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Abstract We study the waves at the interface between two
thin horizontal layers of immiscible liquids subject to high-
frequency tangential vibrations. Nonlinear governing equa-
tions are derived for the cases of two- and three-dimensional
flows and arbitrary ratio of layer thicknesses. The derivation
is performed within the framework of the long-wavelength
approximation, which is relevant as the linear instability of
a thin-layers system is long-wavelength. The dynamics of
equations is integrable and the equations themselves can be
compared to the Boussinesq equation for the gravity waves
in shallow water, which allows one to compare the action
of the vibrational field to the action of the gravity and its
possible effective inversion.

Keywords Interfacial waves · Two-layer liquid system ·
Longitudinal vibrations · Boussinesq equation

Introduction

The first experimental studies on the usage of vibrations
for stabilizing otherwise unstable configurations of multi-
phase fluid systems were reported by Wolf (1961, 1970).

This article belongs to the Topical Collection: Non-Equilibrium
Processes in Continuous Media under Microgravity
Guest Editor: Tatyana Lyubimova

� Anastasiya V. Pimenova
anastasiya.pimenova@gmail.com

1 Institute of Continuous Media Mechanics, UB RAS, 1
Academik Korolev str., Perm 614013, Russia

2 Department of Theoretical Physics, Perm State University, 15
Bukireva str., 614990, Perm, Russia

Under the weightlessness conditions, the demand for such
a control tool even increases because of the necessity to
maintain stratification of fluids or control convection for
diverse technological systems, which is well highlighted by
the ongoing research on the subject (Thiele et al. 2006;
Mialdun et al. 2008; Shklyaev et al. 2009; Nepomnyashchy
and Simanovskii 2013; Gaponenko and Shevtsova 2016;
Bratsun et al. 2016; Lappa 2016; Smorodin et al. 2017;
Lyubimova et al. 2017).

Wolf’s experimental observations of wave patterns on
the interface between immiscible fluids subject to hori-
zontal vibrations received their first solid theoretical basis
with the linear instability analysis of the flat state of
the interface (Lyubimov and Cherepanov 1986; Khenner
et al. 1998, 1999). In Fig. 1, one can see the sketch of the
system for which the instability was theoretically revealed
for strong enough vibrations. Later on, the nonlinear dynam-
ics of interfacial waves for the high-viscosity case and one
liquid layer was studied analytically by Shklyaev et al.
(2009) and Benilov and Chugunova (2009). InWolf’s exper-
iments (Wolf 1961, 1970), the viscous boundary layer in
the most viscous liquid was an order of magnitude thinner
than the liquid layer, meaning the approximation of invis-
cid liquid to be relevant. The analytical treatment of the
nonlinear dynamics of interfacial waves in inviscid liquids
was made possible in Goldobin et al. (2014, 2015), where
the governing equations for two-dimensional flows were
reported. The equations were derived below the instability
threshold within the framework of the long-wavelength
approximation for the case of equal thickness of layers.
Simultaneously, the understanding of strongly nonlinear
regimes of the dynamics of the interface in low-viscosity
liquids above the instability threshold was significantly
advanced in (Lyubimova et al. 2017) by means of numerical
simulation accompanied by analytical estimates.
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Fig. 1 Sketch of the coordinate frame and two-layer liquid system
subject to longitudinal vibrations

In this paper we extend the derivation of governing equa-
tions for inviscid liquids to the case of arbitrary ratio of
layer thicknesses and admit the variation of flow in the hori-
zontal direction orthogonal to vibrations, i.e., consider a 3-d
problem. The equations to be derived for both ‘normal’ and
‘inverted’ (the heavy liquid overlies the light one) configura-
tions of the system. The comparison of these equations with
the Boussinesq equation for the gravity waves in shallow
water is of interest and suggests noteworthy interpretations
of the action of the vibration field on the system.

Problem Statement and Governing Equations

We consider a system of two horizontal layers of immis-
cible inviscid liquids, confined between two impermeable
horizontal boundaries (see Fig. 1). The system is subject
to high-frequency longitudinal vibrations of linear polar-
ization; the velocity of vibrational motion of the system is
(b/2)eiωt + c.c. (here and hereafter, “c.c.” stands for com-
plex conjugate). The density of the upper liquid ρ1 is smaller
than the density of the lower one ρ2. The layer thicknesses
are h1 and h2 (see Fig. 1). We choose the horizontal coordi-
nate x along the direction of vibrations, the z-axis is vertical
with origin at the unperturbed interface between layers.

In this system, at the limit of infinitely long layers, the
state with flat interface z = ζ(x, y) = 0 is always possible.
If the layers are limited in horizontal directions by imper-
meable lateral boundaries, the interface will be nearly flat
at a distance from these boundaries. For inviscid fluids, this
state (the ground state) is featured by spatially homogeneous
pulsating velocity fields vj0 in both layers;

vj0 = aj (t)ex, aj (t) = Aje
iωt + c.c.,

A1 = (h1 + h2)ρ2b

2(h2ρ1 + h1ρ2)
, A2 = (h1 + h2)ρ1b

2(h2ρ1 + h1ρ2)
,

(1)

where j = 1, 2 and ex is the unit vector of the x-axis. (The
shift of the time offset results in a complex multiplier for b

and Aj ; therefore, one can choose the time offset so that b

and Aj will be real.) The result (01) follows from the con-
dition of zero pressure jump across the uninflected interface
and the condition of the total fluid flux through the verti-
cal cross-section which is

∫ +h1
−h2

v(x)dz = (h1 + h2)b cosωt

(which is due to the system motion with velocity b cosωt).
Considering flow of inviscid liquid, it is convenient to

introduce potential φj of the velocity field;

vj = −∇φj . (2)

The mass conservation law for incompressible liquid, ∇ ·
vj = 0, yields the Laplace equation for potential, �φj = 0.
The kinematic conditions on the top and bottom boundaries

φ1z(z = h1) = φ2z(z = −h2) = 0 (3)

and on the interface z = ζ(x, y)

ζ̇ = −φ1z + ∇φ1 · ∇ζ , (4)

ζ̇ = −φ2z + ∇φ2 · ∇ζ (5)

are also to be taken into account. (Here and hereafter,
the upper dot stands for the time-derivative and letter in
subscript denotes partial derivative with respect to the cor-
responding coordinate.) Eqs. (04) and (05) can be derived
from the condition that the points of zero value of the
distance function F = z − ζ(x, y), which correspond
to the position of the interface, move with liquid, i.e.,
the Lagrangian derivative (material derivative) dF/dt =
∂F/∂t +v ·∇F is zero on the interface: −ζ̇ +v(z)−v ·∇ζ =
0, and this holds for both liquids.

After substitution of the potential flow, the Euler equa-
tion takes the following form:

∇
(

−φ̇j + 1

2

(∇φj

)2
)

= ∇
(

− 1

ρj

pj − gz

)

,

where g is the gravity acceleration. The latter equation pro-
vides the expression for the pressure field in the volume of
two liquids for a given flow field;

pj = pj0 + ρj

(

φ̇j − 1

2

(∇φj

)2 − gz

)

. (6)

Now the stress on the interface is remaining to be brought
into account to make the equation system self-contained
by providing required boundary conditions for φj on the
interface between two liquids. The pressure jump across the
interface is caused by the surface tension;

z = ζ(x, y) : p1 − p2 = −α∇ · n
(

wheren := ∇F

|∇F |
)

,

(7)

where α is the surface tension coefficient and n is the unit
vector normal to the interface.

The linear stability analysis revealed the marginal vi-
bration-induced instability of the flat-interface state to be
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long-wavelength (Lyubimov and Cherepanov 1986;
Goldobin et al. 2015). Hence, we restrict our consider-
ation to the case of the long-wavelength approximation,
|∂xv| � |∂zv|.

Governing Equations for Long-Wavelength
Patterns

Derivation of Equations for 2-Dimensional Flow

In this section we derive the governing equation for long-
wavelength patterns. We employ the standard method of
multiple scales with small parameters ω−1 and l−1, where l

is the reference horizontal length of patterns, ∂x ∼ l−1. The
hierarchy of small parameters and the orders of magnitude
of fields will be established in the course of derivation.

Within the long-wavelength approximation, the solutions
to the Laplace equation for φj (x, t) satisfying boundary
conditions (03) in the most general form read

φ1 = −a1(t)x + 	1(x, t) − 1

2
(h1 − z)2	1xx(x, t)

+ 1

4! (h1 − z)4	1xxxx(x, t) − . . . ,

(8)

φ2 = −a2(t)x + 	2(x, t) − 1

2
(h2 + z)2	2xx(x, t)

+ 1

4! (h2 + z)4	2xxxx(x, t) − . . . .

(9)

Here the ground state (the flat-interface state) is represented
by the terms −aj (t)x; 	j(x, t) describe perturbation flow,
they are yet arbitrary functions of x and t . After substitution
of pj from expression (06) and φj from expressions (8)–(9),
the condition of stress balance on the interface (07) reads

p1∞ − p2∞ + ρ1

[

−ȧ1x + 	̇1 − (h1 − ζ )2

2
	̇1xx

− 1

2

(

−a1 + 	1x − (h1 − ζ )2

2
	1xxx

)2

− ((h1 − ζ )	1xx)
2

2
+ . . .

]

− ρ2

[

−ȧ2x + 	̇2 − (h2 + ζ )2

2
	̇2xx

− 1

2

(

−a2 + 	2x − (h2 + ζ )2

2
	2xxx

)2

− ((h2 + ζ )	2xx)
2

2
+ . . .

]

+ (ρ2 − ρ1)gζ = α
ζxx

(1 + ζ 2
x )3/2

.

Here “. . . ” stand for terms O1(	̇jh
4
j / l4) +

O2(aj	jh
4
j / l5) + O3(	

2
j h

4
j / l6). The difference of

constants p1∞ − p2∞ is to be determined from the
condition that in the area of vanishing perturbations of
the pulsation flow, i.e. 	j(x, t) = const , the inter-
face remains flat, i.e. ζ(x, t) = 0. This condition yields
p1∞−p2∞−(ρ1a

2
1(t)−ρ2a

2
2(t))/2 = 0. Choosing measure

units for length: L = √
α/[(ρ2 − ρ1)g], for time: T = L/b,

and for the fluid densities: ρ∗—which means replacement

(x, z) → (Lx, Lz) , t → T t , ζ → Lζ ,

	j → (L2/T )	j , ρi → ρ∗ρi

(10)

in equations—one can rewrite the last equation in the
dimensionless form

B

[
ρ1a

2
1 − ρ2a

2
2

2
+ ρ1	̇1 − ρ1(h1 − ζ )2

2
	̇1xx − ρ1

2

(

a1

−	1x + 1

2
(h1−ζ )2	1xxx

)2

− ρ1

2
((h1−ζ )	1xx)

2−ρ2	̇2

+ρ2(h2+ζ )2

2
	̇2xx + ρ2

2

(

a2−	2x + 1

2
(h2+ζ )2	2xxx

)2

+ ρ2

2
((h2 + ζ )	2xx)

2 + . . .

]

+ζ = ζxx

(1 + ζ 2
x )3/2

. (11)

Here the dimensionless vibration parameter

B ≡ ρ∗b2√
α(ρ2 − ρ1)g

= B0 + B1 (12)

(ρj is dimensional here), where B0 is the critical value
of the vibration parameter above which the flat-interface
state becomes linearly unstable, B1 is a small deviation
of the vibration parameter from the critical value. Further,
kinematic conditions (04) and (05) turn into

ζ̇ =
(

−(h1 − ζ )	1x + 1

3!h
3
1	1xxx − a1ζ + . . .

)

x

, (13)

ζ̇ =
(

(h2 + ζ )	2x − 1

3!h
3
2	2xxx − a2ζ + . . .

)

x

. (14)

Here “. . . ” stand for O1(	jh
2
j ζ/ l3) + O2(	jh

4
j / l5).

Equations 11, 13, and 14 form a self-contained equation
system.

It is convenient to distinguish two main time-modes
in fields: the average over vibration period part and the
pulsation part;

ζ = η(τ, x) + ξ(τ, x)eiωt + c.c. + . . . ,

	j = ϕj (τ, x) + ψj (τ, x)eiωt + c.c. + . . . ,

where τ is a “slow” time related to the average over vibra-
tion period evolution and “. . . ” stand for higher powers of
eiωt .
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In order to develop an expansion in small parameter
ω−1, we have to adopt certain hierarchy of smallness of
parameters, fields, etc. We adopt small deviation from the
instability threshold B1 ∼ ω−1. Then η ∼ ω−1 and ∂x ∼
ω−1/2 (Lyubimov and Cherepanov 1986; Goldobin et al.
2015). It is as well established (Lyubimov and Cherepanov
1986) that for finite wavelength perturbations (finite k 
= 0)
B0(k) = B0(0) + Ck2 + O(k4). Generally, the expan-
sion of exponential growth rate of perturbations in series
of B1 near the instability threshold possesses a non-zero
linear part, and B0(k) − B0(0) ∼ k2; therefore, ∂τ ∼
O1(B1) + O2(k

2) ∼ ω−1. The order of magnitude of ξ , ϕj

and ψj is more convenient to be determined in the course of
development of the expansion.

Collecting in Eqs. 13–14 terms with eiωt , one finds

iωξ + ξτ =
(

− (h1 − η)ψ1x

+ 1

3!h
3
1ψ1xxx + ξϕ1x − A1η + . . .

)

x

, (15)

iωξ + ξτ =
(

(h2 + η)ψ2x

− 1

3!h
3
2ψ2xxx + ξϕ2x − A2η + . . .

)

x

, (16)

where “. . . ” stand forO1((ξϕ+ηψ)h2j / l4)+O2(ψ h4j / l6).
Constant with respect to t terms sum-up to

ητ =(−(h1−η)ϕ1x +ξψ∗
1x +c.c.−A1ξ

∗ + c.c. + . . .
)
x

,

(17)

ητ =(
(h2 + η)ϕ2x + ξψ∗

2x +c.c. − A2ξ
∗ + c.c. + . . .

)
x

,

(18)

where the superscript “∗” stands for complex conjugate and
“. . . ” stand for O1((ηϕ + ξψ)h2j / l4) + O2(ϕh4j / l6). The

difference of Eqs. 15 and 16 yields ψj ∼ ω−1/2, the differ-
ence of Eqs. 17 and 18 yields ϕj ∼ ω−1. For dealing with
non-linear terms in the consideration that follows, it is con-
venient to extract the first correction to ψj explicitly, i.e.

write ψj = ψ
(0)
j + ψ

(1)
j + . . . , where ψ

(1)
j ∼ ω−1ψ

(0)
j ∼

ω−3/2. Equation 15 (or (16)) yields in the leading order
(∼ ω−3/2)

ξ = i

ω
(h1ψ1x + A1η)x = − i

ω
(h2ψ2x + A2η)x ∼ ω− 5

2 .

(19)

Considering the difference of Eqs. 16 and 15, one has to
keep in mind, that we are interested in localized patterns for
which 	jx(x = ±∞) = 0, ζ(x = ±∞) = 0. Hence, this

difference can be integrated with respect to x, taking the
form

h1ψ1x + h2ψ2x − η(ψ1 − ψ2)x − 1

6
(h31ψ1 + h32ψ2)xxx

− ξ(ϕ1 − ϕ2)x + (A1 − A2)η + · · · = 0 ,

which yields in the first two orders of smallness

(h1ψ
(0)
1 + h2ψ

(0)
2 )x = −(A1 − A2)η

= − (ρ2 − ρ1)(h1 + h2)

2(h1ρ2 + h2ρ1)
η , (20)

(h1ψ
(1)
1 + h2ψ

(1)
2 )x = (ψ

(0)
1 − ψ

(0)
2 )xη

+ 1

6
(h31ψ

(0)
1 + h32ψ

(0)
2 )xxx . (21)

The difference and the sum of Eqs. 17 and 18 yield in the
leading order, respectively,

h1ϕ1 = −h2ϕ2 , (22)

ητ = −h1ϕ1xx = h2ϕ2xx . (23)

Let us now consider Eq. 11. We will collect groups of
terms with respect to power of eiωt and the order of small-
ness in ω−1.
∼ ω+ 1

2 eiωt :

iωB0(ρ1ψ
(0)
1 − ρ2ψ

(0)
2 ) = 0 .

We introduce

ψ(0) ≡ ρjψ
(0)
j . (24)

The last equation and Eq. 20 yield

ψ(0)
x = −ρ1ρ2(ρ2 − ρ1)(h1 + h2)

2(h1ρ2 + h2ρ1)2
η . (25)

The next group of terms to be formally collected should be
formed by the contributions of the order ω0 and proportional
to eiωt , i.e.,
∼ ω0eiωt :

No contributions.

Further,
∼ ω− 1

2 eiωt :

iωB1 (ρ1ψ
(0)
1 − ρ2ψ

(0)
2 )

︸ ︷︷ ︸
=0

+iωB0(ρ1ψ
(1)
1 − ρ2ψ

(1)
2 )

+ B0 (ρ1ψ
(0)
1 − ρ2ψ

(0)
2 )τ

︸ ︷︷ ︸
=0

+ iωB0
1
2 (h

2
2ρ2ψ

(0)
2xx − h21ρ1ψ

(0)
1xx) = 0 .

(We marked the combinations which are known to be zero
from the leading order of expansion.) Hence,

ρ1ψ
(1)
1 − ρ2ψ

(1)
2 = 1

2
(h21 − h22)ψ

(0)
xx . (26)
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The last equation and Eq. 21 yield

ψ
(1)
1x = ρ2 − ρ1

ρ1(h1ρ2 + h2ρ1)
ψ(0)

x η

+ 3h2h21ρ1 − 2h32ρ1 + h31ρ2

6ρ1(h1ρ2 + h2ρ1)
ψ(0)

xxx

= −ρ2(ρ2 − ρ1)
2(h1 + h2)

2(h1ρ2 + h2ρ1)3
η2

− ρ2(3h2h21ρ1−2h32ρ1+h31ρ2)(ρ2−ρ1)(h1+h2)

12 (h1ρ2+h2ρ1)3
ηxx , (27)

ψ
(1)
2x = −ρ1(ρ2 − ρ1)

2(h1 + h2)

2(h1ρ2 + h2ρ1)3
η2

− ρ1(3h1h22ρ2−2h31ρ2+h32ρ1)(ρ2−ρ1)(h1+h2)

12 (h1ρ2+h2ρ1)3
ηxx . (28)

∼ ω−1(eiωt )0:

B0[−ρ2(A2ψ
(0)∗
2x +c.c.)+ρ1(A1ψ

(0)∗
1x +c.c.)]+η = 0 . (29)

Substituting (24) and (25) into the last equation, one finds
[

−B0ρ1ρ2(ρ2 − ρ1)
2(h1 + h2)

2

2(h1ρ2 + h2ρ1)3
+ 1

]

η = 0 .

Thus we obtain the solvability condition, which poses a
restriction on B0; this restriction determines the linear insta-
bility threshold

B0 = 2(h1ρ2 + h2ρ1)
3

ρ1ρ2(ρ2 − ρ1)2(h1 + h2)2
. (30)

Since the threshold B0 is an important and experimentally
measurable characteristic of the system, we provide it here
also in original dimensional terms (cf. Eqs. 10 and 12):

B0 = 2ρ∗(h1ρ2 + h2ρ1)
3

ρ1ρ2(ρ2 − ρ1)2(h1 + h2)2

√
(ρ2 − ρ1)g

α
,

b20 = 2(h1ρ2 + h2ρ1)
3g

ρ1ρ2(ρ2 − ρ1)(h1 + h2)2
.

∼ ω−2(eiωt )0:

B1 [−ρ2(A2ψ
(0)∗
2x + c.c.) + ρ1(A1ψ

(0)∗
1x + c.c.)]

︸ ︷︷ ︸
=−η/B0

+ B0

[

ρ1ϕ1τ − ρ2ϕ2τ − ρ1|ψ(0)
1x |2 + ρ2|ψ(0)

2x |2

+ ρ1

(

A1ψ
(1)∗
1x + c.c. − A1

h21
2 ψ

(0)∗
1xxx + c.c.

)

− ρ2

(

A2ψ
(1)∗
2x + c.c. − A2

h22
2 ψ

(0)∗
2xxx + c.c.

)]

= ηxx .

(31)

Substituting ψ
(n)
j from Eqs. 24–27 and using Eq. 22, one

can rewrite the last equation as

−B1

B0
η + B0

[
h1ρ2 + h2ρ1

h2
ϕ1τ

− 3ρ1ρ2(ρ2 − ρ1)
3(h1 + h2)

2

4(h1ρ2 + h2ρ1)4
η2 (32)

+ρ1ρ2(ρ2−ρ1)
2(h1 + h2)

2(h31ρ2 + h32ρ1)

6(h1ρ2 + h2ρ1)4
ηxx

]

=ηxx .

Together with Eq. 23 the latter equation form the final
system of governing equations for long-wavelength pertur-
bations of the flat-interface state:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

B0
h1ρ2 + h2ρ1

h1h2
(h1ϕ1)τ =

[

1 − 1

3

h31ρ2 + h32ρ1

h1ρ2 + h2ρ1

]

ηxx

+ 3

2

ρ2 − ρ1

h1ρ2 + h2ρ1
η2 + B1

B0
η ,

ητ = −(h1ϕ1)xx .

(33)

Notice, equation system (33) is valid for B1 small com-
pared to B0, otherwise one cannot stay within the long-
wavelength approximation. It is only rarely possible to use
long-wavelength approximation for finite deviations from
the linear instability threshold and derive certain infor-
mation on the system dynamics (Goldobin and Lyubimov
2007) or its properties (Pimenova et al. 2015; Goldobin et al.
2015); typically the long-wavelength analysis is inconclu-
sive for such conditions.

Derivation of Equations for 3-Dimensional Flow

In this section we consider interfacial waves and flows
which are non-uniform along the y-axis, the horizontal
direction perpendicular to the vibration direction.

The Case of Similar Scales of Patterns Along the x- and
y-directions (∂y ∼ ∂x)

Firstly, let us consider the case of ζ = ζ(x, y) and 	j =
	j(x, y) for which x- and y- derivatives are of the same
order of magnitude. After appropriate changes to equations,
Eq. 25 turns into

�2ψ
(0) = −ρ1ρ2(ρ2 − ρ1)(h1 + h2)

2(h1ρ2 + h2ρ1)2
ηx , (34)

where �2 stands for the Laplace operator with respect to the
horizontal coordinates, �2≡ ∂2x + ∂2y . Equation 29 remains
unchanged. However, with Eq. 34, after differentiation with
respect to x, it yields a new solvability condition;

−B0ρ1ρ2(ρ2 − ρ1)
2(h1 + h2)

2

2(h1ρ2 + h2ρ1)3
ψ(0)

xx + �2ψ
(0) = 0 .
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The new solvability condition depends on the wave pat-
tern. Specifically, for plane waves ψ(0)(x, y) ∝ ei(kxx+kyy)

an analogue of Squire’s theorem appears to be valid:

B0(β) = B0(0)

cos2 β
, (35)

where β is the angle between the wavevector k and the
vibration direction, B0(0) is the linear instability threshold
for 2-dimensional waves, which is determined by Eq. 30.
From Eq. 35, the threshold of instability to 3-dimensional
waves is increased for a finite value as compared to that for
2-d waves. Hence, 3-dimensional waves with similar scales
along x- and y-directions can be considered, only when the
system is already unstable with respect to 2-d waves. Since
the latter instability leads to an explosive growth of practi-
cally any waves Goldobin et al. (2014, 2015), the study for
3-d waves under these circumstances is of marginal interest.

The Case of ∂2y ∼ ω−1∂2x

According to Eq. 35, the increase of the linear stability
threshold for small β is small and can be comparable to
the values B1 admissible within the framework of our the-
oretical analysis. The case of plane waves with small β

corresponds to wave patterns with |∂yη| � |∂xη|. For
this case, one can consider the system dynamics beyond
(x, z)-geometry and this dynamics will be still of physical
significance (in contrast to the case of ∂y ∼ ∂x), because it
is observed below the threshold of the system instability. In
what follows we consider the case of ∂2y ∼ ω−1∂2x .

Basic principles of the derivations for the 3-d case are
similar to that for the case of (x, z)-geometry. Therefore, we
do not provide a complete derivation for the 3-d case, but
only discuss the equations which change compared to the
2-d case.

In Eq. 11, additional non-negligible terms appear:

B

[
ρ1a

2
1−ρ2a

2
2

2
+ρ1	̇1− ρ1(h1−ζ )2

2
	̇1xx

−ρ1

2

(

a1−	1x + 1

2
(h1−ζ )2	1xxx

)2

− ρ1

2

(
	1y

)2

−ρ1

2
((h1−ζ )	1xx)2−ρ2	̇2 + ρ2(h2+ζ )2

2
	̇2xx

+ρ2

2

(

a2−	2x + 1

2
(h2+ζ )2	2xxx

)2

+ ρ2

2

(
	2y

)2

+ρ2

2
((h2+ζ )	2xx)2+. . .

]

+ζ = ζxx

(1+ζ 2
x )3/2

. (36)

The kinematic conditions (13) and (14) turn into

ζ̇ =
(

−(h1 − ζ )	1x + 1

3!h
3
1	1xxx − a1ζ + . . .

)

x

− h1	1yy + . . . , (37)

ζ̇ =
(

(h2 + ζ )	2x − 1

3!h
3
2	2xxx − a2ζ + . . .

)

x

+ h2	2yy + . . . . (38)

Equations 36–38 form a self-contained equation system.
Collecting in Eqs. 37 and 38 terms with eiωt , one finds

(in place of Eqs. 15 and 16)

iωξ + ξτ =
(

−(h1 − η)ψ1x + 1

3!h
3
1ψ1xxx

+ ξϕ1x −A1η + . . .

)

x

−h1ψ1yy + . . . ,(39)

iωξ + ξτ =
(

(h2 + η)ψ2x − 1

3!h
3
2ψ2xxx

+ξϕ2x −A2η + . . .

)

x

+h2ψ2yy + . . . . (40)

Constant with respect to t terms sum-up to

ητ =(−(h1−η)ϕ1x +ξψ∗
1x +c.c.−A1ξ

∗+c.c.+. . .
)
x

−h1ϕ1yy + . . . , (41)

ητ =(
(h2+η)ϕ2x +ξψ∗

2x +c.c.−A2ξ
∗ + c.c.+. . .

)
x

+ h2ϕ2yy + . . . . (42)

The difference of Eqs. 40 and 39 reads

(
h1ψ1x + h2ψ2x − η(ψ1 − ψ2)x − 1

6 (h
3
1ψ1 + h32ψ2)xxx

− ξ(ϕ1 − ϕ2)x + (A1 − A2)η + . . .
)

x

+ (
h1ψ1y + h2ψ2y + . . .

)
y

= 0 ,

which yields in the second orders of smallness, in place of
Eq. 21,

(
h1ψ

(1)
1 + h2ψ

(1)
2

)

xx
=

(

(ψ
(0)
1 − ψ

(0)
2 )xη

+ 1

6
(h31ψ

(0)
1 +h32ψ

(0)
2 )xxx

)

x

−
(
h1ψ

(0)
1 +h2ψ

(0)
2

)

yy
. (43)
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Further, Eqs. 26 and 43 yield

ψ
(1)
1xx =

(
ρ2 − ρ1

ρ1(h1ρ2 + h2ρ1)
ψ(0)

x η

+ 3h2h21ρ1 − 2h32ρ1 + h31ρ2

6ρ1(h1ρ2 + h2ρ1)
ψ(0)

xxx

)

x

− 1

ρ1
ψ(0)

yy

=
(

− ρ2(ρ2 − ρ1)
2(h1 + h2)

2(h1ρ2 + h2ρ1)3
η2

− ρ2(3h2h21ρ1−2h32ρ1+h31ρ2)(ρ2−ρ1)(h1+h2)

12 (h1ρ2 + h2ρ1)3
ηxx

)

x

− 1

ρ1
ψ(0)

yy , (44)

ψ
(1)
2xx =

(

− ρ1(ρ2 − ρ1)
2(h1 + h2)

2(h1ρ2+h2ρ1)3
η2

− ρ1(3h1h22ρ2−2h31ρ2+h32ρ1)(ρ2−ρ1)(h1+h2)

12 (h1ρ2+h2ρ1)3
ηxx

)

x

− 1

ρ2
ψ(0)

yy . (45)

Equation 31 remains unchanged; however, one should
substitute fields ψ

(1)
j determined by Eqs. 44 and 45 into it.

Then, in place of Eq. 32, one obtains

− B1

B0
η + B0

[
h1ρ2+h2ρ1

h2
ϕ1τ

−3ρ1ρ2(ρ2−ρ1)
3(h1+h2)

2

4(h1ρ2+h2ρ1)4
η2

+ρ1ρ2(ρ2−ρ1)
2(h1+h2)

2(h31ρ2+h32ρ1)

6(h1ρ2+h2ρ1)4
ηxx

+ 1

B0
∂−2
x ηyy

]

=ηxx . (46)

In an infinite space with the condition that η(x, y, τ )

remains finite, the action of operator ∂−2
x is well-defined.

Together with Eq. 23, which remains unchanged, the latter
equation form the final system of governing equations for 3-d
long-wavelength perturbations of the flat-interface state:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

B0
h̃1ρ̃2 + h̃2ρ̃1

h̃1h̃2
h̃1ϕ̃1τ̃ =

[

1 − 1

3

h̃31ρ̃2 + h̃32ρ̃1

h̃1ρ̃2 + h̃2ρ̃1

]

η̃x̃x̃

+ 3

2

ρ̃2 − ρ̃1

h̃1ρ̃2 + h̃2ρ̃1
η̃2+ B1

B0
η̃ − ∂−2

x̃
η̃ỹỹ ,

η̃τ̃ = −h̃1ϕ̃1x̃x̃ .

(47)

Here the dimensionless variables and parameters are marked
with the tilde sign to distinguish them from original dimen-
sional variables and parameters. (Above in this section, the
tilde sign was omitted.) For convenience we explicitly spec-
ify how to read rescaling (10) with the tilde-notation: x =
Lx̃, t = (L/b)t̃ , ρi = ρ∗ρ̃i , etc.

Conditions for Applicability of the Long-Wavelength
Approximation

On the basis of earlier works of Lyubimov and Cherepanov
(1986) and the results for the case h1 = h2 (Goldobin
et al. 2015), we expected the linear instability of the flat-
interface state to be long-wavelength for thin enough layers
and relayed on this expectation. Now we can see an explicit
quantitative condition for the layer to be “thin enough”. The
exponential growth rate λ̃ of linear normal perturbations
(η̃, ϕ̃1) ∝ exp[λ̃t̃ + i(k̃x x̃ + k̃y ỹ)] of the trivial state obeys

λ̃2 =
h̃1h̃2

(

−
[

1 − 1
3

h̃31ρ̃2+h̃32ρ̃1

h̃1ρ̃2+h̃2ρ̃1

]

k̃4x + B1
B0

k̃2x − k̃2y

)

B0(h̃1ρ̃2 + h̃2ρ̃1)
. (48)

From Eq. 48 one can see that the long-wavelength perturba-
tions are the most dangerous one and grow for B1 > 0, if
the expression in the square brackets is nonnegative,

h̃31ρ̃2 + h̃32ρ̃1

h̃1ρ̃2 + h̃2ρ̃1
≤ 3 . (49)

Otherwise, the long-wavelength perturbations are not the
most dangerous one. Equation 49 imposes limitation from
above on h1 and h2. This analysis of equation system (47)
only highlights the long-wavelength character of the linear
instability, since it deals with the limit of small k̃ and does
not provide information on the linear stability for finite k̃.
A comprehensive proof of the long-wavelength character of
the instability comes from the research by Lyubimov and
Cherepanov (1986).

Final Rescaling and Equations

For consideration of the system dynamics below the linear
instability threshold, i.e. for negative B1, it is convenient to
make further rescaling of coordinates and variables:

x̃ → x

√√
√
√ B0

(−B1)

[

1 − 1

3

h̃31ρ̃2 + h̃32ρ̃1

h̃1ρ̃2 + h̃2ρ̃1

]

,

ỹ → y
B0

(−B1)

√

1 − 1

3

h̃31ρ̃2 + h̃32ρ̃1

h̃1ρ̃2 + h̃2ρ̃1
,
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t̃ → t

√√
√
√ h̃1ρ̃2 + h̃2ρ̃1

h̃1h̃2

B3
0

B2
1

[

1 − 1

3

h̃31ρ̃2 + h̃32ρ̃1

h̃1ρ̃2 + h̃2ρ̃1

]

,

η̃ → η
h̃1ρ̃2 + h̃2ρ̃1

ρ̃2 − ρ̃1

(−B1)

B0
,

ϕ̃1 → ϕ

h̃1

h̃1ρ̃2 + h̃2ρ̃1

ρ̃2 − ρ̃1

[

1 − 1

3

h̃31ρ̃2 + h̃32ρ̃1

h̃1ρ̃2 + h̃2ρ̃1

]

.

(50)

Notice, that this means the following transformation of
initial dimensional coordinates and variables:

x → x L

√√
√
√ B0

(−B1)

[

1 − 1

3L2

h31ρ2 + h32ρ1

h1ρ2 + h2ρ1

]

,

y → y L
B0

(−B1)

√

1 − 1

3L2

h31ρ2 + h32ρ1

h1ρ2 + h2ρ1
,

t → t

√√
√
√h1ρ2 + h2ρ1

ρ∗h1h2
L3B3

0

b2B2
1

[

1 − 1

3L2

h31ρ2 + h32ρ1

h1ρ2 + h2ρ1

]

,

η → η
h1ρ2 + h2ρ1

ρ2 − ρ1

(−B1)

B0
,

ϕ1 → ϕ
bL

h1

h1ρ2 + h2ρ1

ρ2 − ρ1

[

1 − 1

3L2

h31ρ2 + h32ρ1

h1ρ2 + h2ρ1

]

.

(51)

After the rescaling, equation system (47) (below the
linear instability threshold) takes a parameterless form;

η̈ − ηxx − ηyy +
(
3

2
η2 + ηxx

)

xx

= 0 . (52)

The derivation of Eq. 52 itself is one of the principle
results we report with this paper, as it allows considering
the 3-d evolution of quasi-steady patterns in the two-layer
liquid system under the action of the vibration field for arbi-
trary ratio h1/h2 (in (Goldobin et al. 2015) the governing
equation was derived for 2-d flows and h1 = h2).

Dynamics Above the Threshold and for Inverted
State

Equation system (47) derived in the previous section is rel-
evant in the vicinity of the linear instability threshold, both
below and above the threshold. Above the threshold, B1 is
positive and one has to replace (−B1) with B1 in rescal-
ings (50)–(51), which leads to the change of the sign of the
second term in Eq. 52. Thus, above the linear instability
threshold, equation system (47) yields

η̈ + ηxx − ηyy +
(
3

2
η2 + ηxx

)

xx

= 0 . (53)

Furthermore, the derivation procedure can be formally
repeated for the case where the heavy liquid overlies the
light one (we refer to this system state as ‘inverted state’).
The correction of the results for this case is straightforward;
one can substitute g → −g in all the equations of the pre-
vious section, but make proper account for rescaling (10),
where the real-valued length scale L = √

α/[(ρ2 − ρ1)g]
is to be kept unchanged. After this correction, one finds the
same value of B0 for the critical point of the linear stability
of the flat interface state (generally, this does not necessar-
ily mean that the state is stable on one of the sides of the
point: it can be unstable on the both sides, but with different
instability mechanisms). Within the vicinity of this point,
one obtains dimensionless governing equations:
• below the critical point B0 for the inverted state,

η̈ + ηxx + ηyy −
(
3

2
η2 + ηxx

)

xx

= 0 ; (54)

• above the critical point B0 for the inverted state,

η̈ − ηxx + ηyy −
(
3

2
η2 + ηxx

)

xx

= 0 . (55)

For understanding of the general properties of the system
dynamics, it is interesting to compare Eqs. 52–55 with the
Boussinesq equation for gravity waves in shallow water.

Two-Dimensional Flow (∂y = 0)

It was demonstrated above that the physical-space scale of
variation of fields in the y-direction is large compared to
that in the x-direction; therefore, a large lateral horizontal
size of container is required to have room for variation of
fields with y. Hence, when the lateral size of the container
is non-large, the consideration can be restricted to the case
of a 2-d flow. For ∂y = 0, Eqs. 52–55 read

η̈ − sbηxx + sg

(
3

2
η2 + ηxx

)

xx

= 0 , (56)

where sb = +1 and −1 above and below B0, and sg = +1
and −1 for the ‘normal’ and inverted states, respectively.

Let us compare Eq. 56 with the original Boussinesq
equation (OBE) for gravity waves in shallow water in the
dimensional form (without vibrations and surface tension)
(Boussinesq 1872);

η̈ − ghηxx − gh

(
3

2

η2

h
+ h2

3
ηxx

)

xx

= 0 , (57)

where h is the layer thickness. In the dimensionless form,
the same equation is relevant for a two-layer system without
vibrations (Choi and Camassa 1999).

The interface dynamics for the normal state below B0

(sb = −1 and sg = +1) corresponds to the ‘plus’ Boussi-
nesq equation (Manoranjan et al. 1988; Bogdanov and
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Zakharov 2002), which differs from Eq. 57, and was thor-
oughly discussed by Goldobin et al. (2014, 2015). Notice-
ably, the dynamics above B0 (sb = +1 and sg = +1)
corresponds to Eq. 57 with negative g, which describes
the falling of a liquid layer covering a ceiling; the flat-
interface state is obviously unstable without any saturation
for perturbation growth.

One can notice that the interface dynamics for the
inverted state above B0 is governed by OBE. However, this
does not mean that the flat-interface state becomes stable as
it is for a shallow water layer subject solely to the gravity
field. Indeed, Eq. 56 is rigorously derived for the vibra-
tional system under consideration and the short-wavelength
instability inherent to OBE (it can be seen also from Eq.
48) represents the properties of the real physical system.
Meanwhile, the validity of OBE is restricted to the descrip-
tion of the gravity waves which are of long wavelength not
only for the original fluid dynamics equations, but also for
Boussinesq Eq. 56.

Let us elaborate on the latter statement. Equation sys-
tem (25) in (Boussinesq 1872) for gravity waves in shallow
water reads in our terms as
⎧
⎪⎪⎨

⎪⎪⎩

η̇ + ϕxx = −(η ϕx)x + 1

6
ϕxxxx ,

ϕ̇ + η= −1

2
(ϕx)

2 + 1

2
ϕ̇xx ,

(58)

where the terms in the r.h.s. of equations are small, i.e., both
nonlinearity and dispersion are small. Dynamic system (16)
does not posses a short-wavelength instability. To the lead-
ing corrections owned by nonlinearity and dispersion, for
waves traveling in one direction, the latter equation system
can be recast as OBE. Thus, the short-wavelength instability
of OBE is not an inherent property of the long-wavelength
gravity waves in physical systems, but the result of a rough
approximation, while for the inverted state of the vibrational
system above B0 this instability actually exists.

To summarize, the normal flat-interface state below the
threshold B0 is free of instabilities to infinitesimal perturba-
tions. For other three cases, the flat-interface state becomes
linearly unstable. The similarity between equations for the
inverted state above B0 and the original Boussinesq equa-
tion for gravity waves does not mean the former system
is as stable as the latter one. Nonetheless, this similar-
ity is remarkable and indicates that the long-wavelength
dynamics of the inverted system subject to strong vibrations
becomes as stable as the shallow liquid layer subject solely
to gravity.

Three-Dimensional Flow

For the system of a large lateral extent in the physical space,
flows can be inhomogeneous in the y-direction. For the

case of vibrationless system, the x- and y-directions are
equivalent, while for the vibrational system we consider the
y-direction can be discriminated. Waves propagate in the
y-direction without dispersion and nonlinearity (see Eqs.
52–55; this is valid for the leading order of our expansion,
where the propagation of waves in the x-direction is already
essentially determined by both dispersion and nonlinear-
ity). Moreover, the system dynamics for the normal state
above the threshold B0 does not match anymore the dynam-
ics of the liquid layer falling from a ceiling; even roughly,
the term ηyy appears with negative sign in Eq. 53 and with
positive sign in the 3-d version of Eq. 57 with negative g.
Furthermore, Eq. 55 governing the inverted system above
B0 possesses terms −ηxx and +ηyy , while for the gravity
waves in shallow water these terms will be both with sign
“−”. Thus, all the similarities discussed for 2-d flows are
broken in the 3-d case.

Conclusion

We have generalized the derivation of the governing equa-
tions of conservative dynamics of interfacial waves in a
two-layer system of inviscid liquids subject to horizontal
vibrations for the case of h1 
= h2. Even though the gov-
erning equations in the dimensionless form are the same as
for h1 = h2 (Goldobin et al. 2015), the procedure of the
construction of expansion has revealed the appearance of a
new group of contributions, which vanish for h1 = h2 (see
Eq. 26). The equations are relevant for thin enough layers,
(h31ρ2 + h32ρ1)/(h1ρ2 + h2ρ1) < 3α/[(ρ2 − ρ1)g], where
the linear instability is long-wavelength.

Further, the consideration has been extended to the case
of three-dimensional flows varying in the second horizontal
direction. An analogue of Squire’s theorem can be formu-
lated here (35). According to this theorem, the instability
threshold for plane perturbations increases with the angle
between the wavevector and the vibration direction. Hence,
close to the instability threshold of the most dangerous per-
turbations, only patters with a “slow” dependence on y

are of interest. The governing equations for these patterns
have been derived as well; Eqs. 52–55 describe the system
dynamics below and above the threshold B0 for both the
normal and inverted states.

For a system confined in the y-direction, where the flows
are two-dimensional, equations of the system dynamics can
be compared to the Boussinesq equations for the gravity
waves in shallow water. Noticeably, above the threshold,
the system dynamics for the normal state is similar to the
dynamics of the falling of a liquid layer from a ceiling, while
the dynamics for the inverted state is reminiscent of the
usual gravity waves. However, the latter similarity does
not mean the vibrational system to become as stable as a
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horizontal liquid layer subject to the gravity field. The
vibrational system possesses a short-wavelength instabil-
ity, which is actually present in the system, while for the
gravity waves in shallow water this instability is due to the
expansion truncation and is observed beyond the domain
of the applicability of the Boussinesq equation to the spe-
cific physical system. Nonetheless, the long-wavelength
modes of instability of the inverted state become stabilized
by vibrations.

For three-dimensional flows, in contrast to the case of the
gravity waves in a vibration-free shallow water, two hori-
zontal directions are not equivalent. The sign of ηyy-term in
equations breaks the similarities in dynamics of some con-
figurations of the vibrational systems and gravity waves in a
vibration-free shallow water layer, which were observed for
the 2-d case.

The work has been supported by the Russian Science
Foundation (grant no. 14-21-00090).
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