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Abstract
This paper investigates the Rayleigh Benard instability of a viscous, Newtonian, Boussinesq fluid with time-periodic boundary
temperature modulation using the framework of weakly nonlinear theory. Critical Rayleigh number is computed for asymptotic
stability criterion using the energy method accompanied by variational algorithm. Subcritical instability is found to occur under
two conditions: when modulation is in anti-phase and when modulation is imposed only on the lower boundary. Supercritical
stability is witnessed during in-phase modulation. In all the three cases of the relative phase of two boundary temperatures, the
effect of modulation is found to be weaker for infinitesimal disturbances. The findings of the present study could be referred in
several applications where appropriate temperature modulation is of prime concern.

Keywords Asymptotic stability criterion . Periodic boundary temperature . Rayleigh-Benard convection . Weakly nonlinear
theory

Introduction

Hydrodynamic stability deals with the instability of basic mo-
tion (stationary/ laminar) of fluid flow and its subsequent tran-
sition to turbulence. Various problems have been studied ear-
lier in the hydrodynamic stability domain. However, present
study is focused on the Rayleigh-Benard instability. In a clas-
sical Rayleigh-Benard instability, a thin fluid layer, which
extends infinitely in horizontal directions, is heated from be-
low. The resulting adverse temperature gradient causes unsta-
ble fluid configuration which leads to redistribution of the
fluid into a state of the favorable density gradient. However,
the viscosity of the fluid inhibits such redistribution. Viscosity
and thermal diffusivity responsible for diffusion and dissipa-
tion have stabilizing effects. On the other end, temperature

difference is responsible for bulk fluid motion and has a de-
stabilizing effect. Rayleigh number, which is a function of
non-dimensional temperature difference needs to exceed a
critical value for the onset of thermal instability. As a result
of instability, the fluid layer resolves into convective cells
known as Benard cells. In particular, fluid moves up through
the center of the cell, then spreads out and sinks at the edges of
the cell. These Benard cells exhibit hexagonal shape in verti-
cal view.

In practical applications, delay or advance of the onset of
instability is often required. This can be achieved in different
ways such as, boundary temperature modulation, gravity
modulation, internal heating of the fluid layer, imposing mag-
netic field on the electrically conducting fluid layer, angular
velocity modulation in the case of fluid layer between rotating
concentric cylinders, etc. A delay in the onset of instability
allows the fluid motion to sustain in the laminar regime even
beyond the critical values of governing parameters. As a result
of laminar flow, frictional losses are less, which increases the
efficiency of the system. On the other end, an advancement in
the onset of instability aids in the enhancement of mass, mo-
mentum, and energy transfer even below the critical values of
governing parameters.

Several theoretical and experimental investigations have
been carried out to study the onset of Rayleigh-Benard insta-
bility. Bénard (1901) carried out the first quantitative
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experiments on the onset of thermal instability in a very thin
horizontal fluid layer heated from below. He recognized the
role of viscosity in the phenomenon. Later, Rayleigh (1916)
theoretically explained the experimental findings of Bénard. A
number of theoretical studies based on linear stability theory
are available in literature which deal with Rayleigh-Benard
instability under periodic boundary temperature modulation.
Malkus and Veronis (1958) initiated expanding the perturba-
tion variables asymptotically in the powers of the amplitude of
modulation. Venezian (1969) determined analytically the shift
in critical Rayleigh number for different values of modulation
frequency, Prandtl number, relative phase of two boundary
temperatures subject to time-dependent sinusoidally modulat-
ed wall temperatures and free-free type walls (characterized
by zero normal velocity and zero tangential stress at the wall).
Similarly, Raju and Bhattacharyya (2010) obtained exact
values of the shift in critical Rayleigh number subject to
time-dependent sinusoidally modulated wall temperatures
and rigid-rigid type walls (characterized by zero normal ve-
locity and no-slip condition).

Serrin (1959) adopted the energy method to study the sta-
bility of non-convective laminar flows using weakly nonlinear
theory. He determined universal stability criteria for arbitrary
disturbances in bounded regions, and periodic disturbances in
unbounded regions with arbitrary geometrical configuration.
He considered crude estimates for terms in the energy
equation and obtained an improved stability criterion by
employing a variational algorithm. Joseph (1965) extended
Serrin’s work to analyze the stability of convective laminar
flows governed by Boussinesq equations. Later, Homsy
(1974) adopted strong global stability and asymptotic stability
criteria to obtain the stability limits of Rayleigh-Benard insta-
bility with both gravity and surface temperature modulation.
Regarding surface temperature modulation, he determined the
strong global stability and asymptotic stability limits for rigid-
rigid wall boundary conditions, when modulation was in anti-
phase and only lower boundary was modulated.

Boundary temperature modulation is one of the possible
ways to achieve delay or advance in the onset of instability.
In the present study, weakly nonlinear theory is used to ex-
plore the thermal stability characteristics of a thin, horizontal
stationary fluid layer between two parallel rigid planes with
time-periodic boundary temperature modulation. The fluid is
viscous, Newtonian, and Boussinesq in nature. The asymptot-
ic stability criterion is considered, where the energy of all
disturbances decays monotonically during an arbitrary cycle
of modulation. Critical Rayleigh number Racr is computed
using the energy method (Straughan 1992) accompanied by
variational algorithm (Serrin 1959: Arthurs 1970). In the var-
iational approach, disturbances of just sufficient amplitude are
considered such that non-linearity will be significant. In order
to identify the type of transition (subcritical instability/
supercritical stability) of the stationary fluid, stability limits

obtained in the present study are compared with the linear
stability limits reported by Raju and Bhattacharyya (2010),
where, they considered infinitesimal perturbation fields and
expanded them to the powers of δ. The shift in Racr is com-
puted from solvability condition acquired using the adjoint
method for different values of Pr, σ, C.

Mathematical Formulation

In the present study, a thin, horizontal, stationary fluid layer
bounded between two rigid planes at z = − d/2 and z = d/2 is
considered. The fluid layer is infinite in horizontal directions.
The fluid is assumed to be viscous, Newtonian, and
Boussinesq in nature. The geometric configuration of the re-
gion is shown in Fig. 1. The non-dimensional governing equa-
tions (continuity, momentum, and energy equations) treated
with Boussinesq approximation are as follows,

∇ � V!¼ 0 ð1Þ
1

Pr
DV
!
Dt

¼ −
1

Pr
∇pþ RaT k

!þ ∇2V
! ð2Þ

DT
Dt

¼ ∇2T ð3Þ

Here, non-dimensionalization is carried out using the terms
d, d2/κT, κT/d, ρ∞(κT/d)

2 and (T0 − T∞) for coordinates, time,
velocity, pressure and temperature respectively. Pr = ν/κT is
Prandtl number, and Ra = gαTΔTd3/νκT is Rayleigh number.
Here, d is the fluid layer thickness, κT is the fluid thermal
diffusivity, ρ∞ is the reference uniform density at the reference
temperature T∞, T0 is the temperature at z = − d/2, g is the
acceleration due to gravity, αT is the coefficient of thermal
expansion of the fluid, ν is the fluid kinematic viscosity and
ΔT is the temperature difference between the two boundaries.
The temperature on the top and bottom rigid boundaries
changes in the following manner

T ¼ 1þ δcosσt at z ¼ −1=2 and T ¼ Cδcosσt at z

¼ 1=2; ð4Þ

where, δ and σ are amplitude and frequency of the modulation
respectively. Both bounding planes are assumed to be rigid

Fig. 1 Geometric configuration of the region
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and at rest. Therefore, velocity boundary condition is

V
!¼ 0 at z ¼ �1=2: ð5Þ

Considering a basic hydrostatic solution with no fluid mo-
tion,

V
!¼ 0; p ¼ p z; tð Þ; T ¼ T z; tð Þ ð6Þ

Substituting Eq. (6) into Eq. (2) and (3) results in

−
1

Pr
∂p
∂z

þ RaT ¼ 0 ð7Þ

∂T
∂t

¼ ∂2T
∂z2

ð8Þ

The following basic hydrostatic temperature distribution is
obtained by solving Eq. (8) along with the boundary condi-
tions mentioned in Eq. (4). The solution is obtained by using
the separation of variables method (Hancock 2005)

T z; tð Þ ¼ Ts zð Þ þ δ
2

T1 zð Þeiσt þ T 1 zð Þe−iσt
� �

ð9Þ

where,

Ts zð Þ ¼ 1

2
−z

� �
ð10Þ

T1 zð Þ ¼ C þ 1ð Þ
2cosh

λ
2

� � cosh λzð Þ þ C−1ð Þ
2sinh

λ
2

� � sinh λzð Þ ð11Þ

λ ¼
ffiffiffiffi
iσ

p
ð12Þ

where double overbar represents a complex conjugate.
Imposing perturbations on the basic hydrostatic solution re-
sults in the following field variables (Chandrasekhar 1961;
Drazin and Reid 2004; Nayfeh 2008)

V
!¼ V

0!
¼ u0; v0;w0ð Þ; p ¼ pþ p0; T ¼ T þ T 0 ð13Þ

where prime represents the perturbation field. The equations
governing the perturbation field are obtained by substituting
Eq. (13) into Eq. (1)–(3), (5) and then simplified by using Eq.
(7), and Eq. (8),

∇ � V 0!
¼ 0 ð14Þ

∂V
0!

∂t
¼ −V

0!
� ∇V 0!

−∇p
0 þ RaPrT

0
k
!þ Pr∇2V

0!
ð15Þ

∂T 0

∂t
¼ −V

0!
� ∇ T þ T

0
� �

þ ∇2T
0 ð16Þ

V
0!
¼ 0 and T

0 ¼ 0 at z ¼ �1=2 ð17Þ

Here, V
0!
¼ 0 at z = ± 1/2, because bounding planes are

rigid. Whereas, T′ = 0 at z = ± 1/2, because the temperature
is controlled externally at the bounding planes.

Solution

In the present section, weakly nonlinear energy stability the-
ory is considered to obtain the critical Rayleigh number.

Scalar product of Eq. (15) with V
0!
, multiplication of Eq. (16)

with T′ and using the appropriate mathematical identities
along with Eq. (14) results in

∂
∂t

V
0!				
				
2

2

0
BBB@

1
CCCA ¼ Pr RaT

0
V

0!
� k!−∇V

0!
: ∇V

0!� �

þ ∇ � Pr∇
V

0!				
				
2

2

0
BBB@

1
CCCA−

1

2
V

0!				
				
2

V
0!
−p

0
V

0!
8>>><
>>>:

9>>>=
>>>;

ð18Þ

∂
∂t

T
02

2

� �
¼ −∇T

0 � ∇T 0
−T

0
V

0!
� ∇T−∇ � 1

2
T

02 V
0!
−T

0
∇T

0
� �

ð19Þ

where operator ‘:’ represents the double dot product. is
considered as the domain of space enclosed by the surface S.
The fluid layer is unbounded in x and y direction, but the
occurrence of convective cells ensures the periodic boundary
conditions. The periodicity of the boundary conditions are
λx = 2π/ax and λy = 2π/ay in x and y directions respectively
(ax and ay are the wavenumbers of oscillation in x and y
directions respectively). Therefore, the surface S is considered
as x = ± λx/2, y = ± λy/2 and z = ± 1/2. Integration of Eq. (18)
and (19) over , by employing divergence theorem, and by
equating surface integrals over the surface S to zero (since the

values of V
0!
and T′ are periodic in x and y directions, and

V
0!
¼ 0, T′ = 0 at z = ± 1/2), results in

ð20Þ

ð21Þ

where, is kinetic energy and is thermal

energy of the disturbance motion. The energy equation of the
disturbance motion is obtained by adding Eq. (20) and (21) in
the form dK

dt þ λ1Pr dU
dt (Straughan 1992) and is given by

ð22Þ
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where, E is the total energy of the disturbance motion. A
positive constant λ1 called coupling parameter is introduced
to optimize stability limits. Sufficient condition for the flow
field to be asymptotically stable is dE

dt < 0. Since Pr > 0, Eq.
(22) results in

ð23Þ

Now, considering the normalizing condition for Eq. (23) as

ð24Þ

Then Eq. (23) results in to

ð25Þ

In order to obtain the minimum value of the Rayleigh num-
ber (critical Rayleigh number), Eqs. (14), (24) and (25) can be
formulated into a minimization problem with Lagrange mul-
tipliers P = P(x, y, z, t) and Rλ1 as given in Eq. (26).

Minimize

ð26Þ

Let has extremum at υ!, θ corresponding to V
0!
, T′

respectively. Then considering variations of V
0!
, T′ about υ!, θ

in the following way

V
0!
¼ υ!þ ξ h

!
; T

0 ¼ θþ ξη ð27Þ

where h
!

and η are arbitrary functions continuous in , ξ is an
infinitesimal variable. Using Eq. (27), (14) and by employing
the order of magnitude analysis, the equation obtained is

∇ � h!¼ 0 ð28Þ
∇ � υ!¼ 0 ð29Þ

Following the principle of variational calculus for Eq. (26)
results in

ð30Þ

Substituting Eq. (27) in Eq. (30) and separately collecting

the terms containing h
!
, η and ∇·, followed by the use of

divergence theorem results in

ð31Þ

Now, substituting Eq. (27) into Eq. (17) and the order of
magnitude analysis results in

h
!¼ 0 and η ¼ 0 at z ¼ �1=2 ð32Þ
υ!¼ 0; θ ¼ 0 at z ¼ �1=2 ð33Þ

Equation (32) implies that the surface integral in Eq. (31) is

zero. For arbitrary functions h
!

and η, Eq. (31) results in to

Rλ1θ k
!
−∇P þ 2∇2 υ!−λ1θ∇T ¼ 0 ð34Þ

Rλ1 υ
!� k!þ 2λ1∇2θ−λ1 υ

!� ∇T ¼ 0 ð35Þ

Equations (34) and (35) are Euler-Lagrange equations.
Weakly nonlinear energy stability problem is governed by
Eqs. (29), (34), and (35) subject to boundary conditions Eq.
(33). Let υ!¼ u; v;wð Þ. Representing Eq. (29), (34), (35) and
(33) in the scalar form after eliminating u, v and P results in

Rλ1wþ 2λ1∇2θ−λ1w
∂T
∂z

¼ 0 ð36Þ

Rλ1∇
2
1θþ 2∇4w−λ1

∂T
∂z

∇2
1θ ¼ 0 ð37Þ

w ¼ ∂w
∂z

¼ θ ¼ 0 at z ¼ � 1

2
ð38Þ

As V
0!
¼ u i

!þ v j
!þ w k

!� �
þξ h

!
and T′ = θ + ξη are pe-

riodic in x and y directions, w(x, y, z, t) and θ(x, y, z, t) are also
periodic with wavenumbers ax and ay in x and y directions
respectively. Therefore, by normal mode analysis

w x; y; z; tð Þ ¼ W z; tð Þei axxþayyð Þ ð39Þ
θ x; y; z; tð Þ ¼ ψ z; tð Þei axxþayyð Þ ð40Þ
whereW and ψ are the amplitude of velocity and temperature
perturbations respectively. Defining resultant wave number as
a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2x þ a2y

q
, substituting Eq. (39), (40) in Eq. (36)–(38)

followed by some rearrangement results in,

2λ1
∂2

∂z2
−a2

� �
ψþ Rλ1−λ1

∂T
∂z

 !
W ¼ 0 ð41Þ
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2
∂2

∂z2
−a2

� �2

W−a2 Rλ1−λ1
∂T
∂z

 !
ψ ¼ 0 ð42Þ

W ¼ ∂W
∂z

¼ ψ ¼ 0 at z ¼ � 1

2
ð43Þ

At the onset of instability, perturbation variables tend to be
periodic in time with a frequency equal to the temperature
modulation frequency. Therefore, expressing W(z, t) and
ψ(z, t) in the form similar to the basic hydrostatic solution
can be obtained as

W z; tð Þ ¼ ws zð Þ þ 1

2
w1 zð Þeiσt þ w1 zð Þe−iσt
� �

ð44Þ

ψ z; tð Þ ¼ ψs zð Þ þ 1

2
ψ1 zð Þeiσt þ ψ1 zð Þe−iσt
� �

ð45Þ

Now, substituting Eq. (44), (45) and (9)–(12) in Eq.
(41)–(43), and equating terms containing like powers of eniσt

for n = − 1, 0, + 1 results in

2λ1
d2

dz2
−a2

� �
ψs þ Rλ1 þ λ1ð Þws−

δλ1

4
f w1 þ f w1

� �

¼ 0 ð46Þ

λ1
d2

dz2
−a2

� �
ψ1 þ

1

2
Rλ1 þ λ1ð Þw1−

δλ1

2
f ws ¼ 0 ð47Þ

λ1
d2

dz2
−a2

� �
ψ1 þ

1

2
Rλ1 þ λ1ð Þw1−

δλ1

2
f ws ¼ 0 ð48Þ

2
d2

dz2
−a2

� �2

ws−a2 Rλ1 þ λ1ð Þψs þ
a2δλ1

4
f ψ1 þ f ψ1

� �
¼ 0

ð49Þ
d2

dz2
−a2

� �2

w1−
a2

2
Rλ1 þ λ1ð Þψ1 þ

a2δλ1

2
f ψs ¼ 0 ð50Þ

d2

dz2
−a2

� �2

w1−
a2

2
Rλ1 þ λ1ð Þψ1 þ

a2δλ1

2
f ψs ¼ 0 ð51Þ

ws ¼ w1 ¼ w1 ¼ ψs ¼ ψ1 ¼ ψ1 ¼
dws

dz
¼ dw1

dz
¼ dw1

dz

¼ 0 at z ¼ � 1

2
ð52Þ

Results and Discussion

Equations (46)–(52) were solved numerically to obtain critical
Rayleigh number Racr. Racr was obtained using the current
formulation and is found to be independent of Pr. These equa-
tions were formulated into an eigenvalue problem, with Rλ1 as
the eigenvalue. Rλ1 is a function of λ1. Racris the minimum

Rλ1 (say Rλ1;min ) corresponding to an optimum λ1. λ1 is opti-
mum when Rλ1;min is maximum. The golden section method
was employed to obtain an optimum value of λ1. In the pres-
ent study, the maximum value of modulation amplitude is
limited to 0.1 to preserve the weakly nonlinear nature of the
disturbances.

Figure 2 depicts the comparison of the stability limits of
the asymptotic stability criterion obtained in the present
study with the stability limits associated with asymptotic
stability and strong global stability criterion of Homsy
(1974) for C = 0, σ = 1, and Pr = 1. Among the three sta-
bility criteria, only Homsy’s asymptotic stability limits are
dependent on Pr. It is well-known fact that, stricter the
stability criterion, the more unstable is the basic motion
at the lower value of stability limits. Thus, from the defi-
nitions of three stability criteria discussed in the introduc-
tion, stability limits should be increasing in subsequent
order beginning with the Homsy’s asymptotic stability cri-
terion followed by asymptotic stability criterion of the cur-
rent study, and Homsy’s strong global stability criterion at
last. Figure 2 shows the above behavior, which qualitative-
ly validates the current formulation.

The remainder of the paper is on the results of the asymp-
totic stability criterion of the current study. In Fig. 3, stability
limits of the current study were plotted as a function of σ for
C = 0 and for different values of δ. It is found that as the
amplitude of modulation decreases, the effect of modulation
reduced. In addition, it is observed that the asymptotic stability
criterion of the current study is independent of Pr.

Figures 4, 5, and 6 compare the stability limits of weakly
nonlinear energy stability theory considered in the present
study with the limits obtained using linear stability theory as
reported by Raju and Bhattacharyya (2010). Comparison of

0.000 0.025 0.050 0.075 0.100
1500

1525

1550

1575

1600

1625

1650

1675

1700

1725

 Stability limits of present study

Results of Homsy (1974)

 Strong global stability limits

 Asymptotic stability limits

aR
cr

Fig. 2 The stability limits of three stability criteria for C = 0, σ = 1, and
Pr = 1. Lower two curves are independent of Pr
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the stability limits of two theories was carried out for δ= 0.01.
In the current section, results obtained using weakly nonlinear
energy stability theory are discussed. The comparison of the
stability limits of the two theories are discussed in the next
section.

Racr is a function of δ, σ, C and independent of Pr.
Figures 4, 5 and 6 show Racr as a function of σ for C =
−1, 0 and 1 respectively. For C = − 1, 0, modulation is
destabilizing for all values of σ. Racr increases monotoni-
cally with σ and tends asymptotically to a value of
1707.41 at σ > 300. Therefore, for C = − 1, 0, the effect

of modulation becomes negligible as σ increases to a large
value. For C = 1, modulation is stabilizing for all values of
σ. Racr tends asymptotically to a value of 1707.73 at σ ≈
300. Therefore, for C = 1, the effect of modulation is
sustained to be stabilizing even if σ increases to a very
large value. It is observed that Racris shifting towards
higher values when modulation is changing from anti-
phase to in-phase. Therefore, the effect of modulation be-
comes more stabilizing when modulation is changing from
anti-phase to in-phase.

0 50 100 150 200 250 300
1590

1605

1620

1635

1650

1665

1680

1695

1710

 = 0.1

 = 0.05

 = 0.01

aR
cr

 = 0.001

Fig. 3 Variation of stability limits of present study with σ for different
values of δ for the case of C = 0
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No modulation

 Linear stability limits

 Weakly nonlinear stability limits

aR
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Pr= 1

5

10

50

Fig. 4 Linear stability and weakly nonlinear energy stability limits for
C = − 1, i.e., when modulation is in anti-phase. Weakly nonlinear energy
stability limits are independent of Pr
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 Linear stability limits

 Weakly nonlinear stability limits
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Fig. 5 Linear stability and weakly nonlinear energy stability limits for
C = 0, i.e., when only lower boundary is modulated. Weakly nonlinear
energy stability limits are independent of Pr
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Fig. 6 Linear stability and weakly nonlinear energy stability limits for
C = 1, i.e., when modulation is in-phase. Weakly nonlinear energy
stability limits are independent of Pr
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Comparison of Linear Stability and Weakly
Nonlinear Energy Stability Theory Results

In the present section, the comparison of the stability limits of
linear stability theory (Raju and Bhattacharyya (2010)) and
weakly nonlinear energy stability theory of the present study
are discussed.

Raju and Bhattacharyya (2010) calculated the shift in the

critical Rayleigh number Ra 2ð Þ
cr from the solvability condition

obtained using the adjoint method. Critical Rayleigh number

was computed using Racr ¼ Ra 0ð Þ
cr þ δ2Ra 2ð Þ

cr . Here Ra 0ð Þ
cr is

the critical Rayleigh number for the unmodulated case, which
is 1707.41. In linear theory, Racr is a function of δ, σ, C and
Pr. Regarding linear stability, the effect of modulation be-
comes negligible at σ ≈ 100 for C = − 1, 0 (Figs. 4 and 5)
and at σ ≈ 200 for C = 1 (Fig. 6).

When modulation is in anti-phase and when only lower
boundary is modulated (Figs. 4 and 5), subcritical instability
is noticed for all values of σ and Pr. For a given Pr, the range
of subcritical instability decreases with an increase in σ and
becomes constant at very large values of σ. As Pr increases,
the range of subcritical instability decreases till σ ≈ 100. For a
given value of σ and Pr, the range of subcritical instability is
larger when modulation is in anti-phase.

When modulation is in-phase (Fig. 6), supercritical sta-
bility occurs for all values of σ and Pr. For a given Pr, the
range of supercritical stability is nearly constant for all
values of σ. As Pr increases, the range of supercritical
stability increases till σ ≈ 200.

For C = −1, 0 and 1, for a given value of σ and Pr, the shift
occurred in the critical Rayleigh number due to the tempera-
ture modulation i.e., ∣Racr, modulation − Racr, nomodulation∣ is
higher in case of weakly nonlinear energy stability theory
when compared to linear stability theory. Thus, the effect of
modulation is weaker on infinitesimal disturbances.

Conclusions

In the present study, critical Rayleigh number for the rigid
boundary configuration as shown in Fig. 1 has been carried
out using weakly nonlinear theory. Time-periodic modulated
temperature is imposed on rigid boundaries. For all the three
cases under consideration, critical Rayleigh number was
found to be independent of Prandtl number. A coupling pa-
rameter λ1 was introduced to optimize the stability limits,
which was computed by employing the golden section meth-
od. To preserve the weakly nonlinear nature of the distur-
bances, the maximum value of modulation amplitude was

limited to 0.1. The current formulation was validated qualita-
tively by comparing the results with the results of Homsy
(1974). Whenmodulation is in anti-phase and when only low-
er boundary is modulated, modulation is destabilizing for all
values of σ and Pr. The range of subcritical instability de-
creases with an increase in σ and Pr. For a given value of σ
and Pr, the range of subcritical instability is larger when mod-
ulation is in anti-phase. The effect of modulation becomes
more stabilizing when modulation is changing from anti-
phase to in-phase. Supercritical stability occurs when modu-
lation is in-phase, for all values of σ and Pr. The effect of
modulation was found to be weaker on infinitesimal distur-
bances in all the three cases of the relative phase of tempera-
ture modulation between two boundaries. Therefore, the pres-
ent work helps in determining the factors to achieve the delay
or onset of Rayleigh-Benard instability through different
means of temperature modulation which is required in various
practical applications.
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