity equation into an integral equation 
on the boundary by introducing the basic solution of Stokes 
equation (Janssen and Anderson 2007; Navarro et al. 2020). 
The advantage is that it only discretizes the boundary rather 
than the whole computational region, reducing the dimen-
sion of the problem. The fundamental boundary integral 
equation (BIE) is written as:

where x0 is any point on the boundary SB within the region. 
The normal vector n points in the region. T is the stress ten-
sor. The stress vector f acting on the interface is defined as 
f = σ·n, where σ is the symmetric stress tensor of the fluid.

Finite Element Method (FEM) FEM is dated to Courant's 
work (Courant 1942) (different from BIM) in which the 
whole fluid region requires the spatial discretization. The 
whole computational region is decomposed into several sub-
regions, and each subregion becomes a simple part called 
the finite element (Ω). The finite element helps minimize the 
error function and produces a stable solution by variational 
formulation (Salinas et  al. 2017; Nathawani and Knepley 
2022). Lebesgue function space L2(Ω) subspace is intro-
duced to construct the Navier–Stokes equations as follows:

(1)u (x0) = −
1

2�� ∫SB

[S ⋅ f − �T ⋅ u ⋅ n] dS

Phase 2

Mark point

Interface

Phase 1

Fig. 3  Interface tracking method
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where q is a space integrable function at Ω. The position of 
the interface between phases is determined by integrating 
over every Ω, as shown in Fig. 4.

Immersed Boundary Method (IBM) In 1977, Peskin (1972) 
introduced a discrete data structure in immersed boundary 
method to simulate the heart and surrounding blood flow. 
This data structure has been constantly updated to track 
the boundary. Its basic idea is to regard the fluid and the 
immersed structure as a whole system (Peskin 2002). As 
shown in Fig. 5, this method uses both Lagrangian and Euler 
grids, where the fixed Euler grids are applied on the whole 
region of the fluid, while the moving Lagrangian grids are 
applied on the immersed boundary. The boundary model 
is a force source f added to the Navier–Stokes equation as 
illustrated below:

where F is the unit force generated by the immersion bound-
ary, X(s, t) represents the displacement of the immersion 
boundary, δ represents a Dirac delta function, and s is the 
curve coordinate associated with two-dimensional immersion 
boundary. In this method, the reaction of flow field to the 
boundary is achieved by interpolating the velocities of the sur-
rounding fluid particles (Nangia et al. 2019; Xiao et al. 2020).

Front Tracking Method (FTM) The front-tracking method 
(FTM), developed by Prosperetti and Tryggvason (2009), 
uses a set of Lagrangian points connected to the interface (Bi 
et al. 2018). As shown in Fig. 6, one interface unit connects 
two marker points, and the convention is that points and 
interface units are stored in a linked list in counterclockwise 

(2)L2
0
(Ω) =

{
q ∈ l2(Ω)

||||∫Ω

qdx = 0

}

(3)f (x, t) = ∫ F(s, t)(x − X(s, t)ds

order. In the process of moving the interface, the distance 
between the points on the interface can be controlled by add-
ing or deleting points. Due to the interface being explicit and 
the position parameters of each point on the interface being 
known, the interfacial tension can be calculated at the inter-
face and fixed into the grid (Shahin and Mortazavi 2020).

Interface Capturing Method

The interface capturing method belongs to the Euler method, 
mainly including the volume of fluid (VOF) method, level 
set (LS) method, and phase filed (PF) method. It captures the 
motion of the interface implicitly according to the evolution of 
physical quantities that describe the interface, as shown in Fig. 7.

Volume of Fluid Method (VOF) VOF method is the most 
commonly used interface capturing method. It was pro-
posed by Hirt and Nichols (1981) in 1981, which intro-
duces a phase function, namely volume fraction, to track 
each phase and employes a geometric reconstruction 
strategy to construct fluid interface based on the calcu-
lated volume fraction in each cell (Wörner 2012). In this 
method, all fluids share a single set of momentum equa-
tion and the volume fraction α as follows:

(4)

⎧⎪⎨⎪⎩

ai = 0 No ��
𝑖
�� phase liquid in this cell

0 < ai < 1 Interface in this cell

ai = 1 Full of ��
𝑖
�� phase liquid in this cell

Fig. 4  Finite element method

Fig. 5  Immersed boundary method
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i is introduced as a variable to distinguish each fluid. In each 
cell, the volume fraction of all phases add up to 1.

Reconstruction of the interface by calculating the phase 
fraction of each cell in the whole computing domain is shown 
in Fig. 8. VOF method has been widely used for droplet gen-
eration (Rostami and Morini 2018), break up (Stone and Leal 
1990), collision (Guido and Simeone 1998), and spiltting 
(Bedram and Moosavi 2011) in microfluidic systems.

Level‑Set (LS) Method LS method was proposed by Osher 
and Sethian (1988) in 1988 which tracks the moving inter-
faces through Level Set functions. The main idea is to con-
struct a continuous smooth LS function ψ of which the zero 
isosurface (ψ = 0) represents the phase interface, ψ > 0 rep-
resents non-target fluid, and ψ < 0 represents the target fluid 
(Fig.  9). LS method can accurately express the interface 
variables such as normal interface direction and curvature 

Fig. 6  Front tracking method

Fig. 7  Interface tracking method

Fig. 8  Volume fraction spatial distribution and interface reconstruction

Fig. 9  Definition area map of Level Set function
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(Gibou et al. 2018; Saye and Sethian 2020). However, there 
is often a "mass loss" due to flow field distortion, and VOF 
methods are often coupled to overcome such problem.

LS function ψ can also be defined as a symbolic dis-
tance function, expressed as:

where d is the distance function, and Γ(t) is the position of 
the phase interface at time t.

Lan et al. (2015) improved the LS algorithm, embedding 
the modified governing equation to solve the "mass loss" 
problem. Based on the improved LS algorithm, single drop-
let formation in a co-flowing microchannel has been simu-
lated, and classic emulsification regimes were reproduced.

Phase Field (PF) Method The sharp-interface based numeri-
cal methods, i.e. VOF, LS, are unable to handle the rapid 
spatial change of the fluid interfaces at microscales (Larson 
1999). As a diffuse-interface based method, the phase -field 
(PF) method, describes the interface with the thin and smooth 
transitional regions, and does not need to track the interface 
position (Bai et al. 2017; Wang et al. 2019). Hence, PF method 
can easily capture the complicated topological changes of 
the fluid interfaces and is regarded as a promising approach 
for multiphase flow problems in microfluidics (Aihara et al. 
2019; Singer-Loginova and Singer 2008). The commonly 
used PF model for multiphase flow uses convection-diffusion 
equations, Cahn-Hilliard equation, and Allen-Cahn equation 
to manipulate the order parameter ϕ, which distinguishes one 
phase from other, as given below:

where M
�
 is the mobility coefficient. The macroscopic quan-

tities of the fluids are expressed as a function of ϕ.

(5)𝜓(x, t) =

⎧
⎪⎨⎪⎩

d(
→

x Γ(t)) > 0 Non-target fluid

0 Interface

d(
→

x Γ(t)) < 0 Target fluid

(6)�t� + ∇ ⋅ (�u) = ∇ ⋅

(
M

�
∇�

)

Mesoscale Methods

Lattice Boltzmann method treats the fluid as a virtual parti-
cle resting on the lattice point. The migration and collision 
of these particles follow the certain rules. The particles can 
only move along the grid lines and can only move from one 
lattice point to its adjacent lattice in every time step. The 
evolution process of the particles can be divided into two 
stages: (1) In the pinch stage, the particle on each lattice 
meets and collides with the particle on the nearest lattice 
point, causing to change the velocity of the corresponding 
particle. (2) In the migration stage, the fluid particle moves 
to the adjacent lattice point with a new velocity after the col-
lision. The lattice Boltzmann equation (Qing-Yu et al. 2017) 
can usually be written as

where ei is the dimensionless discrete velocity set, τ is the 
relaxation time, f eq

i
(r, t) is the equilibrium density distribu-

tion function and Fi ( r, t) is an external force.
LBM provides an independent interfacial tension con-

trol, which improves the stability of the algorithm (Chen and 
Doolen 1998). The interaction between fluids is simple to 
describe, and the complex boundary is easy to set (Petersen 
and Brinkerhoff 2021; Chen et al. 2014a). For these reasons, 
it is suitable for solving the incompressible flows. The compu-
tational efficiency is relatively low compared with other algo-
rithms, so the coupling with other methods is an excellent way 
to improve the computational efficiency and retain the simula-
tion accuracy (Li et al. 2016). There are several approaches 

(7)
fi(r + ei�t, t + �t) − fi(r, t)

= −
1

�
[fi(r, t) − f

eq

i
(r, t)] + �tFi(r, t)

Fig. 10  Flow regime of droplet 
formation in T-junction: a 
squeezing, b transition, c drip-
ping, d jetting and e parallel 
flow (Yan et al. 2012)

Fig. 11  Pressure contours and streamlines of different flow regime of 
droplet formation in co-flowing device. Single droplet formation: a drip-
ping, b jetting, c dripping-jetting transition. Double emulsion droplet 
formation: e dripping, f jetting (Wu et al. 2017; Liu et al. 2017)
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for the multiphase flow simulation via LBM, including Shan-
Chen model (Shan and Chen 1993), color gradient model (Ba 
et al. 2016), free-energy-based model (Shao et al. 2014), and 
the phase-field-based model (Wang et al. 2019).

Applications of Numerical Methods 
in Droplet Formation of Microfluidics

Recently, droplet formation in microfluidics has been 
extensively investigated via several simulation methods 
(Wang et al. 2020a). The representative applications of 
numerical methods in droplet formation are summarized 
in this section.

Droplet Formation Via Passive Methods

The droplet formation processes in passive microfluidic 
devices have been comprehensively investigated via numer-
ical methods. Table 2 summarizes the popular numerical 
methods and various channel types of passive microfluidic 
devices. The underlying mechanisms of the droplet forma-
tion modes, i.e., dripping, jetting and tip streaming etc., in 
passive microfluidic have been investigated.

Both two-dimensional (Shi et al. 2014; Hoseinpour and 
Sarreshtehdari 2020; Chakraborty et al. 2019) and three-
dimensianl (Yin and Kuhn 2022; Gupta et al. 2009) numeri-
cal models have been successfully employed, demonstrating 
the generation of droplet via T-junction microchannels (Lu 
et al. 2022; Azarmanesh et al. 2015; Li et al. 2012; Wang 
et al. 2014). The squeezing regime, transition regime, drip-
ping regime, jetting regime and parallel flow regime of 
droplet formation in T-junction are show in Fig. 10 (Yan 
et al. 2012). To further examine the dynamics, by integrat-
ing the dynamic contact angle model into into VOF solver, 
the prediction accuracy of droplet formation in microfluidic 
T-junction is significantly increased (Yin and Kuhn 2022). 
Compared with the receding contact angle, the advancing 
contact angle affects the droplet formation more strongly. 
The dynamic contact angle of the droplet with high viscosity 
fluid is higher than that of low viscosity fluid (Kumar and 
Pathak 2022b). Increasing the slip length of the continuous 
phase liquid leads to the enhancement of the vorticity inside 
the droplet, resulting in the resistance of the droplet detach-
ment and the increased droplet length (Kumar and Pathak 
2022a). Using the LBM to study the droplet generation in 
the T-junction microchannel, it is found that the transition 
of flow patterns occurs with increasing capillary number 
(Yang et al. 2013) and the droplet decreases with the increas-
ing Capillary number in the squeezing regime (Gupta and 
Kumar 2010). Different droplet flow patterns, including the 
squeezing, dripping, and jetting, can be obtained by varying 

the flow rates (Lu et al. 2022). Newtonian droplet forma-
tion in shear-thinning fluid in T-junction has been studied 
by Sontti and Atta (2017). The flow rate, interface tension, 
and power-law index have been examined. The numerical 
results predicted the effect of interfacial tension on drop-
let size and the variation of droplet length with different 
power-law index and the flow rate of the continuous phase. 
Using the LS method, the droplet formation of sodium 
carboxymethylcellulose (SCMC) polymer in a T-junction 
channel is simulated and found that the droplet formation 
frequency decreased with the polymer concentration (Wong 
et al. 2017). Based on a PF model, the liquid metal droplet 
formation is found to be affected by the wettability of liquid 
metal on the surface of the metallic needle in a co-flowing 
device, as the movement of the liquid metal droplet benefits 
from the larger contact angle (Hu et al. 2020).

The flow regimes of droplet formation in co-flowing 
device have been successfully predicted (Deng et al. 2017; 
Rostami and Rahmani 2022; Zhang et al. 2021b; Sattari 
and Hanafizadeh 2020; 2021; Vu et al. 2013), as shown in 
Fig. 11. Chen et al., using VOF method, reported the drip-
ping, widening jetting, and narrow jetting regimes in sin-
gle emulsion droplet formation. They also found that the 
dripping regime is a favorable way to produce monodis-
perse droplets, rather than the jetting regime (Chen et al. 
2013). For the dripping regime of droplet formation in a 
different-sized devices, Deng et al. developed a correlation 
of dimensionless droplet diameter with the Capillary num-
ber and Reynolds number (Deng et al. 2017). Using FTM, 
the droplet formation of the dripping regime in co-flowing 
microchannel was studied, and the droplet in elliptic jet 
is smaller thant that in circular jet (Shahin and Mortazavi 
2020). Droplet formation in co-flowing and flow-focusing 
microfluidic devices has been compared by Wu et al. (2017), 
based on VOF method, and the effects of local geometry on 
droplet generation frequency, size, and monodispersity have 
been thoroughly discussed. The strong hydrodynamic focus-
ing effect due to the existence of focusing orifice, makes the 
dripping-jetting transition regime occur at a smaller Capil-
lary number and droplets smaller in flow-focusing microflu-
idics. Using the LS method, the influence of wall wettability 
of microchannels during droplet formation in device is stud-
ied and the competition for wettability between two-phase 
flows is found to leads to unstable flow patterns that disrupt 
the normal droplet formation (Bashir et al. 2011).

The flow-focusing device is attracting the attention 
across the globe, particularly based on the potential in high-
throughput production of monodisperse droplets (Ong et al. 

Fig. 12  Pressure contours and streamlines of different flow regime of 
droplet formation in flow-focusing device. Single droplet formation: a 
dripping, b jetting, c dripping-jetting transition. Double emulsion drop-
let formation: e dripping, f jetting (Wu et al. 2017; Liu et al. 2017)
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2007; Peng et al. 2011; Mu et al. 2018; Rahimi et al. 2020; 
Hernández-Cid et al. 2022; Chen et al. 2015c). The detailed 
underlying hydrodynamic mechanism of typical drop forma-
tion modes, including the dripping, jetting, and dripping-
jetting transition, are reported (Wu et al. 2017), shown in  
Fig. 12. Using VOF method, Yu et al. investigated the hydro-
dynamic behaviors of the dripping, jetting, and threading 
regime for the triple emulsion droplet generation (Yu et al. 
2021). The effects of local geometries and flow rates on 
droplet formation have been discussed (Liu et al. 2017; Wu 
et al. 2017; Rahimi et al. 2019; Soroor et al. 2021). For the 
microfluidic cross-junctions, the hydrodynamic character-
istics around the cross-junction region are affected by the 
junction angle (Yu et al. 2019b). To predict the size of the 
droplets generated in the microfluidic cross-junction, the 
scaling correlation is obtained (Yu et al. 2019b). The vis-
cosity ratio and interfacial tension ratio are found to play 
essential role in the morphologies of droplets (Wang et al. 
2020b; Sontti and Atta 2020). Using finitely extensible 
nonlinear elastic-Chilcott-Rallison model, the viscoelastic 
droplet formation in an axisymmetric flow-focusing device 
are discussed by Nooranidoost et al. (2016). The droplet size 
was found to be dependent on the capillary number (Long 
et al. 2008). Gupta et al. (2014) also studied the influence  
of orifice on droplet size in a flow-focusing microfluidic 
system and found that the droplet size does not vary linearly 
with the length of the orifice.

Due to the fundamentals and structure of the step-emulsification  
device, the three-dimensional simulation of droplet formation  
via step-emulsification is preferred. Using LB immiscible mul-
ticomponent model, Montessori et al. elucidate two essential 
mechanisms of droplet formation in step-emulsification via three- 
dimensional time-dependent direct simulations (Montessori et al. 
2018, 2019). Eggersdorfer et al. predict the droplet generation 
mode transition as a function of the contact angle during step 
emulsification (Eggersdorfer et al. 2018). To reduce the computa-
tional cost, Chakraborty et al. developed an axisymmetric model 
to simulate the droplet formation in a microfluidic step-emulsifier 
(Chakraborty et al. 2017). Clime et al. designed a buoyancy-
driven device and discussed the hydrodynamic behavior of the 
droplet formation (Clime et al. 2020). Lian et al. simulate the 
effects of interfacial tension, viscosity, and flow velocities on 
droplet formation in co-flowing step emulsification device using 
VOF method (Lian et al. 2019a, b, 2021). As the continuous 
phase velocity and the dispersed phase velocity increase, the driv-
ing mechanism transits from co-flowing to Laplace pressure dif-
ference. Van der Zwan (2009) simulated the droplet generation in 
the step emulsification device and proved the accuracy of LBM.

Droplet Formation Via Active Methods

Recently, substantial numerical investigations have been car-
ried out to study the droplet formation under external fields, 

i.e., electric field, magnetic field, etc. Table 3 summarizes 
the application of numerical methods in droplet formation 
via active method.

Compared with experimental studies, simulation provides 
a powerful means to quantitatively investigate the influence 
of the external electric force on the interface evolution dur-
ing the droplet formation (Mohammadi et al. 2019; Sunder 
and Tomar 2016; Notz and Basaran 1999). LBM with inter-
molecular potential model or the leaky dielectric model can 
be used to simulate the droplet formation process under the 
imposed electric field (Gong et al. 2010; Liu et al. 2022). The 
electric-field-inducing Maxwell stress leads to the oscillation 
of interfaces, promoting the breakup of the dispersed phase 
(Yin et al. 2020). Relatively smaller-sized droplets can be 
produced by applying electric field (Singh et al. 2020). Li 
and Zhang studied the electro-hydrodynamics of electric con-
trolled droplet generation in co-flowing device, by coupling 
PF method and electrostatic model (Li and Zhang 2020). The 
liquid cone-jet and core–shell droplet formation are investi-
gated by VOF method (Yan et al. 2016). The formation of 
shear-thinning fluid droplets in T-junction under electric field 
have been analyzed using LS method (Amiri et al. 2021).

The magnetic field is usually utilized for the formation of 
ferrofluid droplet in microfluidic device (Varma et al. 2016; 
Gómez-Pastora et al. 2019). The multiscale modeling with 
two assumed computational domains is demonstrated by 
Bijarchi et al., to study the formation of ferrofluid droplets 
under a nonuniform magnetic field (Bijarchi et al. 2022). 
Only magnetic equations are solved to obtain the distribu-
tion of magnetic field in large computational domain. The 
coupling LS-VOF method is used to predict the formation of 
ferrofluid droplet in the small computational domain. Mean-
while, by solving the magnetic equation in the small com-
putational domain, the magnetic force acting on the droplet 
is obtained. A three-dimensional model is developed by Liu 
et al. to simulate the ferrofluid droplet genenration with a 
magnetic field in a flow-focusing microchannel (Liu et al. 
2011a, b). The Maxwell equations are used to describe the 
magnetic field for ferrofluid. With a higher magnetic bond 
number, a bigger droplet is generated. Roodan et al. analyze 
the ferrofluid droplet formation in cross-junction with mag-
netic fields (Amiri Roodan et al. 2020). VOF method is used 
to study the interaface evolution and the magnetization of a 
ferrofluid is governed by a Langevin function.

Moreover, several attempts have been made to numeri-
cally study the droplet formation under some other external 
fields. Jiang et al. studied the influence of temperature on 
droplet formation process in a flow-focusing device with 
CLSVOF method (Jiang et al. 2019). With increasing dis-
persed phase temperature, larger droplet is generated. The 
underlying mechanism of droplet formation regimes with 
different fluid temperatures are discussed. The effect of the 
thermocapillary on the droplet formation in a microfluidic 
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T-junction is numerically studied by Gupta et al. (2016). 
With a negative temperature gradient, the squeezing process 
is restricted by the thermocapillary effects, leading to larger 
droplet sizes. With a positive temperature gradient, the ther-
mocapillary stresses promote the droplet breakup. Mu et al. 
discussed the effect of external perturbations on the droplet 
formation in a flow-focusing device (Mu et al. 2018). The 
sinusoidal perturbation would be more suitable for forming 
uniform droplets compared with the square perturbation.

Conclusion and Prospects

The development of microfluidic technology provides an 
effective way for the miniaturization and refinement of pro-
cesses in chemical engineering, biomedical engineering, 
energy engineering and so on. Other than the experimental 
methods, the numerical methods provide new approaches to 
explore the dynamics of droplets at micro-scale. However, 
as the structure of the microchannel becomes more com-
plex, the complexity of multiphase flow and the interaction 
of multiphase flow in the microchannel need to be coupled 
where the simulation faces the challenges. In droplet forma-
tion simulation, selecting the appropriate methods is essential 
to maintain accuracy and efficiency. In this review, we sum-
marize the progress in numerical modelling for the droplets 
formation in microfluidics, Including the geomerrty micro-
fluidic device for droplet formation, the numerical methdos 
for droplet formation in microfluidics and the application 
of these methods in the simulation of droplet formation in 
microfluidics. An overview of the numerical methods and 
the microfluidic device geometry for droplet formation via 
passive methods and active methods are provided in Tables 2 
and 3, respectively. However, this review is disscussed from 
a practical point of view, and the theoretical aspects of the 
numerical methods are not addressed in details.

Although numerical modelling for droplet formation in 
microfluidics have undergone considerable developments in 
theory and application, there remain challenges in improving 
the accuracy and computation cost of numerical simulation. 
Herein, the potential directions for numerical modelling for 
droplet formation in microfluidics are given as follows:

1. Complex interfacial phenomenon during droplet forma-
tion. The effect of mass transfer and chemical reactions 
across the interface in not considered in most researches 
on the droplet formation in microfluidics, e.g. droplet for-
mation in surfactant-laden system and droplet formation 
cantaining nanoparticles (Zhang et al. 2022). However, it 
may affect the flows around the interface and complicates 
the mechanism of the interfacial phenomenon during drop-
let formation. Therefore, it is essential to develop special 
numerical treatment method of the complex interface.

2. Droplet formation in complex multiphase system. The 
current studies mostly focus on the droplet formation 
in liquid-liquid system or gas-liquid system. However, 
there are less studies on the droplet formation in a more 
complex multiphase system, like the solid-liquid dou-
ble emulsion droplet formation. The simulation of this 
complex multiphase system requires the coupling of sev-
eral numerical methods for multiphase flow, like LBM-
Immersed Boundary Method (IBM)-discrete element 
method (DEM) coupled method.

3. Multiphysics-field-assisted droplet formation. Even 
though there are several investgations on the droplet for-
mation via active methods, the underlying mechanism is 
still not fully revealed and the practical guideline should 
be improved. Some studies can only reconstruct par-
tially the dynamics of interface evolution in multiphysics 
fields. More efforts should be addressed to the develop-
ment of models that represent the complex characteris-
tics of real fluids in multiphysical fields.

Table 3  Comparison of droplet 
formation via active methods

Simulation methods Channel types Active methods References

LBM T-junction Electric field (Liu et al. 2022; Singh et al. 2020)
LBM Co-flowing Electric field (Gong et al. 2010)
VOF Flow-focusing Electric field (Yin et al. 2020)
VOF Co-flowing Electric field (Ouedraogo et al. 2017)
PF Co-flowing Electric field (Li and Zhang 2020)
CLSVOF Co-flowing Magnetic field (Bijarchi et al. 2022)
VOF Flow-focusing Magnetic field (Liu et al. 2011a)
LS T-junction Magnetic field (Varma et al. 2016)
CLSVOF T-junction Magnetic field (Zhang et al. 2021a)
LBM Co-flowing Magnetic field (Ghaderi et al. 2018)
CLSVOF Flow-focusing Thermal control (Jiang et al. 2019)
LBM T-junction Thermal control (Gupta et al. 2016)
PF Flow-focusing External perturbations (Mu et al. 2018)
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Despite recent significant achievements of numerical 
modelling for droplet formation in microfluidics, research-
ers still need to find optimized models to better describe 
the more complex multiphase system and reveal the under-
lying mechanism of the droplet formation in microfluidics 
with multiphyscis field. This review is hopeful to provide 
a tutorial for numerical modelling for droplet formation in 
microfluidics.
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