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Abstract
We study the centrifugal buoyancy-driven chemoconvection in a Hele-Shaw cell that uniformly rotates around e perpendicular  
axis. The slot is considered thin enough to neglect the influence of the Coriolis force. The initial configuration of the system 
consists of two aqueous reacting solutions separated by a concentric boundary. The acid solution fills the center of the cav-
ity, while the base solution is in the periphery. Bringing liquids into contact initiates a neutralization reaction to form a salt. 
We show that reaction-diffusion processes produce a potential well near the reaction front, which determines the pattern 
formation of the system. For some ratios of initial concentrations, there appears a periodic sequence of chemoconvective 
vortices in the well, while for others, when the well collapses, a shock-like density wave occurs. When the density of the 
acid solution is higher, the Rayleigh-Taylor instability develops in the system. We found that an increase in the rotation 
speed leads to a gradual disruption of the structure periodicity. It can even result in the ejection of some vortices from the 
potential well. We show that the density wave is extremely sensitive to the magnitude of the centrifugal force, occurring 
only at some critical value. Finally, we obtained a stability map of the system by performing direct numerical simulations 
for increasing the centrifugal Rayleigh number and the dimensionless distance of the initial contact surface between the 
solutions from the axis of rotation.
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Introduction

In recent decades, multiple studies have shown that an 
inertial field tuned from the outside can be a powerful tool 
for controlling heat and mass transfer processes in liquid 
media Gershuni and Lyubimov (1998); Allali et al. (2002); 
Lyubimov et al. (2006); Shevtsova et al. (2010); Bratsun 
et al. (2017). In this case, different types of inertial fields 
have distinct effects on the liquid. For example, linearly 

polarized high-frequency vibrations produce an averaged 
force field that acts uniformly in the medium Gershuni and 
Lyubimov (1998). In contrast to that, the rotation generates 
a spatially inhomogeneous effect due to centrifugal force 
and Coriolis force Chandrasekhar (1961). The first force 
affects the fluid element the more significantly, the further 
it is located from the axis of rotation. The second one acts 
stronger on those volume elements that move faster. Gen-
erally, the classification of problems with rotating systems 
depends on the Rossby number defined as the ratio between 
inertial forces (triggered by gravity, centrifugal force, or pres-
sure gradient) and Coriolis force. The authors of the recent  
work Rouhi et al. (2021) made a complete review of the 
papers devoted to various types of centrifugation. They have 
noticed that the systems characterized by large values of 
the Rossby number received insufficient attention Busse and 
Carrigan (1974); Stevens et al. (2013); Read et al. (2008);  
Von Larcher et al. (2018).

The mutual orientation of the rotation axis and the gradi-
ent of density is another important criterion for classify-
ing the type of problem (see Fig. 1 for details). Rouhi et al. 

The work was supported by the Russian Science Foundation 
(project 19-11-00133).

 *	 Dmitry A. Bratsun 
	 DABracun@pstu.ru

	 Vladimir Yu. Utochkin 
	 vladimir.utochkin.97@mail.ru

	 Ramil R. Siraev 
	 romauld@mail.ru

1	 Perm National Research Polytechnic University, Department 
of Applied Physics, 614990 Perm, Russia

/ Published online: 20 November 2021

Microgravity Science and Technology (2021) 33: 67

http://orcid.org/0000-0002-3229-2330
http://crossmark.crossref.org/dialog/?doi=10.1007/s12217-021-09910-7&domain=pdf


1 3

(2021) distinguished two main classes of problems: (a) 
centrifugal convection in a cylindrical gap, where the axis 
of rotation and the density gradient due to heating across 
the gap are perpendicular Busse and Carrigan (1974); Read 
et al. (2008); Von Larcher et al. (2018); Fowlis and Hide 
(1965); Hide and Mason (1970; b) rotating Rayleigh-Bénard 
convection in a plain layer, where the axis of rotation and 
the density gradient are collinear Chandrasekhar (1953); 
Veronis (1959, 1968); Shaidurov et al. (1969); Julien et al. 
(1996); De Wit et al. (2020). Figure 1 schematically shows 
these formulations as two simplifications of the geophysical 
problem of a uniformly rotating spherical fluid layer that 
radially gravitates and is subject to lateral heating (pre-
sented in the center of the figure). A rotating spherical layer 
gives an example of much more complicated configuration, 
in which the angle between the indicated vectors changes 
when an observer is moving along the sphere. It seems clear 
that problem formulations presented in the figure historically 
have been motivated by a research interest in geophysical 
applications and planetary explorations Cordero and Busse 
(1992); Busse et al. (1997). One can see from Fig. 1, all 
three configurations demand the study of three-dimensional 
fluid flows and require the Coriolis force to be taken into 
account.

Chandrasekhar (1961, 1953) and Veronis (1959, 1968) 
seem to be the first to study the effect of rotation in the 
Rayleigh-Bénard problem (Fig. 1, scheme on the right). In 
this formulation, the Coriolis force plays a principal role in 
the transfer processes. Based on the linear theory of hydro-
dynamic stability, the authors showed that rotation generally 
stabilizes the mechanical equilibrium of liquid and increases 
the threshold for the onset of convection. They found that 

the critical wave number also increases with increasing 
rotational intensity. The stability of an advective flow in a 
rotating horizontal layer was studied in Julien et al. (1996); 
Schwarz (2005); Aristov and Shvarts (2016); Aristov and 
Schwarz (2006); Novi et al. (2019).

As a rule, centrifugal convection is studied in a thin cylin-
drical layer Rouhi et al. (2021), where the centrifugal force 
has a quasi-constant value within the cavity (Fig. 1, scheme 
on the left). And again, in this case, the Coriolis force plays a 
principal role. At very high Rossby numbers (small Coriolis 
effect), such a configuration is essentially analogous to the 
Rayleigh-Bénard problem, in which the centrifugal force 
replaces the static gravity field. Here we should note that 
existing centrifugation setups can easily reach rotational 
speeds, at which centrifugal force can be one to two orders 
of magnitude greater than the acceleration due to gravity. 
Therefore, a thin cylindrical layer rotating around the axis of 
symmetry is a model system to study the effect of constant 
inertia. It is important to note that one can change this force 
field to both microgravity and hypergravity conditions.

Another problem arises if we consider a plain layer of 
fluid where the density variations are directed along with 
the layer, and all system rotates around a perpendicular axis 
(see Fig. 2 and compare it with configurations presented in 
Fig. 1). If the layer gap width tends to zero h∕r0 → 0 reflect-
ing the Hele-Shaw approximation, then the inverse Rossby 
number also tends to zero. In this case, the Coriolis force is 
small and can be neglected compared with the centrifugal 
force. On the one hand, this problem differs significantly 
from the Rayleigh-Bénard problem with rotation in that 
the density gradient is perpendicular to the axis of rotation 
(Fig. 1, scheme on the right). On the other hand, we cannot 

Fig. 1   Schematic representation of the problem of a self-gravitating 
spherical fluid layer heated laterally, which rotates uniformly around 
a fixed axis (in the center). This complicated geophysical problem 
simulating the planet’s atmosphere is the starting point for two more 

simplified formulations, one of which includes a rotating cylindrical 
layer (shown on the left) and the other is a kind of Rayleigh-Bénard 
problem with uniform rotation around an orthogonal axis (shown on 
the right)
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reduce this problem to canonical centrifugal convection dis-
cussed above. The Coriolis force does not matter here, and 
centrifugal force creates a spatially-inhomogeneous inertial 
field. Interest in such problems is not associated with geo-
physical or astrophysical applications but with a convenient 
configuration for studying the mixing process in the miscible 
solutions and problems of chemical technology Chen et al. 
(2006, 2011); Leandro et al. (2008).

As is known, the non-linear interaction of chemical reac-
tions and convection expands the capabilities of a medium 
to organize the fluid flow. Here, both previously well-studied 
instabilities and completely new types of chemoconvective 
instabilities can arise Avnir and Kagan (1995); Eckert and 
Grahn (1999); Bees et al. (2001); Almarcha et al. (2010); 
Bratsun et al. (2015). Besides, this area of research has a lot 
of technological applications Reschetilowski (2013); Jensen 
(2001); Bratsun et al. (2018). In recent years, the above rea-
sons have stimulated the interest of researchers to study the 
processes of mutual influence of chemical transformations 
and convective mass transfer. Even without macroscopic 
movement of reacting fluids, reaction-diffusion problems 
represent a separate research area with numerous publica-
tions. In this case, the kinetics of the reactions considered in 
reaction-diffusion problems can be very diverse. Therefore, 
to study the effect of chemical reactions on fluid motion in 
interdisciplinary problems, researchers usually limit them-
selves to considering reactions with simple albeit non-linear 
kinetics. The acid neutralization reaction with a base of the 
form A + B → S is an ideal candidate for such problems 
since this is a well-studied second-order reaction. It ensured 
the popularity of this reaction scheme among researchers.

The excitation of convective motion induced by a neu-
tralization reaction between two solutions under a static 
gravity field was experimentally investigated in Zalts et al. 
(2008); Asad et al. (2010); Almarcha et al. (2011). The gen-
eral classification of instabilities that can occur in miscible 

systems was given in Trevelyan et al. (2015). The authors 
found a self-similar solution of the reaction-diffusion equa-
tions in the large-time asymptotics and described the basic 
scenarios for the evolution of a two-layer system. Our recent 
studies Bratsun et al. (2015, 2016, 2017) have shown that 
the classification suggested in Trevelyan et al. (2015) should 
be supplemented with at least two more chemoconvection 
modes. One of them is a periodic system of vortices that 
develop inside a potential density well, which arises due 
to reaction-diffusion processes Bratsun et al. (2015). The 
second scenario includes the excitation of a shock-like den-
sity wave followed by intense convection in the cocurrent 
flow Bratsun et al. (2017). Besides, in Bratsun et al. (2017), 
we have formulated a new dimensionless parameter, the 
number of reaction-induced buoyancy, which defines the 
occurrence of new modes of chemoconvection. A complete 
description of the processes in a two-layer miscible system 
of two reacting fluids under static gravity was given in two 
recent works Mizev et al. (2021); Bratsun et al. (2021). This 
convective system under static gravity g are characterised by 
the set of solutal Rayleigh number Ri defined as

where �i is the solutal expansion coefficient for i-species 
(i stands for any of three concentrations of acid A, base B, 
and salt C), � is the kinematic viscosity of solvent (water), 
DA0 is the tabular value of the diffusion coefficient of the 
leading reactant (acid), and A∗ is the characteristic concen-
tration difference of acid. In reaction-diffusion problems, in 
contrast to non-isothermal problems with external heating, 
the characteristic difference in density is specified using the 
initial conditions for the concentrations. Once established at 
the very beginning of the experiment, the experimenter then 
cannot change it. Therefore, the solutal Rayleigh number (1), 

(1)Rai =
g�iA

∗h3

�DA0

,

Fig. 2   Schematic representation of the problem under the considera-
tion. Two miscible reacting solutions fill the cylindrical Hele-Shaw 
cell rotating around a perpendicular axis. Since the cell gap h is small 
compared with the characteristic size of the disk r0 , the Coriolis force 

does not contribute to the dynamics of the system. In this case, the 
density gradient, which depends on the local values of the concentra-
tions of the reactants, is always perpendicular to the axis of rotation
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in fact, is not a governing parameter of the problem in the 
true sense of the word, yielding this right to the initial con-
centrations of reactants. In this paper, however, we consider 
the problem of uniform rotation with an angular velocity Ω . 
It means that the Rayleigh parameter  (1) must be replaced 
by the centrifugal number defined as

In this case, the situation dramatically changes since we 
can control the processes inside the rotating system by tun-
ing the rotation velocity Ω.

Thus, in this paper, we investigate the development of 
chemoconvection in a system of reacting fluids filling a 
Hele-Show cell, which rotates uniformly around an axis 
perpendicular to the layer. Let us list again the principal dif-
ferences of our problem formulation (Fig. 2) from configura-
tions shown in Fig. 1: (i) the density gradient is determined 
by the concentrations of reacting species; (ii) the density 
gradient is orthogonal to the rotation axis; (iii) the density 
gradient varies along with the layer, which makes it possible 
to consider an ultra-narrow layer where the Coriolis force 
can be neglected and only two-dimensional flows can be 
considered; (iv) the inertial field defined by only centrifugal 
force is spatially inhomogeneous. Finally, we can tune this 
field by changing the magnitude of the angular velocity. We 
study the problem numerically and show how the system 
changing its behavior depending on the rotation speed, the 
location of the initial contact surface, and the initial concen-
trations of the solutions.

Mathematical Formulation

We consider a two-layer system of miscible liquids placed 
in a gap between two parallel solid plates and initially sepa-
rated by a contact surface (Fig. 2). Let the plates be circular 
with a radius of r0 each. The resulting cylindrical slot filled 
with an incompressible liquid uniformly rotates around the 
axis of symmetry of the cylinder with the angular velocity 
� = Ω� , where � stands for the unit vector perpendicular 
to the slot.

We assume that two miscible liquids are an aqueous solu-
tion of nitric acid A, which is located in the center of the 
cuvette, and an aqueous solution of sodium hydroxide B, 
which is located at the periphery (Fig. 2). Let us denote the 
distance from the axis of rotation to the contact surface of 
two mixtures as l0 . The initial concentrations of reactants are 
A0 and B0 . The acid diffuses to react with the base to form 
their salt C under the production of water. Such a neutraliza-
tion reaction can be described by the simplified equation:

(2)RaΩ
i
=
�iΩ

2A∗h4

�DA0

.

with the reaction rate characterized by the constant K. Thus, 
a second-order exothermic neutralization reaction defined 
by (3) has comparatively simple, albeit nonlinear, kinet-
ics. It is worth noting that the wide plates are usually from 
glass, which transmits significant heat because the thermal 
conductivity coefficients of water and glass are nearly the 
same. Thus, in experiments, the thermal effects can be con-
trolled to a greater extent compared with the concentration-
dependent phenomena. In Bratsun et al. (2021), we evaluated 
the contribution of two effects to the buoyancy force and  
concluded that the thermal effect can be neglected. The sim-
plified kinetics of the neutralization reaction given by Eq. (3)  
ignores water production. It can be a problem in some situ-
ations since the concentration of substances near the reac-
tion front constantly decreases. The use of the model (3) is 
somewhat justified by the simultaneous decrease in the con-
centration of all substances, while the change in the balance 
of the reactants with respect to each other is more sensitive.

To describe the effect of rotation on the transfer processes 
in the cylindrical slot shown in Fig. 2, we move to the frame 
of reference, rotating with the plates in an anticlockwise 
direction about its cylindrical axis � . By taking into account 
the geometry of the cell, we represent the total velocity field 
� in the form of a two-component velocity �|| = (ur, u�) act-
ing in the plane of the layer and an orthogonal component uz . 
In this case, the set of reaction-diffusion-convection equa-
tions has the following form:

(3)A + B → C + Q

(4)∇|| ⋅ �|| +
�uz

�z
= 0,

�

(
��||

�t
+ (�|| ⋅ ∇||)�|| + uz

��||

�z

)
= −∇||p + �∇2

||�||+

(5)+�
�2�||

�z2
+ 2�Ω(�|| × �) + �Ω2(� × �) × �,

(6)
�

(
�uz

�t
+ (�|| ⋅ ∇||)uz + uz

�uz

�z

)
= −

�p

�z
+ �∇2

||uz+

+ �
�2uz

�z2
− �g,

(7)
�A

�t
+ (�|| ⋅ ∇||)A + uz

�A

�z
= ∇ ⋅ (DA∇A) − KAB,

(8)
�B

�t
+ (�|| ⋅ ∇||)B + uz

�B

�z
= ∇ ⋅ (DB∇B) − KAB,
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where Navier-Stokes Equation (5, 6) couples to evolution 
Equations (7, 8, 9) for the concentrations of species A, B, C, 
and the continuity Equation (4). Here, p is the pressure, � 
is the density of the fluid, � is the coefficient of dynamic 
viscosity, and g is the acceleration due to gravity.

This system is complemented by the boundary conditions 
in the form:

where we assume that the cavity is closed and has solid 
boundaries.

In addition to boundary conditions (10, 11), we must 
require the boundedness of the values of all fields at the 
singular point of the problem r = 0 . Below we will show 
how this condition was fulfilled when finding a numerical 
solution to the problem.

By taking into account that l0 is the distance from the 
axis of rotation to the initial contact surface of two mixtures 
(Fig. 2), the initial conditions are

Then we expand the medium density � as a power series of 
concentrations retaining only linear terms:

where �0 is the density of the solvent (water), �A,B,C stand 
for the solutal expansion coefficients of species. In (14), we 
take into account the fact that all the dissolved substances 
are heavier than water. The Boussinesq approximation for 
the convection problems assumes that the variations (14) 
should be taken into account only in terms depending on the 
volumetric forces. The Boussinesq approach is justified for 
the problems in which “weak” convection exists in the cav-
ity on the laboratory scale, and the density variations caused 
by thermal or concentration expansion are relatively small.

To render the equations dimensionless, we choose the 
following characteristic scales for variables:

Here, Alim is the upper limit of the acid concentration range, 
in which diffusion coefficients of species linearly depend on 

(9)
�C

�t
+ (�|| ⋅ ∇||)C + uz

�C

�z
= ∇ ⋅ (DC∇C) + KAB,

(10)r = r0 ∶ � = 0,
�A

�r
= 0,

�B

�r
= 0,

�C

�r
= 0,

(11)z = ±
h

2
∶ � = 0,

�A

�z
= 0,

�B

�z
= 0,

�C

�z
= 0,

(12)t =0, 0 ⩽ r ⩽ l0 ∶ � = 0, A = A0, B = 0,

(13)t =0, l0 < r ⩽ r0 ∶ � = 0, A = 0, B = B0.

(14)� = �0(1 + �AA + �BB + �CC),

(15)
x∗, y∗ ∼ h, t∗ ∼

h2

Da0

, u∗ ∼
Da0

h
,

p∗ ∼
�0�Da0

h2
, A∗,B∗,C∗ ∼ Alim.

their concentrations (see Bratsun et al. (2015, 2021) for more 
details), Da0 is the tabular value of the diffusion coefficient of 
nitric acid. When evaluating the dimensionless parameters, we 
use the values Alim = 3 mol/l and Da0 = 3.15 × 10−5 cm2/s. In 
what follows, we keep the same symbols for dimensionless 
variables as for dimensional ones. Then we obtain:

(16)∇|| ⋅ �|| +
�uz

�z
= 0,

1

Sc

(
��||

�t
+ (�|| ⋅ ∇||)�|| + uz

��||

�z

)
= −∇||p+

+∇2
����� +

�2���

�z2
+
√
Ta(��� × �)+

(17)+RaΩ
A
(A + RBB + RCC)(� × �) × �,

1

Sc

(
�uz

�t
+ (�|| ⋅ ∇||)uz + uz

�uz

�z

)
= −

�p

�z
+ ∇2

||uz+

(18)+
�2uz

�z2
− RaA(A + RBB + RCC),

�A

�t
+ (�|| ⋅ ∇||)A + uz

�A

�z
= ∇ ⋅ (DA∇A)−

(19)−DaAB,

�B

�t
+ (�|| ⋅ ∇||)B + uz

�B

�z
= ∇ ⋅ (DB∇B)−

(20)−DaAB,

�C

�t
+ (�|| ⋅ ∇||)C + uz

�C

�z
= ∇ ⋅ (DC∇C)+

(21)+DaAB,

(22)r = R ∶ � =0,
�A

�r
= 0,

�B

�r
= 0,

�C

�r
= 0,

(23)z = ±
1

2
∶ � =0,

�A

�z
= 0,

�B

�z
= 0,

�C

�z
= 0.

(24)t =0, 0 ⩽ r ⩽ L ∶ � = 0, A = �A, B = 0,

(25)t =0, L < r ⩽ R ∶ � = 0, A = 0, B = 𝛾B.
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Let us list all the dimensionless parameters, which appear 
in the problem (16)–(25). These are

the Schmidt number, the Damköhler number, the Taylor 
number, the gravity-based solutal Rayleigh number, the 
centrifugal Rayleigh number, the ratio of solutal expansion 
coefficients of base and acid, the ratio of solutal expansion 
coefficients of salt and acid, the initial concentration of acid, 
the initial concentration of base, the dimensionless position 
of the initial reaction front, and the dimensionless radius of 
the disk-shaped cavity, respectively. Based on experimental 
measurements, we can estimate some of parameters (26) for 
a given pair of acid and base: Sc = 317 , Da ≈ 103 , RB = 6∕5 , 
RC = 8∕5.

We will further assume that the Froude number, which 
is a dimensionless number defined as the ratio of the flow 
inertia to gravity, is much greater than unity Aristov and 
Schwarz (2006):

Modern experimental setup for centrifugation can create 
overload conditions in which the inertia is tens and even 
hundreds of times higher than the static gravity force. So, 
we can neglect the effect of gravity in Eqs. (17, 18). How-
ever, one should keep in mind that near the rotation axis, the 
inertial forces are negligible. Therefore, in this area, static 
gravity can have a significant effect. It implies that we must 
formulate the initial conditions so that the primary develop-
ment of the chemoconvective instability occurs far enough 
from the rotation axis.

The right side of the equation of motion (17) contains two 
forces of inertia, the Coriolis force (the penultimate term) 
and centrifugal force (the last one). Let us estimate the con-
tribution of these terms in the problem under consideration. 
This issue has been discussed for quite some time in various 
papers devoted to the rotation of the Hele-Shaw cell (see, for 
example, Carillo et al. (1996); Alvarez-Lacalle et al. (2004)). 
As is known, from the mathematical point of view, the fluid 
flow in a Hele-Shaw cell is similar to the filtration of fluid 
through a porous medium. The closely spaced wide walls 
of the HS cell generate a significant resistance force, which 
produces an effect similar to the resistance of a solid porous  

(26)

Sc =
�

DA0

, Da =
KAlimh

2

DA0

, Ta =

(
2Ωh2

�

)2

,

RaA =
g�AAlimh

3

�DA0

, RaΩ
A
=

�AΩ
2Alimr0h

3

�DA0

,

RB =
�B

�A
, RC =

�C

�A
,

�A =
A0

Alim

, �B =
B0

Alim

, L =
l0

h
, R =

r0

h

(27)Fr =
RaΩ

A

RaA
=

Ω2r0

g
≫ 1.

matrix to percolating fluid. The simplest mathematical 
model in both cases is the Darcy filtration, where the fluid 
velocity is directly determined by the force applied to it (so- 
called “Aristotle mechanics”). The velocity values during the 
filtration are always small. And since the magnitude of the 
fluid velocity is a fundamentally important component of the 
Coriolis force, the Hele-Shaw approximation significantly 
weakens this force. Let us estimate the Taylor and Rayleigh 
numbers, which determine the intensity of the Coriolis and 
centrifugal forces, respectively, for a typical Hele-Shaw cell, 
which we used in an experimental study presented in Mizev  
et al. (2021):

where we used the data for water and nitric acid. We can see 
from the estimates above that even near the axis of rotation 
(at a distance ∼ h ), the Coriolis force cannot compete with 
the centrifugal force at Ω ⩾ 1 rps. Such competition could 
appear with super slow rotation Ω ≪ 1 rps, but we do not 
consider this case in the present work.

Let us estimate the distance from the axis of rotation, at 
which the centrifugal force and the Coriolis force are of the 
same order of magnitude:

where r ∈ [0, r0] stands for the current radius, U∗ is the char-
acteristic fluid velocity. Consider the case of a not too high 
rotation speed, which creates a centrifugal force about g at 
the edge of the disk: Ω2r0 ≈ 1g . By using the wave propa-
gation speed 5 ⋅ 103 cm/s as the characteristic convective 
velocity U∗ (see  Bratsun et al. (2017)), we immediately get 
an estimate:

Assume, further, that the gap width between the plates h is 
small enough that the emerging flows to be two-dimensional 
h∕r0 → 0 (see Fig. 2). Thus, the cylindrical cavity is, in fact, a 
Hele-Show cell, and the governing equations can be averaged 
across the gap using the following approximations:

which satisfy the boundary conditions  (22,  23). Here, 
� = (ur, u�) is the two-component velocity field in the (r,�)
-plane of the Hele-Shaw slot.

It is worth noting that the Poiseuille flow taken as an 
approximation for the fluid flow in the Hele-Shaw cell (28) 

√
Ta =

2Ωh2

�
≈ Ω s,

RaΩ
A
=
Ω2�AAlimr0h

3

�DA0

≈ 3 ⋅ 103Ω2 s2,

Ω2r ≈ ΩU∗,

r ≈ 10−4r0.

(28)
�||(r,�, z) =

3

2

(
1 − 4z2

)
�(r,�), uz = 0,

A = A(r,�), B = B(r,�), C = C(r,�),
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works well when the influence of the Coriolis force is neg-
ligible. If this is not the case, then another type of flow can 
be used (for example, the Hartmann flow).

The approximations (28) should then be substituted into 
the Eqs. (16)–(21) and averaged across the gapwidth:

By introducing a stream function Ψ(r,�) defined by

we obtain the dimensionless system of reaction-diffusion-
convection equations in the final form:

where Φ ≡ (∇ × �)z stands for the vorticity. In (32)–(36), the 
Jacobian is defined as

The dimensionless variable 𝜌̂(t, 𝜌,𝜙) given by (36) is the 
deviation of the medium density from the density of the  
solvent, which occurs due to the dissolved reactants.

In addition to the correction factor 6/5  Aristov (1990); 
Ruyer-Quil (2001); Aristov and Schwartz (2011), Eq. (32) 
differs from the standard Navier-Stokes equation by the 
Darcy term proportional to the velocity. One can interpret 
this term as the average friction force due to the presence  
of the plates. We can learn from the experimental obser-
vations made in the static gravity field Mizev et al. (2021) 
that at the very beginning of evolution ( t < 200 s), the 
characteristic size of structures can be small enough and 
the velocity diffusion represented by the Brinkman term  
can play an important role in the system dynamics. At later  

(29)< ... >= ∫
1∕2

−1∕2

...dz.

(30)ur =
1

r

�Ψ

��
, u� = −

�Ψ

�r

(31)∇2Ψ + Φ = 0,

(32)
1

Sc

(
𝜕Φ

𝜕t
+

6

5r

𝜕(Φ,Ψ)

𝜕(r,𝜙)

)
= ∇2Φ − 12Φ − RA

𝜕𝜌̂

𝜕𝜙
,

(33)
�A

�t
+

1

r

�(A,Ψ)

�(r,�)
= ∇ ⋅ (DA(A)∇A) − DaAB,

(34)
�B

�t
+

1

r

�(B,Ψ)

�(r,�)
= ∇ ⋅ (DB(B)∇B) − DaAB,

(35)
�C

�t
+

1

r

�(C,Ψ)

�(r,�)
= ∇ ⋅ (DC(C)∇C) + DaAB,

(36)𝜌̂ = A + RBB + RCC,

(37)
�(a, b)

�(r,�)
≡ �a

�r

�b

��
−

�a

��

�b

�r
.

times ( t > 200 s), Darcy’s law can be used to model the 
flow. Generally, the use of the averaged two-dimensional 
Navier-Stokes-Darcy Equation (32) allows us to unify both  
limiting cases. The Darcy model for the Hele-Shaw cell 
description is valid when the cell gap is small compared to 
this characteristic reaction-diffusion length, whereas fully 
three-dimensional flows governed by the Navier-Stokes 
equation are obtained in the opposite limit. The use of the 
Eq. (32) allows us to give a good approximation in the 
intermediate range of cell thicknesses Ruyer-Quil (2001);  
Martin et al. (2002).

The laws of concentration-dependent diffusion are 
based on a linear approximation of the results of experi-
mental measurements and are valid in the concentration 
range from 0.1 to 3.0 mol/l. These laws have been first 
formulated in the dimensionless form in Bratsun et al. 
(2015) as follows

These relations cannot describe the diffusion of solu-
tions at sufficiently low concentrations, where nonlinear 
effects dominate. However, the neutralization reaction pro-
ceeds quite intensively under the conditions of convec-
tive mixing. In this case, the reactants quickly burn out, 
and all nonlinear contributions to (38) can be neglected as 
quantities of the second order of smallness. Also, in what 
follows, we neglect the concentration-dependence of dif-
fusion from other species and the effect of cross-diffusion.

We formulate the boundary conditions

and initial conditions

Thus, we have formulated the complete mathemati-
cal problem, which includes the governing Equations 
(31)–(38), boundary conditions (39), and initial conditions 
(40, 41). The control parameters of the problem are RaΩ

A
 , 

�A , �B , and L. In the experiment, the first parameter can be 
easily changed by adjusting the rotation speed. The rest 
of the parameters can be changed during preparation for 
each individual experiment, but remain unchanged if the 
experiment is already running.

(38)

DA(A) ≈0.881 + 0.158A,

DB(B) ≈0.594 − 0.087B,

DC(C) ≈0.487 − 0.284C.

(39)
r = R ∶ Ψ =0,

�Ψ

�r
= 0,

�A

�r
=0,

�B

�r
= 0,

�C

�r
= 0,

(40)t =0, 0 ⩽ r ⩽ L ∶ Ψ = 0, A = �A, B = 0,

(41)t =0, L < r ⩽ R ∶ Ψ = 0, A = 0, B = 𝛾B.
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Base State Solution

The problem (31)–(41) is not autonomous in the sense 
that reaction-diffusion-convection processes proceed irre-
versibly in a closed cavity. Let us focus on an unsteady 
solution, which describes the reaction-diffusion processes 
with the fluid remaining at mechanical equilibrium. We 
will refer to this solution as a base state solution. Spe-
cifically, we assume that the fluid velocity equals zero 
in Eqs.  (31)–(35) and that the concentration fields are 
axisymmetric and depend only on the radius and time: 
A0(t, r) , B0(t, r) , C0(t, r) . The resulting time-dependent non-
linear equations

should be complemented with the boundary conditions

and initial conditions

and the formulas for concentration  -  dependent diffu-
sion (38). Generally, the problem (42)–(47) has no analytical 
solution and can only be solved numerically. The solution 
method is discussed in the next section.

The existence of a solution with an inhomogeneous den-
sity distribution and mechanical equilibrium of the fluid is 
determined by the fact that the density gradient in the base 
state is always collinear with the centrifugal force. If this 
would not the case, then the equilibrium of the fluid would 
be impossible. To satisfy the equilibrium condition, the 
reacting solutions must fill the cavity in such a way that the 
cylindrical symmetry of the problem would not be violated.

(42)

�A0

�t
=DA(A

0)
�2A0

�r2
+

DA(A
0)

r

�A0

�r
+

+
dDA(A

0)

dA0

(
�A0

�r

)2

− DaA0B0,

(43)

�B0

�t
=DB(B

0)
�2B0

�r2
+

DB(B
0)

r

�B0

�r
+

+
dDB(B

0)

dB0

(
�B0

�r

)2

− DaA0B0,

(44)

�C0

�t
=DC(C

0)
�2C0

�r2
+

DC(C
0)

r

�C0

�r
+

+
dDC(C

0)

dC0

(
�C0

�r

)2

+ DaA0B0

(45)r = R ∶
�A0

�r
= 0,

�B0

�r
= 0,

�C0

�r
= 0,

(46)t =0, 0 ⩽ r ⩽ L ∶ A0 = �A, B0 = 0,

(47)t =0, L < r ⩽ R ∶ A0 = 0, B0 = 𝛾B,

After bringing the solutions of HNO3 and NaOH into con-
tact, the reaction-diffusion processes transform the density 
field and may cause potentially unstable conditions for the 
system under the centrifugal force. As is known, the final 
answer to the question of which flows will be preferentially 
excited for the fixed set of parameter values is given by a 
linear stability analysis and a direct numerical simulation. 
Nevertheless, we can reveal the general structure of the sta-
bility map of the system under consideration using a simpler 
approach based on the analysis of the base state Trevelyan 
et al. (2015); Bratsun et al. (2021). It should be noted here 
that this approach only helps to identify a potential source 
of instability in the system. Moreover, there are situations 
where such an analysis may give the wrong answer, as, for 
example, in the case of double diffusion instability. There-
fore, the base state analysis of inertia-dependent instabilities 
should be used with caution and must be accompanied either 
by a linear stability analysis of infinitesimal perturbations or 
by numerical simulation of the complete nonlinear problem.

We should note that a reaction-diffusion problem with 
a cylindrical shape of the initial contact surface (42)–(47) 
differs from a similar problem with a planar front previously 
studied in Bratsun et al. (2021) by an additional diffusion 
term (second terms on the right in Eqs. (42)–(44). The influ-
ence of this term is the stronger, the closer the front is to the 
axis of rotation. In limit r → ∞ , the influence of the term 
becomes negligible, and the indicated problems coincide.

The stability map on the parameter plane of the initial val-
ues for the concentrations of acid �A and base �B , obtained in 
this way, is shown in Fig. 3. The sequence of transformations 
of the density field under different initial concentrations is 
shown in Fig. 4. This figure presents density fields that cor-
respond to a vertical slice indicated in Fig. 3. As one can see 
from the stability map, there are four regions, where quali-
tatively different density fields are observed. The regions 
are separated from each other by three bifurcation curves.

The key bifurcation curve is defined by the relation:

which corresponds to a line of equal density for the central 
and peripheral layers, that is, an isopycnal line (thick solid 
line in Fig. 3). The relation (48) implies that the weight of an 
elementary volume of a liquid depends both on the structure 
of the solute’s molecule and on the amount of solute. If the 
parameters are taken above the isopycnal line, then the base 
solution at the periphery of a cylindrical cuvette is heavier 
than the acid solution near the rotation axis. It means that 
the system under centrifugal force is statically stable at the 
beginning of the evolution, and the instability can develop 
only after some time. Below the isopycnal line, the situation 
is reversed: a denser fluid is closer to the axis of rotation, 

(48)�B =
�A

�B
�A =

�A

RB

,
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which leads to the development of the Rayleigh-Taylor insta-
bility regardless of the ongoing reaction-diffusion processes.

We have shown in Mizev et al. (2021); Bratsun et al. 
(2021) that the neutralization reaction, coupled with the 
concentration-dependent diffusion, can result in a potential 
well and can maintain it for a long time in a quasi-steady 
state. Being under the influence of an external inertial field, 
a system with such a feature of the density field can dem-
onstrate completely new pattern formation scenarios. The 
condition for the appearance of a local minimum in the den-
sity field is determined by the inflection point of the radial 
density profile calculated in the base state:

This bifurcation curve is indicated in Fig. 3 by a thin solid 
line. Eq. (49) shows that the location of the curve is time-
dependent. However, after the initial stage of rapid changes 
in the density field ( t < 0.1 ), the system quickly passes to a 
quasi-stationary regime, in that the concentration and den-
sity fields change relatively slowly. All bifurcation curves 
shown in Fig. 3 are calculated for time t = 2.

It is worth noting that although the effect of concentration-
dependent diffusion has been rarely considered in the fluid 

(49)𝜕2𝜌̂0(t, r)

𝜕r2
= 0.

mechanics, some analogy can be drawn, for example, with 
viscous fingering in miscible displacement flows in porous 
media Hickernell and Yortsos (1986); Manickam and Homsy  
(1995); Loggia et al. (1995). Both the concentration-dependent  
viscosity and the heterogeneity in the permeability of the 
porous medium can produce the simple nonmonotonicity in 
the mobility profiles somewhat similar to those in the reac-
tive case.

Moving down along the red line in Fig. 3, we cross one 
more bifurcation curve indicated by a dash-dotted line. It 
corresponds to the situation when the densities of the reac-
tion zone and the central layer become equal:

where rmax stands for the position of a local maximum of 
the density. The nature of this local maximum has been 
explained in Bratsun et al. (2015, 2021). On the one hand, 
the density maximum is formed due to the relatively heavy 
salt, which is the product of the neutralization reaction. On 
the other hand, the diffusion coefficient of salt decreases 
with increasing concentration (see formulas (38)). Thus, the 
more salt is produced by the reaction, the less it becomes 
mobile and more likely accumulates near the reaction front 
than diffuses from it.

Thus, analyzing Figs. 3 and 4, we can conclude that the 
list of potential instabilities that can occur in the system 
includes the instability of the diffusive layer (DLC), the con-
centration-dependent diffusion instability (CDD), the flow 
in the form of a density shock wave (SW), and Rayleigh-
Taylor convection (RT). In what follows, we validate these 
predictions of the base state analysis by direct numerical 
simulations.

The initial position of the contact surface L/R between two 
mixtures is another dimensionless parameter influencing the 
onset of instability. Figure 5 presents a map of stability in the 
( �B , L/R) parameter plane at a fixed value �A = 0.667 . The 
map is calculated at time t = 2 . The vertical cross-section of 
the map marked with the red line is the same as in Fig. 3. At 
this position of the initial front, the volumes of two mixtures 
with reactants are approximately equal. When the contact 
surface is shifted to one side or the other, the amount of one 
of the reactants in the closed reactor begins to prevail. If 
the contact surface is moved to the axis of rotation, one of 
the potential wells narrows and eventually disappears in the 
range of �B , at which the system is statically stable at the very 
beginning (above the isopycnal line in Fig. 5). The analysis 
of the base state implies that if the initial front is closer to the 
rotation axis than L∕R = 0.2 , local convection has no chance 
to develop at all. As the contact surface moves away from the 
axis of rotation, the region of existence of two potential wells 
gradually expands. If the surface is near the solid boundary of 
the Hele-Shaw cell, then the potential well disappears again. 

(50)𝜌̂0(t, 0) = 𝜌̂0(t, rmax),

 0
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Fig. 3   Stability map constructed by in the ( �
A
 , �

B
 ) parameter space. 

Abbreviations DLC, SW, CDD, and RT denote the diffusive layer 
convection, shock wave, convection of concentration-dependent diffu-
sion, Rayleigh-Taylor convection, respectively. In all calculations, it is 
assumed that R = 20 and L = R∕

√
2 . The characteristic cross-section 

�
A
= 0.667 of the stability map is marked by the red straight line, and 

four special cases of the density field indicated by the open circles are 
illustrated in Fig. 4. Points a, b, c, d correspond to the values of the 
initial concentration of base �

B
= 0.9 , 0.667, 0.57, and 0.35, respec-

tively
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However, it should be borne in mind that, due to the small 
reserve of the base, the reaction-diffusion processes proceed 
here much faster and the potential well has time to appear and 
extinguish at earlier times of evolution.

From this analysis, we can conclude that chemoconvec-
tion, which can potentially develop locally in potential wells, 
is more convenient to observe by preparing the system with 
the initial contact surface further from the axis of rotation.

Numerical Solution Technique

The problem (31)–(41) has been solved numerically by the 
finite difference method using a two-field formulation tech-
nique. We consider a circular Hele-Shaw cell of the radius 
R = 20 . Spatial differential operators were approximated by 
central differences on a uniform mesh constructed in polar 
coordinates. We have used the series of meshes with dif-
ferent resolutions: 21 × 121 , 41 × 241 , 61 × 361 , 81 × 481 , 
101 × 601 , 121 × 721 , and 141 × 841 . As an example, the first 
mesh in the series is shown in Fig. 6.

We have also performed a study of the convergence of the 
numerical results with the gradual refinement of the grid. A 
typical example of such a study is presented in Fig. 7. Since 
most of our calculations have been performed in the range 
of initial concentrations where the cellular CDD convection 
arises, the convergence example is presented for the fixed 
values of the governing parameters: �A = 0.667 , �B = 0.667 , 
L∕R = 0.3 , and RaΩ

A
= 6 × 104 . Most of the numerical results 

presented below are obtained on the grid 101 × 601 (101 
nodes in the radius and 601 nodes in the angle). We chose 
this resolution so that there are 6 × 6 nodes per unit area 
element in polar coordinates. The choice of this resolution 
is based on our previous experience in the numerical simula-
tion of buoyancy-driven flows induced by the neutralization 
reaction Bratsun et al. (2015, 2017, 2021). We can see from 
Fig. 7 that the grid network 101 × 601 used in this work gives 
a result within 3% of the relative error of the value to which 
the stream function converges when the grid is improved.

We should notice that a significant part of the fluid flow 
dynamics is localized near the reaction front and, in some 
cases, propagates along with the computational domain. The 
wavelengths of various instabilities that can potentially 
develop in the system under consideration are discussed 
in Mizev et al. (2021); Bratsun et al. (2021) in detail. Near the 
axis of rotation, the liquid is in conditions close to 

Fig. 4   Instantaneous density fields 𝜌̂0(t, r) for the reaction-diffusion 
base state calculated for the fixed value of the initial acid concen-
tration �

A
= 0.667 and four different values of the initial concentra-

tion of base �
B
 marked on the stability map by the open circles (see 

Fig. 3). The position of the initial contact surface of the mixtures is 
determined by L = R∕

√
2 . All fields are shown for time t = 2

▸
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weightlessness. The fluid flows that arise here are weak and 
quickly decay. Therefore, the singularity at r = 0 is not 
dangerous for the stability of the numerical scheme. All of this 

explains the use of a uniform polar mesh. For the time deriva-
tive, we used the Euler scheme with the order of 
O(� + h2

r
+ h2

�
).

The nonlinear equations are solved using an explicit 
scheme.

Let us describe the numerical scheme in more detail. Let 
us denote the discrete analogue of the function f (t, r,�) as 
f m
i,k

 , which gives the value of the function at the grid point 
i, k and at time tm =

∑
Δtm . Let the indices i, k number the 

grid nodes in terms of radius and angle, respectively. Then 
the finite-difference equations obtained from Eqs. (31)–(36) 
have the form:

(51)Φm+1
i,k

= −∇2Ψm+1
i,j

,

Φm+1
i,k

= Φm
i,k
+ Δtm

(
Sc∇2Φm

i,k
− 12ScΦm

i,k
−

(52)−ScRaΩ
A

𝜕𝜌̂m+1
i,k

𝜕𝜙
−

6

5ri

𝜕(Φm
i,k
,Ψm

i,k
)

𝜕(r,𝜙)

)
,

Am+1
i,k

= Am
i,k
+ Δtm

(
∇ ⋅ (DA(A

m
i,k
)∇Am

i,k
)−

(53)−DaAm
i,k
Bm
i,k
−

1

ri

�(Am
i,k
,Ψm

i,k
)

�(r,�)

)
,

Fig. 5   Stability map constructed in the ( �
B
 , L/R) parameter space. 

Abbreviations DLC, SW, CDD, and RT denote the diffusive layer 
convection, shock wave, convection of concentration-dependent diffu-
sion, Rayleigh-Taylor convection, respectively. In all calculations, it is 
assumed that �

A
= 0.667 and R = 20 . The characteristic cross-section 

L∕R = 1∕
√
2 of the stability map is marked with the red straight line, 

and four special cases of the density field indicated by the open cir-
cles are illustrated in Fig. 4

Fig. 6   The typical uniform polar mesh of the two-dimensional flow 
field containing 21× 121 nodes for the circular domain of the radius 
R = 20
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Fig. 7   Convergence of the maximum value of the stream func-
tion under mesh refinement. The convergence was studied for local 
cellular convection (see Section  5.1) at fixed values of the gov-
erning parameters: �

A
= 0.667 , �

B
= 0.667 , L∕R = 0.3 , R = 20 , 

Ra
Ω
A
= 6 × 104 , and time t = 2
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In addition to the finite-difference Equations (51)–(56), we 
have to require the boundedness of variables at the center of 
the domain r = 0 . For example, the finite-difference equation 
for calculating the vorticity can be obtained by passing to the 
limit r → 0 . The uncertainties, which arise in this way, should 
be disclosed according to the L’Hôpital rule:

Let us describe the sequence of events during the operation 
of the computational scheme. Let at moment tm we know all 
the fields: Φm

i,k
 , Ψm

i,k
 , Am

i,k
 , Bm

i,k
 , and Cm

i,k
 . Then, using explicit 

recurrent Equations (53)–(55), we can obtain values for con-
centrations of all species at a new time step: Am+1

i,k
 , Bm+1

i,k
 , Cm+1

i,k
 . 

Then, substituting fresh values for concentrations in (52), we 
find new values of the vorticity: Φm+1

i,k
 . In the end, the most 

important procedure is performed, which includes an iterative 
solution of Poisson’s Equation (51), the result of which is the 
determination of the stream function Ψm+1

i,k
 . Then the procedure 

is repeated for the next time step.
When using this scheme, one has to control the time step. 

To ensure the stability of the numerical scheme, we used Cou-
rant’s formula to calculate new time step at each iteration:

The Poisson equation for the stream function (51) was 
solved by the iterative Liebman successive over- relaxation 
method at each time step: the accuracy of the solution was 
fixed to 10−4 . A noisy stream function field Ψ with amplitude 
less than 10−3 was used in the initial condition.

Bm+1
i,k

= Bm
i,k
+ Δtm

(
∇ ⋅ (DB(B

m
i,k
)∇Bm

i,k
)−

(54)−DaAm
i,k
Bm
i,k
−

1

ri

�(Bm
i,k
,Ψm

i,k
)

�(r,�)

)
,

Cm+1
i,k

= Cm
i,k
+ Δtm

(
∇ ⋅ (DC(A

m
i,k
)∇Am

i,k
)−

(55)+DaAm
i,k
Bm
i,k
−

1

ri

�(Cm
i,k
,Ψm

i,k
)

�(r,�)

)
,

(56)𝜌̂m+1
i,k

= Am+1
i,k

+ RBB
m+1
i,k

+ RCC
m+1
i,k

.

Φm+1
0

= Φm
0
+ ScΔtm

(
∇2Φm

0
− 12Φm

0
− RaΩ

A

𝜕𝜌̂m+1
0

𝜕𝜙
+

(57)+
3(1∕Sc)

5NΔh2
r
Δh�

N−1∑

k=0

(Ψm
1,k+1

− Ψm
1,k−1

)(Φm
1,k

− Φm
0
)

)
.

(58)Δtm =
Δh2

r

2(2 + max(|Ψ|, |Φ|))
.

Integral quantities play a principal role in the analysis 
of system dynamics. They are constructed based on fields 
obtained as part of the computational process, and their 
evolution is tracked throughout the entire simulation. We 
have already pointed out the existence of a close relation-
ship between chemical transformations and convective 
instabilities. Chemical reactions contribute to the appear-
ance of irregularities in the distribution of concentrations 
in the system. On the one hand, it can both contribute to the 
development of convection and suppress it. On the other 
hand, macroscopic motion affects the frequency of ion col-
lisions, i. e. the rate at which the reaction proceeds. In this 
regard, the beneficial measurement is the mixing rate �(t) 
computed as the number of points where the concentration 
of salt C(t, r,�) is larger than an arbitrary threshold C∗ . In 
other words, we compute a time-dependent integral quantity:

where

Here, H stands for the Heaviside function with an argu-
ment in the form of the difference between the current salt 
concentration in a given volume element and some threshold 
value C∗ . There is considerable arbitrariness in determining 
the quantity C∗ , and, in this work, we have taken it equal 
C∗ = 10−3 . In fact, this value characterizes the degree of 
mixing in the given miscible system since it shows how well 
the reaction product C has been redistributed over the vol-
ume. Since the diffusion coefficient of salt decreases with 
increasing concentration, the redistribution of its concentra-
tion occurs mainly due to convection. The integral (59) is 
normalized by the area of the Hele-Shaw cell.

Numerical Results

Concentration‑Dependent Diffusion Instability

Let us focus our attention on the region of the stability map 
shown in Fig. 3 where cellular convection presumably occurs 
(point b). The CDD convection was previously studied in 
detail in the works of the authors Bratsun et al. (2015, 2021). 
As it was shown, a necessary condition for the appearance 
of a periodic system of chemoconvective cells is the pres-
ence of a potential well in the density field. This condition is 
fulfilled if the reaction zone is heavier than the upper layer 
throughout the entire evolution or, at least, for a sufficient 
time for instability to develop. The specificity of the problem 
under consideration lies in the fact that the inertial field is 

(59)�(t) =
1

�R2 ∫
R

0
∫

2�

0

�(t, r,�)rdrd�,

𝜁(t, r,𝜙) = H(C(t, r,𝜙) − C∗) =

{
0, C < C∗,

1, C ≥ C∗.
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created here by a centrifugal force and not by a static gravity 
field. One of the important consequences of such a replace-
ment is the shape of the potential well, which allows the 
instability to develop almost immediately, as an inflection 
point appears in the radial density profile. This is due to an 
additional term in the reaction-diffusion Equations (42)–(44) 
discussed above. Another feature of centrifugal inertia is 
its dependence on the distance from the axis of rotation. 
The force intensity increases when r → ∞ . Therefore, it is 
important to study the effect of one more parameter, the 
dimensionless distance of the initial contact surface from 
the axis of rotation L/R on the onset of instability.

Figure 8 shows the characteristic temporal evolution 
of the density field and the stream function at the initial 
concentrations of reactants �A = 0.667 and �B = 0.667 (the 
region of the CDD instability, see Fig. 3b). The frames 
illustrate the dynamics of the system at successive times. 
The centrifugal Rayleigh number is RaΩ

A
= 5 × 104 , which 

approximately corresponds to the value ∼ 0.5g . The posi-
tion of the initial reaction front is chosen just in the middle 
of the distance from the axis to the outer wall of the disk: 
L∕R = 0.5 . One can see from the figure that, at the begin-
ning of evolution, only one potential well exists (Fig. 8, 
t = 0.05 ). One more potential well develops later and can 
be seen already at t = 0.2 . This result is consistent with the 
result of the reaction-diffusion problem solution (Fig. 4b). 
Finally, we can observe the excitation of convective motions, 
which take on a distinct form by the time t = 0.5.

The DLC instability develops in the central potential well 
adjacent to the rotation axis. Large-scale DLC vortices form 
radial jets that deliver fresh acid from the center of the cavity 
to the reaction front. The instability is asymmetric because 
its propagation in the radial direction is limited by a potential 
barrier. This feature distinguishes DLC instability shown in 
Fig. 8 from its classical pattern observed in systems without 

a reaction. An interesting peculiarity of a system with cen-
trifugal force is a region near the axis of rotation, which is 
a state close to weightlessness. The movement of the liquid 
here is an order of magnitude slower than near the reaction 
front. The main reason for the fluid movement here is the 
flow triggered by inertia from areas where the centrifugal 
force is acting in full.

On the other side of the potential barrier at r ≈ L , the 
mechanical equilibrium of the liquid also loses its stability. 
The second potential well, located farther from the axis of 
rotation, creates a closed cylindrical layer. The chemocon-
vective cells arising here can neither float to the center of 
the disk nor escape to the periphery of the rotating cell.  
The CDD instability earlier got its name because the 
second potential well is formed due to the effect of the  
concentration-dependence of the diffusion coefficients of 
reactants Bratsun et al. (2015).

The wavelength of both DLC and CDD perturbations 
depends on the width of the potential well, which in turn 
depends on the interaction of a nonlinear reaction with  
concentration-dependent diffusion. One can see from Fig. 4b 
that the width of the central potential well is wider, which 
results in the development of larger vortices of the DLC 
instability. Two instabilities, separated by a potential barrier 
near r ≈ L , can interact using diffusive signals. This process 
was studied in Ref. Bratsun (2019) for a system under the 
action of a static gravity field. We have shown that diffusion 
waves have a modulating effect on CDD convection, which 
leads to the development of a quasiperiodic spatial pattern in 
the case of a flat potential barrier. In the case of a cylindrical 
barrier, there is a forced synchronization of structures occur-
ring between two instabilities (Fig. 8).

We note an interesting feature of the CDD instability. 
The flow physics looks similar to the classical Rayleigh-
Bénard convection. The instability is triggered by unstable 

Fig. 8   Evolution of the fields of 
dimensionless density 𝜌̂(t, r,𝜙) 
(the top row) and stream func-
tion Ψ(t, r,�) (the bottom row) 
at times t: 0.05; 0.2; 0.5; 2.0 
showing the formation of the 
CDD convection cells. The 
centrifugal Rayleigh number is 
Ra

Ω
A
= 5 × 104 . The distance of 

the initial contact surface from 
axis is L∕R = 0.5 . The initial 
concentrations of the reactants 
are �

A
= 0.667 , �

B
= 0.667

Page 13 of 20    67Microgravity Science and Technology (2021) 33: 67



1 3

stratification of heavy salt (product of reaction) that is depos-
ited near the reaction front. Here, the conditions of the onset 
of the solutal Rayleigh-Benard convection are reproduced 
locally: the instability domain is limited by the motionless 
layers, the density variation in the base state is linear, and 
the onset of convection has a threshold character. That is 
why the disturbance wavelength correlates very well with 
the convective instability wavelength in a plain layer (see 
Ref. Mizev et al. (2021) for more details).

Figure 9 presents a stability map on the plane of the con-
trol parameters RaΩ

A
 and L/R. As one can see from the figure, 

there is an area on the map where the inertial force cannot 
excite instability, and the fluid is in mechanical equilibrium. 
We illustrate this case by the characteristic density fields 
calculated for the points d and e marked on the map. This 
region is characterized either by a sufficiently small distance 
of the initial contact surface from the axis of rotation or by 
a relatively low speed of rotation. In both limiting cases, we 
can observe reaction-diffusion processes with the appearance 
of one or two potential wells proceeding in a non-convective 
manner. With an increase in the amplitude of the inertial 
field, we can observe the excitation of convection in one or 
another potential well. An interesting feature of the centrifu-
gal system is the ability to split the DLC and CDD insta-
bilities. For example, there is a range of parameters where 
only CDD instability is observed (Fig. 9c). This effect can 
be achieved by manipulating the position of the initial con-
tact surface at a fixed rotational speed. As can be seen from 

the stability map, splitting occurs if the initial reaction front 
is sufficiently close to the axis of rotation, which leads to 
attenuation of the DLC disturbances developing closer to the 
axis of rotation. At the same time, the amplitude of the cen-
trifugal field is quite sufficient for the development of CDD 
disturbances.

Finally, consider the range of parameters where the cen-
trifugal force exceeds the amplitude of the static gravity 
field. In the case of hypergravity, the plumes of the DLC 
instability in the central potential well have an irregular 
shape almost from the very beginning of evolution (Fig. 9g, 
h). As for the second well, its depth is relatively small. It 
leads to the fact that some density fluctuations eventually can 
overcome the potential barrier. As a result, some chemocon-
vective vortices can leave the potential well under the action 
of a centrifugal force. In this case, the vortex propagates 
radially until the density of the surrounding liquid becomes 
equal to the density of the drop. On the whole, the cellular 
structure of CDD disturbances loses its periodicity regard-
less of the influence of DLC convection.

Figure 10 shows the temporal evolution of the spatial 
reaction rate �(t) defined by (59) for all points highlighted 
on the stability map shown in Fig. 9. As one can see from the 
figures, the mixing rate of the fluids increases both with the 
distance of the initial contact surface from the axis of rota-
tion and with an increase in the centrifugal Rayleigh num-
ber. It is curious that changing parameter L/R looks much 
more efficient than increasing the Rayleigh number. In fact, 

Fig. 9   Stability map constructed 
in the parameter space of the 
cetrifugal Rayleigh number 
Ra

Ω
A
 and the dimensionless 

distance of the initial contact 
line from the axis of rota-
tion L/R. The map is based on 
numerical simulations of the 
full non-linear problem (31-
41). Abbreviations DLC and 
CDD denote the diffusive layer 
convection and convection 
of concentration-dependent 
diffusion, respectively. The 
cross-section a–d corre-
sponds to R

A
= 6 × 104 and 

L∕R = 0.9, 0.6, 0.3, 0.2 , respec-
tively. The cross-section e–h 
corresponds to L∕R = 0.5 and 
Ra

Ω
A
= 104, 4 × 104, 9 × 104, 1.1 × 105 , 

respectively. In all calculations, 
it is assumed that �

A
= 0.667 , 

�
B
= 0.667 , R = 20 , and t = 2
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a change in parameter L/R also implicitly sets a change in the 
amplitude of the centrifugal force in the area of the contact 
surface. However, the gradual transfer of the initial reac-
tion front to the periphery of the disk creates an additional 
effect of expanding the space of the central zone, which is 
available for vigorous DLC convection. The redistribution 
of density under the action of centrifugal force leads to the 
collision of vortices near the axis. DLC plumes, converging 
towards the center, compete with each other, which explains 
the nonstationary nature of the stream function evolution at 
large overloads (see Fig. 11).

Shock‑Wave Pattern

In this section, we will consider the scenario of pattern 
formation with a density wave. Let us fix the initial con-
centrations of solutions at values �A = 0.667 and �B = 0.57 
(point c in Fig. 3). Figure 3 shows that the density field 
in the base state formally still has two potential wells. An 
important difference from the previous case is the fact that 
the density of the acid solution is now greater than the 
density of the reaction zone but at the same time less than 
the density of the base solution at the disk periphery. In 
work Bratsun et al. (2021), we have shown that the study 
of the linear stability of such a profile to small local pertur-
bations does not make much sense since a global restruc-
turing of the entire system occurs. Figure 12 illustrates this 
process presenting the time variation of the density field 
and the stream function at a fixed value of the centrifugal 

Rayleigh number Ra = 105 (it approximately corresponds 
to g near the reaction front) and the dimensionless dis-
tance of the initial contact surface from the axis of rotation 
L∕R = 0.7 . This value of the last parameter ensures the 
equality of the volumes of mixtures at the beginning of 
evolution. This condition guarantees the longest reaction 
time until both components of the mixture have reacted.

Since the density of the potential barrier becomes less 
than the density of the central zone, it simply disappears, 
floating up to the axis of rotation (Fig. 12, t = 0.05 ). In 
this case, the potential barrier formed by the base solu-
tion survives, but the density of the entire central region 
is leveled out due to intense convection. In the cross-sec-
tion, the density field becomes similar to a step function 
with a sharp density drop at the front of reaction (Fig. 12, 
t = 0.5 ). This gap spreads rapidly away from the axis of 
rotation. We associated this pattern with a shock wave 
in Bratsun et al. (2017), meaning that the wave moves 
faster than any disturbance in the system. Therefore, 
the velocity discontinuity at the front rwave separates the 
region of vigorous convection ( r < rwave ) and the region 
of motionless fluid ( r > rwave ). It should keep in mind that 
the term “shock wave” means a generalized wave, which 
propagates fast, but not necessarily supersonic, compared 
with characteristic velocity in a given media (see Landau 
and Lifshitz (1987) for more details).

We found in Bratsun et al. (2017) that the theory based 
on classical shock wave equations is surprisingly in excel-
lent agreement with the experimental measurements and 

Fig. 10   Time evolution of the spatial reaction rate �(t) defined by (59) for points a–d (left) and e–h (right) marked on the stability map in Fig. 9

Fig. 11   Time evolution of the stream function maximum for points a–d (left) and e–h (right) marked on the stability map in Fig. 9
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observations. If the density wave moves faster than 
√
Sc , 

we can hypothetically observe a subsonic analog of the 
shock wave in gas. Thus, the dimensionless value 

√
Sc 

plays the role of the speed of sound for a given medium. 
This velocity estimated for the two-layer reactive system 
under the static gravity field was found to equal c∗ ≈ 17.8 
( c∗ ≈ 0.056 mm/s in dimensional units). We observed also 
that, as soon as the wave velocity fell below this value, the 
wave immediately stops and was replaced by a common 
fingering under either DLC or CDD mode. One can notice 
that the medium is assumed to be slightly compressible in 
that sense that the chemical reaction between components 
dissolved in water can locally change the density of the 
medium 𝜌̂ defined by (36) even though the water itself is 
almost incompressible.

It is interesting to note that the structure of the cocurrent 
flow behind the shock wave is not homogeneous. A system 
of relatively dense jets appears formed in the central disk, 
which delivers fresh acid from the area adjacent to the axis 
of rotation to the reaction front (Fig. 12, t = 2 ). We found 
that a network of such jets is a long-lived formation, and 
some of the jets retain their structure throughout the evolu-
tion of the system. Figure 12 illustrates well this property of 
the system under consideration (compare the frames at times 
0.5 and 2). Ultimately, the development of convection in the 
wake flow leads to the rapid establishment of a turbulent 
regime. The reaction rate increases many times in compari-
son with the diffusion-controlled convective mode discussed 
in the previous Section. Therefore, the complete burnout of 
reactants in the shock wave mode occurs much faster than in 
the case of sluggish DLC convection and a local system of 
chemoconvective cells trapped in a potential well.

The stability boundaries of the shock wave pattern cal-
culated on the plane of the control parameters RA and L/R 
are shown in Fig. 13. As can be seen from the stability map, 

the mechanism of shock wave formation is triggered even 
in microgravity conditions. For example, at the initial loca-
tion of the front L∕R = 0.5 , the centrifugal field can reach  
a value of only RaΩ

A
≈ 2 × 103 ≈ 0.02g , which triggers the 

process of the appearance of a shock wave, i. e. the col-
lapse of the density field formed by the reaction-diffusion  
processes began (compare the frames e and f in Fig. 13). 
A similar transition occurs at a fixed rotation speed and a 
simultaneous change in the initial front position. There is a 
critical distance from the axis of rotation, at which the den-
sity field does not overturn, and a shock wave does not arise. 
For example, at RaΩ

A
= 6 × 104 , the critical radius is approxi-

mately L∕R ≈ 0.1 (compare the frames c and d in Fig. 13).
We also found that the effect of sudden stopping of the 

shock wave and the resorption of the density jump is more 
pronounced in the case of a system with cylindrical sym-
metry. When the wave moves from the axis of rotation, the 
wavefront gradually lengthens, and the area occupied by the 
acid increases according to the law ∼ r2

wave
 . It leads to the 

fact that the concentration of the acid solution in the center 
of the cuvette 0 < r < rwave gradually decreases. In this case, 
the concentration of the base solution, which is located on 
the periphery of the disc rwave < r < R , remains the same 
since this area is in a state of mechanical equilibrium. Over 
time, it leads to the fact that the ratio of the concentrations 
�A∕�B changes in favor of the base, and the system leaves 
the range of parameters where a shock wave must arise (see 
Fig. 3).

Figure 14 shows the time evolution of the integral char-
acteristic �(t) defined by (59) for all points marked on 
the stability map presented in Fig. 13. One can see that, 
at the beginning of evolution, the system experiences an 
“explosion”, in which a significant part of it in the range 
0 < r < rwave is intensively mixed, as a result of the rise 
of the reaction zone. For example, the system with the 

Fig. 12   Evolution of the fields 
of dimensionless density 
𝜌̂(t, r,𝜙) (the top row) and 
stream function Ψ(t, r,�) 
(the bottom row) at times t: 
0.05; 0.2; 0.5; 2.0 showing the 
formation of the shock-wave 
pattern. The centrifugal Ray-
leigh number is RaΩ

A
= 105 . The 

distance of the initial contact 
surface from axis is L∕R = 0.7 . 
The initial concentrations of 
the reactants are �

A
= 0.667 , 

�
B
= 0.57
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initial contact surface at L∕R = 0.5 (the cross-section e–h) 
demonstrates the following levels of mixing to time 0.5: 
0.35 (h), 0.3 (g), 0.2 (f), 0.05 (e). We must account that the 
maximum available part of the mixing space at the initial 
moment is 1/3 of the total area of the disk. The points g 
and h correspond to cases of almost complete mixing in 
the area with the radius rwave . After time t = 0.5 , the mix-
ing is carried out only due to the expansion of the central 
region via the shock wave movement. By this time, the 
motion of the liquid at further moments takes the form 
of a sequence of large vortices, which form a branched 
structure in the density distribution discussed above. The 
essentially non-stationary nature of the vortex motion 
in the central region naturally entails oscillations of the 
stream function maximum (Fig. 15). The speed of move-
ment of the shock wave to the periphery increases with an 

increase in the rotation parameter RaΩ
A

 . The complete stop 
of the wave occurs only at the moment of complete burn-
out of reactants. In the limiting cases of a small volume 
occupied by an acid (point c in Fig. 13) or a base (point 
a), this happens rather quickly. If the volumes occupied by 
the solutions are approximately equal at the initial moment 
(Fig. 12), the shock front eventually reaches the edge of 
the cell. In this case, it is possible to completely mix the 
solutions in the volume due to the natural convection.

Rayleigh‑Taylor Convection

Finally, we will briefly consider the development of the 
Rayleigh-Taylor instability. The region of this instability is 
below the isopycnal line, where the initial density of the acid 
solution exceeds the density of the base solution. Let us fix 

Fig. 13   Stability map con-
structed in the parameter space 
of the cetrifugal Rayleigh 
number RaΩ

A
 and the dimen-

sionless distance of the initial 
contact line from the axis of 
rotation L/R. The map is based 
on numerical simulations of the 
full non-linear problem (31-
41). Abbreviations SW denote 
the shock-wave pattern. The 
cross-section a–d corre-
sponds to R

A
= 6 × 104 and 

L∕R = 0.9, 0.6, 0.3, 0.1 , respec-
tively. The cross-section e–h 
corresponds to L∕R = 0.5 and 
Ra

Ω
A
= 103, 4 × 104, 9 × 104, 1.1 × 105 , 

respectively. In all calculations, 
it is assumed that �

A
= 0.667 , 

�
B
= 0.57 , R = 20 , and t = 2

Fig. 14   Time evolution of the spatial reaction rate �(t) (59) for points a–d (left) and e–h (right) marked on the stability map in Fig. 13

Page 17 of 20    67Microgravity Science and Technology (2021) 33: 67



1 3

the values of the initial concentrations of species �A = 0.667 
and �B = 0.35 (the point d marked in Fig. 3). Figure 16 
shows the time evolution of the density field and stream 
function for four consecutive times. As can be seen from 
the figure, the fluid motion occurs at an arbitrarily small 
value of the centrifugal field since the stratification of the 
medium is unstable from the very beginning. The potential 
barrier formed by the heavy salt released in the reaction 
can no longer retain liquid near the reactant contact line. 
The instability develops in the form of large fingers, which 
begin to move in different directions: light plumes float to 
the center, heavy structures move radially towards the edge 
of the disk (Fig. 16, t = 0.2 ). By the time t = 0.5 , plumes 
with acid reach the edges of the cuvette, and the reaction 
covers its entire volume. The intensity of mixing increases 
significantly compared with the previously considered cases 
since the vortex motion covers the entire system at once. By 
the time t = 2 , any reaction-diffusion-convection processes 
cease, and the system becomes almost uniform in density. 
The described scenario looks quite standard and does not 
require further explanation.

Conclusions

This work is a numerical study of the effect of uniform rota-
tion on the development of chemo-convective instability in a 
two-layer system of reacting miscible liquids. We show that, 
depending on the initial concentrations in the system, differ-
ent scenarios of the instability development can occur. The 
dependence of the diffusion coefficients on concentration 
leads to the appearance of a potential well in the base-state 
density field. Under the influence of an inertial field, convec-
tive motion can develop in the form of a periodic sequence 
of vortices in a potential well (CDD convection). With a 
sufficient distance from the line of contact of solutions from 
the axis, the central area of the system becomes unstable via 
the DLC instability. It has a modulating effect on the cellular 
pattern. Therefore, the periodicity of the structure can be 
violated with an increase in both the angular velocity and the 
position of the initial contact surface. With a change in the 
initial concentrations, this regime is replaced by a density 
shock wave rapidly propagating in the direction of the iner-
tial field. The effect of an increase in the wave speed with 

Fig. 15   Time evolution of the stream function maximum for points a–d (left) and e–h (right) marked on the stability map in Fig. 13

Fig. 16   Evolution of the fields 
of dimensionless density 
𝜌̂(t, r,𝜙) (the top row) and 
stream function Ψ(t, r,�) 
(the bottom row) at times 
t: 0.05; 0.2; 0.5; 2.0 show-
ing the formation of the 
Rayleigh-Taylor pattern. The 
centrifugal Rayleigh number is 
Ra

Ω
A
= 6 × 104 . The distance of 

the initial contact surface from 
axis is L∕R = 0.5 . The initial 
concentrations of the reactants 
are �

A
= 0.667 , �

B
= 0.35
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an increase in the overload is found. If the center region is 
heavier than all the others, then the standard Rayleigh-Taylor 
instability develops. The instability boundaries are found 
using direct numerical simulations.
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