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Abstract
A dielectric fluid is confined in a stationary vertical cylindrical annulus. A temperature difference is applied between the two
cylinders, as well as an alternating electric potential. This configuration creates an active force called dielectrophoretic force,
which acts as a thermal buoyancy force. Different axial gravity intensities are considered, so that two thermal buoyancies
will affect the flow: the thermoelectric buoyancy intervenes in the radial direction and the Archimedean buoyancy acts in
the axial direction. Linear stability analysis and direct numerical simulation are performed following experimental research
that has been performed during parabolic flight campaigns.

Keywords Thermal convection · Dielectrophoretic force · Microgravity · Cylindrical annulus · Heat transfer ·
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Introduction

The application of an alternating electric field to a
non-isothermal dielectric fluid provides thermoelectric
buoyancy due to an electric gravity. In spherical and
cylindrical configurations, this gravity can provide a central
force field which is of most interest for geophysical and
astrophysical study, where radial forces play a predominant
role (Yavorskaya et al. 1984; Hart et al. 1986; Futterer et al.
2013). In the present work, we investigated the cylindrical
geometry which has also such an application if we consider
the flow at the equatorial region of planetary systems.
Another application for this geometry is the control of the
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heat transfer by dielectrophoretic force. In particular, the
heat transfer and its control under reduced gravity condition
are in the focus of attention of researchers (Evgeridis et al.
2011; Lotto et al. 2017). Experiments have been performed
under Earth’s gravity conditions (Chandra and Smylie
1972), and many theoretical and numerical works have been
done considering microgravity conditions in order to focus
on the effects of the thermoelectric buoyancy (Takashima
1980; Malik et al. 2012; Yoshikawa et al. 2013; Travnikov
et al. 2015, 2016).

During the last years, many experiments have been
conducted during parabolic flight campaigns, which is a
convenient way to get reasonable duration of weightlessness
environments (Futterer et al. 2016; Meyer et al. 2017).
These experiments have been performed for several annular
geometries, for various fluids, and for different intensities
of the axial gravity. In this framework, the study of the
effects of the combined action of the Archimedean and
thermoelectric buoyancies was performed through a linear
stability analysis in order to predict the critical threshold,
as well as the temporal and spatial structure of the flow.
Numerical simulations have also been performed while
taking into account the temporal variation of axial gravity
within a parabolic flight. In these simulations, the effect
of the thermoelectric buoyancy was only considered during
microgravity, but in practice, this buoyancy force can also
be active all along a parabola.
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This theoretical and numerical work come together with
the newest results of parabolic flight experiments which are
presented in the corresponding article of this issue.

The article is organized as follows. Section “Problem
Formulation” gives the problem formulation both for
the linear stability theory and for the direct numerical
simulation. Section “Linear Stability Results” is dedicated
to the results obtained from the linear stability analysis
and Section “Numerical Results” gives the results from
the numerical simulations. The last section addresses a
conclusion of this work.

Problem Formulation

We consider an incompressible dielectric fluid of density ρ,
kinematic viscosity ν, thermal diffusivity κ and permittivity
ε, confined between two vertical coaxial cylinders. The
inner and outer cylinders are of radii R1 and R2 =
R1 + d and are maintained at the temperatures T1 and
T2 < T1 respectively. An electric potential of the form√
2V0 sin(2πf t) is applied between the two cylinders,

producing a radial electric field E (Fig. 1). The temperature
difference �T = T1 − T2 induces a radial stratification of
the density and of its permittivity, which can be modelized
by ρ = ρ2(1 − αθ) and ε = ε2(1 − eθ) respectively, where
α is the thermal expansion coefficient, e is the coefficient of
thermal variation of the permittivity, and θ = T − T2 is the

Fig. 1 Sketch of the annular geometry

temperature deviation from the reference temperature T2. ρ2
and ε2 are the density and the permittivity at the reference
temperature, respectively. Earth’s gravity will act on the
density stratification to give the Archimedean buoyancy.

Due to the electric field, a dielectric fluid will undergo
the electrohydrodynamic (EHD) force which is given by
(Landau and Lifshitz 1984):

FEHD = ρeE − 1

2
E2∇ε + ∇

[
1

2
ρ

(
∂ε

∂ρ

)
θ

E2
]

, (1)

where ρe is the electric charge density. The first term of
Eq. 1 is the electrophoretic force and corresponds to the
Coulomb force acting on free charges. Most of the time, this
term is the dominant one, but for an alternating electric field
with frequency much larger than the inverse of relaxation
time of free charges τe = ε/σe, where σe is the electric con-
ductivity, there is no accumulation of charges. Thus the electro-
phoretic force is negligible. The third term of Eq. 1, called the
electrostrictive force, is a gradient that will not affect the dyna-
mic of the fluid, unless the fluid is compressible or has free sur-
faces. This term will be injected into the pressure gradient
of the momentum equation. The second term of Eq. 1 called
the dielectrophoretic (DEP) force is proportional to the per-
mittivity gradient. Using the Boussinesq approximation for
the permittivity, the DEP force can be recast as:

FDEP = ∇
(

ε2eE2θ

2

)
− ραθge. (2)

Since it is a gradient, the first term of Eq. 2 will not affect
the dynamics of the fluid and will also be included into the
pressure gradient of the momentum equation. The second
term of Eq. 2 is analogue to a thermal buoyancy induced by
an effective electric gravity ge given by:

ge = ∇
(

eε2E2

2αρ2

)
(3)

and can be interpreted as the energy stored between the two
cylindrical electrodes. As in the Rayleigh-Bénard problem,
the DEP force induces instabilities if the electric Rayleigh
number L = α�Tged

3/νκ is larger than a critical value
(Yoshikawa et al. 2013).

Flow Equations

The governing equations for the velocity field u =
(u, v, w), temperature θ and electric potential φ are the
continuity equation, the momentum equations, the energy
equation and Gauss’ law for electricity

∇ · u = 0 (4a)
∂u
∂t

+ u · ∇u = −∇π + ν�u − αθ (g + ge) (4b)

∂θ

∂t
+ u · ∇θ = κ�θ (4c)

∇ · (εE) = 0 with E = −∇φ, (4d)
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where π , the generalized pressure, is given by:

π = p

ρ2
+ gz − eθε2E2

2ρ2
− 1

2

(
∂ε

∂ρ

)
θ

E2. (5)

Since the frequency of the electric potential is also assumed
to be high compared to the inverse of the viscous diffusion
time τν = d2/ν and of the thermal diffusion time τκ =
d2/κ , only the temporal average of the thermoelectric buoy-
ancy affects the fluid motion. Thus we reduce the problem
with an a.c. electric field to the one with an effective static
tension V0. In this assumption, the boundary conditions at
the two cylindrical walls read:{
u = 0, θ = �T, φ = V0 at r = R1

u = 0, θ = 0, φ = 0 at r = R2.
(6)

Nondimensionalizing with scales d of length, τν of time,
�T of temperature and V0 of electric tension, Eqs. 4a–d
reads:

∇ · u = 0 (7a)

∂u
∂t

+ u · ∇u = −∇π + �u + Grθez − γeV
2
E

Pr
θge (7b)

∂θ

∂t
+ u · ∇θ = 1

Pr
�θ (7c)

∇ · [(1 − γeθ)∇φ] = 0, (7d)

where Pr = ν/κ is the Prandtl number, Gr =
α�Tgd3/ν2 is the Grashof number, VE = V0/

√
ρ2νκ/ε2 is

the dimensionless electric potential, and γe = e�T is the
thermoelectric parameter. The boundary conditions (6) then
become:{
u = 0, θ = 1, φ = 1 at r = η/(1 − η)

u = 0, θ = 0, φ = 0 at r = 1/(1 − η),
(8)

where η = R1/R2 is the radius ratio between the
two cylinders. The Galileo number Ga = √

gd3/ν is a
characteristics of the flow configuration and it allows to
make the axial gravity intensity constant. Therefore, Gr only
varies with the temperature. The Rayleigh number Ra =
PrGr will also be used to characterize the Archimedean
buoyancy. Additionally we introduce δ = α/e, which is
a dimensionless fluid property and thermally links the two
thermal buoyancies.

Base State

Considering a stationary axisymmetric and axially invariant
state (cylinders of infinite length), integration of the energy
(7c) and that of the Gauss’ law (7d) give the base
temperature and the base electric potential respectively:

�(r) = ln [(1 − η)r]

ln(η)
, �(r) = ln(1 − γe�(r))

ln(1 − γe)
. (9)

Considering the condition of zero axial volume flux, the
axial component of the momentum (7b) yields the following

expression for the base axial velocity (Choi and Korpela
1980):

W(r) = Gr
(
A

[
(1 − η)2 r2 − 1 + (1 − η)2 �

]

− r2 (1 − η)2 − η2

4 (1 − η)2
�

)
, (10)

where the coefficient A is:

A = (1 − η2)(1 − 3η2) − 4η4 ln(η)

16(1 − η)2
[
(1 − η2)2 + (1 − η4) ln(η)

] .
The base electric gravity is radially oriented and is defined
as positive when it is centripetal. Therefore the base electric
gravity is given by (Yoshikawa et al. 2013):

Ge(r) = 1

(ln η)2r3
F(r, γe, η) with

F = γ 2
e [1 − γe (� + 1/ ln(η))]

[ln (1 − γe)]2 (1 − γe�)3
. (11)

The base electric gravity behaves like the inverse of r3

and is inhomogeneous because of curvature. The factor
F corresponds to the thermoelectric coupling. It describes
different behaviours depending on the direction of the
temperature gradient and on η. In outward heating (γe > 0),
the base electric gravity is always centripetal. Nevertheless
for inward heating (γe < 0) the basic electric gravity can
change its sign within the gap when η is sufficiently large,
i.e. for low curvature. In this study we consider the case of
outward heating.

Linear Stability Analysis

We linearised the equations about the base state. The
perturbations are developed into normal modes of complex
growth rate s, azimuthal mode number n and axial
wavenumber k: (û, v̂, ŵ, π̂ , θ̂ , φ̂)est+inϕ+ikz, where the
complex amplitudes of perturbations, indicated with a hat,
depend only on the radial position. Equations 7a–d are thus
written as follows:

0 =
(

D + 1

r

)
û + in

r
v̂ + ikŵ (12a)

sû =
(

� − 1

r2
− ikW

)
û − 2in

r2
v̂ − Dπ̂

−γeV
2
E

Pr

(
−θ̂Ge + ĝe,r�

)
(12b)

sv̂ = 2in

r2
û +

(
� − 1

r2
− ikW

)
v̂ − in

r
π̂

−γeV
2
E

Pr
ĝe,ϕ� (12c)
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sŵ = (DW) û + (� − ikW) ŵ − ikπ̂ + Grθ̂

−γeV
2
E

Pr
ĝe,z� (12d)

sθ̂ = − (D�) û +
(

1

Pr
� − ikW

)
θ̂ (12e)

0 = −γe

[
D�D + 1

r
D� +

(
D2�

)]
θ̂

+ [(1 − γe�)� − γeD�D] φ̂, (12f)

where D = d/dr is the radial derivative operator, and
� = d2/dr2 + d/rdr − (n2/r2 + k2) is the Laplacian
operator. The perturbation electric gravity (ĝe,r , ĝe,ϕ, ĝe,z)

has been introduced:

ĝe,r =
(
D�D2 + D2�D

)
φ̂ , ĝe,ϕ = in

r
D�Dφ̂ ,

ĝe,z = ikD�Dφ̂. (13)

The boundary conditions for the perturbations are homoge-
neous and read:

û = v̂ = ŵ = Dû = θ̂ = φ̂ = 0 at r = η

1 − η
and

1

1 − η
.

(14)

Equations 12a–f together with boundary conditions (14) are
invariant by the operation (n, v̂) → (−n, −v̂). It means that
once the eigenvalue s and its corresponding eigenfunctions
(û, v̂, ŵ, π̂ , θ̂ , φ̂) are known for a given mode (n, k),
the mode (−n, k) will give the same eigenvalue s with
eigenfunctions (û,−v̂, ŵ, π̂ , θ̂ , φ̂). The stability condition
of both modes are identical.

The eigenvalue problem is discretized by a Chebyshev
spectral collocation method and is solved by a QZ decom-
position. To ensure the convergence of the computation, the
order of Chebyshev polynomials is set to 30.

Numerical Simulation

Unsteady 3D direct numerical simulations (DNS) are
performed using the finite elements code COMSOL
Multiphysics v3.5. The code has been used to simulate the
temporal evolution of the axial gravity during parabolic
flights (Pletser et al. 2016). During one parabola, the
experiment successively undergoes a 1g phase of about one
minute, a 1.8g phase of 20s, followed by a microgravity
phase of 22s, and another 1.8g phase of 20s. The duration
of the microgravity phase is short for such experiments,
therefore it is of most interest to have an insight of
the effects of the previous phases of gravity on the
flow behaviour during the microgravity phase. For these
simulations, the cylindrical annulus has an inner radius of
R1 = 5mm, an outer radius of R2 = 10mm, and a height
of l = 30mm. It yields to a radius ratio of η = 0.5 and
an aspect ratio of � = l/d = 6, which corresponds to

the experimental geometry. The top and bottom surfaces
of the cylindrical annulus are supposed to be adiabatic
with perfect electric insulation. The working fluid has the
physical properties of silicone oil AK5, which is the fluid
used during the parabolic flight campaigns (Meyer et al.
2017). It has a Prandtl number of Pr = 65 and a ratio
between the thermal coefficients of δ = 1.01. Under 1g
condition, the Galileo number is Ga = 228.

Figure 2 shows the evolution of the three normalized
components of the acceleration, measured by Novespace
inside the airplane, during the first half of a parabola (the
first hypergravity phase and some seconds of microgravity).
Only the axial component of the acceleration gz has
been taken into account for the simulations. An analytical
function is used to modelize the axial gravity, which is given
by:

gz(t) = arctan [1.4 (t − 1.9)]

π
· t + 1.3875 for t ≤ 10s

gz(t) = arctan [1.4 (22.5 − t)]

π/2
· t + 0.8978 for t > 10s.

The model gives empirically the variation of the axial
gravity from the 1g phase to the μg phase, passing through
the hypergravity phase. Then gz is zero during theμg phase,
and the second hypergravity phase is symmetric to the first
one.

Linear Stability Results

The eigenvalue s = σ + iω is computed for a given set
of parameters (η,Pr,Ga, δ, Gr, VE, n, k). The state where
the maximum value of the growth rate’s real part σ is equal

Fig. 2 Temporal behaviour of the gravity components inside the
airplane during the first part of a parabola. For simulations, the axial
gravity has been modelized with an analytical function. The gravity is
below 0.01g after t = 356.5s, and this lasts up to t = 378s
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to zero is called the marginal state. Marginal curves can
be plotted in a diagram spanned by (k, VE) or (k,Gr) for
various azimuthal mode number n. The global minimum
of these curves corresponds to the critical state denoted by
(Grc, VEc, nc, kc, ωc) where ωc is the critical frequency of
vortices propagation. The angle � of modes with respect
to the azimuthal direction and the total wave number q are
defined as:

qc =
√

k2ϕ + k2, � = 180

π
arctan

kϕ

k
where

kϕ = 2nc(1 − η)

1 + η
. (15)

The total wavenumber of the critical mode qc gives the
wavenumber measured along the transverse direction to the
rolls at the median surface between the two electrodes.

Stability Parameters

In the absence of electric tension, critical modes develop
either as hydrodynamic mode (HM) or thermal mode (TM)
depending on the Prandtl number and on the curvature of the
cylindrical annulus (Bahloul et al. 2000). These modes are
both axisymmetric (nc = 0) and oscillatory (ωc �= 0) and
are distinguishable by their wavelengths. Figure 3 shows
variations of the critical parameters as functions of VE for

Pr = 10. For this value of the Prandtl number, TM are
critical in the absence of electric potential. Applying a small
electric tension, thermal modes remain critical, and the
corresponding critical parameters are nearly independent
from VE until a certain value of VE denoted by V ∗

E . At V ∗
E ,

two modes of different nature have the same growth rate and
are thus critical at the same time. The points (V ∗

E,Ra∗) are
called codimension-2 points. Beyond this particular value of
the dimensionless electric potential, the threshold strongly
decreases with the electric potential (Fig. 3a). The axial
wavenumber becomes equal to zero (Fig. 3b), which means
that the vortices take the form of axially aligned columns.
The number of columns (Fig. 3c) depends on the radius
ratio and corresponds to the maximum numberm of vortices
of the gap size, given by m = [π(1 + η)/2(1 − η)].
The angle of CM with respect to the azimuthal direction
is � = 90◦ (Fig. 3d). These columnar modes (CM)
are stationary (Fig. 3e). For large values of VE , another
codimension-2 point (V ∗∗

E ,Ra∗∗) indicates the transition
from columnar modes to electric modes (EM) which are
stationary and helical. Indeed the axial wavenumber of EM
is different from zero and increases with increasing VE .
Depending on the radius ratio, the azimuthal mode number
can gradually decrease from its value for CM to its value for
the microgravity case (Yoshikawa et al. 2013). Indeed, for
large values of VE , the Archimedean buoyancy is negligible
compared to the dielectrophoretic effect, and the problem is

Fig. 3 Variations of (a) the
critical Rayleigh number, b the
critical axial wavenumber, c the
critical azimuthal mode number,
d the angle of modes with
respect to the azimuthal
direction and e the critical
frequency with the
dimensionless electric potential
for different values of η and for
Pr = 10, Ga = 1370 and δ = 1
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equivalent to the case of microgravity condition. The angle
of EM with respect to the azimuthal direction decreases
with increasing VE and tends to � = 60◦. The critical
Rayleigh number of both CM and EM is proportional to
V −2

E . The fact that the threshold behaviour does not change
at the codimension-2 point (V ∗∗

E ,Ra∗∗) indicates that both
modes are of the same nature, i.e. they originate from the
thermoelectric convection. For all the regimes, the curvature
of the annulus has a destabilizing effect.

Figure 4a shows the variation of the critical Rayleigh
number with the dimensionless electric potential for η = 0.5
and for various values of Pr. For low values of VE , HM are
found in case Pr = 0.72 while TM are found for Pr = 10
and Pr = 100. The critical parameters of TM and HM are
affected by the Prandtl number, as it is described in Bahloul
et al. (2000). For all values of VE , the Prandtl number has a
stabilizing effect. The wavenumber of CM and EM are not
modified by Pr, in the sense that the Prandtl number only
changes the position of the codimension-2 points between
HM or TM and CM and between CM and EM. Indeed
the larger the Prandtl number, the larger the dimensionless
electric potential at the codimension-2 points.

Figure 4b shows the variation of the critical Grashov
number with the dimensionless electric potential for the
same set of parameters. In this case, the threshold of
HM or TM decreases with increasing the Prandtl number.
However, the critical Grashof number of CM and EM is
not affected by Pr. The independence of the threshold of
CM and EM with Pr confirms their electric nature since this
independence characterises the thermoelectric buoyancy
(Yoshikawa et al. 2013).

Experimental Configuration

Experiments have been performed in laboratory, as well as
during parabolic flight campaigns. For these experiments,
the cylindrical annulus has a radius ratio of η = 0.5,
and an aspect ratio of � = 6 or � = 20. The working
fluid is silicone oil AK5, whose properties have been given
in Section “Numerical Simulation”. Figure 5 shows the
stability diagram spanned by Ra and L considering an
infinite aspect ratio. For low values of L, the critical modes
are thermal modes and the variation of their threshold with
L is weak, indicating that the modes are not affected by the
dielectrophoretic buoyancy. On the other hand, the critical
electric Rayleigh number L for CM and EM is nearly
independent from Ra, indicating that those modes are not
affected by the Archimedean buoyancy.

Additionally, we derived an equation for kinetic energy
from the linearised momentum equations (12b–12d) by
multiplying them with û∗, v̂∗ and ŵ∗ respectively, where
the asterisks mean complex conjugate, and by adding the
resulting equations. The remaining equation is integrated
over the volume and over a period of oscillation, then one
can find:

2sK = WHy + WT h + WBG + WPG − Dν, (16)

where K is the kinetic energy and reads:

K =
∫ |û|2 + |v̂|2 + |ŵ|2

2
dV . (17)

The terms WHy and WT h are related to the action of the
axial gravity, and corresponds to the power performed by the

Fig. 4 Variations of (a) the
critical Rayleigh number and b
the critical Grashof number with
the dimensionless electric
potential for different values of
Pr and for η = 0.5, Ga = 1370
and δ = 1
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Fig. 5 Variations of the critical Rayleigh number with the electric
Rayleigh number for η = 0.5, Ga = 228, δ = 1.01 and Pr = 65

shear stress and to the power performed by the Archimedean
buoyancy respectively. The two contributions are given by:

WHy = −
∫

ûŵ∗ ∂W

∂r
dV , WT h = Gr

∫
θ̂ ŵ∗dV . (18)

WBG and WPG are concerned with the thermoelectric
buoyancy. They represent the power performed by the base
electric gravity and the one performed by the perturbation
electric gravity, respectively. The two terms are given by:

WBG = γeV
2
E

Pr

∫
θ̂Geû

∗dV ,

WPG = −γeV
2
E

Pr

∫
�

(
û∗ĝe,r +v̂∗ĝe,ϕ+ŵ∗ĝe,z

)
dV . (19)

The last term Dν is the rate of viscous energy dissipation
and reads:

Dν =
∫

�νdV, (20)

where �ν is:

�ν = ∣∣Dû
∣∣2+

∣∣∣∣ inû

r
− v̂

r

∣∣∣∣
2

+k2
∣∣û∣∣2+∣∣Dv̂

∣∣2+
∣∣∣∣ inv̂

r
+ û

r

∣∣∣∣
2

+k2
∣∣v̂∣∣2 + ∣∣Dŵ

∣∣2 +
∣∣∣∣ inŵ

r

∣∣∣∣
2

+ k2
∣∣ŵ∣∣2 .

The rate of viscous dissipation completely balances the
other terms, since there is no temporal variation of kinetic
energy at the onset of instabilities.

Figure 6 shows the variation of the power terms of Eq. 16
with the dimensionless electric potential. For low values of
VE , critical modes are TM and the termWT h is the dominant
one. For large values of VE , the power WBG is the main
contribution to the energy transfer from the base state to
perturbations. In the intermediate case, for columnar modes,
both WT h and WBG are important. WHy also contributes

Fig. 6 Energy generation terms normalized by twice the kinetic energy
K as functions of the dimensionless electric potential VE . The curves
have been obtained for Ga = 228, δ = 1.01, Pr = 64.6 and η = 0.5

to the energy transfer. However, its magnitude is one order
of magnitude lower than the other terms. The power input
by the perturbation electric gravity is negligible for the
whole range of parameters. The value of Dν is equivalent to
the sum of the other power terms. Its lower value for CM
compared to TM or EM indicates that columnar modes need
less energy to be sustained.

Numerical Results

In all simulations, the electric field is only applied
during microgravity in order to focus on the effect of a
purely central force field. But during the parabolic flight
experiments, the DEP force has also been active all along
a parabola (Meyer et al. 2017). The hypergravity phase
starts after 330 seconds of normal gravity phase. Therefore
we ensure an established base flow, which has the form
of an axisymmetric monocellular convection cell, at the
beginning of the parabola.

Figure 7 shows the evolution in time of the Nusselt
numbers computed numerically at the inner and outer
cylinders as the ratio of heat flux at inner/outer cylinder
and heat flux of the conductive state. The evolution starts
from the 1g phase and stops at the end of the μg phase.
During the 1g phase, the Nusselt number is Nu(1g) = 2.67
for both cylinders, since the base flow already increases
the heat flux at the surfaces compared to the conductive
state. The hypergravity phase reinforces the base flow, and
increases the Nusselt numbers compared to the 1g phase.
During the change of gravity intensity, the Nusselt number
at the inner cylinder is slightly lower than that of the
outer cylinder, which indicates a unsteady transition from
1g to hypergravity concerning the heat transfer. Passing
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Fig. 7 Nusselt number at the inner and outer cylinder as a function of
time. The gravity is 10−2g at t = 360s and lasts 18s. The temperature
difference is �T = 10K and the dimensionless electric potential, only
applied during μg, is VE = 1832 (L = 22064)

from hypergravity to μg condition, the Nusselt numbers
start to decrease because of the dissipation of the base
flow by viscous effects. The dissipation process keeps
going during the first seconds of microgravity, until the
Nusselt numbers start to grow. The resulting minimum of
the Nusselt numbers is larger than one, which means that
the DEP force starts to affect the flow while the base flow
produced by the previous hypergravity phase has not been
completely dissipated. The growth of the Nusselt numbers
indicate the development of instability inside the gap due
to the DEP buoyancy. Vortices occur inside the gap and are
responsible for heat transfer enhancement.

Figure 8 shows the temperature profile in the (r, ϕ)
plane and its derivative with respect to the azimuthal

direction for the same parameters as for Fig. 7. The profiles
exhibit a non-axisymmetric pattern with 8 modes in the
azimuthal direction, which is quantitatively comparable to
Shadowgraph measurements (see the article dedicated to
experiments from this issue by Meier et al.). The instability
starts at the inner cylinder and develops in radial direction
outward. The maximum of the Nusselt numbers during
microgrvity phase (Fig. 7) corresponds to the point where
the instability touches the outer cylinder. Then the Nusselt
numbers decrease again, likely to converge to a stationary
state which is not observed due to the short duration of the
microgravity phase. All along the μg phase, the Nusselt
number at the inner cylinder is larger than that at the outer
cylinder which indicates that the heat transfer during this
phase is transient.

A series of simulations have been performed for Gr =
530 (�T = 10K) and Gr = 265 (�T = 5K)
with various values of the electric potential. The Nusselt
numbers is computed at the inner and outer cylinders,
and averaged over the last nine seconds of the μg phase.
Their development as functions of the electric Rayleigh
number L is shown in Fig. 9. If L < 700, the Nusselt
numbers are nearly constant and are slightly larger than
one, which corresponds to the quasi-conductive regime. Nu
larger than one might have its origin in inert reminiscences
of the previous hypergravity phase. If L > 700, the
Nusselt numbers increase with increasing L because of the
occurrence of instabilities which enhance the heat transfer.
The Nusselt number at the inner cylinder is always larger
than that of the outer cylinder, which could be partly
explained by the fact that the intensity of the electric gravity
is larger at the inner cylinder than at the outer one. At
some values of the electric Rayleigh number, there are

Fig. 8 Temperature profile and its azimuthal derivative in the (r, ϕ) plane at the end of the microgravity phase and at z = 14mm above the bottom
surface. The temperature difference is �T = 10K and the dimensionless electric tension, only applied during μg, is VE = 1832 (L = 22064)

Microgravity Sci. Technol. (2018) 30:653–662660
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Fig. 9 Nusselt number at the inner and outer cylinders, time averaged
during the second half of the microgravity phase, as a function of the
electric Rayleigh number. Several values of VE have been simulated
both for �T = 5K and for �T = 10K

two slightly different values of the Nusselt number. This
corresponds to the two different �T which were used for
the simulations. Indeed, the base flow originated from the
previous gravity phase takes less time to dissipate if the
temperature difference between the two cylinders is lower,
which results in a lower value of the Nusselt number even
for the same value of L.

Conclusion

The flow of a dielectric fluid confined in a vertical
cylindrical annulus subjected to the axial Archimedean
buoyancy and to the radial dielectrophoretic force has
been investigated in the framework of parabolic flight
experiments. A linear stability analysis has been performed.
If the electric tension between the two cylinders is
sufficiently large, it is found that non-axisymmetric modes
can be critical. These modes are stationary and can either
be columnar or helical. Their threshold is proportional to
V −2

E , but in terms of electric Rayleigh number, the threshold
is nearly not affected by the Archimedean buoyancy. The
energy analysis showed that columnar modes need less
energy to be sustained than thermal modes, critical for weak
electric potentials, and than the electric modes, critical at
high electric potentials. In addition to the theoretical study,
numerical simulations have been performed with an axial
gravity varying in time, that corresponds to the parabolic
flight scenario. In simulations, the DEP force was active
only during microgravity conditions. It was found that the
base flow provided by the previous hypergravity phase is
not completely dissipated during the microgravity phase and

affects the evaluation of the heat transfer. One μg phase
lasts 22s. It is sufficient to observe the development of non-
axisymmetric instabilities, but it is still too short to become
stationary.
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