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Abstract Natural and forced oscillations of a sandwiched
fluid drop are investigated. In equilibrium, the drop is in the
form of a cylinder. It is surrounded by another liquid and
bounded axially by two parallel solid planes. The Hocking
boundary conditions hold on the contact line: the velocity
of the contact line motion is proportional to the deviation
of the contact angle from its equilibrium value. In this case,
the Hocking parameter (the so-called wetting parameter)
is the proportionality coefficient. This parameter is con-
sidered as a function of coordinates, i.e. solid plates have
a nonuniform surface. The axisymmetrical vibration force
is parallel to the symmetry axis of the drop. The solution
of the boundary value problem is found using the Fourier
series of Fourier series expansion of the Laplace opera-
tor in eigenfunctions. Both the axisymmetrical mode and
different azimuthal modes are excited because energy is
transferred from the axisymmetrical modes to other modes
due to nonuniform surfaces.
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Introduction

The oscillations of a fluid drops (or a gas bubbles) on
a substrate and methods of controlling such objects have
been the focus of many research works. For example, the
forced oscillations of a hemispherical droplet on the sub-
strate subjected to tangential and normal vibrations are
studied in Mettu and Chaudhury (2012) and Sudo et al.
(2010). A review of studies into the behavior of a drop on
the dielectric substrate (EWOD) in an alternating electric
field is given in Mugele and Baret (2005). The influence
of liquid evaporation from the droplet surface on the oscil-
lations of sessile drop was investigated in Korenchenko
and Beskachko (2013) and Sanyal and Basu (2016). The
effect of the substrate surface properties on the motion of
a drop lying on the inclined surface was studied in Savva
and Kalliadasis (2013) and Savva and Kalliadasis (2014).
Studies of oscillations of a liquid bridge (Liang and Kawaji
2009; Shevtsova and Melnikov 2006) and a cylindrical drop
(Alabuzhev and Lyubimov 2005; Demin 2008) are of inter-
est not only because of a variety of peculiar effects in such
systems, but also for technological reasons.

The research of drop oscillations involves the study of
the motion of the contact line of three immiscible media,
such as the solid-liquid-gaseous contact line or the solid-
liquid-liquid contact line (Brutin et al. 2009; Diana et al.
2012; Fernandez et al. 2017; van Lengerichal and Steen
2012). Despite widespread use of wetting in modern tech-
nologies, this phenomenon is not well understood, since the
interfacial interaction significantly depends on the impuri-
ties contained in the examined system and the state of the
surface (roughness, dislocations).

When considering the high-frequency vibrational motion
of a contact line, the effect of viscosity becomes signifi-
cant only in thin boundary layers near a solid surface, and
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the motion of the contact line is determined mainly by a
rapidly oscillating pressure field. Thus, the inviscid behav-
ior of a liquid in the drop core can be considered, taking into
account only the viscosity of the dynamic boundary layer
near the solid substrate. Complex processes occurring in the
immediate vicinity of the contact line are excluded from
consideration by imposing the effective boundary condi-
tions on the dynamics of the visible contact angle (Bostwick
and Steen 2014; Zhang and Thiessen 2013).

Damping of standing waves on the surface of a liquid
between two vertical walls was studied in Hocking (1987).
The effective boundary condition describing the dynamics
of the contact line assumes that the relationship between the
velocity of the contact line and the deviation of the contact
angle from the equilibrium value (for simplicity, this angle
is considered equal to 90o) is linear:

∂ζ ∗

∂t∗
= �∗k · ∇ζ ∗ (1)

where ζ ∗ is the deviation of the interface from the equilib-
rium position, k is the external normal to the solid surface,
�∗ is a phenomenological constant (the so-called wetting
parameter or Hocking parameter) having the dimension of
the velocity. The accepted boundary conditions (1) are asso-
ciated with two important constraints: (a) ζ ∗ = 0 the
requirement of a fixed contact line (pinned-end edge condi-
tion), (b) k ·∇ζ ∗ = 0 a constant contact angle. A qualitative
comparison with experimental work is also carried out in
this work . It was shown that appreciable discrepancies
between the experimentally measured damping decrements
of oscillations and their theoretical values obtained in other
studies (only viscous friction in the boundary layer was
taken into account) can be explained by energy dissipation
in the vicinity of the contact line.

Condition (1) was used, for example, to study the oscil-
lations of a hemispherical droplet of an incompressible
liquid on a substrate (Lyubimov et al. 2004, 2006), a
hemispherical gas bubble in a liquid of finite depth on a
substrate (Shklyaev and Straube 2008), a cylindrical drop
in an infinite volume of liquid (Alabuzhev and Lyubimov
2007), a cylindrical bubble in a liquid of a finite volume
(Alabuzhev 2014; Alabuzhev and Kaysina 2015), a ”sand-
wiched” droplet (having the shape of a rotation figure)
(Alabuzhev and Lyubimov 2012) and a capillary bridge in
weightlessness (Borkar and Tsamopoulus 1991). In all the
works listed, it was shown that the damping of the oscilla-
tions is mainly due to the motion of the contact line (with
the exception of the limiting cases of a fixed contact line
and a fixed edge angle). In Miles (1991), it was assumed
that a change in the contact line does not necessarily occur
in one phase with a contact angle, i.e. the Hocking constant
is complex.

The condition of the fixed contact line, which is the lim-
iting case (1), was used to study the natural oscillations of
a capillary bridge (liquid zone) in a gravity field (Demin
2008) and the parametric instability of a semicylindrical
drop of a weakly viscous liquid on a substrate (Kartavyh
and Shklyaev 2007). Another limiting case, namely, a fixed
contact angle, was considered, for example, in the study
of oscillations of a compressible hemispherical droplet
on a substrate (Ivantsov 2012) and a cylindrical drop of
an incompressible fluid under multifrequency vibrations
(Alabuzhev and Lyubimov 2005).

In experiments (Ting and Perlin 1995; Perlin et al. 2004),
the investigation of the motion of a solid-liquid contact line
along a vertical solid wall was made with intent to obtain
a phenomenological formula for the Hocking parameter,
which was a variable. It was shown that for small-amplitude
oscillations (small Reynolds numbers) the behavior of the
contact line is well described by the condition specified by
the contact line. With increasing amplitude the contact line
is found to be in the slippage mode, i.e. the contact line is
moving.

Another important problem is non-uniform wetting of
the surface along which the contact line moves (Savva
and Kalliadasis 2013, 2014). Heterogeneous substrates can
cause different effects (Brunet et al. 2007), for exam-
ple, hysteresis of the contact angle (Fayzrakhmanova and
Straube 2009; Fayzrakhmanova et al. 2011).

In this article, we consider the axisymmetrical oscil-
lations of cylindrical fluid drop, which is surrounded by
another ideal liquid. We assume that the Hocking parameter
is a function of coordinates. The natural and forced axisym-
metrical oscillations of the cylindrical drop for the case of
uniform plates were investigated in Alabuzhev (2016) and
Alabuzhev and Lyubimov (2007).

Problem Formulation

Following (Alabuzhev 2016; Alabuzhev and Lyubimov
2007), consider the oscillations of an incompressible fluid
drop of density ρ∗

i and kinematic viscosity ν∗
i surrounded

by another fluid of density ρ∗
e and kinematic viscosity ν∗

e .
The system is bounded by two parallel solid surfaces which
are separated by a distance h∗ (see Fig. 1). In equilib-
rium the drop has a circular cylindrical form with radius
r∗
0 . The equilibrium contact angle ϑ0 is equal to 0.5π . The
system is subjected to a vibration field with amplitude A∗
and frequency ω∗. The vibration force is directed paral-
lel to the symmetry axis of the drop. We assume that the
frequency is high enough to neglect the dissipative effects
caused by acoustic radiation and viscous dissipation, i.e.
ω∗R∗

0 � c and δ = √
ν∗/ω∗, where c is the sound veloc-

ity, δ is the viscous boundary-layer thickness. The amplitude
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Fig. 1 Problem geometry. 1 – surrounding liquid, 2 – drop

of the external force is considered small in the sense that
A∗ � R∗

0 .
We work in cylindrical coordinates r∗, α and z∗ because

of the problem symmetry. Let the lateral surface of the
drop be described by r∗ = r∗

0 + ζ ∗ (z∗, t∗), where ζ ∗
is the surface deviation from equilibrium. In the accepted
approximations the liquid motion is irrotational, which is
convenient for introducing the velocity potential. Thus,
the dynamics of the liquid is described by the Bernoulli
and Laplace equations. We use the following quantities
as the measurement units: r∗

0 for length, h∗ for height,

σ−1/2
√(

ρ∗
e + ρ∗

i

)
r∗3
0 for time, A∗√σ

((
ρ∗

e + ρ∗
i

)
r∗3
0

)−1/2

for velocity, A∗r∗
0

√
σ
((

ρ∗
e + ρ∗

i

)
r∗3
0

)−1/2
for velocity

potential, A∗σ
(
r∗
0

)−2 for pressure, A∗ for surface deviation.
The amplitude of oscillations is given as ε = A∗/r∗

0 � 1,
which allows us to linearize the governing equations and
simplify the boundary conditions. Thus, the dimensionless
linear boundary value problem is determined by

pj = −ρj

(
∂ϕj

∂t
− ω2zeiωt

)
, �ϕj =0, j = i, e, (2)

� = 1

r

∂

∂r

(
r

∂

∂r

)
+ 1

r2

∂2

∂α2
+b2

∂2

∂z2
,

r = 1 :
[
∂ϕ

∂r

]
=0,

∂ζ

∂t
=ϕr, [p]=ζ + ∂2ζ

∂α2
+b2

∂2ζ

∂z2
, (3)

z = ±1

2
: ∂ϕ

∂z
=0, (4)

r = 1, z=±1

2
: ∂ζ

∂t
=∓λ (α)

∂ζ

∂z
, (5)

where p is the fluid pressure, λ (α) describes the hetero-
geneity condition for plates, the square brackets denote the
jump in the quantity at the interface between the external
liquid and the drop. The boundary-value problem (2)-(5)
involves five parameters:
the aspect ratio – b = r0h

−1,

the dimensionless densities – ρi = ρ∗
i

(
ρ∗

e + ρ∗
i

)−1 and

ρe = ρ∗
e

(
ρ∗

e + ρ∗
i

)−1,

the wetting parameter – λ = �∗bσ−1/2
√(

ρ∗
e + ρ∗

i

)
r∗
0 ,

the frequency – ω = ω∗σ−1/2
√(

ρ∗
e + ρ∗

i

)
r∗3
0 .

Natural Oscillations

It is convenient to begin our investigation with a consider-
ation of the natural oscillations of a cylindrical drop. Later
we will focus on the even azimuthal oscillation modes gov-
erned by the function λ (α) and odd vertical modes due
to the external force. The system of equations and bound-
ary conditions (2)–(5) can be written without considering

Fig. 2 Frequency (a) and damping ratio (b) of natural oscillations vs
wetting parameter λ for �01 (b = 1, ρi = 0.7). λ = λ0 – solid line,
kλ = 0.1 – dashed, kλ = 1 – dot-dashed, kλ = 10 – dotted
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the vibrational force. The fields of velocity potentials and
surface deviation can be represented as

ϕi (r, α, z, t) = Re

⎛
⎝i�

∞∑
m,k=0

Fmk (r, α, z) ei�t

⎞
⎠ , (6)

ϕe (r, α, z, t) = Re

⎛
⎝i�

∞∑
m,k=0

Gmk (r, α, z) ei�t

⎞
⎠ , (7)

ζ (z, t) = Re

⎛
⎝

⎛
⎝

∞∑
m,k=0

cmkZk (z) Am (α) + d0 sin
( z

b

)
+

+
∞∑

m=1

dm sinh

(√
4m2 − 1

b
z

)
Am (α)

)
ei�t

)
, (8)

Fmk(r, α, z) = amkR
i
mk (r) Zn (z)Am (α) ,

Gmk(r, α, z) = bmkR
e
mk (r) Zn (z)Am (α) ,

Ri
mk(r) = Im((2k + 1) πbr),

Re
mk(r) = Km((2k + 1) πbr),

Zn (z) = sin ((2k + 1) πz), Am (α) = cos (2mα) ,

a

b

Fig. 3 Frequency (a) and damping ratio (b) of natural oscillations vs
wetting parameter λ for �21 (b = 1, ρi = 0.7). λ = λ0 – solid line,
kλ = 0.1 – dashed, kλ = 1 – dot-dashed, kλ = 10 – dotted

where Fmk(r, α, z) and Gmk(r, α, z) are eigenfunctions of
the Laplace operator, Im and Km are the modified Bessel
functions of m-th order. Substituting solutions (6)–(8) into
(2)–(5), we obtain a spectral-amplitude problem, whose
eigenvalues are values of the natural oscillation frequency
�. These complex algebraic equations have complex solu-
tions, which lead to damping of oscillations. This attenu-
ation is caused only by the condition on the contact line,
not by viscosity. We also note that damping times are of
the order of magnitude comparable with the period of oscil-
lation, i.e. at a finite value of the wetting parameter, the
droplet is able to execute only a few oscillations.

For an arbitrary value of λ, the equations of our spectral-
amplitude problem were solved numerically by the two-
dimensional secant method. By analogy with Alabuzhev and
Kaysina (2015), for convenience we will denote the fre-
quencies of the even modes as �m,2k (k = 0, 1, 2, . . .),
and the frequencies of the odd modes as �m,2k+1 (k =
0, 1, 2, . . .). Here, the first index m is a azimuthal number

Fig. 4 Frequency (a) and damping ratio (b) of natural oscillations vs
wetting parameter λ for �01 (b = 0.4, ρi = 0.7). λ = λ0 – solid line,
kλ = 0.1 – dashed, kλ = 1 – dot-dashed, kλ = 10 – dotted



Microgravity Sci. Technol. (2018) 30:25–32 29

and the second index 2k (or 2k + 1) is wavenumber. Thus,
the frequencies �m,n of the natural oscillations with the odd
index n will correspond to the odd modes and an even index
n to the even mode.

The dependence of the natural frequency Re (�) and the
damping decrement Im (�) of several first modes on the
Hocking parameter λ for various values of the geometric
parameter is shown in Figs. 2, 3 and 4. Note that only one
solution of Re (�) is constructed, the conjugate solution
(even with respect to the abscissa axis) is not shown in the
graphs. It can be seen from Figs. 2–4. that, except for the
axisymmetrical mode, the frequencies decrease monotoni-
cally with increasing λ: the drop with the fixed contact line
has the highest frequency, and the smallest with a fixed con-
tact angle. Damping decimals have a maximum at a finite
capillary parameter, and is limited to zero for λ → 0 and
λ → ∞. As the aspect ratio b increases, the values of the
frequencies Re (�) and decrements Re (�) increase.

The frequency Re
(
�0,1

)
of the zero-th mode of natural

oscillations shows a very interesting feature: this frequency

can vanish over a certain interval of the Hocking parameter
(Fig. 4). The width of this interval decreases with increas-
ing b (Figs. 2 and 4). On this interval, the damping rate
Im

(
�0,1

)
has three values (Fig. 4), and the boundaries of

the interval correspond to the branch points of the solution
Im

(
�0,1

)
. The reason of vanishing frequency is the dissi-

pation (the parameter λ is finite), which is so high that the
oscillations become impossible: for surface modes (n > 0)
of natural oscillations, the dissipation power is proportional
to the area of the lateral surface (the larger the surface, the
more energy is needed for surface waves, and the energy
of the droplet oscillations is proportional to volume). Con-
sequently, for a constant droplet volume, an increase in
the geometric parameter b corresponds to a decrease in the
lateral surface of the drop, that is, a decrease in the dis-
sipation contributing to surface oscillations. We note that
the frequency nullification effect also exists for other higher
modes of oscillation. However, this effect manifests itself
above the threshold of the Rayleigh-Plateau instability of
the fundamental mode.

Fig. 5 Deviation of contact line (a-c) and contact angle at upper plate (d-f) vs frequency. (b = 1, ρi = 0.7), λ = λ0– solid line, kλ = 0.1–
dashed, kλ = 1 – dash-dotted, kλ = 1 – dotted, (a,d) – λ0 = 0.01, (b,e) – λ0 = 1, (c,f) – λ0 = 100
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Note that the frequency of the volumetric oscillations of
the bubble (Alabuzhev 2014) and the fundamental frequen-
cies of the azimuthal modes (n = 0) of the drop (Alabuzhev
and Lyubimov 2007; Lyubimov et al. 2004) can vanish,
beginning with a certain value of the aspect ratio b, over
a certain range of values λ, and the length of this inter-
val increases with increasing b. In this case, the dissipation
power is proportional to the length of the contact line, since
it is the interaction of the contact line and the solid sub-
strate that causes dissipation. Consequently, with increase
of the parameter b at a constant volume of the drop, the
length of the contact line increases, which leads to a growth
of dissipation.

The wavenumber kλ plays the role of an effe ctive wet-
ting coefficient λ. The small parameter λ fits the strong
interaction of the contact line with the substrate and the
small amplitude of the oscillations (see Figs. 2–4). Conse-
quently, the long-wave heterogeneity of the substrate leads
to a decrease in the oscillations amplitude. Also, the long-
wave heterogeneity of the plate suppresses the effect of
frequency zeroing see Fig. 4).

Forced Oscillations

Here we consider the problem of forced oscillations. The
solution in this case is similar to solution (6)–(8) with excep-
tion for the time dependence: oscillation frequency is the
forced frequency ω.

The dependence of the surface oscillations amplitude at
the upper plate ζ , the shape of the contact line and deviation
of the contact angle with the upper plate γ = ϑ − π on the
forced frequency ω is given in Figs. 5 and 6 for different
values of the Hocking parameter λ0 and of the aspect ratio
b. Note that the curves have a resonant shape in the limiting
case λ0 → 0. The amplitude of the contact line oscillations
limits to infinity for λ0 → ∞ . Results for homogenous
plates can be seen in Alabuzhev (2016) and Lyubimov et al.
(2004) more details.

The first frequency of axisymmetric mode is excited first
(Figs. 5 and 6) for any wavenumber k. This mode exists
at λ0 = 1 and b = 1 and the first resonance peak corre-
sponds to first axysimmetrical frequency (Fig. 5a and b).
Note that there are antiresonance frequencies such that the

Fig. 6 Deviation of the contact line (a-c) and contact angle at the upper plate (d-f) vs frequency. (b = 0.4, ρi = 0.7), λ = λ0– solid line,
kλ = 0.1– dashed, kλ = 1 – dash-dotted, kλ = 1 – dotted, (a,d) – λ0 = 0.01, (b,e) – λ0 = 1, (c,f) – λ0 = 100
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contact line amplitude goes to zero. The contact angle also
remains intact at these points (Fig. 5). As it has been shown
above, the first mode disappears at some parameters λ0, b

and kλ (Figs. 4a and 6b). Figures 5 and 6 show how the
amplitude of the contact line changes with increase in the
wavenumber k. Value of kλ plays the role of an effective
wetting parameter, the same as λ0.

Conclusions

The behavior of cylindrical drop between solid plates has
been considered taking into account the dynamics of the
contact angle under axisymmetrical vibrations. The solid
plates have nonuniform surfaces described by function
λ (α) = λ0 |sin (kλ cos (α))|. The main purpose of this
paper is to develop a method for studying the drop forced
oscillation on an inhomogeneous substrates and determin-
ing λ. The investigation of natural oscillations has shown
that the wavenumber kλ plays the role of effective wet-
ting parameter. Also the main frequency of axial mode may
not disappear at different values of kλ, in contrast to the
homogeneous case.

For small values of the parameter λ0, i.. with a weak
energy dissipation, the amplitude of the surface forced oscil-
lations is large and tends to infinity in the limit λ0 → 0
or λ0 → ∞. The amplitude of the contact line oscillations
is finite for any values of λ0 except λ0 → ∞. There are
”antiresonant” frequencies, i.e. such vibration frequencies,
for which the contact line does not move for any values of
λ0, and the contact angle does not change. Moreover the
change in the drop volume (i.e. aspect ratio b) can suppress
resonances.
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