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Abstract
The dynamics of an incompressible fluid drop under the action of non-uniform electric field are considered. The drop is 
bounded axially by two parallel solid planes, which in the examined case are considered to be heterogeneous. The external 
electric field acts as an external force which causes motion of the contact line. In equilibrium, the drop has the form of a 
circular cylinder. The equilibrium contact angle is 0.5� . In order to describe the motion of the contact line the modified 
Hocking boundary condition is applied: the velocity of the contact line is proportional to the deviation of the contact angle 
and the rate of fast relaxation process, the frequency of which is proportional to twice the frequency of the electric field. 
The Hocking parameter depends on the polar angle � , i.e. the coefficient of the interaction between the plate and the fluid 
(the contact line) is a function of the plane coordinates. The focus of this study is on a special case, in which this function 
is proportional to | cos(�)|.
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Introduction

The electrowetting (EW) process is a useful physical mecha-
nism and a promising tool for control and manipulation of 
microfluidic objects (particles, drops, bubbles) (Chen and 
Bonaccurso 2014; Mugele and Baret 2005). The special case 
of electrowetting-on-dielectric (EWOD) is equally impor-
tant (Chung et al. 2010; Nelson and Kim 2012; Zhao and 
Wang 2013). Nowadays, EWOD has found wide applications 
in various fields, such as electronic variable-focus liquid 
lenses (Kuiper and Hendriks 2004; Li and Jiang 2014), dis-
play technology (Hayes and Feenstra 2003; Roques-Carmes 
et al. 2004), digital (droplet) microfluidal devices for bio-
analysis (lab-on-a-chip) (Hua et al. 2010; Li et al. 2014), 
etc. The contact angle is given by the Young–Lippmann 
equation (Berge 1993; Mugele and Baret 2005; Quilliet and 
Berge 2001; Zhao and Wang 2013). However, the obtained 
experimental results proved to be very much different from 

the theoretical predictions of this equation. Thus, it might 
be expected that the contact angle would be zero just after 
some critical voltage value (complete wetting and the con-
tact angle is tend to zero), but in fact the experimental value 
of the contact angle is always finite (Chevalliot et al. 2012; 
Mugele and Baret 2005; Zhao and Wang 2013). The mecha-
nism of the contact angle saturation is not clearly under-
stood and is still the question under discussion (Mugele and 
Baret 2005).

The liquid bridge is a well-known testbed used to analyze 
the surface tension-dominated phenomena (Demin 2008; 
Ferrera and Montanero 2007)including those encountered in 
EWOD-based microfluidic devices (Mampallil et al. 2013; 
Mugele and Baret 2005). An important problem of research 
in this field is the movement of the contact line, and changes 
in the contact angle and surface tension (Antonov et al. 2019; 
De Gennes 1985; Wang et al. 2019). The viscosity is signifi-
cant only in thin boundary layers near the rigid surface under 
high-frequency forced vibrations (Klimenko and Lyubimov 
2012, 2018; Shklyaev and Straube 2008). Consequently, the 
flow in large can be considered as an inviscid one, in which 
the viscosity effect should be taken into account only in the 
dynamic boundary layer near the rigid plate (Borkar and 
Tsamopoulus 1991). For periodic or quasi-periodic motion 
the most frequently used condition for contact line velocity is 
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the one applied by (Hocking 1987) for investigation of stand-
ing waves between two vertical walls. It was also used to study 
the oscillations of drops (Alabuzhev 2016; Alabuzhev and 
Lyubimov 2007), bubbles (Alabuzhev and Kaysina 2016; 
Shklyaev and Straube 2008), and liquid bridge (Borkar and 
Tsamopoulus 1991), etc. This condition allows us to consider 
an inviscid fluid, in which only the movement of the contact 
line leads to energy dissipation (Dolmatova and Goldobin 
2018; Goldobin 2017; Shklyaev and Straube 2008). In  
(Fayzrakhmanova and Straube 2009; Fayzrakhmanova et al. 
2011; Hocking 1987), it is suggested to use a more compli-
cated boundary condition, which states a non-unique depend-
ence of the contact angle on the contact line velocity. In this 
case, a plane capacitor (horizontal layer) is much easier to 
create in a physical experiment (Il’in and Kartavykh 2018; 
Kartavykh et al. 2015; Mampallil et al. 2013).

An effective boundary condition for EWOD was formu-
lated based on the Hocking equation (Hocking 1987) for a 
cylindrical drop in (Alabuzhev and Kashina 2016):

where �∗ is the deviation of the drop interface from the equi-
librium position, z∗ is the axial coordinate, Λ∗ is a phenom-
enological constant (the so-called wetting parameter or the 
Hocking parameter), having the dimension of velocity, A∗ 
is the effective amplitude, �∗ is the AC frequency. Note that 
the conditions of a fixed contact line and constant contact 
angle are particular cases of the boundary conditions Λ∗ = 0 
and ��∗∕�z∗ = 0 , respectively. Consequently, this coefficient 
describes the interaction between the contact line and the 
substrate. Thus Hocking’s condition (Hocking 1987) speci-
fies the energy dissipation due to the fluid motion near the 
contact line on the assumption that the fluid is inviscid. The 
boundary condition 1 was also used to study the dynamics 
of a cylindrical bubble (Kashina and Alabuzhev 2018c) and 
a oblate drop (Alabuzhev and Kashina 2017).

The Hocking parameter Λ∗ (see Eq. 1 or (Hocking 1987)) 
is a real constant in all the above articles. This parameter as 
a complex number is proposed in (Miles 1991). Inhomoge-
neous plates were considered in (Alabuzhev 2018; Kashina 
and Alabuzhev 2018a, b), where the Hocking parameter was 
taken as a function of coordinates. The surfaces with differ-
ent Hocking parameters were investigated in (Alabuzhev and 
Kashina 2019; Kashina and Alabuzhev 2019). We study only 
the isothermal problem, therefore, a change in the surface 
tension due to heating (Joule’s law) is not taken into account 
(Hayat et al. 2015; Samoilova and Lobov 2014; Samoilova 
and Shklyaev 2015).

In this paper, we consider the behavior of a cylindri-
cal drop (like a liquid bridge) between two heterogeneous 
plates under the applied AC-voltage. In order to describe 

(1)
��

∗

�t∗
= ±Λ∗

(
��

∗

�z∗
+ A∗

cos (2�∗t∗)

)

,

the motion of the contact line, we use the modified bound-
ary condition 1 with the Hocking parameter as a function of 
coordinates (by analogy to (Kashina and Alabuzhev 2018)). 
In accordance with (Alabuzhev and Kashina 2019), it is also 
possible to use different Hocking parameters for solid plates.

Note, that free oscillations of a cylindrical drop were stud-
ied in (Alabuzhev and Lyubimov 2007) (identical plate sur-
faces) and (Alabuzhev and Kashina 2019) (different surfaces).

Problem Formulation

Consider an incompressible liquid drop of density �∗
i
 sand-

wiched between two parallel solid surfaces (separated by a 
distance h∗ ) and surrounded by another liquid of density �∗

e
 (see 

Fig. 1). We suppose that the drop is sufficiently small, so that 
its shape can hardly be distorted by gravity. In other words, in 
the examined case the drop shape is characterized by a small 
Bond number Bo ≈ �

∗
i,e
gR∗∕�∗ , where R∗ is the drop radius, 

�
∗ is the surface tension coefficient, g is the acceleration due to 

gravity. This means that in equilibrium the free surface is the 
lateral surface of a circular cylinder of radius R∗ and height h∗ . 
The equilibrium contact angle �

0
 between the lateral surface 

of the drop and the solid surface is equal to �∕2.
The system is subjected to vibrations with the amplitude 

A∗ and frequency �∗ . The vibration force is directed parallel 
to the symmetry axis of the drop. The vibration frequency is 
large in terms of viscosity but comparable with the fundamen-
tal frequencies of the shape oscillations Ω∗2 ≈ m

(m2 − 1)�∗(�
i,e
R
∗3)−1 , i.e. the capillary number Ca = �

∗
R
∗

(

�
∗
i,e
�
∗2
i,e

)−1

 is large. Here �∗2
i,e

 are kinematic viscosity coeffi-
cients of the drop and the external liquid, respectively. It is 
also assumed that the compressibility of the drop and the sur-
rounding liquid is inessential, i.e. 𝜔∗R∗

≪ c , where c is the 
speed of sound. For example, for water drops (�∗

i
) of radius 

1mm (Mampallil et al. 2013) in air�∗ ≈ 10 − 103rad∕s.

Fig. 1   Problem geometry (1 – electrode, 2 – dielectric layer)
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We apply the cylindrical reference frame with the coordi-
nates r∗ , � , z∗ and the axis of cylinder symmetry, which is paral-
lel to the z∗-axis because of the problem symmetry. Let the 
surface of the drop be described by the equation 
r∗ = R∗ + �

∗(�, z∗, t∗) . In the accepted approximations, the 
liquid motion is irrotational, which makes it convenient to intro-
duce the velocity potential �∗ = ��

∗ . Taking the length R∗
0
 , the 

height h∗ , the density �∗
e
+ �

∗
i
 , the time �−1∕2

√(
�
∗
e
+ �

∗
i

)
R∗3
0

 , 
the velocity potential A∗

√
�

��
�
∗
e
+ �

∗
i

�
R∗3
0

�−1∕2 , the pressure 
A∗

�

(
R∗
0

)−2 and the deviation of the surface A∗ as characteristic 
quantities, we go to the dimensionless variables and obtain the 
following linear problem

where p is the fluid pressure, � is the velocity potential, the 
square brackets denote the jump in the quantity at the inter-
face between the external liquid and the drop, Λ(�) describes 
the heterogeneity condition for plates, Λu(�) and Λb(�) are 
the Hocking parameter of the “top” (z = 0.5) and “bottom” 
(z = −0.5) substrate, respectively. The boundary-value prob-
lem (2)–(5) involves six parameters:

The aspect ratio is

the dimensionless densities are

the wetting parameter is

the AC frequency is

the AC amplitude is

(2)pj = − �j�jt
,Δ�j = 0, j = i, e,

(3)
Δ =

1

r

�

�r

(

r
�

�r

)

+
1

r2
�
2

��
2
+ b2

�
2

�z2
,

r =1 ∶
[
�r

]
= 0, �t = �r,

[
p
]
= � + �

��
+ b2�zz,

(4)z = ±
1

2
∶ �z = 0,

(5)r =1, z = ±
1

2
∶ �t = ∓Λu,b(�)

(
�z + a cos (2�t)

)
,

b =
R∗

h∗
,

�i =
�
∗
i

(
�
∗
e
+ �

∗
i

) and �e =
�
∗
e

(
�
∗
e
+ �

∗
i

) ,

Λ = Λ∗

√
(
�
∗
e
+ �

∗
i

)
R∗

�
∗

,

� = �
∗

√
(
�
∗
e
+ �

∗
i

)
R∗3

�
∗

,

Here C is capacitance per unit area.

Forced Oscillations

The functions Λu,b(�) are represented as a Fourier series in 
eigenfunctions of the Laplace operator. Let us consider a par-
ticular case of uniform electric field and heterogeneous plates: 
Λu,b = �u,b| cos(�)| . The solutions for the velocity potential � 
and the surface deviation � are written as

where Fmk(r, �, z) and Gmk(r, �, z) are the eigenfunctions 
of the Laplace operator, Im and Km are the modified Bessel 

a = 0.5A∗C

√
(
�
∗
e
+ �

∗
i

)
R∗3

�
∗

.

(6)�i(r, �, z, t) = Re

(

i2�
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)

,

(7)�e(r, �, z, t) = Re

(
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)

,

(8)
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��
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∞�
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�

ei2�t
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,
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�

a
(0)
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(r)Z

(0)

k
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+a
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�
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�

b
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(1)
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�
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�

c
(0)

mk
Z
(0)
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+c
(1)
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�
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0(�, z) = d

(0)

0
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z

b

�

+ d
(1)

0
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z
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,

Dm(�, z) =

�
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b
z

�

+

+d(1)
m
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R
(0)i

m0
(r) = rm, R
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,

R
(0)i
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(r) = Im(2k�br), R
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R
(1)i
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Z
(0)

k
(z) = cos (2k�z), Z

(1)

k
(z) = sin ((2k + 1)�z),

Am(�) = cos (2m�),
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functions of m-th order. Substituting solutions (6)–(8) into 
(2)–(5), we obtain the expressions for the unknown ampli-
tudes amk , bmk , cmk and dm . We do not write explicit expres-
sions for these coefficients because they are far too cum-
bersome. These expressions are equivalent to the similar 
solutions obtained for Λu,b(�) = � = const in (Alabuzhev 
and Kashina 2016) and Λu,b(�) = �u,b  in (Alabuzhev and 
Kashina 2019; Kashina and Alabuzhev 2019). One can eas-
ily verify the complex nature of these coefficients for any set 
of parameters, except for the limiting cases corresponding to 
the fixed contact line or contact angle. This complexity leads 
to a phase shift between different spatial modes of oscilla-
tions, i.e., the appearance of traveling capillary waves on the 
lateral surface (Alabuzhev 2016; Alabuzhev and Kashina 
2019).

For convenience, we prescribe the following maximum 
deviations of the drop surface from the equilibrium position: 
on the “upper” plate z = 0.5 – �u = max (�(0, 0.5, 0)) , on the 
“bottom” plate z− = 0.5 – �b = max (�(0,−0.5, 0)) , in the 
center of the layer z = 0 – �

0
= max (�(0, 0, 0)) and a “quar-

ter” position z = 0.5 – �q = max (�(0, 0.25, 0)) ; the values of 
the internal contact angle � on the “upper” plate are �u , at the 
“bottom” plate – �b.

Uniform Plates

The dynamics of the drop significantly depends on the 
amplitude � of the function Λ(�) . First consider the behav-
iour of the drop in the case of homogeneous plates, i.e. 
Λu,b(�) = �u,b (Alabuzhev and Kashina 2019; Kashina and 
Alabuzhev 2019). Therefore, the solution (6)–(8) of problem 
(2)–(5) does not depend on the polar angle � , since the exter-
nal force excites only axisymmetric vibrations. In this case the 
amplitudes of the solution (6)–(8) are defined by expressions

d
(0)

0
= a

�b(2i�BC + 1) + 2i�BG

2i�(F − DS)
, d

(1)

0
= Ba + Dd

(0)

0
,

B = −
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2i�
(
�uC + G
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,
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2

∞∑
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1

2b

)

,
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∞∑
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k
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+ sin

(
1
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)

,

C =
1
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(
1

2b

)

, S =
1
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sin

(
1
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,
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0
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(0)

0
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k
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(1)

k
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4�2gkd
(1)

0

Ω
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,

a
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R
(0)i
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(1) = 2i�

(

c
(0)

k
+ fkd
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,

a
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R
(1)i
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(1) = 2i�

(

c
(1)

k
+ gkd

(1)

0

)

,

a
(0)

00
= 0, b

(0)

00
= 0, a

(0)
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R
(0)i

0kr
(1) = b

(0)

k
R
(0)e

0kr
(1),

a
(1)

0k
R
(1)i

0kr
(1) = b

(1)

0k
R
(1)e

0kr
(1),

where fk and gk are the coefficients of the Fourier series 
expansions of the functions cos(z∕b) and sin(z∕b) , respec-
tively, and Ω(0)2

k
 and Ω(1)2

k
 are the eigenfrequencies of the 

drop with a freely moving contact line (i.e., at � → ∞ ) 
(Alabuzhev and Lyubimov 2007).

The results of the solution are presented in Figs. 2, 3 
and 4. Figure 2 shows the oscillation amplitude of the drop 
surface and the deviation of the contact angle as a function 
of the frequency of the uniform electric field for several val-
ues of the Hocking parameters �u and �b . The amplitudes of 
the surface oscillations and the contact angle reach maxi-
mum values in a linear resonance. It is also seen from the 
graphs that the values of the resonant frequencies decrease 
with an increase of parameter �u or �b . Despite weak dissi-
pation at small values of the parameter �b , the amplitude of 
surface oscillations is finite (Fig. 2a) and the amplitude of 
oscillations of the contact line is small (Fig. 2d). The contact 
angle varies in a wide range (Fig. 2e, f). It is important to 
note that if at least one of the parameters �u or �b is finite, 
the amplitude of surface oscillations is always finite. Con-
sequently, dissipation is determined by the largest damping 
parameter. In the general case, the amplitude of drop surface 
oscillations depends on the amplitude of contact line oscilla-
tions. Therefore, the deviations of the contact line are small 
for small parameters 𝜆 ≪ 1 , which leads to slight deviations 
of the lateral surface (not in resonance).

The external force excites only odd shape modes 
sin ((2k + 1)�z) (6)–(8) in the case of equality of the Hock-
ing parameters �u = �b = 1 , so that there is no deviation of 
the drop surface in the center of the layer (Fig. 2c) and the 
form of the drop surface is described by the odd function 
(Fig. 3a). The excitation of even modes cos (2k�z) is also due 
to the asymmetry with respect to the z-coordinate at differ-
ent Hocking parameters �u ≠ �b . This leads to the appear-
ance of paired resonance peaks on the amplitude-frequency 
characteristic curve (see Fig. 2). In most cases, the resonant 
amplitude of the odd mode is higher than that of the corre-
sponding even mode. Note, that in the general case the form 
of the drop lateral surface is also close to the description 
in terms of the odd function, despite different values of � 
(Fig. 3b). The drop shape governed by an even function is 
observed only at the “even” resonant frequency (Fig. 3c), 
when the amplitudes of the even harmonics are much hiher 
than the amplitudes of the odd ones.

There are “antiresonant” frequencies, i.e. such frequen-
cies, at which the line of contact is motionless (Fig. 2). Such 
frequencies lie between the pairs of resonance frequencies of 
the mode shapes. In the first such region ( 𝜔 < 6 in our case, 
see Fig. 2), there is only one resonant frequency - the main 
frequency of the axisymmetric mode, or, in other words, 
the zero odd mode shape k = 0 . An zero even shape mode 
is absent, since it corresponds to volume oscillations, which 
are absent for an incompressible drop.
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Traveling capillary waves propagating along the lateral 
surface of the drop are caused by the oscillations of the con-
tact line and the contact angle (Fig. 4). At equal values of the 
parameter � , there are no traveling waves and only standing 
waves are initiated on the surface of the drop (Fig. 4a). Note 
that traveling waves arising due to the action of axisymmet-
ric external vibrations are observed on the drop surface only 
when the values of �are finite (Alabuzhev 2016). If the val-
ues of�u and �b are different, the waves propagate at any val-
ues of these parameters. Figure 4b, c show the oscillations 
of the wave crest position, i.e. the traveling waves propagate 
along the entire surface in the absence of symmetry.

Non‑Uniform Plates

Now we consider the plates, the surfaces of which are rough, 
that is, they have a spatially heterogeneous structure, which 
is described by the relation Λu,b = �u,b| cos(�)| . In this case, 
due to the surface inhomogeneity, the application of the 
external force will excite only azimuthal oscillation modes 

(see the boundary condition (5)), consequently the dynam-
ics of the drop differs significantly from its behavior in the 
uniform field “Uniform Plates”. Dependencies similar to 
Figs. 2, 3 and 4 are shown in Figs. 5, 6 and 7.

In our case, the even azimuthal modes occur due to the 
nonuniformity of the substrate, which leads to the appear-
ance of additional resonance peaks (see Fig. 5). The Fourier 
coefficients of the function Λu,b = �u,b| cos(�)| are given by:

These expansion coefficients, and, accordingly, the con-
tribution of the external force energy decrease by m−2 for 
each azimuthal mode. Consequently, the largest part of 
the energy is transferred to the first few modes and the 

l
0
=

1

2� �
2�

0

Λu,b(�) d� = �u,b

2

�

,

lm =
1

‖ cos(2m�)‖2 �
2�

0

Λu,b(�) cos (2m�) d� =

= �u,b

4(−1)m+1

(4m2 − 1)�
, m ≥ 1.

a) b) c)

d) e) f)

Fig. 2   Plots of the amplitudes of contact line oscillations �u  (a) and 
�b  (d), the position of the lateral surface �q  (b)  and �

0
  (c), and the 

contact angle �u (e) and �b (f) as a function of the frequency � of the 

external vibrations for different values of the Hocking parameter �b 
( b = 1 , �u = 1 , a = 10 , �i = 0.7 ). The cases of �b = 0.01, 1, and 100 
correspond to the solid, dashed and dotted lines, respectively
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zero (azimuthal) mode makes the main contribution to the 
droplet shape.

As noted above, the external force excites both the odd 
and even longitudinal vibrational modes (along the sym-
metry axis z) as noted above. The odd amplitude coeffi-
cient is d

1
∼ �u + �b , but the even amplitude coefficient is 

d
0
∼ �b − �u . In the limit case of close values �b = �u + � , 

𝛿 ≪ 1 , these amplitude coefficients are defined as (in the 
case of uniform plates “Uniform Plates”)

Accordingly, the odd amplitude d(1)
0

 is much higher 
than the even amplitude d(0)

0
 . However, this amplitude 

d
(0)

0
= a�

2i�BC + 1

4i�
(
F − �uS

) ,

d
(1)

0
=

�ua

2i�
(
�uC + G

) .

d
(0)

0
 becomes significant in the resonance mode at the fre-

quency of an even harmonic: F − �uS = 0.
A new resonance peak appears in front of the axisymmet-

ric mode already existing at the main frequency (compare 
Fig. 2 with Fig. 5). This peak corresponds to resonance at the 
fundamental frequency of the quadrupole mode of natural 
oscillations (azimuthal number m = 2 , wave number k = 0 ). 
In this case, the fundamental frequency of the quadrupole 
mode is less than the main frequency of the axisymmetric 
mode ( m = 0 , k = 1 ), since the fundamental frequency of 
volume (radial) oscillations does not exist in the case of drop 
incompressibility. Consequently, the inhomogeneity of the 
plate surface gives rise to additional quadrupole oscillations 
of the drop. Note that there are additional resonance peaks at 
the frequency of the next mode, but they are less pronounced 
compared to the quadrupole oscillations.

a) b) c)

Fig. 3   Evolution of the drop surface shape. T = ��
−1 is the oscillation period ( b = 1 , a = 10 , �i = 0.7 , �u = 1 ), (a) �b = 1 , � = 4 , (b) �b = 100 , 

� = 4 , (c) �b = 100 , � = 9.5 . t = 0 – solid line, t = 0.125T  – dashed, t = 0.25T  – dotted, t = 0.375T  – dash-dotted

a) b) c)

Fig. 4   Propagation of maxima of traveling waves over the drop surface ( b = 1 , a = 10 , �i = 0.7 , �u = 1 ), (a) �b = 1 , � = 4 , (b) �b = 100 , � = 4 , 
(c) �b = 100 , � = 9.5
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The oscillations amplitude of the drop lateral surface 
near the main frequencies is maximum and decreases at 
subsequent resonant frequencies (see Fig. 5). A similar 
dependence was obtained in the case of equal Hocking 
parameters (Alabuzhev and Kashina 2017; Kashina and 
Alabuzhev 2018a, b). For a homogeneous surface, the 
opposite effect is observed - the amplitude increases and 
the amplitude values for even and odd modes are different 
(see Fig. 2). Consequently, the heterogeneity neutralizes 
the influence of the difference in Hocking parameters.

The lateral surface deviation at different times of the 
oscillation period is shown in Fig. 6 for two cross sections 
� = 0o and � = 90o . This is attributed to the fact that the 
non-symmetric vibration modes are excited due to inho-
mogeneity and therefore, the vibration amplitude at � = 0o 
is greater than at � = 90o . The positions of the maxima are 

shown in Fig. 7. The subsequent positions of the maxima 
are shown on the lateral surface of the drop in contrast to 
Fig. 4. It is seen that traveling waves propagate along the 
axis of symmetry only in the limited areas, but change 
their position with respect to the azimuthal angle.

Figure 8 shows the variation in the shape of the contact 
line during the oscillation period T = ��

−1 . It can be seen 
that the drop extends along the surface inhomogeneity, i.e. 
along the x-axis (Fig. 8a). At large values of the parameter 
�b , the interaction of the line of contact with the substrate 
decreases, which leads to the appearance of pronounced 
quadrupole oscillations (Figs. 5 and 8b). The axisymmet-
ric oscillations become dominant again with increasing 
frequency (Figs. 5 and 8c). The axisymmetric oscillations 
are the main oscillation mode of forced oscillations in the 
case of non-uniform field and homogeneous surfaces.

a) b) c)

d) e) f)

Fig. 5   Plots of the amplitudes of contact line oscillations �u  (a)  and 
�b  (d), the side-surface position �q  (b)  and �

0
  (c), and the contact 

angle �u (e) and �b  (f)as a functions of the frequency � of the exter-

nal vibrations for non-uniform plates at � = 0 ( b = 1 , �u = 1 , a = 10 , 
�i = 0.7 ). The cases of �b = 0.01, 1, and 100 correspond to the solid, 
dashed and dotted lines, respectively
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a) b) c)

Fig. 6   Evolution of the drop surface shape at � = 0
o and � = 90

o . 
T = ��

−1 is the oscillation period ( b = 1 , a = 10 , �i = 0.7 , �u = 1 ), 
(a) �b = 0.01 , � = 1 , (b) �b = 100 , � = 1 , (c) �b = 100 , � = 10 . t = 0 

– solid line, t = 0.125T  – dashed, t = 0.25T  – dotted, t = 0.375T  – 
dash-dotted. line 0 - � = 0

o , line 90 - � = 90
o

a) b) c)

Fig. 7   Propagation of maxima of traveling waves over the drop surface ( b = 1 , a = 10 , �i = 0.7 , �u = 1 ), (a) �b = 0.01 , � = 1 , (b) �b = 100 , 
� = 1 , (c) �b = 100 , � = 10

a) b) c)

Fig. 8   The shape of the contact line at the upper plate during the oscilla-
tion period T = ��

−1 (a = 10, �u = 1, �i = 0.7, b = 1,� = 1, � = 0.1) , 
(a) �b = 0.01 , � = 1 , (b) �b = 100 , � = 1 , (c) �b = 100 , � = 10 . t = 0. 

– solid line, t = 0.125T – dotted, t = 0.25T – dashed, t = 0.375T – dot-
dashed

35   Page 8 of 10 Microgravity Science and Technology (2021) 33: 35



1 3

Conclusions

The behavior of the cylindrical drop between two solid 
plates has been considered taking into account the dynam-
ics of the contact angle under the action of the electric field. 
The solid plates have heterogeneous surfaces described by 
the functions Λu,b(�) = �u,b| cos(�)| , where Λu(�) and Λb(�) 
are the Hocking parameter of the “upper” (z = 0.5) and “bot-
tom” (z = −0.5) substrate, respectively.

It is shown that in the case of homogeneous plates, the 
drop performs axisymmetric oscillations. Traveling waves 
on the lateral surface exist only at different values of the 
Hocking parameter (i.e at �b ≠ �b ). A standing wave exists 
with at equal parameters: �b = �b . In the latter case, only 
the odd modes of surface vibrations are resonant, while for 
�b ≠ �b the even modes are also resonant. The “antiresonant” 
frequencies lie between pairs of such resonant frequencies.

The azimuthal vibration modes are excited in the case of 
non-uniform plate surfaces. At low frequencies, the main type 
of vibrations is a quadrupole mode. At higher frequencies, 
there are axisymmetric oscillations, which are modulated by 
the azimuthal modes. Large values of the parameter �b (at 
finite �u ) the interaction between the line of contact and the 
substrate decreases, which leads to the appearance of pro-
nounced quadrupole oscillations. The traveling waves propa-
gate along the axis of symmetry only in the limited areas, 
but change their position with respect to the azimuthal angle.

It is obvious that the type of inhomogeneity has a sig-
nificant effect on the drop dynamics. However, it can be 
expected that similar inhomogeneities affect the drop-
let behavior in the same way. Consequently, based on the 
results of stydying this particular case one can qualitatively 
describe the oscillations of a drop in the case of even func-
tions Λu,b(�).
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