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Abstract The dynamics of the incompressible fluid drop
under the non-uniform electric field are considered. The
drop is bounded axially by two parallel solid planes and the
case of heterogeneous plates is investigated. The external
electric field acts as an external force that causes motion
of the contact line. We assume that the electric current is
alternative current and the AC filed amplitude is a spa-
tially non-uniform function. In equilibrium, the drop has the
form of a circular cylinder. The equilibrium contact angle
is 0.5π . In order to describe this contact line motion the
modified Hocking boundary condition is applied: the veloc-
ity of the contact line is proportional to the deviation of the
contact angle and the speed of the fast relaxation processes,
which frequency is proportional to twice the frequency of
the electric field. The Hocking parameter depends on the
polar angle, i.e. the coefficient of the interaction between
the plate and the fluid (the contact line) is a function of the
plane coordinates. This function is expanded in a series of
the Laplace operator eigenfunctions.
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Introduction

The dynamics of the triple contact line motion has been con-
sidered within the context of the problems of fluid mechan-
ics using various formulations (De Gennes 1985). Both the
intrinsic properties of the system (surface tension, viscosity
etc.) (Bratukhin et al. 2007; Chen et al. 2015; Gaponenko
and Shevtsova 2016) and the external forces (vibrations,
heating etc.) (Brandenbourger et al. 2017; Goldobin et al.
2014; Smorodin et al. 2017) play an important role in this
phenomenon. The study of the sessile droplet behavior in
an electric field (electrowetting, EW) is one of these prob-
lems (Mugele and Baret 2005). Electrowetting-on-dielectric
(EWOD) is a special but equally important case. In our
time, EWOD has found wide appication in various fields,
such as electronic display technology (Hayes and Feenstra
2003; Roques-Carmes et al. 2004), variable-focus liquid
lenses (Kuiper and Hendriks 2004; Li and Jiang 2014a),
digital (droplet) microfluidic devices for bioanalysis (lab-
on-a-chip) (Hua et al. 2010; Li et al. 2014b), etc.

The YoungLippmann equation, which is generally used
in many EWOD studies (see Fig. 1) (Berge 1993; Chen and
Bonaccurso 2014; Chevalliot et al. 2012; Mugele and Baret
2005; Quilliet and Berge 2001; Zhao and Wang 2013) is
written as:

cosϑ = cosϑ0 + Ew, cosϑ0 = σ−1
ic

(
σip − σcp

)

Ew = 0.5CV 2σ−1
ic , C = εε0d

−1,
(1)

where Ew is the EW number (it represents the ratio of the
electrostatic energy to the liquid surrounding fluid interfa-
cial energy), C is capacitance per unit area, V is the value
of the applied DC voltage, ϑ0 is the contact angle without
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Fig. 1 Typical schematic configurations of EWOD-devices. 1 – elec-
trode, 2 – dielectric layer

the applied voltage the equilibrium contact angle, which is
defined by well-known Youngs equation, σ is the interfa-
cial tension between the drop of conducting fluid (c) and
the isolating (surrounding) fluid (i) and the dielectric plate
(p), d is the thickness of the dielectric film, ε0 and ε are the
vacuum and the dielectric layer permittivity, respectively.
Although Young-Lippmann Eq. 1 is the fundamental equa-
tion of EWOD, different hypothesis were used to provide
the framework for its derivation (Mugele and Baret 2005;
Quilliet and Berge 2001).

However, the obtained experimental results proved to be
very much different from the theoretical predictions of the
YoungLippmann equation (1). Thus, it might be expected
that the contact angle would be zero just after some criti-
cal voltage value (complete wetting and the contact angle is
tend to zero), but in fact the experimental value of the con-
tact angle is always finite (Mugele and Baret 2005; Zhao
and Wang 2013; Chevalliot et al. 2012). The mechanism of
the contact angle saturation is not clearly understood and is
still the question under discussion (Mugele and Baret 2005).

In our previuos paper (Alabuzhev and Kashina 2016), we
proposed another effective boundary condition of EWOD
on the basis of Hockings equation (Hocking 1987):

∂ζ ∗

∂t∗
= ±�∗

(
∂ζ ∗

∂z∗ + A∗ cos
(
2ω∗t∗

))
, (2)

where ζ ∗ is the deviation of the drop interface from the
equilibrium position, z∗ is the axial coordinate, �∗ is a phe-
nomenological constant (the so-called wetting parameter or
Hocking parameter), having the dimension of velocity, A∗
is the effective amplitude, ω∗ is the AC frequency. Note
that the conditions of a fixed contact line and constant con-
tact angle are particular cases of the boundary conditions

�∗ = 0 and �∗ = ∞, respectively. Consequently, this coef-
ficient describes the interaction of the contact line with the
substrate. Thus Hocking’s condition (Hocking 1987) speci-
fies the energy dissipation due to the fluid motion near the
contact line, but the fluid is assumed to be inviscid.

Another important problem is the non-uniform wetting
of the surface along which the contact line moves (Savva
and Kalliadasis 2013; 2014). Heterogeneous substrates
can cause different effects (Brunet et al. 2007), for exam-
ple, hysteresis of the contact angle (Fayzrakhmanova and
Straube 2009),(Fayzrakhmanova et al. 2011). Note, that in
the majority of the relevant studies the mechanical (acous-
tical) vibrations or gravity are considered to be a driving
force (Savva and Kalliadasis 2014). However, the hetero-
geneity of the substrate surface can initiate effects, which
were observed in the experiment described in Mampallil
et al. (2013). Here, the azimuthal oscillations of the oblate
droplet were initiated by periodic excitation of the contact
line by the applied AC voltage. Various mode shapes can
be excited one by one by tuning the frequency of the AC
voltage.

This study is intended as an extension to work
(Alabuzhev and Kashina 2016). We consider the behavior
of a oblate drop between two heterogeneous plates under
the applied AC-voltage. In order to describe the motion of
the contact line the modified boundary condition (2) is used
with Hocking parameter as a function of space variables. In
the next paper we will compare the obtained results with the
experimental data (Mampallil et al. 2013). As it has been
mentioned above, the observed effects can be provoked both
by the nonuniformity of the field and heterogeneity of the
substrate. Note, that the natural oscillations of a cylindrical
droplet of inviscid liquid surrounded by another liquid and
bounded in the axial direction by the solid planes are studied
in Alabuzhev and Lyubimov (2007).

Problem Formulation

The problem formulation largely coincides with what we
considered in papers (Alabuzhev 2016) and (Alabuzhev and
Kashina 2016). Here we focus our attention on the dynamic
behavior of an incompressible liquid drop of density ρ∗

i

sandwiched between two parallel solid surfaces (separated
by a distance h∗) and surrounded by another liquid of den-
sity ρ∗

e (here and in the following, quantities with subscript
i refer to the drop, and those with subscript e to the sur-
rounding liquid) (see Fig. 2). The equilibrium shape of the
drop is a circular cylinder of radius R∗

0 by the height h
∗. The

contact angle ϑ0 the lateral surface of the drop and the solid
surface is equal to π/2. The external nonuniform alternat-
ing electric field acts as an external force that initiates the
contact line motion.
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Fig. 2 Problem geometry (1 – electrode, 2 – dielectric layer)

Let the surface of the drop be described by the equation
r∗ = R∗

0 + ζ ∗ (α, z∗, t∗) in the cylindrical coordinates r∗,
α, z∗ and the axis of cylinder symmetry be parallel to the
z-axis. The azimuthal angle α is measured from the x-axis.
Assuming a potential liquid motion, we introduce the veloc-
ity potential �v∗ = �∇ϕ∗. Taking the length R∗

0 , the height

h∗, the density ρ∗
e +ρ∗

i , the time σ−1/2
√(

ρ∗
e + ρ∗

i

)
R∗3
0 , the

velocity potential A∗√σ
((

ρ∗
e + ρ∗

i

)
R∗3
0

)−1/2
, the pressure

A∗σ
(
R∗
0

)−2 and the deviation of the surface A∗ as charac-
teristic quantities, we pass to dimensionless variables and
obtain the following linear problem

pj = −ρjϕj t
, ϕj = 0, j = i, e, (3)

 = 1

r

∂

∂r

(
r

∂

∂r

)
+ 1

r2

∂2

∂α2
+ b2

∂2

∂z2
,

r = 1 : [ϕr ] = 0, ζt = ϕr, [p] = ζ + ζαα + b2ζzz, (4)

z = ±1

2
: ϕz = 0, (5)

r = 1, z = ±1

2
:ζt = ∓λ (α) (ζz + af (α) cos (2ωt)), (6)

where p is the fluid pressure, f (α) is the function of the
nonuniform electric field, λ (α) describes the heterogeneity
condition for plates, the square brackets denote the jump in
the quantity at the interface between the external liquid and
the drop. The boundary-value problem (3)–(6) involves six
parameters:

cba

fed

Fig. 3 Deviation of the contact line (a-c) and the contact angle at the upper plate (d-f) vs frequency. (a = 3.2, b = 1, ρi = 0.7), λ0 = 0.1 – solid
line, λ0 = 1– dotted, λ0 = 10– dashed. a, d – kλ = 0.1, ka = 1, b, e – kλ = 1, ka = 0.1, c, f – kλ = 1, ka = 1
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the aspect ratio – b = R0h
−1,

the dimensionless densities – ρi = ρ∗
i

(
ρ∗

e + ρ∗
i

)−1 and

ρe = ρ∗
e

(
ρ∗

e + ρ∗
i

)−1,

the wetting parameter – λ = �∗bσ−1/2
√(

ρ∗
e + ρ∗

i

)
R∗
0 ,

the AC frequency – ω = ω∗σ−1/2
√(

ρ∗
e + ρ∗

i

)
R∗3
0

the AC amplitude – a = 0.5A∗Cσ−3/2
√(

ρ∗
e + ρ∗

i

)
R∗3
0 .

Forced Oscillations

The functions f (α) and λ (α) are represented as a Fourier
series in eigenfunctions of the Laplace operator. Let us con-
sider a particular case of nonuniform electric field and het-
erogeneous plates: f (α) = |sin (ka cos (α))| and λ (α) =
λ0 |sin (kλ cos (α))|, where ka and kλ are the wavenumbers.
Note, that we used such function f (α) in Alabuzhev and
Kashina (2016). The solutions for the velocity potential ϕ

and the surface deviation ζ are written as

ϕi (r, α, z, t) = Re

⎛

⎝i2ω
∞∑

m,k=0

Fmk (r, α, z) ei2ωt

⎞

⎠ , (7)

ϕe (r, α, z, t) = Re

⎛

⎝i2ω
∞∑

m,k=0

Gmk (r, α, z) ei2ωt

⎞

⎠ , (8)

ζ (z, t) = Re

⎛

⎝

⎛

⎝
∞∑

m,k=0

cmkZk(z) Am (α) + d0 sin
( z

b

)
+

+
∞∑

m=1

dm sinh

(√
4m2 − 1

b
z

)

Am (α)

)

ei2ωt

)

, (9)

Fmk(r, α, z) = amkR
i
mk (r) Zn (z) Am (α) ,

Gmk(r, α, z) = bmkR
e
mk (r) Zn (z) Am (α) ,

Ri
mk(r) = Im((2k + 1) πbr), Re

mk(r) = Km((2k + 1) πbr),

Zn (z) = sin ((2k + 1) πz), Am (α) = cos (2mα) ,

where Fmk(r, α, z) and Gmk(r, α, z) are eigenfunctions of
Laplace operator, Im and Km are the modified Bessel func-
tions of m-th order. Substituting solutions (10)(12) into
(3)(6), we obtain the expressions for the unknown ampli-
tudes amk , bmk , cmk and dm.

The dependence of the amplitude of the surface oscil-
lations and the contact angle at the upper plate on the
frequency of the driving force is given in Fig. 3 for dif-
ferent values of the Hocking parameter and wavenumbers.
It can be seen from the presented Fig. 3a-c that there are
no antiresonances, i.e. the amplitude of the contact line
goes to zero. Such resonances were observed in the case
of homogeneous substrate both under the mechanical vibra-
tions (Alabuzhev 2016; Lyubimov et al. 2006) and in the
electric field (Alabuzhev and Kashina 2016): at certain
values of ω the drop motion is independent of the wetting

parameter and the contact line remains motionless at any λ.
Thus, the antiresonances vanish due to the heterogeneity of
the substrate, and not because of the nonuniformity of the
AC field. The values of these frequencies are independent
of λ and depend on the parameters of the drop (aspect ratio
b, density ρi etc.).

Figure 4 shows the amplitude dependence for different
values of the aspect ratio b. The amplitude decreases with
increasing aspect ratio b and vibration frequency ω. One of
the reasons for such a behavior is quite obvious: a larger
drop is more difficult to move (the length of the contact
line increases with increasing value of the parameter b).
Apparently, the other reason is related to the fact that dissi-
pation at high-frequency oscillations is more intensive than
at low-frequency oscillations.

For the main eigenfrequencies with the azimuthal num-
bers m = 2, 3, ... there exists a certain range of the capillary
parameter λ in which the real parts of these frequencies
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Fig. 4 Deviation of the contact line (a) and the contact angle at the
upper plate (b) vs the frequency. (a = 3.2, λ0 = 1, ρi = 0.7), b = 0.5
– solid line, b = 1– dotted, b = 2– dashed
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Fig. 5 The shape of the contact line at upper plate at oscillation perod
T = π/ω (a = 3.2, λ0 = 1, ρi = 0.7, b = 1, ω = 1), t = 0. – solid
line, t = 0.125T – dotted, t = 0.25T – dashed,t = 0.375T – dot-dashed

vanish (Alabuzhev and Lyubimov 2007). This implies that
at such values of the the problem parameter the resonance
effect is absent. The axisymmetric eigenmode frequency
can also vanish in a certain range of the capillary parameter
λ, depending on the value of the geometrical parameter b.

For b < π−1 and a certain characteristic value of λ, the fre-
quency vanishes and the increment becomes negative, which
corresponds to the occurrence of the Rayleigh instability. As
the value of b increases, the length of this range decreases.
However, in contrast to the azimuthal modes, the length of
this range decreases with increasing parameter b.

The wavenumber kλ plays the role of an effective wetting
coefficient λ. The smaller the parameter λ, the greater the
interaction between the contact line and the substrate and
the smaller the amplitude of the oscillations (see Fig. 3c).
Consequently, the long-wave heterogeneity of the substrate
leads to a decrease in the oscillation amplitude. The devia-
tion of the contact angle is less than 0.5π (see Fig. 3d, f), i.e.
complete wetting does not occur. The wavenumber ka plays
the role of the effective vibrations amplitude: the amplitude
of the oscillations increases with increasing wavenumber ka

(see Fig. 3a, b). Thus parameter ka (i.e. nonuniform field)
has a considerable effect on the variation of the contact
angle. An increase in the wavenumber kλ contributes to a
decrease in the oscillation amplitude and, consequently, in
the deviation of the contact angle, but for large values of λ0
this effect becomes insignificant.

cba

fed

Fig. 6 Deviation of the contact angle at the upper plate vs the square root of the amplitude (b = 1, ρi = 0.7), λ0 = 0.1 solid line, λ0 = 1 dotted,
λ0 = 10 dashed. a-c ω = 2, d-f ω = 2.5. a, d kλ = 0.1, ka = 1, b, e kλ = 1, ka = 0.1, c, f kλ = 1, ka = 1
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Figure 5 shows the variation in the shape of the contact
line during the oscillation period T = π . It can be seen
that the drop extends along the surface inhomogeneity. Note
that in the case of non-uniform field and homogeneous sur-
faces, the axisymmetric oscillations are the main oscillation
modes.

The deviation of the contact angle as a function of the
square root of the amplitude a (i.e. proportional to AC
potential V ) is given in Fig. 6 for different values of the
Hocking’s parameter λ and AC frequency ω. The responses
obtained qualitatively agree with the experimental data.
However, the maximum deviation of the contact angle tends
to 0.5π , i.e. ϑ → 0 or ϑ → π whereas the contact angle
found in experiments is finite.

Conclusions

The behavior of the cylindrical drop between two solid
plates has been considered taking into account the dynam-
ics of the contact angle under the action of the nonuni-
form electric field |sin (kax)|. The solid plates have het-
erogeneous surfaces described by the function λ (α) =
λ0 |sin (kλ cos (α))|. The main purpose of this paper is to
develop a method for studying the drop forced oscillation
of the oblate drop on heterogeneous substrates and deter-
mining of contact angle. The investigation of the forced
oscillations has shown that the wavenumber kλ plays the
role of the effective wetting parameter, ka is the effective
amplitude.

The nonuniform electric field excites various azimuthal
modes of forced oscillations. In our case, the oscillation
amplitude for each mode is determined by the coefficient of
expansion of the external force into a Fourier series. These
expansion coefficients depend not only on the amplitude
a but also on the wave number ka . However, the greatest
contribution to the drop dynamics is made by the mode,
whose frequency is close to the vibration frequency 2ω, i.e.
azimuthal oscillations of the drop are exited by periodic
motion of the contact line via AC field. In the case of homo-
geneous substrates there are “antiresonant” frequencies, i.e.
such external frequencies, at which the contact line does not
move and the contact angle does not change.

In the case of heterogeneous surface the energy pro-
duced by the excited oscillation mode is transferred to other
modes. For example, if the ac field is uniform, then the
external field excites axisymmetrical mode of drop oscil-
lations. Energy from this mode is redistributed to other
azimuthal modes due to heterogeneous surfaces. For small
values of the parameter λ0, at which the energy of the
interaction between the contact line and the plate is strong,
the oscillations amplitude is small. In the opposite case,
the amplitude of the surface forced oscillations is large and

tends to infinity in the limit λ0 → ∞. The “antiresonant”
frequencies are absent both in the uniform and nonuniform
electric fields for such surfaces.
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