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Abstract
Lattice-Boltzmann simulations of a turbulent duct flow have been carried out to obtain trajectories of passive tracers in
the conditions of a series of microgravity experiments of turbulent bubble suspensions. The statistics of these passive
tracers are compared to the corresponding measurements for single-bubble and bubble-pair statistics obtained from particle
tracking techniques after the high-speed camera recordings from drop-towers experiments. In the conditions of the
present experiments, comparisons indicate that experimental results on bubble velocity fluctuations are not consistent with
simulations of passive tracers, which points in the direction of an active role of bubbles. The present analysis illustrates the
utility of a recently introduced experimental setup to generate controlled turbulent bubble suspensions in microgravity.

Keywords Turbulent flow · Bubble dispersion · Bubble interactions · Microgravity · Drop tower · Lattice-Boltzmann
simulations

Introduction

Multiphase flows are ubiquitous in technological applica-
tions. Specially complex situations correspond to the dis-
persion of one phase driven by a turbulent flow. In these
cases the interaction between the flow and the dispersed

�

phase is complicated by break-up and coalescence phenom-
ena (Colin et al. 2008; Balachandar and Eaton 2010). This
problem is most relevant for space technologies such as
life support systems and environmental control for life in
space (Hurlbert et al. 2010), power generation and propul-
sion (Meyer et al. 2010) or thermal management (Hill et al.
2010). Therefore there is a strong interest in the study of tur-
bulent bubbly flows under microgravity conditions (Colin
2002).

Whereas there are several studies for the case of normal
gravity (Kytömaa 1987; Tryggvason et al. 2006; Mazzitelli
et al. 2003), there are few works in microgravity (see
for instance Colin et al. 2001). Very recently (Bitlloch
et al. 2018) developed a gravity-insensitive method that
generates monodisperse, homogeneous bubble suspensions
in a turbulent duct flow. One important feature of this
method regarding fundamental research in turbulent bubbly
flows is the capability of controlling, in an independent way,
important characteristics such as the degree of turbulence,
the bubble size and also the bubble density.

In a series of microgravity experiments (36 drops of 4.7 s
conducted in the ZARM Drop Tower), and by using particle
tracking techniques, results on bubble velocity statistics
were obtained (Bitlloch et al. 2018). One intriguing result
obtained in these experiments was a weak dependence of the
relative bubble velocity fluctuations on Reynolds number.
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Simple scaling arguments of developed turbulence do not
predict such dependence. This anomalous scaling could
then be either a property of the duct flow in the particular
conditions of experiments, or be instead an indication of an
active role of the bubbles on the flow.

The main aim of this paper is to obtain precise numerical
results on turbulent duct flows in order to elucidate this
question. To this end, Lattice-Boltzmann simulations of the
flow have been carried out. By using virtual passive tracers,
these simulations allowed to compare their statistics with
that of the real bubbles. Simulation results also enabled
to compare the two-point statistics of passive tracers to
that from the particle-tracking of bubble pairs. This gives
interesting information on the flow mixing properties and
the probability of bubble encounters. In particular we
compared the characteristic times of separation between
pairs of passive tracers in simulations and pairs of bubbles
in the experiments. All these information allowed to
obtain an additional and more accurate knowledge of the
behavior of turbulent bubbly flows under microgravity
conditions.

Lattice-Boltzmann Simulations

In order to characterize the structure and properties of a
turbulent flow through a duct of square section we have
performed 3D Lattice-Boltzmann simulations. The channel
has been discretized into a uniform grid of 320 × 80 ×
80 liquid nodes, representing a portion of 400 × 100 ×
100 mm3 of the duct, with periodic conditions at its ends.
After some tests of various discretizations of the model,
we decided for the D3Q15 Lattice Bhatnagar-Gross-Krook
(BGK) model with mid-way wall boundary conditions for
no-slip walls (Nourgaliev et al. 2003; Bitlloch P 2012).

For the sake of stability, since it is not possible to
simulate all scales of turbulence down to the Kolmogorov
length, we used the Smagorinsky coefficient for sub-grid
scale filtering (Hou et al. 1994). This method is based on
the calculation of the local effective viscosity that would
dissipate the sub-grid effects generated at each local point.
Some remnant numerical instability was controlled by an
additional smoothing procedure that preserved mass and
momentum (Bitlloch P 2012).

The present code was parallelized and ran in the Mare
Nostrum supercomputer at the Barcelona Supercomputing
Center (calculating typically with a set of 256 processors)
and in a cluster of 16 processors at the Department
of Applied Physics of the Polytechnic University of
Catalonia (UPC). An overall estimation of the total CPU
time used, accounting for checking and optimization of the
parallelized code as well as for its subsequent simulations,
has been of around 80,000 h.

Code Checkings

In order to check our code, we ran simulations for the same
conditions as Pattison et al. (2009). Comparisons showed
good agreement in the time-averaged structure of the flow,
obtaining the same main longitudinal component of the
flow and a reasonable agreement on the residual transversal
components associated to the square section of the duct
(secondary flow, see below), which was qualitatively correct
except for small asymmetries probably due to insufficient
temporal averaging.

As an illustrative example, Fig. 1 shows the computed
flow in a transversal section of the square duct for both
Reynolds numbers of 3800 and 12700. Lines represent the
fluctuating component of the flow velocity (u′ = u − U).
Length and color of the lines show the magnitude of each
vector in an arbitrary scale. The same comparison is made
for the longitudinal section of the flow placed at midway
between walls in the z direction is presented in Fig. 2.
Higher Reynolds numbers shows a finer and more detailed
structure of turbulence that includes smaller eddies.

As measured by many authors (e.g., Melling and
Whitelaw 1976), and in contrast to the case of pipe flow with
a circular section, turbulent flow in a square duct generates a
weak remnant mean flow contained in the square transversal
section of the flow, with pairs of symmetric vortices on each
of the four edges of the channel. Those are called secondary
flows, as they have a magnitude significantly smaller than
the main longitudinal flow, and emerge only after careful
time averaging of the transversal flow. Their structure is
such that the flow approaches the edges from the bisector
of the right angle between walls, then it follows the wall
(moving really close to it) until it approaches the bisector of
the wall, where it returns to the central part of the section.
Figure 3 show the mean secondary flows obtained in our
computations for the case of Re = 3800. Lines represent
the flow vector (0, Uy, Uz), being the length and color of
the lines, the magnitude of the vector in an arbitrary scale.
Results have been obtained from averaging over the whole
length of the simulation, and over a period of 400,000
iterations (corresponding to 500 s of simulated time for the
parameters of our experimental duct) after the simulation
had reached the stationary regime. Given the difficulty of
observing such secondary flows, they constitute a good test
of the numerical simulation.

Analogously, we have done a statistical analysis for the
computation with Re = 12700, averaging over a period of
300,000 iterations (corresponding, in our case, to 110 s of
simulated time) after reaching the stationary solution of the
flow. Comparing the numerical results obtained from both
simulations in Fig. 4 we find that the dimensionless profiles
of velocity remain essentially unaltered by the change in the
degree of turbulence in the flow. This is in agreement with
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Fig. 1 Transversal sections of the turbulent flow. Lines and colors
represent the direction and magnitude of the fluctuating component of
the flow velocity u′ in arbitrary scale. (Above): Re = 3800. (Below):
Re = 12700. Red indicates values ≥5 times those of dark blue

the fact that the main structure of the flow is determined
by the largest scales of turbulence, while the smaller ones
define the scale of dissipation. The increase of the Reynolds
number produces the decrease in size of the smallest scales
of turbulence, resulting in the addition of more scales of
velocity fluctuations that alter the fine, detailed properties of
the flow, while the large scale structure remains unaffected.

Figure 5 shows the secondary components of the mean
flow velocity for one of the simulations. It is easy to attribute
the origin of the apparent asymmetries to the secondary

Fig. 2 Velocity fluctuations u′ on a longitudinal section of the duct
flow (xy plane) at z = 0.5Lc. Flow goes upwards. (Left): Re = 3800.
(Right): Re = 12700

flows of Fig. 3, which would still require further statistical
averaging to achieve convergence. Nevertheless, the figure
is still interesting in order to realize the order of magnitude
of the intensity of the secondary flows in relation to the main
flow.

Experimental Details

A complete description of the experimental device is
presented in Bitlloch et al. (2018), so only a short summary

Fig. 3 Mean secondary flows on a transversal section of the duct (yz
plane) for Re = 3800
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Fig. 4 Profiles of mean velocity component 〈ux〉 at different sections
y/Lc. Solid lines correspond to Re = 3800, dashed ones to Re =
12700

will be made here. The turbulent co-flow is generated by
injecting water from nine inlets placed at the base of a
vertical duct of square section and dimensions 800 × 100
× 100 mm3, and by using a wire mesh (2.5 mm thick)
with square holes of 10 × 10 mm2, corresponding to the
scale of the most energetic eddies of the duct. The bubble
suspension is achieved by injecting into the co-flow a pre-
generated slug flow of water and air. This slug flow is
formed by combining water and air flows in a T-junction
device (Carrera et al. 2008), and is injected into the co-
flow by four injectors forming a square. The bubble size is
given by the size of the injectors, typically of the order of
one millimeter, and can be fine-tuned through the injection
parameters (Carrera et al. 2008; Arias et al. 2009; Bitlloch
et al. 2015). The resulting Weber numbers are small enough
for bubbles injected into the turbulent flow to be roughly
spherical. Typical bubble sizes are larger than the dissipative
turbulent scales, and therefore they could actively couple to
the flow. At the same time bubbles are much smaller than
the largest eddies, which are limited by the duct width of
100 mm. Generated void fractions are typically small, of the
order of a few percent. For the presented analysis, in order to

Fig. 5 Profiles of mean velocity components
〈
uy

〉
and 〈uz〉 for Re =

3800 at the section y/Lc = 0.25

Fig. 6 Injection in microgravity by using flows of Ql = 70 ml
min and

Qg = 46 ml
min (dB � 1.6 mm) in each injector, with a co-flow through

the duct of Re = 13000

reduce optical screening between bubbles, we have selected
cases in the range from 0.3 to 0.8 void fractions.

This system is insensitive to the gravity level and
permits to control the frequency and size of the generated
bubbles in a way completely independent from the co-flow
characteristics. More details on the setup can be found in
Bitlloch et al. (2018). An example of the injection of the
bubbles can be seen in Fig. 6, with the resulting turbulent
suspension shown in Fig. 7

In order to analyze experimental results, images taken
by high speed video cameras were processed by particle
tracking techniques to reconstruct the bubble trajectories
during the experiments. To this aim, after substracting the
background, a standard filter was used to highlight the
interphase of each bubble. In this way it was possible to
identify the trajectories of bubbles by tracking the white
area strongly highlighted in their central part, which was
surrounded and separated from the rest of bubbles by a clear
interphase.

Results

Relative Bubble Velocity Fluctuations

We have analyzed the fluctuations of each component of
the relative bubble velocity. Specifically σi is defined as the
root-mean-square of the fluctuations of the i component of
the flow velocity:

σi =
√〈

u′ 2
i

〉
=

√〈
u2

i

〉
− 〈ui〉2 (1)

Previous experimental results, based on particle tracking
techniques, concluded that the relative bubble velocity
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Fig. 7 Bubble suspension far from the injector achieved in micrograv-
ity in the same conditions as in Fig. 6

fluctuations of the transversal y-component, σy , have a
significant decreasing tendency as the Reynolds number
increases (Bitlloch et al. 2018). In particular, after relaxing
the pseudoturbulence generated by bubbles (due to their
relative velocity with respect the co-flow before switching-
off gravity), it was found that the ratio σy/Uc was 0.13
for Re = 6000 whereas it was 0.08 for Re = 13000
(Bitlloch et al. 2018). For the longitudinal component
σx , however, the experimental data did not exhibit any
conclusive tendency in this respect (σx/Uc = 0.10 for
Re = 6000 and σx/Uc = 0.11 for Re = 13000) (Bitlloch
et al. 2018).

To analyze these experimental results we study the
profiles of both relative velocity fluctuation by using the
present numerical results. Flow data in this case correspond
to results that would exhibit passive tracers. Figures 8 and
9 show these profiles taken at depths y

Lc
= 0.5 and 0.25,

respectively. We then compare the relative fluctuations on
each direction obtained in simulations for different degrees
of turbulence. It can be seen that, in both cases, the change
of the Reynolds number has no significant effect upon the
relative velocity fluctuations. This is a result that coincides
with the expectation from simple scaling arguments for fully
developed turbulence, but that are not consistent with the
mentioned experimental results. According to these results,
bubbles do not seem to behave as passive traces of the flow,
thus suggesting an active role of bubbles in the turbulence
in the conditions of the experiment.

Behavior of Pairs of Bubbles

In addition, to gain further insight into the dynamics
of bubble suspensions in a turbulent flow, we studied
the behavior of pairs of bubbles and compared them to

Fig. 8 Profiles of velocity fluctuations σi , at the section y/Lc = 0.5.
Solid lines correspond to Re = 3800, while dashed ones stand for
Re = 12700

numerical predictions. To this aim we evolved by Lattice
Boltzmann simulations an initially structured configuration
of a large number of tracers (around 40000 tracers
distributed in a regular lattice at relative distances of
1.25 mm) for a long period of time, thus reaching
a homogeneous distribution. Specifically, the case with
Re = 3800 was first evolved during 30000 iterations
(corresponding to 37 s of simulated time) and then the
statistics was analyzed for the following 20000 iterations
(25 s). The statistics of the case Re = 12700 was initiated
after 50000 iterations (18.1 s), and spanned another 50000
iterations.

In Fig. 10 we show a transversal coordinate as a function
of time, and the projection on the transversal section of four
trajectories described by tracers located initially on a close
neighborhood. The trajectories clearly show that the tracers
remain close to each other for a certain finite time and then
they strongly diverge from each other.

Experimental measurements of bubble pairs have been
taken from the trajectories of bubbles previously captured
with particle tracking methods. Those located at a distance
smaller than 2 mm of another bubble (measured from their

Fig. 9 Profiles of velocity fluctuations σi , at the section y/Lc = 0.25.
Solid lines correspond to Re = 3800 while dashed ones stand for
Re = 12700
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Fig. 10 Trajectories described by 4 passive tracers initially separated a
distance of 1.25 mm of each other in a flow with Re = 3800 obtained
from Lattice-Boltzmann simulations. (Top): transversal coordinate as
a function of time; (Bottom): projection on the transversal section

centers in the recorded image), have been considered a
pair and have been used to calculate the averaged temporal
evolution of their separation. In Fig. 11 we display the
evolution of the mean distance between pairs of bubbles at
different temporal ranges of the microgravity experiments.
Noisy signals at the final part of the lines denote a lack of
sufficient statistics, caused by the high degree of screening
between bubbles in the videos, which makes impossible
to follow the trajectory of a bubble for a long period of
time. Thus, as time increases, we are losing the track of
more bubble pairs and consequently we get poorer statistics.
In Fig. 11-top, for the smaller Re = 6000, the slope
of the mean separation versus time is steadily reducing
in successive time windows. It is important to recall that
pseudo-turbulence is decaying during the experiment, as it
was observed in Bitlloch et al. (2018). The present results
constitute another interesting manifestation of the same
phenomena. In Fig. 11-bottom (larger co-flow velocity, with
Re = 13000) there are almost no differences in the short
times for the first three time windows. In this case the
intrinsic turbulence of the co-flow dominates so that the
pseudoturbulence relaxation is more difficult to observe
(which agrees with relaxation of velocity fluctuations being
much weaker in this case as seen in Bitlloch et al.

Fig. 11 Mean separation of pairs of bubbles. Each line correspond
to a temporal range of the experiment in microgravity. (Top): Single
experiment (D4) with Re = 6000. (Bottom): Single experiment (D8)
with Re = 13000 (see Bitlloch et al. 2018)

(2018)). The different behavior observed in the last time
window is due to the arrival of bubbles already generated
in microgravity, and hence generated and transported in
different conditions.

Figure 12 plots the mean separation of bubble pairs,
measured after the first second of microgravity. Each line
corresponds to a different set of injection parameters.

Fig. 12 Mean separation of pairs of bubbles for different parameters
of injection. Solid lines correspond to measures from images taken by
four video cameras at the indicated drops (see detailed parameters in
Bitlloch et al. 2018). In the case of the dark blue line results from two
equivalent experiments have been averaged. Dashed lines are fittings
(described in Table 1) of the correspondent data. Results have been
taken after the first second of microgravity
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Table 1 Linear fittings of the form dxy = d0 + vsep t , for the mean
separation in the plane xy between pairs of bubbles, used in Fig. 12

Param Re d0 (cm) vsep (cm/s)

dxy 6000 0.04 1.90

dxy 6000 0.15 1.84

dxy 13000 0.02 2.85

dxy 13000 0.12 2.99

Namely dark and light red lines correspond to Re =
6000. and dark and light blue lines correspond to Re =
13000. We find that the measurements for equivalent
degrees of turbulence share a similar slope once they have
reached the linear regime, defining an effective rate of
separation.

Dashed lines in Fig. 12 correspond to the linear fittings
shown in Table 1. A clear dependence with Reynolds
number can be observed on the rate of separation obtained
in the fittings. For an increase of Re by a factor �2.2, the
separation rate is increased by a factor �1.6.

At this point it is important to call the attention upon
the fact that the pairs of bubbles defined from experimental
images are in many cases only apparent, due to the lack
of information about the depth along the visual direction
z. A majority of them are separated by distances much
larger than the apparent separation and thus will follow
rather independent trajectories. If we consider that a pair
of bubbles is real when their initial separation �z0 in the
visual direction is smaller than 1.6 mm, for a homogeneous
distribution of bubbles in our duct of width Ly =
100 mm we obtain a proportion of about 3% of real
pairs, against 97% of apparent ones. One could think of
different strategies to differentiate the two populations of
pairs, with the help of a detailed statistical study of tracers
in the simulations. However, due to the small statistical
significance of the real pairs, the lack of more experiments
to increase the amount of data makes any of such attempts
virtually hopeless.

Fig. 13 Mean separation between real pairs of tracers. Distances on
logarithmic scale. Fittings in dashed lines described in Table 2

Table 2 Exponential fittings of the form d(t) = d0e
L t , for the mean

separation (in 3D) between pairs of tracers used in Fig. 13

Param Re d0 (cm) L (s−1)

d 3800 0.11 0.52

d 12700 0.11 0.80

Figure 13 shows the evolution of the mean separation
between real pairs of tracers, obtained from our simulations
for two different degrees of turbulence. The first noticeable
observation is that real pairs of tracers, unlike our
experimental measures, have an average separation that
grows closer to exponentially in time. This rate is defined
by an exponent L , which we may assimilate to an
effective Lyapunov exponent, that controls the average rate
of exponential separation d(t) = d0e

L t of infinitesimally
close trajectories in a chaotic dynamical system (Salazar and
Collins 2009). Fits in Fig. 13 are shown in Table 2, which
adjust nicely to simulations until the finite size effects of the
duct section become important and slow down the growth,
as can be observed in the figure for the most turbulent case.

In order to compare the experimental measurements with
those of simulations taken in equivalent conditions, we have
measured the average separation of apparent pairs of tracers
in simulations by selecting only those initially separated a
distance smaller than 2 mm in the x–y plane, but larger than
1.5 mm in the z direction. Figure 14 shows the resulting
curves, describing a linear growth of the separation, similar
to that of the experimental measurements of Fig. 12, until
the finite size effects of the duct enter into play. The fits
of Fig. 14 are shown in Table 3, which show a dependence
of the rate of separation between tracers with Re similar to
the experimental case of Table 1. In this case, an increase
by a factor �3.3 of the Reynolds number causes a factor
�4.4 in the growth of the separation rate. To allow for
a better comparison with experimental results we show in
Fig. 15 projected 2D distances for apparent tracers. The
linear fittings for these results are also included in Table 3.

Fig. 14 Mean separation between apparent pairs of tracers (i.e., initial
�z0 > 1.6 mm). Fittings in dashed lines described in Table 3
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Table 3 Linear fittings of the form d = d0 + vsep t , for the mean
separation d (in 3D) between apparent pairs of tracers, used in Fig. 14

Param Re d0 (cm) vsep (cm/s)

d 3800 2.27 0.54

d 12700 2.79 2.07

dxy 3800 −0.05 0.80

dxy 12700 −0.03 3.52

Also mean separation dxy (in 2D) between them to compare with
experimental results presented in Table 1

The last aspect we will analyze concerning the dynamics
of bubble pairs is the measurement of the statistics of
time needed before a pair separates beyond a minimum
distance. In the experimental measurements, as well as in
the simulations, we have considered the time lapse between
the moment the pair reduces its separation to a distance
smaller than 2 mm and the moment it surpasses 4 mm,
always taken between their respective centers. In Figs. 16
and 17 we show the experimental data and the simulated
predictions, respectively.

Results are hard to compare due to the large amount of
screening events in the experimental images, that produce
an increasing uncertainty in the shape of the curves as the
time lapse grows. In simulations, significant differences
are observed between the distribution of probability for
real pairs of tracers and that of apparent pairs, with much
longer life times for real pairs, as a result of the strong
correlations of velocities in nearby bubbles, as opposed to
the case essentially uncorrelated for distant ones. From the
detailed knowledge of the statistics of the time separation
of both apparent and real pairs, taken from numerical
simulations together with the appropriate characterization
of the screening effects, the proper fitting functions could
be obtained that would allow to correctly project the
experimental data into a reduced set of parameters in order

Fig. 15 Mean separation separation dxy (in 2D) between apparent
pairs of tracers (i.e., initial �z0 > 1.6 mm). Fittings in dashed lines,
described in Table 3. For Re = 3800 the fitting has been calculated in
the range [0.5, 3] s (not shown), where the linear behavior is observed
and the fitted line coincides perfectly with the curve

Fig. 16 Time statistics for experimental bubble pairs. Crosses:
Distribution of times for the duration of apparent pairs of bubbles (see
text); Circles: number of pairs to which we have lost track, during the
given time interval, due to screening effects. (Top) Experiment D4,
Re = 6000. (Bottom) Experiment D3, with Re = 13000 (see Bitlloch
et al. 2018)

to extract the statistics of real versus apparent bubble pairs,
and thus try to detect whether this observable captures some
effect not contained in the passive tracer picture. We have

Fig. 17 Normalized probability distribution of duration of pairs of
tracers. (Top) Re = 3800. (Bottom) Re = 12700
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not pursued this idea because, as pointed out before, the
limited number of experiments available in microgravity
prevents from reaching statistically significant conclusions
for the minority of the events of interest, namely those
corresponding to the real pairs.

Conclusions

Large scale Lattice-Boltzmann simulations have been
performed to produce reference states of turbulence with the
same conditions of the experiments but without bubbles, to
contrast with experimental data in the presence of bubbles,
in view of detecting nontrivial couplings between bubble
dynamics and turbulence.

This numerical study shows that the relative velocity
fluctuations (scaled to its characteristic velocity) of the
flow is roughly independent of the degree of turbulence,
in accordance with the expectation from simple scaling
arguments for fully developed turbulence.

In previous experiments, however, it was observed
that the relative velocity fluctuations displayed by bub-
bles deviated significantly from this scaling, and reflected
instead a tendency to decrease with increasing Reynolds
number. This suggests an active coupling role of bub-
bles on the turbulent flow, that would require a more
systematic study to be confirmed and quantified more
precisely.

By using particle tracking we have studied the space-
time statistics of bubble pairs, and compared it with results
of passive tracers from Lattice-Boltzmann simulations. In
particular we have studied the first-passage time statistics
associated to the separation of two-close tracers. We
find that the average distance between a pair of tracers
increases exponentially with an effective time scale that
depends on the degree of turbulence in the flow. For
the case of a pair of apparent tracers, though, the
average separation between them increases linearly with
time. In the analysis of experimental data, we find a
similar behavior for the apparent pairs, which dominate
the statistics. Real pairs are comparatively rare, and any
statistical method to extract the corresponding information
for those cases would need a larger number of experiments
in microgravity. The conclusions of the present analysis
could be, in some sense, limited because only 2D
projections of the experimental trajectories are available
for comparison with numerical results, but demonstrates
the use of the recently introduced experimental setup
to generate controlled turbulent bubble suspensions in
microgravity.
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