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Abstract
We investigate stationary and non-stationary solutions of nonlinear equations of the long-wave approximation for the
Marangoni convection caused by a localized source of heat or a surface active impurity (surfactant) in a thin horizontal layer
of a viscous incompressible fluid with a free surface. The distribution of heat or concentration flux is determined by the
uniform vertical gradient of temperature or impurity concentration, distorted by the imposition of a slightly inhomogeneous
heating or of surfactant, localized in the horizontal plane. The lower boundary of the layer is considered thermally insulated
or impermeable, whereas the upper boundary is free and deformable. The equations obtained in the long-wave approximation
are formulated in terms of the amplitudes of the temperature distribution or impurity concentration, deformation of the
surface, and vorticity. For a simplification of the problem, a sequence of nonlinear equations is obtained, which in the
simplest form leads to a nonlinear Schrödinger equation with a localized potential. The basic state of the system, its
dependence on the parameters and stability are investigated. For stationary solutions localized in the region of the surface
tension inhomogeneity, domains of parameters corresponding to different spatial patterns are delineated.

Keywords Marangoni convection · Long-wave approximation · Amplitude equations · Nonlinear localized structures

Introduction

A source of inhomogeneity in temperature or surfactant con-
centration, positioned near the liquid-gas interface, changes
the surface tension and can influence heat-mass transfer
in the adjacent area, affecting further the entire volume of
fluid. By means of the Marangoni effect, it can generate the
intensive convective flow (Nepomnyashchy et al. 2002).

Studies of the Marangoni convection caused by inhomo-
geneities of surface tension, localized near the liquid inter-
faces, are of special interest because of numerous techno-
logical applications (processes in special metallurgy, material
science, inhomogeneous chemical reactions, microfluidic

This article belongs to the Topical Collection: Non-Equilibrium
Processes in Continuous Media under Microgravity
Guest Editor: Tatyana Lyubimova

� Igor I. Wertgeim
wertg@icmm.ru

1 Institute of Continuous Media Mechanics, Ural Branch
Russian Academy of Sciences 1, Acad. Korolyov St., Perm,
614013, Russia

devices etc.) and of the fundamental role played by pro-
cesses on the phase boundary in understanding new mech-
anisms of the instability of the ground state of a hydro-
dynamic system. In comparison with the case of uniform
ambient conditions, such flows are less studied, hence var-
ious phenomena, observed experimentally, are still lacking
rigorous explanations.

In the most general way, the problem may be formulated
as investigation of convection in the shallow horizontal
liquid layer where the inhomogeneities of both density
and surface tension are caused by localized sources of
either thermal or concentration nature. We assume either
a sufficiently thin layer or the microgravity conditions,
so that the influence of inhomogeneity of surface tension
(Marangoni convection) would be predominant. Studies
of the Marangoni convection in shallow horizontal liquid
layers with non-uniform distributions of surface tension,
caused either by localized sources of temperature or
by concentration inhomogeneities, are pursued for many
years.

For the case of a surfactant source, some remarkable
effects were observed experimentally. In particular, for the
water-alcohol solution that contained the source of the
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surfactant admixture, the sequence of flow instabilities was
reported, leading to the onset of themulti-petal flow pattern with
even number of petals, dependent on the source intensity
(Pshenichnikov and Yazenko 1974). Those experiments
found a further development in Mizev (2005), where
the essential influence of the adsorption of surface-active
admixture on the structure and stability of concentration-
capillary flow was established. Among the recent achieve-
ments in this problem is the disclosure in precise experi-
ments (Mizev et al. 2013) of the substantial influence of
addition of surfactant to the liquid surface: its amount (not
controlled in previous experiments) predetermines the main
features of the flow patterns, including the size of the annu-
lar domain of vortical flow, and the number of azimuthal
vortices (petals) therein.

In experiments, the thermocapillary effect can be
produced by a solid heater, by the low intensity laser
or by the other source of radiation that influences the
upper boundary of the horizontal fluid layer and causes
the non-uniform temperature distribution, shaped as a hot
spot in the vicinity of the interface. Among the results
concerning the localized heat sources, it is worth to mention
the experiments demonstrating similar multi-petal patterns
caused by the influence of the thermal inhomogeneities due
to the heat source placed on the bottom (Ezersky et al.
1993), and the experiments (Mizyov et al. 2000; Karlov
et al. 2005), in which the localized heat source has been
generated by a laser or incoherent radiation.

In these experiments, the fluid flow near the hot spot
may vary in structure and have variously shaped menisci
depending on the intensity of radiation, the thickness of the
layer, and the form of heat inhomogeneity. Similar and even
more intricate formations were observed experimentally,
when the localized solid source of heat was either placed on
the bottom of the cavity, or immersed in the liquid at the
certain depth. In that case the meniscus oscillations followed
by concentric and spiral waves on the free surface that were
observed in the laboratory experiments (Mizyov et al. 2000),
still have no theoretical explanation.

For other kinds of fluid flows, the substantial influence
of local heating upon the thermocapillary driven change
of surface deformation and the resulting instabilities was
studied experimentally for shear driven horizontal thin films
(Kabova et al. 2009) and for thin falling films on vertical
surfaces (Kabov et al. 2002).

Important theoretical studies of the problem include
analytical solutions derived respectively for the point
and extended heat sources (Bratukhin and Maurin 1982;
Bratukhin and Makarov 2005), and the simplified theoreti-
cal description of the aforementioned oscillatory instability
in one-dimensional formulation (Mizyov et al. 2000). The
article (Boeck and Karcher 2003) contains results of com-
puter simulation of the problem in 3D in the assumption

of non-deformable surface, in particular, the steady patterns
with the symmetry of fourth order were obtained.

3D calculations were performed also for the case of
a fluid layer with a non-deformable free surface in a
cylindrical container, locally heated from below at the center
of the bottom (Navarro et al. 2007). It has been shown that
the basic state may bifurcate to different patterns, depending
on the shape and parameters of the heating function. Various
kinds of instabilities, both of global and local character,
were reported to result in targets and spiral waves.

Different forms of long-wave approximations have been
developed for this class of problems, including integral
boundary layer approximation for thin locally heated falling
liquid films (Kalliadasis et al. 2003), temperature amplitude
equation for thermal convection in the locally heated thin
layer with rigid boundaries (Lyubimov, Tcherepanov,1991)
and the model with amplitude equations, governing temper-
ature, vorticity and surface deformation for thermocapillary
convection in a uniformly heated two-layer system (Golovin
et al. 1995).

Theoretical and numerical treatment of the problem of
solutocapillary convection with inhomogeneous concentra-
tion distribution was implemented by Birikh et al. (2009),
who investigated numerically the concentration convection
in an isothermal liquid near a drop (or an air bubble)
clamped between the vertical walls of a horizontal chan-
nel; they used models both with and without account of
the surface phase at the drop–liquid interface formed by
adsorption/desorption process. This approach permits to
take into account interactions between the buoyancy and the
Marangoni convective flows leading to the auto-oscillatory
regime observed in experiments. To the knowledge of the
author, numerical investigations of the problem for local-
ized inhomogeneous distribution of the impurity at the
boundary are practically absent. A similar problem for the
annular pool subjected to a constant radial solutal gradi-
ent, in the full 3D formulation for non-deformable surfaces
is dealt with in the recent paper (Chen et al. 2016), where
the critical solutal capillary Reynolds (Marangoni) numbers
of transition from steady axisymmetric flow to oscillatory
axisymmetric or 3D flow have been determined.

Long-wave approximation to the solutocapillary problem
is applied to the case of homogeneous distribution of
impurity concentration at the boundaries by Mikishev
and Nepomnyashchy (2011). In this work the governing
amplitude equations are obtained for impurity concentration
in the bulk flow, surface deformation and the specific
variable for solutocapillary convection – the impurity
concentration on the boundary.

The present study offers the general mathematical
formulation of problem of Marangoni convection caused by
localized surface tension inhomogeneity, both of thermo-
and solutocapillary origin; the long–wave approximation
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of the problem is accepted for the case of thin layer, and
some further possible simplifications are analyzed. This
theoretical approach continues the study of thermocapillary
convection at localized heating (Wertgeim and Myznikova
2002), based on the model that generalizes the long-
wave description of the uniformly heated two-layer system
(Golovin et al. 1995) to the case of inhomogeneous heating.
Basing on this model, it becomes possible to explain the
effects of change of the surface configurations, including
the concave, convex and concavo-convex types of meniscus,
observed in the laboratory experiments on localized laser
heating under the surface of horizontal liquid layer (Karlov
et al. 2005).

Analysis of the above mentioned results allows us
to conclude that theoretical and numerical studies of
experimentally observed complex behavior of convective
systems with interfaces should in general be based on the
results of calculations in the complete three-dimensional
formulation, which has so far been realized only for the
limiting cases of non-deformed interfaces or by neglecting
thermal and/or concentration perturbations. A promising
alternative approach to the problem has been proposed
and implemented, based on amplitude equations of long-
wave approximation, applicable for the considered case
of a thin layer. This approach makes it possible to
reduce the solution of the problem in the complete three-
dimensional formulation to a two-dimensional one. Strict
validity of this reduction holds only for a range of the
parameters of the problem close to critical value for
onset of instability of the ground state. Nevertheless, this
approach has rich possibilities for studying various types
of boundary conditions, forms of inhomogeneity of heat
flux or impurity distribution etc., and allows one to advance
into the region of existence of developed nonlinear regimes,
and, with minor modification, to treat also the time-periodic
variants of localized heat flux (Wertgeim et al., 2013).
Another interesting direction of studies is related to the
processes of adsorption and desorption on the interface
“liquid-gas”. Simulation of these phenomena requires
improved mathematical models due to the introduction of
the additional equation for the propagation of adsorbate at
the liquid surface (Bratukhin and Makarov 2005; Birikh
et al. 2009).

It was established (Wertgeim and Myznikova 2002;
Karlov et al. 2005) that equations describing the devel-
opment of long-wave disturbances caused by heat flux
inhomogeneity in the form of a step function display only a
monotonic instability of the main flow. For a more general
forms of inhomogeneity of the heat flux, remarkable results
have been obtained (Kumachkov and Wertgeim 2009) on
the presence of narrow parameter regions corresponding to
abrupt changes in the form of the stationary solution, in
particular, the transition from the hump to the depression

for deformation of the surface. This effect was observed in
experiments on localized heating of the near-surface region
by laser or incoherent radiation.

The aim of the present work is to consider these
phenomena with more details, to elucidate the reasons for
the appearance of the selected values of the parameters
corresponding to abrupt changes in the form of stationary
solutions, to study their stability and nonlinear evolution.

Formulation of the Problem

A mathematical description of the above described pro-
cesses is based on the three-dimensional boundary-value
problem for the non-linear system of equations of convec-
tive heat or mass transfer and deformation of the surface of
the viscous incompressible fluid.

Consider a thin infinite horizontal layer of viscous
incompressible fluid. The lower boundary z= 0 is assumed
to be solid and either heat-insulated or impermeable;
the half-space above the upper free boundary z =
L + h ( x, y, t) is assumed to be the air, not dissolvable in
the liquid.

Assumption of the small thickness of the layer implies
that the influence of the Marangoni force is predominant,
making it possible to disregard the effect of the buoyancy,
and to write down the system of governing equations in
terms of the horizontal components �u ( x, y, z , t ) and the
vertical component w ( x, y, z , t ) of velocity, and either
temperature T ( x, y, z , t ) or surfactant concentration
C ( x, y, z , t ) (below we will use the common notation
S ( x, y, z , t ) for any of last two variables, changing
the surface tension according to the expression σ = σ0 −
σsS). In dimensionless variables the system of governing
equations reads

1

d

{
∂t �u + (�u∇)�u + w�u′} = −∇p + ��u + �u′′, (1)

1

d

{
∂tw + �u∇w + ww′} = −p′ + �w + w′′ − G, (2)

∇ · �u + w′ = 0, (3)

∂tS + �u∇S + wS′ = �S + S′′ + μ(�q + q ′′
z ) (4)

The primes denotes derivatives with respect to the
vertical coordinate z.

On the horizontal boundaries of the layer the heterogene-
ity of temperature or surfactant concentration is described
using function Q (x, y, z ) = q ( x, y ) · qz ( z ), taken
at the lower boundary z = 0 and upper deformable bound-
ary zh = 1 + h(x, y, t) respectively. These two values are
inhomogeneous part of heat flux in the thermocapillary case
and the surfactant flow rate in solutocapillary situation. The
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dependence of Q on z was introduced to reflect the pres-
ence in the experiments of a localized heat source below
the liquid surface caused either by a laser (Karlov et al.
2005) or by incoherent (Mizev 2004) radiation. In a com-
plete three-dimensional formulation (1)–(4), this leads to
the appearance in the right hand side of Eq. 4 of the term
with internal heat source μ�Q(x, y, z) due to absorption of
light, where the coefficient μ is determined by the ability of
the medium to absorb light (Gershuni et al. 1989). For the
solutocapillary case, the situation with submerged source of
surfactant is more hard to realize experimentally, so further
it will be assumed that in this case qz. = const = 1, μ = 0.
Accordingly, the boundary conditions for system (1)–(4) are

z = 0 : �u = w = 0; S′= − 1 + q (x, y) · qz(0);
z = 1 + h(x, y) : ht+�u ∇h = w;
S′= ∇h ∇S− 1+ q (x, y) · qz(1); q ′

z(1) ≡ ζ .
(5)

In addition, on the interface z = zh = 1 + h(x, y, t)

the balance of normal and tangential components of the
momentum flux density �ik = −pδik + (Vi,k + Vk,i) is
ensured by the following relationships (in assumption of no
adsorption of surfactant on the surface):

�nn = ∇
(

∇h
√
1 + (∇h)2

)

(Ca − Ma S) , (6)

�nti = Ma

(
1

√
1 + (∂ih)2

)
(
∂iS − S′∂ih

)
(7)

The model described by Eqs. 1–7 contains the fol-
lowing dimensionless parameters: the Marangoni number

Ma =σSQ̃L
3
/

(ηχ); the Prandtl or Schmidt number d

(d = Pr = ν
/
χ) for thermocapillary case and d =

Sc = ν
/
D for solutocapillary case); the Galileo number

G = gL3
/
(νχ) and the capillary numberCa = σL

/
(ηχ).

The symbols η, ν, χ, D, σdenote the coefficients of the
dynamic viscosity, kinematic viscosity, thermal diffusivity
and surface tension, respectively; Q̃ stands for either the
dimensional power of the heater or consumption of the
surfactant, and L for the depth of the layer. The
parameter ζ in Eq. 2 will appear later in equations of long-
wave approximation (“Formulation of the Problem”) and
characterizes the vertical inhomogeneity of heat or surfac-
tant source. Value of ζ = 0 corresponds to qz (z) = const ,
ζ is negative for the case of the source under the surface,
and a change in this coefficient can simulate a change in the
depth of immersion of a heat or concentration source.

In the solutocapillary case, when S≡ C, only the simplest
case of soluble surfactant with absent surface concentration is
considered here. This is actually equivalent to the thermo-
capillary case, with a replacement of the Prandtl number by

the Schmidt number. Possible modifications to be investi-
gated elsewhere include account of finite distribution of sur-
face concentration �(x, y, zh) determined by processes of
diffusion, convective transport, and adsorption/desorption
on the surface. The coefficient of surface tension on the
interface in this case is set as σ = σ0 − σcC − σ��.
The problem reformulation requires an additional equation
for the surface concentration of the surfactant �(x, y, zh),
and the change of boundary conditions on deformable sur-
face (5) and (6), transforming them into the equation for
the velocity on the surface. In the simplified case of a
non-deformable surface the corresponding changes are as
follows (Birikh et al. (2009)):

∂t� + ∇ (�u �) = Sc−1
s �� + Sc−1 (Ka · C − Kd · � )

(8)

�∂t �u + �(�u∇)�u = �zx − Ma(∇C − Sc−1∇�) (9)

C′ = − 1 + q (x, y) · qz (1) + Ka · C − Kd · �; (10)

Here several new non-dimensional parameters appear:
Scs, Ka, Kd being the surface Schmidt number, charac-
terizing diffusion of � on the surface, and coefficients of
adsorption and desorption of the surfactant respectively.

For the case of no adsorption and desorption
(� = Ka = Kd = 0) the boundary conditions (8)–(10)
coincides with (5)–(7) for non-deformable surface.
The account of both surface deformation and adsorp-
tion/desorption processes would require more complicated
equations and boundary conditions than (8)–(10) (cf.
Mikishev and Nepomnyashchy 2011).

The Long-Wave Approximation

Separation of characteristic horizontal and vertical scales of
the formulated problem (the characteristic horizontal scale
of surface tension inhomogeneity exceeds noticeably the
thickness of the liquid layer) allows sufficient simplification
in the mathematical formulation of problem, without
detriment to its physical essence.

Namely, we could apply the long-wave approximation
slightly beyond the threshold of onset of thermocapillary
or solutocapillary convection Ma cr = 48 (this threshold
corresponds to the long-wave instability, described by
Golovin et al. (1995) for the limiting case of a uniformly
heated layer with a thermally insulated bottom). In
accordance with the perturbation technique, the expansions
are performed into the powers of the small parameter ε,
characterizing the ratio of vertical and horizontal scales:
ε2 ≡ (

∂f
/
∂x

)/(
∂f

/
∂z

)
. The following asymptotic

expansions are obtained for the velocity, temperature or
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surfactant concentration, pressure, surface deformation and
surface concentration of the surfactant:

�u= √
ε(�u 0 +ε �u 1+ε2�u 2+ ...);

w = ε (w0 +ε w1+ε2w2+...);
h = ε (H0 +ε H1 +...);
p = ε−1P−1+P 0+ε P1 +... .

S = S0+ε S1 +ε2 S2 +...; (11)

� = �0+ε �1 +... .

We treat the heat or mass inhomogeneity as weak, of the
first order with respect to ε, as it was done in the studies of
thermogravitational convection from inhomogeneous heat
source (Lyubimov and Tcherepanov 1991). The following
rescaling is adopted:

(x, y) → √
ε (x, y); t → ε2t;

Considering the low orders (-1; 0) in expansions (8), the
following relations were obtained for 2D amplitudes of
flow characteristics (Golovin et al. 1995; Wertgeim and
Myznikova 2002):

P−1 = G(1 − z); P0 = GH − Ca�H ; S0 = −z + ;
�u0 = 12f ′(z)∇; w0 = −12f (z)�.

(12)

After the expansion until the second order, the mathematical
model acquires the form of the system of nonlinear
differential equations for two-dimensional amplitudes of
the functions (x, y), �(x, y), and H(x, y), (H ≡
H 0)characterizing respectively the deviation of the field S

from the equilibrium distribution with a vertical gradient,
the vorticity, and the free surface deformation:

∂t+∇ ∇ × (�ez�)+a1∇4 − ∇2H −a2∇
(|∇|2 ∇

)

+a3∇
(∇2∇

) +a4∇2 |∇|2 +a5∇(H∇)

− ∇(q∇)+a6∇2q + ζqH =0 .

(13)

�ez ∇2� =b1∇(∇2) × ∇−b2∇H × ∇; (14)

∇4H − c∇2H = δ∇2. (15)

In Eqs. 12–15 the following notations are used:

f (z) ≡ z2 − z3; −→
ez = (0, 0, 1);

a1 = 1
15 , a2 = 48

35 , a3 =
(

1
10+ 1

5d

)
, a4 =

(
3
5+ 1

10d

)
,

a5 = 2, a6 = 0.5, b1 = 312
3d , b2 = 24.

In these equations, additional rescaling, G →
εG; Ca → ε2Ca is adopted, and only the parameters con-
nected with the rescaled inverse capillary number Ca and
Galileo number G, c = 72/Ca, δ = G/Ca remain. The val-
ues c = δ = 0 correspond to the case of a non-deformable

upper surface. The system (13)–(15) generalizes the set of
equations obtained for the long-wave Marangoni convection
in the uniformly heated layer (Golovin et al. 1995),the last
three terms in Eq. 9 describe the influence of the inhomo-
geneity of heat flux. In the case of solutocapillary convec-
tion, the account of adsorption-desorption processes on the
interface (5)–(7) yields additional equations for �0, �1, and
corresponding changes in Eqs. 13–15.

Thus, the system of nonlinear amplitude equations (13)–
(15) describes the evolution of long-wave disturbances of
the temperature or surfactant concentration field, the fluid
velocity, and the deviation of free surface from the plane,
that develop in the horizontal layer as a result of the weak
non-homogeneity of the surface tension due to heat or
surfactant action. In contrast to the similar system, described
in Golovin et al. (1995) for the uniformly heated layer,
Eq. 9 contains additional terms, two of them reflecting the
spatial inhomogeneity in the horizontal direction, and the
third one, the last term of Eq. 9, is generated by the thermal
(or concentration) source inhomogeneity across the vertical
coordinate.

Variants of Localized Surface Tension
Inhomogeneity

The inhomogeneous surface tension is supposed to be local-
ized in the horizontal plane. Two variants of its horizontal
configuration, described by the function q ( x, y ), were
considered, both depending from single spatial variable ξ ,
whose meaning depends on the problem symmetry: namely,
q = q ( ξ ), where ξ ≡ x for the plane source of inho-
mogeneity and ξ ≡ r for an axisymmetric source. As
a function describing surface tension inhomogeneity, the
smooth function of one of the following types is chosen:

I. q(ξ) = (β2 sinh2(βξ) − α2)
/
cosh2(βξ), (16)

II. q(ξ) = − A + B tanh((ξ − R)
/
ρ), (17)

where

A = (α2 − β2 tanh(R
/
ρ))

/
(1 + tanh(R

/
ρ)) ;

B = β2 + A .

The parameters in the definition of q (ξ) characterize,
respectively, the deviation of the heat or mass flux from its
threshold value at the onset of thermo- or soluto-capillary
convection both inside (α) and outside (β) the area of
surface tension inhomogeneity; the characteristic size (R) of
the inhomogeneity; and the width (ρ) of the interval where
the smoothing is performed of the sharp boundary between
the hot spot and the remaining part of the plate.

The choice of function q (ξ) in the case I owes to the
fact that solutions of Eqs. 13–15 with this kind of heat flux
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inhomogeneity in the limit case of underformable surface
can be compared with exact stationary solution obtained
in (Lyubimov, Tcherepanov, 1991), and can be used for
testing of numerical methods. For the case II the choice is
connected with possibility of comparison to the results of
the linear analysis (Wertgeim and Myznikova 2002; Karlov
et al. 2005), where the stepwise heat inhomogeneity was
accepted. The stepwise function is the limit case of the
dependence (17) at ρ → 0.

Steady Solutions: 1D Problem
and its Simplifications. Methods of Solution

Further consideration concerns only the case of inhomo-
geneity of surface tension due to the horizontal heat flux
inhomogeneity q = q ( ξ ), which physically corresponds
to a plane hot bar (in 1D plane case) or to an axially symmet-
rical hot spot. These results can also be applied to the case of
admixture addition to the surface, spread to the bulk of liq-
uid without account of surface concentration of a surfactant
(� = 0), for which the problem formulation is equivalent to
the case of a localized heat source.

The localized steady solution of Eqs. 13–15 is assumed
to have the same symmetry that the inhomogeneity of the
heating (this is not rigorously proved, but 2D numerical
simulations have confirmed this conjecture). We shall use
the subscript “0” for this steady solution (it is easy to see
that in the cases under consideration the vorticity field is
absent for steady state due to the suggested symmetry):

 0 =  0 ( ξ ), H0 = H0 ( ξ ), �0 = 0. (18)

The governing equations for the basic state (14) are reduced
from Eqs. 13–15 to the following system:

a1∇ 4 0−∇ 2H0−a2∇
(|∇ 0| 2 ∇ 0

) +
a3∇

(∇ 2 0∇ 0
) +a4∇ 2 |∇ 0| 2+a5∇ (H 0∇ 0)

+ ∇ (q∇ 0)+a6∇ 2q + ζ q H 0=0

(19)

∇4H0 − c∇2H0=δ ∇2 0. (20)

To formulate the problem in terms of the variable ξ ,
one needs to make the transformation in Eqs. 19 and 20
via one of the following substitutions: ∇f ≡ (f ′, 0), and
∇(g, 0) ≡ g′ for the case of plane heat source, or
∇(g, 0) ≡ (rg)′

/
r for the axisymmetrical hot spot. Here f

and g are arbitrary scalar functions, the prime denotes the
derivative with respect to ξ , and ( p, s ) indicates a vector in
the orthogonal coordinate system, whose first component is
aligned with the ξ -axis.

Equations 19 and 20 determines the basic state solution
of the evolutionary system (13)–(15) depending on the

parameters of fluid (Prandtl or Schmidt number) and the
parameters of local heating or introduced surfactant (16)
and (17). To analyze the main properties and possible
simplifications of Eqs. 19 and 20, consider the case of plane
heat flux inhomogeneity (hot bar), for which the equations
of base state read:

a1
′′′′(x) − H ′′(x) − a2((

′(x))3)′ + a3(
′(x)′′(x))′+

+a4((
′(x))2)′′ + a5(H(x)′(x))′−

−(q(x)′(x))′ + a6q
′′(x) + ξq(x)H(x) = 0

H ′′′′(x) − δH ′′(x) − c′′(x) = 0

(21)

For certain limit cases it is possible to simplify the equa-
tions. Namely, for the approximation of non-derformable
surface (H = 0) we get one equation of the fourth order:

a1
′′′′(x) − a2((

′(x))3)′ + a3(
′(x)′′(x))′+

+a4((
′(x))2)′′ − (q(x)′(x))′ + a6q

′′(x) = 0
(22)

On setting a3 = a4 = a6 = 0 in Eq. 21, we get the same
governing equations as those obtained in the long-wave
approximation for thermal convection in the locally heated
layer (Lyubimov and Tcherepanov 1991). Substituting N(x)
= ′(x) and using the decay of all variables at x →±∞ one
obtains:

a1N
′′(x) − a2N

3(x) + (a3 + 2a4)N(x)N ′(x)

−q(x)N(x) + a6q
′(x) = 0.

(23)

The Eq. 23 (with a6 = 0) is actually the nonlinear spatial
Schrödinger equation with the potential q(x)/a1.

To obtain the solution of the general system (13)–
(15) and its further simplifications, setting the appropriate
boundary conditions is required for 0(ξ), H0(ξ), and their
derivatives at the center of “hot spot” and at infinite value
of the argument. In terms of the amplitude functions, the
boundary conditions are written down in the form:

a) for the planar problem:

( x , t) → 0, ∂x ( x , t) → 0, H ( x , t) → 0,

∂xH ( x , t) → 0, x → ±∞ (24)

b) for the axisymmetrical problem

( r , t) → 0, ∂r ( r , t) → 0, ∂2rr ( r , t) → 0,
H (r, t) → 0, ∂rH (r, t) → 0, ∂2rrH (r, t) → 0, r → +∞
∂r ( r , t) = 0, ∂rH ( r , t) = 0, r = 0.

(25)

The main technique for solving stationary nonlinear
amplitude equations for the plane and axisymmetric variants
of the problem has been the Galerkin method. For each of
the variants, a set of appropriate basic functions has been
used. The main feature of the method is the choice of basic
functions that are defined on the whole domain of definition
and satisfy the boundary conditions.
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In the planar case, the whole abscissa is the domain of the
definition, so the coordinate transformation was performed
in the first stage of the solution, which reduced the infinite
domain of definition to the finite one, specifically:

γ = tanh(β · x); x ∈ (−∞, ∞) → γ ∈ [−1, 1].
In the transformed coordinates, the basic functions and
decomposition of the unknown variables have the form:

{γ k}k=0,1,2,..; 0 =
∑

k

αk · γ k; H0 =
∑

k

βk · γ k

On the new boundaries, only zero boundary condition for
all functions is applied. The remaining boundary conditions
are completely satisfied by the basis functions themselves.
To search for axisymmetric stationary solutions, coordinate
transformation is not performed. The basic functions in this
case have the form:
{
1
/

(r + 1)i
}

; i = 1, 2, . . .

They are defined on the semi-line and satisfy the boundary
conditions at infinity. The basis functions do not satisfy the
boundary conditions at the origin.

Further, following the general methodology of the
Galerkin method and using the minimum condition of
the mismatch, the differential equations were reduced to
nonlinear algebraic equations, the unknowns being the
coefficients of the basis functions in the representation of
the unknown functions. Linear algebraic equations obtained
from boundary conditions are added to these equations. At
the last stage the system of algebraic equations was solved
by the methods of direct numerical integration realized in
the package Mathematica. For finding the complete set of
the solutions of the system of nonlinear algebraic equations
in the stationary case the Bukhberger’s algorithm (Cox
et al. 2007), based on the finding of the Gröbner basis, and
different iteration techniques of the solution are used. The
solution of the initial value problem in the nonstationary
case is obtained by the Runge-Kutta methods of different
orders.

Dependence of the numerical solution on the number
of basis functions was investigated. Already with 5 basis
functions, convergence is observed.

Linear Analysis of Stability of the Basic State

In accordance with the general approach of linear theory
of hydrodynamic stability, we follow the propagation of the
small normal perturbations of steady state given by Eq. 18:

(x, y) = 0(x, y) + ′(x, y)eλt ;
�(x, y) = �0(x, y) + � ′ (x, y)eλt ;
H(x, y) = H0(x, y) + H ′ (x, y)eλt .

After substituting this form of solution in Eqs. 13–15 and
the linearization we get the following spectral problem
(primes at the perturbation terms are omitted):

λ + a1∇4 − ∇2H − 3a2∇
(|∇0|2 ∇

)

+ a5∇(H0∇ +H∇0 )+a3∇
(∇20∇ +∇2∇0

)

+∇0rot (
−→
e z�) + 2a4∇2 |∇0∇| − ∇(q∇) = 0 ;

(26)

b1 (∇ (�0) × ∇ + ∇ (�) × ∇0) − b2 (∇H0

×∇ − ∇H × ∇0) − �ez�� = 0 ; (27)

∇4H − c∇2H =δ ∇2 . (28)

The problem (26)–(28) is non-selfadjoint, and in the general
case admits the excitation of instability with respect to
disturbances of both monotonic or oscillatory types.

However, in the case of stepwise heat flux inhomogeneity
the basic state can be approximately considered as
equilibrium. This becomes possible due to the condition
∇2q = 0, valid at almost all x, except for the edges of
the step, and permitting to set 0(ξ) = H0(ξ) = 0 in
Eqs. 19 and 20. Linear analysis is simplified in this case,
and discloses only the monotonic instability (Wertgeim and
Myznikova 2002).

We seek the small perturbation functions in the following
form:

a) in the planar case:
(x, y, t) = φ (x, t) ·ei·ky ·y; H(x, y, t) = h (x, t) ·

ei·ky ·y; �(x, y, t) = ψ (x, t) · ei·ky ·yHere ky is the
wave number along the coordinate orthogonal to the
one on which the fundamental solution depends.

b) in the axisymmetric case:.

(r, ϕ, t) = φ (r, t) · ei·m·ϕ; H(r, ϕ, t)

= h (r, t) · ei·m·ϕ; �(r, ϕ, t)

= ψ (r, t) · ei·m·ϕ .

Here m is the wavenumber along the azimuthal
coordinate.

As a result, we obtain partial differential equations for
functions that contain two independent variables.

These equations have been solved by finite difference
methods. Approximation of partial derivatives with respect
to the spatial coordinate is of the second order. As a result,
we derive the ODE system with the number of equations
proportional to the number of nodes in the grid. The ODE
solution was computed by the explicit adaptive method of
the first-order with respect to the time, which is adequate
for the problem due to the absence of sharp changes in
the temporal evolution of the perturbation. During the
integration process, the timestep has been automatically
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varied. The initial perturbation had the form of a localized
function with one extremum. Further evolution of this
disturbance has been considered, whereby the stability or
instability of the basic state has been revealed and the
decrement or increment has been determined.

Methods of Solution for 2D Problem

The problem in the complete 2D nonlinear formulation
(13)–(15) is treated numerically using the semi-implicit
pseudo-spectral approach developed for nonlinear thermo-
capillary convection in the uniformly heated layer (Nepom-
nyashchy et al. 2002).

The nonlinear convective terms in Eqs. 13–15 are
calculated via transformation from the Fourier coefficient
space to the physical space, and vice versa. Temporal
evolution of the Fourier coefficients has been calculated
by finite-difference technique using the Crank-Nicolson
discretization scheme for the linear terms and the Adams-
Bashforth method for the nonlinear terms.

Initial conditions of two specific types were tested. The
first variant corresponded to the supercritical pattern of
spatially periodic convective rolls known from the case of
uniform heating. For the second version the 1D steady-state
solution with an inhomogeneous heating, obtained earlier
for other parameter values, was chosen as the starting state.

The boundaries of stability of the basic state with respect
to the disturbances of different types have been located
numerically.

Basic State Simulations: Influence of Heat
Flux Q(ξ )

The main aim of the studies has been to investigate the
influence of applied heat inhomogeneity upon the basic
stationary solutions of Eqs. 19 and 20. Let us start with
solutions of small amplitude deduced from Eqs. 19 and
20 by neglecting nonlinear terms. Calculations for different
forms and parameters of q(ξ) have been performed.
The dependence of the amplitude of the temperature
perturbation 0(0) on the parameter of the heat flow
inhomogeneity α, characterizing intensity of local heating,
is demonstrated in Fig. 1.

One can see that the shape of solution and its
characteristic amplitude at the center of the hot spot depend
substantially on the parameter α. At small values of α,
the amplitude of temperature is bell-shaped and takes only
negative values. As α increases, the amplitude decreases
until some critical value of α is reached. At this point, the
dependence develops a discontinuity of the second kind.
A further increase in the parameter leads to change of the

e)
а) 

b)     c)     d) 

Fig. 1 The value of the temperature amplitude at the center of the spot
(a) and its shape (b-e) as function of the parameter α (0.1 (b), 0.4 (c),
0.58 (d), 0.75 (e)), β =0.3, the heat flux type I, planar case)

sign of temperature amplitude at the center of the thermal
spot, and this is repeated many times as the parameter
grows. At the same time, the number of local extrema of the
temperature distribution function increases. Noteworthy that
the length of the regions between the critical values remains
almost constant:

α2 − α1 ≈ α3 − α2 ≈ ... ≈ const . (29)

This behavior turns out to be typical not only for Eqs. 19–
20, but also for all simplifications (21)–(23), in particular for
the case of the non-deformable boundary (c = δ = 0), and
for its further reduction to a boundary-value problem for the
spatial Schrödinger equation, obtained after linearization of
Eq. 23, with the potential q(x)/a1. Assuming an infinite
interval of definition and the decay of the unknown variables
on infinitely remote boundaries, one gets the exact analytic
solution of the linearized problem (23) (Landau and Lifshits
1977):

N(x) = (1 − tanh2(βx))
1
2 F

(
1 − s, 2 + s, 2, 1−tanh(βx)

2

)
;

s = 1
2

(
−1 +

√
1 + 4α2+β2

β2

)

(30)

In the formula (30) F is the hypergeometric function, s
is the parameter of its arguments. Solutions are localized
only for the discrete set of parameters α and β, obeying the
relation: αn = βn

√
n2 + 3n + 1. These solutions differ in

the number of extrema, the first three of them are shown on
Fig. 2.

Within the above problem formulation, there are no
discontinuities of the second kind in the dependence of
localized solution (30) on α, but the required zero boundary
conditions at infinity are satisfied only for certain discrete
values of the parameters αn and βn, n = 0, 1, 2 . . ., whereas
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a) b) c)

Fig. 2 Solutions (30) for n=0 (a), n=1 (b), n=2 (c) (β =0.2, heat flux type I, planar case)

for other values of these parameters the solution grows
unlimitedly at one end of the interval. However, if in the
numerical simulation of the boundary value problem it is
compulsory to require the fulfillment of zero boundary
conditions at infinity for all α and β, the discontinuities of
the second kind appear at the corresponding critical values
α̃n ≈ αn. Note that the exact solution (30) corresponds to
case of heat flux of type I, and one can see from expression
for critical values αn that approximate relations (29) are

valid. For the other investigated form of the heat flow, type
II (13), all described properties of the solution are preserved,
except that the lengths of the regions between the critical
values do not remain constant and grow with increase of α :
α2 − α1 < α3 − α2 < ... (Fig. 3).

In the numerical study of the initial nonlinear boundary
value problems (18)–(22) the unknown variables demon-
strate similar behavior. The critical values of parameters α

(or β), corresponding to sharp transitions between different

a) e)

b) c) d)

Fig. 3 The value at the center of the spot (a) and the shapes (b)–(e) of the temperature amplitude as function of the parameter α, (β =0.2, heat
flux type II, planar case)
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shapes of solutions persist, with slightly changing numer-
ical values. Instead of discontinuity of the second kind, a
narrow transition region with finite values of variables on its
boundaries appears.

Variation of other parameters of the problem (19) and
(20) leads to the same kind of dependencies. This is
valid, in particular, for dependence on the inverse capillary
number: parameter c. The regions of sharp changes in
shape and amplitude of the variables, and the number of
local extrema of functions increases when passing through
the critical value of the parameter. The characteristic
features of the dependences of the temperature distribution
and the shape of the surface on the parameters of
thermal inhomogeneity and the properties of the liquid are
confirmed by experimental observations of various stages of
the process of heating the liquid layer by localized radiation,
produced by a laser beam (Karlov et al. 2005) or incoherent
light source (Mizev 2004), depending on the change in the
thickness of the layer, the size and power of the thermal
inhomogeneity source.

For the nonlinear equations, in contrast to the linear
ones, the presence of the multiple solutions is typical. The
dependences of the amplitude of steady-state solutions of
nonlinear problem on the parameter α at different β for heat
flux type I, planar case, are represented in Fig. 4.

For the small β this dependences at large scales are
straight lines filling the cone-shaped region (Fig. 4a). With
β values larger than β ∼ 10 the multiplicity of solutions is
typical only for the region of small α ∈ [0, α∗], in this case
α∗ ≈ 60. Outside this region at α > α∗ there is a unique

a)
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b)
x

Fig. 4 Dependences of steady solutions of planar nonlinear problem
on the parameter α (a: β = 1; b: β = 10)

1

2

3

Fig. 5 Dependence of the value of the amplitude of the deformation of
the surface in the center of the thermal spot on the heat flux parameter
α. β = 7, c = 0.1, δ = 0.1, P r = 13, ζ = 0, R = 1

solution (Fig. 4b). All the features described above persist also
in the case of axisymmetrical inhomogeneity of heat flux.

Stability of the Basic States: Numerical
Results

For the nonstationary thermal source, corresponding to
the experimental situation of the gradual increase of the
power of laser radiation up to the specific value within the
specified time interval (Karlov et al. 2005), the parametric
domains are investigated, where either the processes of the
establishment of steady state or the nonstationary passages
between them take place, and their dependences on the
warmup time and spatial inhomogeneity of thermal source
are studied.

Due to the above mentioned multiplicity of solutions
of equations for basic states, it is worth to consider in
the stability analysis of basic states (19) and (20), using
(26)–(28), not the single stationary solution, but the whole
branch depending on some parameter. Figure 5 shows the
dependence of the amplitude of deformation of stationary
basic state on the heat flux parameter α for the planar case.
It should be noted that for all values of this parameter there

1)

2)

3)4)

5

10

15

20

2 4 6 8 10

5)

Fig. 6 Stability map of the main planar steady states. The regions on
the map correspond to the existence: two paired branches of unstable
states (2, 3, 4); Stability of the unit branch: a for ky = 0, the regions 1,
2, 5; b for ky = 1, the regions 1, 2, 3
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Fig. 7 Non-stationary solution of the nonlinear problem for initial state with parameters α = 0.3, β = 0.1, c = δ = 1, ς = −0.015, Pr=13 a time
dependence (0, t); b-d - horizontal profiles (ξ, t) at different moments of time

is a solitary branch marked 1 in the Figure. Starting from
a certain value of α, a further pair of branches appears,
whereas the basic states corresponding to these branches
coincide in form and differ in sign.

Results of stability analysis of plane basic states with
respect to small perturbations described above (with ky ∈
[0, 1]) are presented in Fig. 6, where the area of existence
of the pair of branches is indicated by the numbers 2 and
3. The steady states on these branches are unstable, with
the steady states on the lower branch being monotonically

unstable, and those on the upper one being oscillatory
unstable in the entire region of existence. On the solitary
branch there are both stable and unstable steady states,
depending on the transversal wavenumber ky . The complete
study of dependence of stability on this parameter is not
yet accomplished, but from Fig. 6 it can be inferred for two
values of ky . The regions of stability are 1, 2, 5 for ky = 0,
and 1, 2, 3 for ky = 1. As can be seen, in the case ky = 1
for small α and finite β, steady states on the solitary branch
become unstable.

Fig. 8 Dependence of stationary
solutions of nonlinear
axisymmetric problem on the
parameter α at β = 0.1 (solid
lines – stable solutions, dashed
lines – unstable ones)
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Fig. 9 Stability map for steady states in axisymmetric problem.
Stability boundaries for axisymmetric (m=0) and dipole (m=1) modes.
Dashed line: axisymmetric basic solution

As an alternative way, the numerical analysis of the
stability of steady state solutions is performed. Solutions
of the nonstationary problem (13)–(15) in 1D version are
found using the Galerkin method, starting from one of
previously obtained steady solutions and adding some small
perturbation. Further development of the perturbation is
demonstrated in Fig. 7.

For the axysymmetric problem, like in the planar case
(Figs. 5 and 7), multiple solutions at the fixed parameters are
found, differing between themselves by the number of local
extrema (Fig. 8). The most dangerous instability mode for
these solutions is typically the dipole one for a wide range
of parameters (Fig. 9).

For the analysis of stability of the obtained steady states
to 2D disturbances, the study of their nonlinear development
on the basis of solution of the complete 2D problem (13)–
(15) by the pseudo-spectral method has also been executed
(Karlov et al. 2005; Wertgeim et al. 2013). Numerical
results showed that the obtained one-dimensional stationary
solutions are stable and are encountered in a certain range
of the parameters. Qualitatively the stability region can
be determined from the results of linear theory in the
approximation of zero steady-state solution (Wertgeim and
Myznikova 2002), for the more precise determination it
is necessary to examine the complete problem of stability
of the non-zero solutions. Beyond the limits of stability
region, the 2D calculations demonstrate the development
of both the localized disturbances of another symmetry
(in the planar case - with the odd profile of dependences,
in the axisymmetrical one – the disturbance with dipole
pattern), and the disturbances, which lead to the global

cellular structures in the entire space, occupied with liquid.
The results of 2D calculations confirm the presence of the
global and local modes of instability, previously forecasted
by linear theory, and they also demonstrate the possibility of
oscillatory regimes (Fig. 10).

a)

b)

c)

Fig. 10 Development of the disturbances of temperature for the
different modes of the instability of the one-dimensional stationary
solutions: 1D local monotonic mode (a), 1D global oscillating mode
(b) and 2D mode (c) (planar thermal heterogeneity)
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Conclusions

Results of numerical studies show that inhomogeneous
surface tension, created by either localized heat flux
or localized deposition of surfactant, has a significant
effect on the Marangoni convection in a thin liquid layer
with a deformable surface, leading to a large variety of
spatial patterns in the fluid flow, temperature distribution
and surface deformation. For sufficiently small values
of the layer thickness, it is possible to use long-wave
approximation, which simplifies the problem considerably.

Analysis of the basic states and their stability showed that
their properties depend significantly on the parameters of
the spatial inhomogeneity of surface tension and physical
parameters of the system, with sharp transitions between
different forms of solution at certain parameter values.

The results of nonlinear numerical experiments confirm
the existence and types of instability modes predicted by
the linear stability analysis. They allow us to describe the
evolution of disturbances far from the threshold of the
instability excitation, to study transitions between different
structures of thermo-capillary flow, and peculiarities of heat
transfer.

The results correspond qualitatively to the regimes and
spatial structures of thermocapillary convection observed in
experiments based on localized heating of the liquid layer.
For a better quantitative correspondence and description of
the observed oscillatory and wave modes it is necessary to
take into account, in the modified mathematical model, the
finiteness of the magnitude of the thermal inhomogeneity,
the three-dimensional nature of the flow, the temperature
distribution and deformation of the surface, and the effect of
thermogravitational convection.

It is shown that the noted characteristic features of the
behavior of solutions are mostly preserved in simplified for-
mulations obtained from the complete nonlinear problem, in
particular, by its linearization or in the approximation of the
absence of deformation of the boundary.
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