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Abstract
The convective instability and non-linear flows are considered in a horizontal, binary-mixture layer with negative Soret
coupling, subjected to the high-frequency vibration whose axis is directed at an arbitrary angle to the layer boundaries. The
limiting case of long-wave disturbances is studied using the perturbation method. The influence of the intensity and direction
of vibration on the spatially-periodic traveling wave solution is analyzed. It is shown that the shift in the Rayleigh number
range, in which the traveling wave regime exists, toward higher values is a response to a horizontal-to-vertical transition
in the vibration axis orientation. The characteristics of amplitude- and phase-modulated traveling waves are obtained and
discussed.
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For various purposes, among them practical applications,
it would be much desirable to stabilize the process as a
whole. That is the necessity to understand the physical
mechanisms determining the fluid dynamics stability.

The problem of convective instability to small normal
disturbances of horizontal, pure liquid layer heated from
below has been well studied both theoretically and experi-
mentally (Gershuni and Zhukhovitsky 1976; Lappa 2010).
In a binary-mixture layer the convective instability owes its
initiation to the interaction between the externally imposed
temperature gradient and the Soret driven concentration
gradient in a mass-conserving system. The linear analy-
sis enables to identify mechanisms and modes prevailing
at the threshold of convective instability in a horizontal
binary-mixture layer in accordance with values of control
parameters like the Rayleigh number and the separation
ratio (Platten and Legros 1984; Jiang et al. 1991; Platten
2006). The addition to the static gravity acceleration of its
vibrational part manifests itself as the mechanism affect-
ing the processes relevant to physics of fluids or materials
science, either intensifying or slowing down heat and mass
exchange. Deep understanding of this specific dependence
on modified gravity conditions expands the possibilities for
technological applications in space environment (Ostrach
1977, 1982; Alexander 1990; Mialdun et al. 2008).

Introduction

In recent decades the influence of vibrations on mechanical
processes in multicomponent fluid systems has become the
perspective researchdirection formanyareasof fundamental and
applied science. The findings of investigations on vibrational
fluid dynamics have guided the improvement in planning
the microgravity experiments, managing the heat-mass
transfer and flow structure in crystal growth processes, pro-
tecting the natural environment, as well as the development
of new computational algorithms and software tools (see,
e.g., Gershuni and Lyubimov 1998; Lyubimov et al. 2003;
Lappa 2004; Mialdun et al. 2008; Andreev et al. 2012).

http://crossmark.crossref.org/dialog/?doi=10.1007/s12217-017-9582-5&domain=pdf
http://orcid.org/0000-0002-7734-1482
mailto:bsmorodin@yandex.ru


96 Microgravity Sci. Technol. (2018) 30:95–102

As for studying thermal vibrational convection in binary
mixtures with thermodiffusion, the published results relate
to the presence of vibrations which vary in direction, fre-
quency or amplitude. The bibliography on the problem is
also quite extensive. Let us set off some of the articles
concerning the effect of high frequency and small ampli-
tude vibrations on the base state of two-component liquid
system. In this limiting case the mathematical model of
the process has the form of the initial-boundary problem
for the set of equations for averaged fields of real phys-
ical variables. As a rule it is written in accordance with
the Boussinesq assumptions, so density non-uniformity has
the only influence on the flow field in the term represent-
ing the buoyancy force. The authors of works (Gershuni et
al. 1997, 1999; Chacha et al. 2002; Smorodin et al. 2002;
Shevtsova et al. 2006, 2007, 2015; Lyubimov et al. 2013;
Gaponenko and Shevtsova 2016; Ouadhani et al. 2017) give
special attention to the conceptions, physical mechanisms,
mathematical correctness of computational procedures and
reliability of the results obtained. In work (Gershuni et al.
1997) the convection of binary gas or fluid mixtures filling
infinite horizontal layer subjected to longitudinal vibra-
tions is theoretically modeled. The quasi-equilibrium state
is considered as the base one. As a result of linear sta-
bility analysis the boundaries of stability and the critical
disturbance characteristics are determined for representative
parameter values, different instability mechanism and forms
are discussed. As it is shown in work (Gershuni et al. 1999)
the effect of transversal vibrations is always stabilizing. The
series of comprehensive microgravity researches (Chacha et
al. 2002; Shevtsova et al. 2006, 2007, 2015; Gaponenko and
Shevtsova 2016) of the various types of convection possible
in Space, demonstrates that the low-gravity fluid dynam-
ics may exhibit principal dissimilarity from that under
terrestrial conditions. The results obtained by means of
direct numerical simulations are in good agreement with
experimental observations performed on the International
Space Station and during parabolic flights. Linear stability
of incompressible plane-parallel inviscid pulsational flow
is studied in Lyubimov et al. (2013) ignoring diffusion
effect. The results concerning long-wave instability have
been worked out analytically and instability to the pertur-
bations with finite wavelength – numerically. In Ouadhani
et al. (2017) the influence of transversal high-frequency and
small-amplitude vibrations on the separation of a binary
mixture, which penetrates a porous cavity, is under analyti-
cal and numerical considerations. It is shown that vibrations
may conduce to the unicellular flow which loses its stability
via oscillatory bifurcation. The papers (Cross and Hohen-
berg 1993; Moses et al. 1987; Jung et al. 2004; Smorodin
et al. 2008; Smorodin and Lücke 2009) present theoretical
and experimental evidences of nonlinear oscillatory convec-
tive regimes emerging in plane horizontal binary fluid layer in

traveling wave pattern near the instability threshold as a result
of local bifurcation analysis or direct numerical simulations.

The purpose of the present paper is to describe analytical
and numerical results of high-frequency thermovibrational
convection in binary liquid mixtures in the case of arbitrary
inclination of the vibration axis to the boundaries of the
horizontal layer.

The paper is organized as follows. “Statement of the
Problem” contains the physical description and mathemat-
ical formulation of the thermovibrational convection prob-
lem for binary mixture. The critical stability characteristics
are discussed in “Linear Stability Analysis”. The bifurca-
tion diagrams and some properties of nonlinear solutions are
presented in “Nonlinear Solutions”. “Conclusion” contains
concluding remarks.

Statement of the Problem

Let us consider an infinite plane horizontal layer of finite
depth h bounded by two parallel rigid plates and filled with a
binary liquid mixture (for example, ethanol-water solution).
The origin of the space Cartesian coordinate system is
located at the lower boundary, the x-axis is directed along
the layer and the z-axis is oriented positively upwards,
as in the Fig. 1. The dependence of phase variables on
y-coordinate is neglected. Both boundaries z = 0 and
z = h are treated as perfect thermal conductors and
impermeable to mixture components. The lower boundary
is maintained at fixed temperature T (x, 0, t) = � while the
upper boundary is held at temperature zero T (x, h, t) = 0.
The temperature difference between the plates causes the
vertical temperature gradient in the quiescent mixture. Due
to the nature of thermal diffusion a temperature gradient
gives rise to the relative motion of mixture ingredients
which results in the concentration gradient in an originally
homogeneous mixture.

The equation of binary fluid state can be written in the
form resulting from the mixture density expansion

ρ = ρ0(1 − α ( T − T̄ ) − β (C − C̄ ) ).

Here ρ0 is the reference mixture density at certain mean
values of temperature T̄ and concentration C̄, α and β are
the thermal and solutal expansion coefficients, respectively,
and deviations from the mean values are assumed to
be small. Presupposing C the concentration of the light
component, we obtain β > 0.

The layer is situated in a static gravitational field g =
−gγ , where γ is the upward unit vector, and subjected to
a harmonic vibration having the displacement amplitude b,
angular frequency �, and the direction oriented at an angle
δ to the layer boundaries. We consider the limit of high-
frequency (but below acoustic) vibrations with the period
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Fig. 1 Geometry of the problem
and the system of coordinates

Tv = 2π/�, which is much smaller than all characteristic
time scales (like hydrodynamic, thermal and diffusion):

Tv � min
[
h2/ν, h2/χ, h2/D

]
.

Here D is the diffusion coefficient of the mixture, and ν and
χ designate, respectively, the coefficients of its kinematic
viscosity and thermal diffusivity.

The mathematical model has been developed to describe
the dynamics of certain characteristics of thermovibrational
binary-mixture convection, like mean parts of the velocity
v, temperature T , concentration C and additional variable
w, correctly representing the amplitude of pulsation
velocity. All the fields v, T , C and w vary slowly with
time, and the set of governing equations is obtained by
means of the standard averaging procedure applied to
the buoyancy convection equations within the framework
of the Oberbeck–Boussinesq approximation (Zen’kovskaya
and Simonenko 1966; Gershuni and Zhukhovitsky 1979;
Gershuni and Lyubimov 1998). To nondimensionalize
physical quantities the following appropriate scales are
used: the layer thickness h for a length, χ/h for a velocity,
h2/χ for a time, � for a temperature, α �/β for a
concentration, α � for w field and ρ0νχ/h2 for a pressure.
As a result one can write the set of averaged dimensionless
equations of the thermovibrational convection in binary
mixture as follows (Gershuni and Lyubimov 1998):

1

Pr

∂v

∂t
+ 1

Pr
(v∇)v = −∇p + �v + Ra (T +C)n

+ Gs(w∇) [(T +C)n − w] ,

∂T

∂t
+ (v∇)T = �T, (1)

∂C

∂t
+ (v∇)C = Le�(C − ψT ),

∇ · v = 0, ∇ · w = 0, curlw = ∇ (T + C) × n.

Here p is the pressure deviation from the hydrostatic one at
the density ρ0,Ra = gα�h 3/(νχ) is the Rayleigh number,
Gs = (b�α�h)2/(2νχ) is the Gershuni number, Pr = ν/χ

is the Prandtl number, Le = D/χ is the Lewis number, and

ψ = −κT β/(T̄ α) = −C̄(1 − C̄)STβ/α is the separation
ratio, respectively, while κT = T̄ C̄(1 − C̄)ST is the
thermodiffusion coefficient and ST is the Soret coefficient.
The unit vector n characterizes the direction of vibrations.

The problem specified by the system of Eq. (1) with
appropriate initial and boundary conditions has the quasi-
equilibrium solution describing the linear equilibrium fields
of temperature, concentration and variable w:

v0=0, T0=1−z, dC0/dz=−ψ, w0=(w0x, 0, 0),

w0x = −(1 + ψ)(z − 1/2) cos δ. (2)

It is seen that in the case of transversal vibrations δ = π/2,
the pulsating velocity vector w0 = 0 and the system has
mechanical equilibriumas its base state (Gershuni et al. 1999).

To work out the problem in the shape of y-axial rolls, the
stream function and vorticity formulation is developed. We
introduce two stream functions denoted by � and F and the
vorticity �, which are velocity-related as follows

vx = ∂�

∂z
, vz = − ∂�

∂ x
, wx = ∂F

∂z
, wz = − ∂F

∂ x
,

� = (∇ × v)y . (3)

The set of governing equations for two-dimensional
thermovibrational convection of incompressible binary
mixture can be written thus:

1

Pr

∂�

∂t
+ 1

Pr

{
∂�

∂z

∂�

∂x
− ∂�

∂x

∂�

∂z

}
= �� + Ra

∂(T + C)

∂x

+ Gs

{
cos δ

[
∂(T + C)

∂z

∂2F

∂x∂z
− ∂2F

∂z2

∂(T + C)

∂x

]

+ sin δ

[
∂(T + C)

∂x

∂2F

∂x∂z
− ∂2F

∂x2

∂(T + C)

∂z

]}

∂T

∂t
+ ∂�

∂z

∂T

∂x
− ∂�

∂x

∂T

∂z
= �T,

∂C

∂t
+ ∂�

∂z

∂C

∂x
− ∂�

∂x

∂C

∂z
= Le(�C − ψ�T ),

� = −��,

�F = ∂(T + C)

∂z
cos δ − ∂(T + C)

∂x
sin δ. (4)
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We seek and find the solution of this problem satisfying
certain boundary conditions, which correspond to no-slip,
impermeable, and isothermal horizontal plates:

z = 0 : � = 0,
∂�

∂z
= 0, F = 0,

T = 1,
∂C

∂z
− ψ

∂T

∂z
= 0,

z = 1 : � = 0,
∂�

∂z
= 0, F = 0,

T = 0,
∂C

∂z
− ψ

∂T

∂z
= 0. (5)

Linear Stability Analysis

Let us consider small normal-mode disturbances of the base
state (2) taken as

{�, T , �, F } = exp(λt + ikx){ϕ(t, z), θ(t, z), ξ(t, z), f (t, z)},
(6)

where � = C − ψT is the new variable, k is the wave
number along the x-axis, λ = λr + iλi is the complex
decrement of disturbances with the growth rate λr and
oscillation frequency λi = ω.

After linearization one can obtain the following spectral
boundary value problem for amplitudes of the disturbances:

λ

Pr

(
d2

dz2
− k2

)
ϕ =

(
d2

dz2
− k2

)2

ϕ + ikRa[(1 + ψ)θ + ξ ]

+ Gs

{
ik cos δ

[
(1 + ψ)θ + ξ − df

dz

]
− k2 sin δ(1 + ψ)f

}
,

λθ − ikϕ =
(

d2

dz2
− k2

)
θ, (7)

λξ − ikψϕ = Le

(
d2

dz2
− k2

)
ξ − ψ

(
d2

dz2
− k2

)
θ,

(
d2

dz2
− k2

)
f = cos δ

[
(1 + ψ)

dθ

dz
+ dξ

dz

]
− ik sin δ[(1 + ψ)θ + ξ ],

z = 0; 1 : ϕ = 0,
∂ϕ

∂z
= 0, f = 0, θ = 0,

∂ξ

∂z
= 0. (8)

The linear theory of hydrodynamic stability assumes that
small normal-mode perturbations of the base conductive
state may be amplified or damped. If their growth rates,
i.e. real parts of eigenvalues, are nonpositive, and at least
one of them equals zero, the base state of the system is
marginally (or neutrally) stable. Anticipating we emphasize
that in a binary fluid mixture with negative Soret coupling
the onset of the base state instability is conditioned by the
oscillatory-mode perturbations.

To find the stability threshold in the limiting case of long
wavelength disturbances, when k tends to zero, we assume,

in accordance with the perturbation technique (Nayfeh
1973), that the approximate solution of the problem (7),
(8) has the form of asymptotic series in terms of the small
parameter k for the decrement and all the amplitudes, that
is, we let

λ=
∑∞

n=0
λnk

n, ϕ=
∑∞

n=0
ϕnk

n, θ =
∑∞

n=0
θnk

n,

ξ =
∑∞

n=0
ξnk

n. (9)

Substituting expansions (9) into the set (7) and matching
the factors of like powers of k, we derive the simplified
sets of equations of different orders, which are solved in
succession.

In the zeroth order of approximation to k, the following
system is derived:

λ0

Pr

d2ϕ0

dz2
= d4ϕ0

dz4
,

λ0θ0 = d2θ0

dz2
,

λ0ξ0 = Le
d2

dz2
( ξ0 − ψθ0),

d2f0

dz2
=

[
(1 + ψ)

dθ0

dz
+ dξ0

dz

]
cos δ. (10)

This implies that ϕ0 = 0, θ0 = 0, f0 = 0, λ0 = 0, and
ξ0 = const is the only nonzero function. An arbitrary value
may be assigned to it, e.g., ξ0 = 1.

In the first order of approximation to k, the solution
{ϕ1, θ1, ξ1, f1, λ1} is determined by the following set of
equations:

d4ϕ1

dz4
= −i [Ra + Gs(1 + ψ) cos δ] ,

d2θ1

dz2
= 0,

λ1 = Le
d2

dz2
(ξ1 − ψθ1),

d2f1

dz2
=

[
(1 + ψ)

dθ1

dz
+ dξ1

dz

]
cos δ − i sin δ. (11)

The first-order approximation is

λ1 = 0, θ1 = 0, ξ1 = const,

f1 = −i
z(1 − z)

2
sin δ,

ϕ1 = −i [Ra + Gs(1 + ψ) cos δ] z2(1 − z)2/24. (12)

To find an improved solution to the spectral problem, the
approximation of the second order to k is considered.
The correction λ2 is obtained from the equation for the
concentration amplitude function:

λ2 − iψϕ1 = Le
d2

dz2
( ξ2 − ψ θ2 − 1). (13)
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Equation (13) is integrated with respect to z across the layer
to give the relationship

λ2 = −Le + iψ

∫ 1

0
ϕ1dz.

Using (12) one can achieve the following expression

λ2 = −Le + ψ

720
[Ra + Gs(1 + ψ) cos δ] . (14)

Since the decrement correction proves to be real, the long
wavelength perturbations are monotonic.

The stability boundary can be found by the requirement
λ2 = 0, resulting in a dependence

Ra = 720Le

ψ
− Gs(1 + ψ) cos δ. (15)

It is in agreement with the results (Gershuni et al. 1997,
1999) for the limiting cases of longitudinal vibrations and
transversal ones.

Under pure weightless conditions (no buoyancy, Ra = 0)
the relationship (15) takes the form

Gs = 720Le

ψ(1 + ψ) cos δ
. (16)

As can be seen from (16), under zero gravity the long-wave
instability exists in horizontal binary-mixture layers with
negative Soret coupling in the range ψ < −1. Depending
on the vibration axis orientation, the critical value of the
Gershuni number is minimal when the inclination angle
δ = 0, i.e. in the case of longitudinal vibrations. The
threshold value grows with δ and would be infinitely high
when δ = π/2, i.e. under transversal vibrations.

Nonlinear Solutions

We consider secondary nonlinear regimes branching from
the base quasi-equilibrium state as a result of its instability
with respect to finite-amplitude disturbances periodic along
the horizontal coordinate:

{ϕ, �, F, T , C} (x, z, t) = {ϕ, �, F, T , C} (x + L, z, t).

(17)

The period L = 2 of spatial translation along the x-axis is
the dimensionless distance that is close to the wave number
k = π of the disturbance which is, by the linear stability
theory, the most “dangerous” for stability of established
quasi-equilibrium state.

The numerical solution of the boundary value problem
(4)–(5) for thermovibrational convection is obtained by
means of finite-difference technique. The computational
procedure is based on the implicit factored scheme of the
second order in space and used the ADI Thomas algorithm
to get temperature, concentration and vortex fields. The

stream function fields at each time step are calculated with
the iterative successive over relaxation method. To describe
the flow dynamics and convective heat and mass transfer
the integral and local characteristics are studied depending
on nondimensional process parameters. In the present paper,
we hold fixed the set of parameters relevant for molecular
liquid mixtures, e.g., the ethanol-water solution (Kolodner
et al. 1988): the Lewis number Le = 0.01, the Prandtl
number Pr = 10, and the negative separation ratio ψ =
−0.25.

To compare the findings with known experimental,
analytical, or numerical results that had been previously
exposed in literature, the reduced Rayleigh number is
introduced r = Ra/Ra0, where Ra0 = 1686 is the
critical Rayleigh number for the onset of convection in
homogeneous liquid obtained by means of our numerical
code. The increase of the reduced Rayleigh number leads
to the perturbation growth and convection excitation via
Hopf bifurcation at the critical value rosc. The oscillatory
bifurcation threshold r = rosc(Gs) and the Hopf frequency
ωH = ωH (Gs) calculated at several Gershuni number
values for the longitudinal or transversal orientation of
vibration axis have been compared with the corresponding
critical data reported earlier. It has been found that the

Fig. 2 Bifurcation characteristics of the TW solution: (a) – the
maximum of vertical convective velocity; (b) – the oscillation
frequency. Solid lines –stable states, dashed lines – unstable states. 1 –
Gs = 0; 2 – Gs = 500; 3 – Gs = 1000; 4 – Gs = 1500; 5 – Gs = 2000
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Fig. 3 Effect of varying the vibration axis direction. The presentation
is as in Fig. 2. Gs = 1000. 1 – δ = 0; 2 – δ = π/4; 3 – δ = π/2

worked out set of critical parameters is close to estimated
by the numerical linear stability analysis in Gershuni et al.
(1997, 1999).

Near the oscillatory bifurcation point there is the range of
the reduced Rayleigh number values where several solutions
exist, either stable or unstable. The accurate computation
of unstable finite-amplitude flows is impossible by means
of discrete numerical techniques. But not far from
the critical Rayleigh number, and within the numerical

accuracy we have, the location of unstable branches has
been established, using the branch-following algorithm
of parameter continuation method. The computational
procedure starts in the small vicinity of the bifurcation
point where sought for solution exists. The incorrect initial
guess may allow the convergence to the solution on a
different branch. In successful cases the approximation has
been observed to remain for long within the vicinity of the
unstable branch. Using repeated computational experiments
successive intermediate solutions have been constructed as
starting fields for the next challenge in sequence.

Figure 2 represents the bifurcation diagram of nonlinear
convective regimes depending on the intensity of longitu-
dinal vibrations. In a qualitative sense, the curves for the
considered Gershuni number values, look similar to each
other. The base state (2) becomes unstable at r = rosc

relative to the finite periodic perturbations (17), and the
Hopf bifurcation gives rise to the traveling wave convec-
tion pattern of propagating rolls. Two characteristics of this
flow structure are plotted in Fig. 2 as functions of the
reduced Rayleigh number. They are a maximum of the verti-
cal velocity component vZ and the oscillation frequency ω.
Stable solutions are distinguished by solid lines and unsta-
ble ones – by dashed lines. It is seen in the upper part of
Fig. 2 that the unstable TW convective flow bifurcates back-
wards out of the base state (2). This regime acquires stability
via a saddle-node bifurcation at the reduced Rayleigh num-
ber value r = rT W

S . The TW frequency on the upper
branch of stable TWs, as shown in the lower part of Fig. 2,
demonstrates a monotonic descending dependence on r and
disappears at the point of TW conversion to the steady con-
vective rolls pattern. A comprehensive analysis of TW’s

Fig. 4 (Color online) Modulated
traveling-wave regime. Time
dependence of the maximum
stream function value over grid
domain and local stream
function value at the fixed point.
r = 2.472; δ = π/2;Gs = 5100
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Fig. 5 The depth of modulation
and period of modulated
traveling wave versus the
reduced Rayleigh number for
parameters of Fig. 4
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bifurcation properties in the case of no vibration (Gs = 0) is
contained in Barten et al. (1995). When the heating intensity
is low enough, and r < rT W

S , the binary mixture convection
fades away and the dynamic system turns to the conduc-
tive state (2). Referring to Fig. 2, bifurcation values of the
reduced Rayleigh number rosc and rT W

S tend to decrease as
the intensity of longitudinal vibrations is increased, while
the traveling wave frequency does not depend on Gs.

Figure 3 illustrates the effect of the vibration axis
inclination at an angle δ on the resulting bifurcation
diagram by correlation with that in the case of longitudinal
vibration represented in Fig. 2. Although the pictures look
qualitatively similar to each other, it is seen that the increase
of the inclination angle leads to a significant growth of
critical values rosc and rT W

S of the reduced Rayleigh number.
It is necessary to note that within the range of the

reduced Rayleigh number values r1 < rT W < r2 the
modulated traveling wave regime (MTW) manifests itself
under the high-intensity transversal vibration. The results
depicted in Fig. 4 elucidate the behavior of two associated
characteristics:

�max(t) = max
i,j

�(xi, zj , t); �loc(t)=�(x = L/4, z=1/2, t)

The maximum-over-domain stream function value �max(t)

oscillates within the interval δ� with the period T mod . The
local stream function �loc(t) demonstrates both amplitude
modulation and strong phase modulation. So that the
oscillation period in the fixed point of convective cell
changes within the interval 8.73 < Tloc < 32.2. Figure 5a
represents the modulation depth δ� as a monotonic
increasing function of the Gershuni number, while the
modulation period T mod changes nonmonotonically (see
Fig. 5b).

Conclusion

Thus we can say that mentioned above theoretical results
focus on the noticeable features of thermovibrational
convection, like the critical circumstances for the long
wavelength instability excitation in an initially quiescent
and heated from below horizontal layer of binary liquid
mixture with negative Soret coupling, which oscillates with
high frequency, small amplitude and arbitrarily oriented
axis about the layer boundaries. The mathematical model
obtained by applying the averaging technique to the set of
governing equations and appropriate boundary conditions
allowed us to study the vibrational effect on scenarios of
transition to dynamic phenomena in the system.

The linear stability approach has made it feasible to
find the neutral stability characteristics. They are evidently
comparable, in the relevant aspects, to those published
earlier. Further the nonlinear evolution of the base state with
respect to the finite periodic perturbations of sufficiently
large amplitude is considered. The spatiotemporal dynamics
and pattern formation are studied by means of direct
numerical simulations as well as bifurcation diagrams in the
range of control parameters adapted to experiments. The
analysis of bifurcation properties of nonlinear convective
flows allowed us to answer the question, what will the
perturbations grow into. It has been demonstrated that at
the oscillatory instability threshold the two-dimensional
convective roll pattern flow in the form of traveling wave
convection bifurcates subcritically out of the base state.
These unstable branches of solutions meet the stable
ones at the saddle-node points in the bifurcation diagram.
The vibration axis inclination over the layer boundaries
may essentially shift the fixed point position on the
phase diagram. Far from the quasi-equilibrium state the
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secondary bifurcation is observed to flow pattern in the
form of modulated traveling wave. The depth and period of
modulation are represented and discussed.
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