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Abstract
We consider forced oscillations of a oblate fluid drop, which is surrounded by another liquid and confined between two
parallel rigid plates subject to vibrations. The axisymmetrical vibration force is parallel to the symmetry axis of the drop.
The velocity of the contact line motion is proportional to the deviation of the contact angle from its equilibrium value. The
proportionality factors are different for each solid plate , which accounts for the reason of excitation of additional shape
oscillation modes and the appearance of new resonant frequencies. The solution of the boundary value problem is found
using the Fourier series expansion into eigenfunctions of the Laplace operator.

Keywords Cylindrical drop · Fluid drop · Wettability · Contact line dynamics · Force oscillations ·
Axisymmetrical oscillations

Introduction

The surface properties of the substrate have a significant
impact on the dynamics of the contact line and the
contact angle (Benilov 2010; Borcia et al. 2019; Savva and
Kalliadasis 2013). Introduction of a coupling coefficient
accounting for the interaction between the contact line and
substrate is an effective and and well established approach.
The author of work (Hocking 1987a) have proposed
an effective boundary condition that linearly relates the
velocity of movement of the contact line and the deviation
of the contact angle

∂ζ ∗

∂t∗
= Λ∗k · ∇ζ ∗, (1)

where ζ ∗ is the deviation of the interface from the
equilibrium position, k is the external normal to the
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solid surface, Λ∗ is a phenomenological constant (the so-
called wetting parameter or Hocking parameter) having a
dimension of a velocity. The accepted boundary condition
(1) is associated with two important constraints: (a) ζ ∗ =
0 – the requirement of a fixed contact line (pinned-end
edge condition, for example Benilov (2016) and Demin
(2008)), (b) k · ∇ζ ∗ = 0 – a constant contact angle (free
contact line, for example Alabuzhev and Lyubimov (2005)).
Many other authors used condition (1) in tackling a variety
of problems (Alabuzhev 2016; Alabuzhev and Kaysina
2016; Borkar and Tsamopoulus 1991; Perlin et al. 2004;
Shklyaev and Straube 2008). The problems Alabuzhev and
Kashina (2019); Kashina and Alabuzhev (2018, 2019a),
included the modified condition (1) with an external
force, whereas the general case of the condition (1)
in the problems (Hocking 1987b; Fayzrakhmanova and
Straube 2009; Fayzrakhmanova et al. 2011) allowed for the
hysteresis of the contact angle. In Viola et al. (2018) and
Viola and Gallaire (2018) authors adopted the linear model
(1) to a nonlinear empiric law (Dussan 1979; Voinov 1976)
for the contact line, which takes into account the contact
angle hysteresis trough adding a non-linear term.

The effect of viscosity becomes significant only in thin
boundary layers near a solid surface under high-frequency
vibrations, and the motion of the contact line is determined
mainly by the rapidly oscillating pressure field (Benilov
2016; Klimenko and Lyubimov 2012; 2018). Thus, it is
possible to describe the non-viscous behavior of a fluid in
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the core by considering only the viscosity of the dynamic
boundary layer near the solid substrate (about vanishing
kinematic viscosity (Goldobin 2017)). Complex processes
occurring in the immediate vicinity of the contact line are
excluded from consideration due to the use of the effective
boundary conditions (1) imposed on the dynamics of the
visible contact angle. So, in the framework of the inviscid
fluid model, the attempts made in Benilov (2010,2011);
Benilov and Billingham (2011); Benilov and Cummins
(2013); Bradshaw and Billingham (2018) were directed
toward findinga reasonable explanationof thenontrivial behavior
of a drop on an inclined plane under vertical vibrations (e.g. the
drop can climb uphill) (Brunet et al. 2007; Brunet et al. 2009).

The Hocking parameter is a constant in most of the
works listed above. Authors Miles (1991) suggested that
the contact line variation should not necessarily coincide in
phase with the contact angle, i.e., the Hocking parameter
is complex. The force oscillations was considered in
Alabuzhev (2016) and Alabuzhev and Lyubimov (2007),
and the free oscillations in Alabuzhev and Lyubimov (2007)
for the case of an identical homogeneous plate surfaces.
The problem of an identical inhomogeneous surfaces was
considered in Alabuzhev (2018) (with b.c. (1)), Kashina and
Alabuzhev (2019b) (with modified b.c. (1) (Alabuzhev and
Kashina 2019)). The Hocking parameter was represented as
a coordinate function just as a tensorial local slip boundary
condition (Asmolov et al. 2018; Dubov et al. 2018). The
natural oscillations of a drop in the case of different
plate surfaces were studied in Alabuzhev and Kashina
(2019). In this article we consider the axisymmetrical forced
oscillations of a cylindrical fluid drop, which is surrounded
by another ideal liquid. The drop is sandwiched between
two plates with different surfaces, the same as considered
in Alabuzhev and Kashina (2019). The force of the external
electric field acts only on the contact line at a double
frequency in Alabuzhev and Kashina (2019), while in our
research, the vibration force acts on the this systemat a single
frequency as a whole. This difference significantly changes
the behavior of the system, especially for small Hocking
parameters. Furthermore, our results can be potentially
interesting in studying the thermocapillaryMarangoni effect
and the dynamics of drops (bubbles) in both isothermal and
non-isothermal flows (Bekezhanova and Goncharova 2019).

Problem Formulation

Let us consider an oblate drop of incompressible liquid
of density ρ∗

i and kinematic viscosity ν∗
i , as shown in

Fig. 1. This drop is placed between two parallel plates
and surrounded an incompressible liquid of density ρ∗

e and
kinematic viscosity ν∗

e . We admit that the drop is small
enough so that its shape can be hardly distorted by gravity
and hence the interface has the form of a circular cylinder of

Fig. 1 Geometry of problem

radius R∗ and the equilibrium contact angle equals π/2. We
assume that the solid substrates are subjected to transverse
vibrations with an amplitude a∗ and a frequency ω∗.

The amplitude of external force is considered small
in the sense that a∗ � R∗ and the frequency of the
substrate oscillations is high enough ω∗R∗2 � ν∗. Viscous
boundary layers, which arise near the rigid plates and near
the interface, become very thin at such frequency. In another
way, the frequency constraints allow us to neglect viscous
dissipation in fluids, which renders the use of inviscid liquid
approximation quite reasonable. However, the frequency
is assumed comparable with the eigenfrequencies of free
oscillations for a cylindrical drop of radius R∗: Ω∗2

m =
m(m2 − 1) ∗ σ ∗/

((
ρ∗

i + ρ∗
e

)
R∗3), where m is an azimuthal

number, σ ∗ is the surface tension coefficient. Moreover the
fluid motion in the drop (or external liquid) is assumed
to be incompressible, i.e. ω∗R∗ � c∗, where c∗ is the
sound velocity. For example, for water drop in air (σ ∗ ∼
102 g/s2, ρ∗

i ∼ 1 g/cm3, ρ∗
e ∼ 10−3 g/cm3, ν∗ ∼

10−2 cm2/s, c∗ ∼ 1.5 · 105 cm/s) of radius R∗ ∼
1cm – 0.1 rad/s � ω∗ � 105 rad/s and Ω∗

m ∼
10

√
m(m2 − 1)rad/s.

Let the drop’s shape be described by the equation r∗ = R∗
0 +

ζ ∗ (α, z∗, t∗) in the cylindrical coordinates r∗, α, z∗ with the
origin in the center of the cylinder.On the assumption of a poten-
tial liquid motion, we introduce the velocity potential v∗ =
∇ϕ∗. We note again (see Section “Introduction”) that in the
problemunder consideration, the energy dissipation is due to the
Hocking condition, even despite the model of an inviscid fluid.
This allows us to use the potential flow according to the
Kelvin’s circulation theorem.

The dimensionless amplitude of oscillations is given
as ε = A∗/R∗ � 1, which allows us to linearize the
governing equations and simplify the boundary conditions.
Taking the length R∗

0 , the height h∗, the density ρ∗
e +

ρ∗
i , the time σ−1/2

√(
ρ∗

e + ρ∗
i

)
R∗3, the velocity potential

A∗√σ
((

ρ∗
e + ρ∗

i

)
R∗3)−1/2

, the pressure A∗σ(R∗)−2 and
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the deviation of the surface A∗ as characteristic quantities,
we pass to dimensionless variables and obtain the following
linear problem

pj = −ρj

(
∂ϕj

∂t
− ω2zeiωt

)
, �ϕj = 0, (2)

� = 1

r

∂

∂r

(
r

∂

∂r

)
+ b2

∂2

∂z2
,

r = 1 :
[
∂ϕ

∂r

]
=0,

∂ζ

∂t
= ∂ϕ

∂r
, [p] = ζ + b2

∂2ζ

∂z2
, (3)

z = ±1

2
: ∂ϕ

∂z
= 0, (4)

r = 1, z = ±1

2
: ∂ζ

∂t
= ∓λu,b

∂ζ

∂z
, (5)

where p is the fluid pressure, j = i, e, λu

and λb are Hocking parameters parameters on
the “upper” (z = 0.5) and “bottom” (z = −0.5)
plates, respectively, the square brackets denote the jump in the

quantity at the interface between the surrounding liquid and
the drop. The external force (2) excites only axisymmetrical
oscillations (independent of the azimuth angle α), therefore
the angle derivative is omitted in the equations and the
boundary conditions.

The boundary-value problem (2)–(5) involves five parame-
ters:

the small vibrations amplitude – ε = A∗(R∗)−1,
the aspect ratio – b = R∗h−1,
the dimensionless densities – ρi = ρ∗

i

(
ρ∗

e + ρ∗
i

)−1 and

ρe = ρ∗
e

(
ρ∗

e + ρ∗
i

)−1,

the wetting parameter – λ = Λ∗bσ−1/2
√(

ρ∗
e + ρ∗

i

)
R∗,

the force frequency – ω = ω∗σ−1/2
√(

ρ∗
e + ρ∗

i

)
R∗3.

Method of Solution

Wewill consider only an axisymmetrical mode of the forced
oscillations of the drop. Note, the natural axisymmetrical

Fig. 2 Plots of the amplitudes of oscillations of the contact lines ζu (a)
and ζb (d), the side-surface position ζq (b) and ζ0 (c), and the contact
angles γu (e) and γb as functions of the frequency ω of the external

vibrations for different values of the Hocking parameter λb (b = 1,
λu = 1, ρi = 0.7). The cases of λb = 0.1, 1 and 10 correspond to the
solid, dashed and dotted lines, respectively
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oscillations of this system were studied in Alabuzhev and
Kashina (2019). We will search for the solution of problem
(2) - (5) in the form of a Fourier series expansion into the
basis functions of the Laplace operator taking into account
the boundary conditions (4)

ϕi (r, z, t) = Re
(
iωφi (r, z) eiωt

)
, (6)

ϕe (r, z, t) = Re
(
iωφe (r, z) eiωt

)
, (7)

ζ (z, t) = Re
(
ξ (z) eiωt

)
, (8)

φi (r, z) =
∞∑

k=0

(
a

(0)
k F

(0)
k (r, z) + a

(1)
k F

(1)
k (r, z)

)
,

φe (r, z) =
∞∑

k=0

(
b

(0)
k G

(0)
k (r, z) + b

(1)
k G

(1)
k (r, z)

)
,

ξ (z) =
∞∑

k=0

(
c
(0)
k Z

(0)
k (z) + c

(1)
k Z

(1)
k (z)

)
+

+d0 cos
( z

b

)
+ d1 sin

( z

b

)
,

F
(0)
k (r, z) = R

(0i)
k (r)Z

(0)
k (z) ,

F
(1)
k (r, z) = R

(1i)
k (r)Z

(1)
k (z) ,

G
(0)
k (r, z) = R

(0e)
k (r)Z

(0)
k (z) ,

G
(1)
k (r, z) = R

(1e)
k (r)Z

(1)
k (z) ,

R
(0i)
0 (r) = const, R

(0e)
0 (r) = const,

R
(0i)
k (r) = I0 (2kπbr) , R

(1i)
k (r) = I0 ((2k + 1) πbr) ,

R
(0e)
k (r) = K0 (2kπbr) , R

(1e)
k (r) = K0 ((2k + 1) πbr) ,

Z
(0)
k (z) = cos (2kπz), Z

(1)
k (z) = sin ((2k + 1) πz),

where I0 (r) and K0 (r) are the modified Bessel functions of
the first and second kinds, respectively, a(0)

k , a(1)
k , b(0)

k , b(1)
k ,

c
(0)
k , c

(1)
k , d0 and d1 are unknown amplitudes. The last two

terms in the solution for ζ (z, t) (8) are a particular solution
to the normal stress balance condition (3) for even and odd
mod, respectively. Modes parity means the parity of the
functions (6)-(8) with respect to a change in the sign of the
z coordinate. These expressions are equivalent to the similar
solutions obtained in Alabuzhev (2016) for λu = λb = λ.

Substituting solutions (6)-(8) into the problem (2)-(5), we
obtain the expressions for the unknowns amplitudes:

d0 = (Nu − Nb) L

MbNu + MuNb

, d1 = (Mu + Mb) L

MbNu + MuNb

,

Mj = M + λjB, Nj = N − λjA, j = u, b,

M = ω2
∞∑

k=1

(−1)kfk

Ω
(0)2
k − ω2

− f0 + cos

(
1

2b

)
,

N = ω2
∞∑

k=0

(−1)kgk

Ω
(1)2
k − ω2

+ sin

(
1

2b

)
,

L = ω2 (ρi −ρe)

∞∑
k=0

(−1)kΩ(1)2
k ln(

(2k + 1)2π2b2−1
)(

Ω
(1)2
k −ω2

) ,

A = 1

2iωb
cos

(
1

2b

)
, B = 1

2iωb
sin

(
1

2b

)
,

c
(0)
0 = −f0d0, c

(0)
k = ω2fkd0

Ω
(0)2
k − ω2

,

c
(1)
k = ω2gkd1

Ω
(1)2
k − ω2

− ω2 (ρi − ρe)Ω
(1)2
k ln(

(2k + 1)2π2b2 − 1
)(

Ω
(1)2
k − ω2

) ,

a
(0)
k R0i

kr (1) = ω
(
c
(0)
k + fkd0

)
,

a
(1)
k R1i

kr (1) = ω
(
c
(1)
k + gkd1

)
,

−ρiω
2a

(0)
0 = c(0), a

(0)
k R0i

kr (1) = b
(0)
k R0e

kr (1),

b
(0)
0 = 0, a

(1)
k R1i

kr (1) = b1kR
1e
kr (1),

Ω
(0)2
k = 4π2k2b2 − 1

ρi
R

(0i)
k (1)

R
(0i)
kr (1)

− ρe
R

(0e)
k (1)

R
(0e)
kr (1)

,

Ω
(1)2
k = (2k + 1)2π2b2 − 1

ρi
R

(1i)
k (1)

R
(1i)
kr (1)

− ρe
R

(1e)
k (1)

R
(1e)
kr (1)

,

R
(0i)
kr (r) = d

dr
Ik (2kπbr) ,

R
(1i)
kr (r) = d

dr
Ik ((2k + 1) πbr) ,

R
(0e)
kr (r) = d

dr
Kk (2kπbr) ,

R
(1e)
kr (r) = d

dr
Kk ((2k + 1) πbr) , (9)

where fk , gk and lk are the coefficients of the Fourier series
expansions of the functions cos

(
b(−1)z

)
, sin

(
b(−1)z

)
and z,

respectively, Ω(0)
k and Ω

(1)
k are the eigenfrequencies of the

drop with a freely moving contact line (i.e., at λ → ∞)
(Alabuzhev 2016). In study (Alabuzhev 2016) only odd
modes of forced oscillations were detected; in our case, both
even and odd modes are excited due to different Hocking
parameters.

It is easy to verify that these amplitudes are complex
for any set of parameters, except for the limiting cases
corresponding to a fixed contact line or a constant contact
angle. This fact leads to a phase shift between different
shape modes of oscillations, i.e. to the appearance of
traveling capillary waves on the lateral surface of the drop. It
should be noted that, despite the presence of factorsΩ2

k −ω2

in the denominators, the natural frequencies of oscillation
of a cylindrical drop Ωk are not resonant, except for the
limiting case of a fixed contact angle (λu � 1, λb � 1).
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There are no forced oscillations if the liquids densities are
equal, i.e. ρi = ρe.

Results and discussion

For convenience, we introduce the following notation:
ξ(0.5) = ζu and ξ(−0.5) = ζb are the oscillation amplitude
of the contact line at the “upper” plate and the “bottom”
plate respectively, ξ(0) = ζ0 is the surface oscillation
amplitude at z = 0, ξ(0.25) = ζq is the surface oscillation
amplitudes at z = 0.25, γu and γb are the inner contact
angle, i.e. the contact angle inside the drop, which is counted
from the substrate towards the interface, δu = γu − 0.5π
and δu = γb − 0.5π are deviations of the contact angles. In
fact, the last expression refers to the boundary angle, which
is measured with respect to the interface.

The dependence of the surface oscillations amplitudes
and the contact angle are given in Figs. 2, 3 for different
values of the Hocking parameter λu and the aspect ratio b.

The amplitudes of the drop surface oscillations and the
contact angle reach maximum values in the linear resonance
mode (Fig. 2). It is also seen from the pictures that the
values of the resonant frequencies decrease with an increase
of λu or λb. Despite weak dissipation at small values of the
parameter λb, the amplitude of contact line oscillations at
z = 0.5 is greater than it is at z = −0.5 (Fig. 2a,d). In
the opposite case, for large λb, the amplitude of oscillations
of the contact line on the “bottom” plate is larger than
on the “upper” one. The contact angle varies in a wide
range (Fig. 2e, f). It is important to note that if at least
one of the parameters λu or λb is finite, the amplitude
of the surface oscillations is always limited. The damping
coefficient of the free oscillations is maximum at finite
values of the Hocking parameters λu = O(1) and λb =
O(1). Consequently, dissipation is determined by the total
contribution of damping ratios and the curves have the
shape of a resonance curve (Fig. 2b). The amplitude of the
contact line oscillations tends to infinity at λ → ∞, but
the amplitude of the drop surface oscillations is also limited

Fig. 3 Plots of the amplitudes of oscillations of the contact lines ζu (a)
and ζb (d), the side-surface position ζq (b) and ζ0 (c), and the contact
angles γu (e) and γb as functions of the frequency ω of the external

vibrations for different values of the Hocking parameter λb (b = 0.32,
λu = 1, ρi = 0.7). The cases of λb = 0.1, 1 and 10 correspond to the
solid, dashed and dotted lines, respectively
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to infinity at λ → 0. The damping coefficients are small
in these limiting cases. The results for identical plates are
discussed in greater detail in paper (Alabuzhev 2016). For
example, zero amplitude of the drop surface oscillations is
observed at the center of the layer with λu = λb = 1
(Fig. 2c). In this situation, the external force excites only
odd shape modes.

At certain frequencies ω, the motion of a drop does not
depend on the parameters λu,b: the contact line looks like a
fixed contact line at any values of λu,b (Fig. 2). The values
of such “anti-resonant” frequencies are determined from the
solution (6)-(8):

d0 = 0, d1 = L

N
= 0, (10)

i.e. L = 0 and this solution yields only odd oscillations
modes. In this case the contact line is stationary:

c
(1)
k = − ω2 (ρi − ρe)Ω

(1)2
k ln(

(2k + 1)2π2b2 − 1
)(

Ω
(1)2
k − ω2

) ,

For example, in the limiting case where the contact line
is free (λu,b → ∞ and d0,1 = 0), the amplitudes c

(1)
k

are described by this expression for λu = λb = λ.
The amplitude of the k − th harmonic c

(1)
k begins to

increase without limitation and the influence of even weak
dissipation becomes significant for ω → Ω

(1)
k .

In the vicinity of the resonance frequency ω ≈ Ω
(1)
k the

deviation of the surface can be expressed as

ζ = −Ak sin ((2k + 1)πz) cos
(
Ω

(1)
k + βk

)
,

Ak = (ρi − ρe) Ω
(1)3
k ln

2
(
(2k + 1)2π2b2 − 1

)√(
Ω

(1)2
k − ω2

)
+ κ2

k

,

tanβk = κk

Ω
(1)
k − ω

, κk = 2b2Ω(1)2
k(

(2k + 1)2π2b2 − 1
)
λ
.

Here κk is the damping ratio of free oscillations,
similar to the attenuation coefficient of natural oscillations
(Alabuzhev 2016; Fayzrakhmanova and Straube 2009).
The dependence of the amplitude and phase shift of the
oscillations on the frequency in the neighborhood of the
resonance takes the form, which is typical of the systems
with weak dissipation. From the last expression, it follows
that at the frequency Ω

(1)
k (the resonance frequency shift is

proportional to λ−2 (Alabuzhev 2016; Fayzrakhmanova and
Straube 2009)) the oscillation amplitude takes the maximum
value

max (Ak) = λ
(ρi − ρe)Ω

(1)
k ln

4b2
. (11)

At the resonance point, the oscillation amplitude increases
with increasing mode number and the proportionality
coefficient for a large wetting parameter is (2k + 1)−2Ω

(1)
k .

These conclusions are valid for λε � 1. In the limiting
case where the contact line is fixed, the solution is given by
the general formulas (6)-(9), but the coefficients c

(0),(1)
k and

d0,1 are real, i.e. the oscillations of the substrate and droplet
occur in the same phase.

Vibrations excite both odd and even longitudinal vibra-
tional modes (along the symmetry axis z) as noted above.
Odd modes exist only with equal Hocking parameters
λu = λb = λ (see Alabuzhev (2016)). As a result, each
shape oscillation mode has two close resonant peaks (see
Figs. 2, 3). The amplitude of the “odd” peak is greater
than that of the “even” peak because the vibration force
pumps energy into the shape odd modes. This energy is
redistributed into an even mode due to the difference in the
properties of the surfaces (in fact, due to dissymmetry with
respect to the coordinate z). Resonance amplitudes can be
comparable in the center of the layer (at z = 0.5), since
the amplitude of the “odd” peak is zero for equal Hocking
parameters. Moreover, these peaks are more observable at
large values of the parameter λ.

Let’s consider the case of close values of Hocking
parameters: λu = λ + β, λb = λ, β � λ. The amplitudes
d0 and d1 defined in the solution (9) are represented as

d0 = βaB

2 (M + λB)
, d1 = a + βaA

2 (N − λA)
,

a = L

(N − λA)
,

so the correction to amplitude of the shape modes are
proportional to β. Nevertheless, the resonance can occur at
the frequencies of even modes and the resonance amplitude
will be noticeable. In the limiting cases of large and small
parameters λb (λu = O(1)), the solution (9) takes on a
simpler form:

λb → ∞ :
d0 = AL

NuB − MuA
, d1 = BL

NuB − MuA
,

λb → 0 :
d0 = − λuAL

NuM + MuN
, d1 = λuBL

NuM + MuN
.

Even in the dissipationless case of limiting resonant
frequencies (a fixed contact line or a fixed contact angle
on the bottom plate), these amplitudes will be finite. As
b decreases, the eigenfrequency of the first mode can
vanish in a certain interval of the values of the Hocking
parameter λu (λb is fixed) (Alabuzhev and Lyubimov 2007;
Alabuzhev and Kashina 2019). The width of this interval

550 Microgravity Sci. Technol. (2020) 32:545–553



Fig. 4 Evolution of the drop surface shape (a,e,i), the shape of the con-
tact line (b,c,f,g,j,k) and the contact angles (d,h,l). T = 2πω−1 is the
oscillation period (b = 1, ρi = 0.7, λu = 1, ε = 0.1), (a-d) ω = 10,

λb = 0.1, (e-h) ω = 25, λb = 1, (i-l) ω = 7, λb = 10, (a-c, e-g,i-
k) t = 0 – solid line, t = 0.125T – dashed , t = 0.25T – dotted,
t = 0.375T – dash-dotted

decreases with increasing the aspect ratio b. The reason for
frequency vanishing is following: damping is so intensive
(the parameter λu is finite) that the excitation of free
oscillations becomes impossible. For the surface modes of
eigenoscillations, the energy dissipation is proportional to
the surface area of the drop (the kinetic energy of drop
oscillations is proportional to the drop volume and the
energy of surface waves is proportional to the area of the
drop surface). Therefore, for a fixed volume of the drop, an
increase of value b corresponds to a decrease of the area
of the side surface of the drop, i.e., lower dissipation for
surface waves. At higher frequencies, this effect appears
when the aspect ratio b < π−1 (Alabuzhev and Lyubimov
2007; Alabuzhev and Kashina 2019), which corresponds
to one half of the wavelength of the Rayleigh-Plateau
instability for a liquid liquid column for h∗ = 2πR∗, i.e.,
for b = (2π)−1 (Plateau 1863; Rayleigh 1892). Thus, for
b = π−1, the critical thickness of the layer (and the height
of the cylindrical drop) is equal to the Rayleigh-Plateau
instability half-wavelength. As a result, the first resonant
maximum disappears at a minimum value b = 0.32 (Fig. 3)
and exist at b = 1 (Fig. 2). The values of eigenfrequencies

decrease with decreasing the aspect ratio b, therefore, the
resonant peaks are shifted to the left along ω–axis.

Figure 4 shows the profile of the lateral surface
(Fig. 4a,e,i), the contact line (Fig. 4b,c,f,g,j,k) and changes
in the internal contact angle (Fig. 4d,h,l) for several values
ω and λu,b at different moments of the oscillation period.
The shape of the drop surface depends on the frequency of
the vibrational field. For example, in Fig. 4, most of the
vibration energy at a given frequency ω ≈ 10 (see Fig. 2a)
is transferred to the lowest shape mode at λu = 1, λb = 0.1
(Fig. 2a) and the resonance frequency ω ≈ 7 is at λu = 1,
λb = 10. The case of “anti-resonant” frequency ω ≈ 25
(λu = λb = 1) is also shown in Fig. 2e-h.

The drop shape is described by an odd function in the
most cases (see Fig. 4a,e,i), despite the presence of two sets
of spatial harmonics (odd and even) in the solution (6)–
(8). The combination of even and odd functions describes
the shape of a drop in the vicinity of “even” resonances
(see Fig. 5a). Thus, the odd vibrations contain most of the
energy. However, the wave propagation patterns along the
lateral surface are significantly different in these two cases.
Figures 5b-d show variations of the wave crest position.
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Fig. 5 Evolution of the drop surface shape (a) and propagation of
waves along the drop surface (b-d). T = 2πω−1 is the oscillation
period (b = 1, ρi = 0.7, λu = 1), (a,b) ω = 19, λb = 0.1, ε = 0.1, (c)

ω = 7, λb = 10, (d) ω = 7, λb = 1, (a) t = 0 – solid line, t = 0.125T
– dashed , t = 0.25T – dotted, t = 0.375T – dash-dotted

In the case of an odd droplet shape the waves propagate
in the limited areas (Fig. 5c,d). They propagate along the
entire surface in the absence of symmetry (Fig. 5b), i.e. the
amplitude of even vibrations is comparable to the amplitude
of odd harmonics or even more.

Conclusion

The behavior of a cylindrical drop confined between solid
plates has been considered taking into account the dynamics
of the contact angle under axisymmetrical vibrations.
The solid plates have different Hocking parameters. The
boundary condition imposed on the contact line leads to
the damping of oscillations. In addition, there is a phase
shift between the oscillations of different parts of the liquid,
which leads to the appearance of traveling capillary surface
waves.

It is shown that an external force excites both the odd and
even spatial harmonics of oscillations due to different values
of Hocking parameters on the plates. The equality of these
parameters implies the occurrence of odd harmonics, only.

The study of forced vibrations revealed the existence
of resonance phenomena. Vibrations excite both the odd
and even longitudinal oscillation modes and as a result,
each shape oscillation mode has two close resonant peaks.
It is shown that dissipation at the contact line leads to a
limitation of the maximum amplitude of oscillations in the
resonance mode, as well as to a shift of the resonance
frequency. At finite values of the Hocking parameter λ, due
to dissipation in the process of the contact line motion, the
amplitude of oscillations remains limited.

In most cases, the drop shape is described by an
odd function, despite the presence of two sets of spatial
harmonics (odd and even) in the solution. The combination
of even and odd functions describes the shape of a drop
near “even” resonances. Thus, the odd vibrations contain
most of the energy. It is shown that the patterns of capillary
wave propagation along the lateral surface are significantly
different in these two cases. Capillary waves propagate in

the limited areas in the case of an odd droplet shape and
along the entire surface in the absence of symmetry, i.e. the
amplitude of even vibrations is comparable to the amplitude
of odd harmonics or even more.

The eigenfrequency of the first mode can be vanishes in
a certain interval of the values of the Hocking parameter
λu,b. The reason for frequency vanishing is that damping
is so intensive that the excitation of free oscillations is
impossible: for the surface modes of eigenoscillations, the
energy dissipation is proportional to the surface area of the
drop (the kinetic energy of drop oscillations is proportional
to the drop volume and the energy of surface waves is
proportional to the area of the drop surface). As a result, the
first resonant maximum disappears at small values of the
aspect ratio (radius-to-height ratio) b. Thus, one can set such
an aspect ratio of the drop that the characteristic frequency
of any mode is equal to zero, and, ultimately, determine the
Hocking parameter λ.
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