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Abstract In this work, we focus on the processes which
accompany a frontal neutralization reaction occurring
between two miscible fluids filling a vertical Hele-Shaw
cell. We have found that chemically-induced changes of
reagent concentrations coupled with concentration- depen-
dent diffusion (CDD) can produce spatially localized low
density areas which are sensitive to the external inertial
field. In the case of static gravity we have demonstrated
both experimentally and theoretically that it can give rise to
the development of perfectly periodic convective structure.
This scenario is strikingly different from the irregular den-
sity fingering, which is typically observed in the miscible
systems. When the system is under the influence of the peri-
odic low-frequency vibrations perpendicular to the reaction
front, we found numerically the excitation of a mixed-mode
instability combining the double-diffusion instabilities and
the Rayleigh-Taylor mechanism of the convection within the
low density areas.
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Introduction

In last decades the interaction between reaction- dif-
fusion phenomena and pure hydrodynamic instabilities
has attracted increasing interests because the chemically
induced changes of fluid properties such as concentra-
tion, density, viscosity, surface tension or adsorption may
result in the instabilities, which exhibit a large variety of
convective patterns.

The simple, irreversible chemical scheme such as a neu-
tralization reaction A + B → S occurring in binary
liquid-liquid miscible systems was studied in Almarcha
et al. (2010), Almarcha et al. (2011), Carballido-Landeira
et al. (2013) and Trevelyan et al. (2015). The irregular
plumes and fingers commonly observed here when the
heavier fluid A overlies the lighter fluid B. This stratifica-
tion is unstable under gravity via the Rayleigh-Taylor (RT)
mechanism (Almarcha et al. 2010; Fernandez et al. 2002).
It should be noted that, in nonreactive miscible systems,
buoyancy-driven instabilities lead to convective motions
which develop similarly above and below the initial contact
since the underlying density gradient is symmetric (Fernandez
et al. 2002). By contrast, the convection triggered by the
reaction develops asymmetric patterns with respect to the
initial position of the interface (Almarcha et al. 2010).
Another important engine breaking the equilibrium in the
miscible systems was found to be the difference between the
diffusion rates of species resulting in double diffusive insta-
bility (DD) or diffusive-layer convection (DLC) (Almarcha
et al. 2011; Carballido-Landeira et al. 2013; Trevelyan et al.
2015). It may occur when the upper fluid is lighter, but
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B diffuses faster than A (DD fingering), or A diffuses
faster than B (DLC). And again, in nonreactive miscible
fluids, the double-diffusion convective motions are sym-
metric (Turner 1974), but the reaction produces asymmetric
patterns (Almarcha et al. 2010; Lemaigre et al. 2013).

Recently, we have reported a new type of instabil-
ity, the concentration-dependent diffusion (CDD) instabil-
ity (Bratsun et al. 2015; Aitova et al. 2015). The CDD
convection belongs to the family of the double-diffusion
phenomena, and it arises when the diffusion coefficients
of species depend on their concentrations. In contrast
with previous works, we have shown that chemically-
induced changes of reagent concentrations coupled with
concentration-dependent diffusion can produce spatially
localized zone with unstable density stratification that under
gravity gives rise to the development of perfectly regular
cell-like convective pattern even in the miscible system.
The effect was found primarily for the pair HNO3/NaOH,
but then it was demonstrated also for other systems (for
example, HNO3/KOH, HCl/NaOH). The described effect
has given an example of yet another powerful mechanism
which allows the reaction-diffusion processes to govern the
fluid flow under gravity condition.

Although the concentration dependence of the diffusion
coefficients of species has been rarely considered in the
fluid mechanics, some analogy can be drawn, for exam-
ple, with viscous fingering in miscible displacement flows
in porous media (Hickernell and Yortsos 1986; Manickam
and Homsy 1993, 1994, 1995; Loggia et al. 1995). Both
the concentration-dependent viscosity and the heterogene-
ity in the permeability of the porous medium can produce
the simple nonmonotonicity in the mobility profiles some-
what similar to those in the reactive case. The first paper
(Hickernell and Yortsos 1986) devoted to the issue has
examined the linear stability of miscible displacement pro-
cesses in simplified formulation (without diffusion and
dispersion), but including the influence of gravity. Then the
effect of the nonmonotonic viscosity profile on the mis-
cible displacements has been considered in the series of
works (Manickam and Homsy 1993, 1994, 1995) where
both linear and nonlinear phenomena have been studied.
Finally, some predictions of theoretical works have been
verified experimentally in Loggia et al. (1995).

The possibility of appearance of a parametrically excited
convective instability has first been emphasized in Gershuni
and Zukhovitskii (1963) where a plane horizontal layer of
a fluid heated from below under a periodic modulation of
the gravity force was considered. This result was experi-
mentally confirmed later in Putin et al. (1992) and Rogers
et al. (2000). As for inhomogeneous fluids, the instability
of a small transient diffusive layer between two miscible
liquids under finite-frequency vibrations was found experi-
mentally and numerically in Gaponenko et al. (2015). The

similar effect are observed in the dusty fluids. There are
a number of papers (see, for example, Bratsun and Teplov
2000; Bratsun 2009) showing that a fine heavy admixture
to nonreactive fluids may exert, under certain conditions, a
significant effect on flow stability and structure.

Unlike the nonreactive case, the miscible reacting flu-
ids placed in a variable inertial field seems to be more
complicated system, as the concentrations of reactants may
vary locally in real-time due to the ongoing volume reac-
tion. For example, one should mention works concerning
the development of frontal polymerization under different
vibrations (Allali et al. 2002). It was shown that vibrations
can stabilize the polymerization front. In recent years, more
and more interest of researchers is attracted to the chemo-
hydrodynamic systems in the variable inertial field (Eckert
et al. 2012; von Kameke et al. 2010, 2013). The dynamics
of neutralization reaction fronts under modulated gravita-
tional acceleration by means of a combination of parabolic
flight experiments and numerical simulations was studied
in Eckert et al. (2012). It was shown that the front posi-
tion also undergoes periodic modulation with an accelerated
front propagation under hyper-gravity together with a slow-
ing down under low gravity because of corresponding an
amplification and a decay, respectively, of the buoyancy-
driven vortex. In von Kameke et al. (2010, 2013) the authors
have considered an alternate way of inertial action on the
system, namely, high-frequency vertical vibrations applied
to the reacting fluid layer with free surface, in which case
the effect of hydrodynamics is quite evident. In this situa-
tion, the hydrodynamic effect induced by the Faraday ripple
occurs on the upper free boundary, giving rise to the sur-
face turbulence, so that the reaction-diffusion processes pass
through quite another pattern of dynamic evolution.

Generally, the frontal reaction can generate inhomoge-
neous densities, which in the constant field can lead to the
onset of different types of instability. Obviously, such react-
ing systems are subject to the action of external variables
and inhomogeneous inertial fields. However, up to now
there has been no systematic work done to investigate this
influence neither for finite-frequency nor high-frequency
vibrations.

In this work we study a Hele-Shaw flow, i.e. the flow of
a fluid between two plates which are close to each other. A
review of the early works devoted to the Hele-Shaw flows
is given in Homsy (1987). Since the governing equations
of the fluid in the Hele-Shaw cell with an infinitesimally
small gap are similar to those for the porous medium, one
can use the Hele-Shaw cell to accurately predict what hap-
pens in the latter case.With some reservations, this approach
also works in the opposite direction. This is why one often
uses the law of Darcy to study the Hele-Shaw flows
(Carballido-Landeira et al. 2013; Trevelyan et al. 2015;
Fernandez et al. 2002; Homsy 1987). However, if the gap
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between the plates is small, but finite, the averaging across
the Hele-Shaw should be made by taking into account the
inertial terms (Ruyer-Quil 2001; Martin et al. 2002a). A
more systematic discussion of the so-called Brinkman cor-
rection for the Hele-Shaw flows is given in Zeng et al.
(2003). The application of such approach to the buoyancy-
driven instability of an autocatalytic reaction front was first
considered in Martin et al. (2002b). An important result was
obtained in Martin et al. (2011), where the authors demon-
strated analytically and experimentally that the Hele-Shaw
averaging leads to a rather good approximation, when an
appropriate Brinkman correction is used. The importance of
this approach was also found in Bratsun and De Wit (2004)
for the two-layer Hele-Shaw system with an exothermic
chemical reaction. Obviously, in the case of an alternat-
ing inertial field the effect of the Brinkman term becomes
particularly important.

The goal of the present work is to study the effect
of low-frequency vertical vibrations on the concentration-
dependent diffusion convection that arises during a frontal
neutralization reaction occurring between two miscible flu-
ids filling a vertical Hele-Shaw cell.

Theoretical Model

Let two miscible liquids fill a Hele-Shaw cell. A Hele-
Shaw cell is a closed parallelepiped cavity significantly
compressed in one of the horizontal directions (Fig. 1).
The upper and lower layer are aqueous solutions of acid
A and base B respectively. Right after the process starts,
the acid and base diffuse into each other and are neutral-
ized according to A + B → S with the formation of salt
S with the rate K . The neutralization reaction is exother-
mic, but, for simplicity, here we consider the system shown
in Fig. 1 as isothermal. The system geometry is given
by three-dimensional domain with x- and y-axes directed
horizontally and z-axis anti-directed to gravity. The cell
boundaries are defined to be 0 ≤ x ≤ H , −d ≤ y ≤ d,
−L ≤ z ≤ L. Then z = 0 determines the initial contact
plane between the reacting species.

We start with the set of reaction-diffusion-convection
equations applicable to a viscous fluid of varying density
depending on concentrations:

∇ · U = 0, (1)

∂U
∂t

+ U · ∇U = − 1

ρ0
∇P + ν�U − (gz + nbω2cos(ωt))

×(βaA + βbB + βsS), (2)

∂A

∂t
+ U · ∇A = ∇Da(A)∇A − KAB, (3)

Fig. 1 Geometrical configuration of the two-layer miscible system
and coordinate axes

∂B

∂t
+ U · ∇B = ∇Db(B)∇B − KAB, (4)

∂S

∂t
+ U · ∇S = ∇Ds(S)∇S + KAB, (5)

where U(Ux, Uy, Uz) is the velocity, P is the pressure and
A, B, S are the concentrations of species. z is the unit vector
along the z-axis. The density of fluid and kinematic vis-
cosity are, respectively, equal to ρ0, ν. The amplitude and
frequency of vibrations are denoted as b and ω respectively.
In this work we suppose that the vibrations are co-directed
to gravity vector: n = z. The diffusion terms in Eqs. 3–5
have been written in the most general form (Bratsun et al.
2015; Crank 1975).

We assume further that the gap-width 2d between the
plates is small enough (see Fig. 1) so that the fluid flow may
be considered as quasi two-dimensional, i.e. a Hele-Shaw
approximation is applicable (Ruyer-Quil 2001; Martin et al.
2002a; Bratsun and De Wit 2011). Taking into account
the standard boundary conditions for velocity and con-
centration on solid plates one can assume the following
approximations:

Ux(x, y, z) = 3

2

(
1 − y2

d2

)
vx(x, z), (6)

Uy(x, y, z) = 0, (7)

Uz(x, y, z) = 3

2

(
1 − y2

d2

)
vz(x, z), (8)

A = A(x, z), B = B(x, z), S = S(x, z), (9)
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where v(vx, vz) is two-component velocity field. Then
the evolution equations in a Hele-Shaw approximation
are obtained by inserting (6)–(9) into the three- dimen-
sional Navier-Stokes equations (1)–(2) coupled to heat and
reaction-diffusion equations (3)–(5), and averaging with
respect to the y-space direction perpendicular to the solid
plates:

< ... >= 1

2d

∫ d

−d

...dy. (10)

We choose the following units of measurement: length -
2d, time - 4d2/Da0, velocity - Da0/2d, concentration - A0,
pressure - ρ0νDa0/4d2. Here Da0 and A0 define constant
acid diffusivity and initial acid concentration respectively.
By averaging the equations (1)–(5) with respect to Eq. 10
we shall get the convection-reaction-diffusion equations in
a Hele-Shaw approximation:

Φ = −�Ψ, (11)

1

Sc

(
∂Φ

∂t
+ 6

5

∂(Ψ,Φ)

∂(z, x)

)
= �Φ − 12Φ

−Ra

∂A

∂x
− Rb

∂B

∂x
− Rs

∂S

∂x

−
(

Ga

∂A

∂x
+ Gb

∂B

∂x
+ Gs

∂S

∂x

)
cos(Ωt), (12)

∂A

∂t
+ ∂(Ψ,A)

∂(z, x)
= ∇Da(A)∇A − αAB, (13)

∂B

∂t
+ ∂(Ψ,A)

∂(z, x)
= ∇Db(B)∇B − αAB, (14)

∂S

∂t
+ ∂(Ψ, S)

∂(z, x)
= ∇Ds(S)∇S + αAB. (15)

Here we use a two-field formulation for movement equa-
tion introducing the stream function Ψ :

vx = ∂Ψ

∂z
, vz = −∂Ψ

∂x
,

and the vorticity Φ defined by Eq. 11. The advection terms
in Eqs. 12–15 have been written in the compact form of the
Jacobian determinant:
∂(ζ, ξ)

∂(z, x)
= ∂ζ

∂z

∂ξ

∂x
− ∂ζ

∂x

∂ξ

∂z
.

The Eq. 12 differ from a standard Navier-Stokes equa-
tion by one more additional term linear in the vorticity. This
term appearing within the Hele-Shaw approximation may
be interpreted as the average friction force due to the pres-
ence of the plates and are analogous to the linear velocity
term in Darcy’s law valid for fluid flow in porous media.

The boundary conditions for Eqs. 11–15 are

x = 0, H : Ψ = 0,
∂Ψ

∂x
= 0,

∂A

∂x
= 0,

∂B

∂x
= 0,

∂S

∂x
= 0.

z = ±L : Ψ = 0,
∂Ψ

∂z
= 0,

∂A

∂z
= 0,

∂B

∂z
= 0,

∂S

∂z
= 0,(16)

Finally, the initial conditions are defined as

z < 0 : Ψ = 0,
∂Ψ

∂z
= 0, A = 0, B = 1,

z > 0 : Ψ = 0,
∂Ψ

∂z
= 0, A = 1, B = 0. (17)

We have found in Bratsun et al. (2015) and Aitova et al.
(2015) that a concentration- dependence of diffusion plays
an important role in the pattern formation. It demands that
the diffusion coefficients in Eqs. 13–15 of the mathemati-
cal model should be assumed not to be constant, but depend
on their own concentrations: Da(A), Db(B) and Ds(S). Of
course, for each pair of reagents, these dependencies are
unique and different from data for other pairs. To be spe-
cific, we focus here on a pair of reagents HNO3/NaOH for
which we have brought together in Bratsun et al. (2015) all
the known experimental data and have constructed a linear
approximation within the experimentally interesting range
of concentration from 0.1 to 3 mol/l:

Da(A) ≈ 0.881 + 0.158A, (18)

Db(B) ≈ 0.594 − 0.087B, (19)

Ds(S) ≈ 0.478 − 0.284S, (20)

where the formulas are already given in the dimensionless
form.

The full list of dimensionless parameters appeared in the
system of Eqs. 11–20 is given in the Table 1. Their values
for the pair HNO3 / NaOH have been estimated as follows:
Sc ≈ 103, α ≈ 103, Ra = 1.5×103, Rb = 1.8×103, Rs =
2.4 × 103. The solutal Gershuni numbers are proportional
to the Rayleigh numbers: Gi = μRi , where i = {a, b, s}.
Here μ = bω2/g stands for the dimensionless amplitude of
vibrations.

Table 1 List of dimensionless parameters

Definition Name of the parameter

Sc = ν/Da0 Schmidt number

Ra = gβAA0(2d)3/Da0ν Rayleigh number for acid

Rb = gβBA0(2d)3/Da0ν Rayleigh number for base

Rs = gβSA0(2d)3/Da0ν Rayleigh number for salt

Ga = bω2βAA0(2d)3/Da0ν Gershuni number for acid

Gb = bω2βBA0(2d)3/Da0ν Gershuni number for base

Gs = bω2βSA0(2d)3/Da0ν Gershuni number for salt

Ω = ω(2d)2/Da0 frequency of vibrations

α = KA0(2d)2/Da0 Damköhler number

μ = bω2/g amplitude of vibrations
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In order to describe the effect in term of the buoyancy it
is convenient to introduce the total dimensionless density:

ρ(t, x, z) = RaA(t, x, z) + RbB(t, x, z)

+RsS(t, x, z) (21)

and the variable inertial field:

I (t) = 1 + μcos(Ωt), (22)

with I (t)ρ(t, x, z) representing the term of a volume vibra-
tion force in Eq. 2.

In the particular case of no static component of the grav-
ity g = 0, the Eqs. 21 and 22 should be rewritten in the
form, respectively:

ρ0(x, z) = GaA(x, z) + GbB(x, z) + GsS(x, z), (23)

I 0(t) = cos(Ωt). (24)

Base State

The system of Eqs. 11–20 allows for an important class
of nonsteady solutions, which describe dynamics of the
reaction-diffusion processes with liquid to remain in the
state of mechanical equilibrium. Let us term this state of the
system as the base state. Then we consider the concentra-
tion fields depending solely from the vertical axis and time:
A0(t, z), B0(t, z), S0(t, z). Then we get:

∂A0

∂t
= Da(A

0)
∂2A0

∂z2
+ ∂Da(A

0)

∂z

∂A0

∂z
− αA0B0, (25)

∂B0

∂t
= Db(B

0)
∂2B0

∂z2
+ ∂Db(B

0)

∂z

∂B0

∂z
− αA0B0, (26)

∂S0

∂t
= Ds(S

0)
∂2S0

∂z2
+ ∂Ds(S

0)

∂z

∂S0

∂z
+ αA0B0. (27)

The problem (18)–(20), (25)–(27) with boundary and ini-
tial conditions (16), (17) is a non-linear reaction-diffusion
problem and can be solved only numerically. Figure 2 shows
the base state profiles of the total density ρ(z) for three con-
secutive time moments t = 0, 2, 10. One can see that just
after the evolution starts, the density profile has two min-
ima (above and below the reaction front initially located at
z = 0). Under the constant gravity condition the minimum
at z > 0 looks to be the typical condition for the asym-
metric diffusive layer convection (DLC) to occur (Almarcha
et al. 2010). We work in the parameter ranges where the
DLC instability is believed to be primary (Trevelyan et al.
2015). It can be described as the instability which starts
when a given solution overlies a denser solution, but the
solute on top diffuses faster than the one on the bottom.
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Fig. 2 Instantaneous base state profiles of the total density ρ(z) at
times t = 0, 2, 10

Since Ra = 1.5 × 103, Rb = 1.8 × 103 and the diffu-
sion coefficients of species is defined by Eqs. 18–20, this is
exactly our case. In the course of evolution, the classic DLC
instability inevitably triggers irregular fingering above and
below the initial contact line.

However, we have shown in Bratsun et al. (2015) for
the reactive case that the minimum at z < 0 enclosed
within the regions with a stable stratification (with respect to
static gravity) occurs exclusively due to the concentration-
dependence of diffusion (CDD). This is why we have named
it as the CDD instability. It may occur only in the reac-
tive case when an emerging component starts to accumulate
near the reaction front. If its molecules quickly leave the
reaction zone, then it has no significant influence on the
instability scenario. But if the diffusion coefficient of the
reaction product decreases with growth of its concentration,
as it happens in Eq. 20, it can progressively make a “den-
sity pocket”, i.e. the local minimum in the density profile
(Fig. 2). Thus, the DLC instability can trigger the fingering
process only above the initial contact line.

When the inertial field becomes variable, the complex
density stratification produced due to the reaction creates
opportunities for the development of various types of distur-
bances. Assume for the simplicity that the static component
is absent g = 0, the inertial field is perpendicular to the
initial contact line of reagents, and the inertia itself varies
periodically according to Eq. 24. Figure 3 demonstrates the
areas of the unstably stratified density for two successive
moments of time separated by a half-period of vibrations.
When the inertia force is directed to the left (Fig. 3, top),
one may expect that the DLC instability occurs since the
acid solution is placed above the a denser base solution
with the fastest diffusing solute being in the upper layer.
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Fig. 3 The areas of the unstable stratification of the total density ρ(z)

for two successive moments of time separated by a half-period of
vibrations. The instantaneous direction of the inertial field is indicated
in the figures

Another area located below the initial contact line corre-
sponds to the CDD instability discussed above. When the
inertia force changes its sign (Fig. 3, bottom), one has the
situation of a “heavy on top of light”, which is naturally
unstable with regard to the Rayleigh-Taylor instability. In
this case, one can expect a much smaller role of the effect
of double diffusion phenomena.

Results of Numerical Simulation

The problem (11)–(20) has been solved numerically by
a finite-difference method. A detailed description of the
method is given in Bratsun (2014). An explicit scheme has
been used, and in order to ensure the stability of the method,
the time step was calculated by the formula

�t = �x2

2(2 + max(|Ψ |, |Φ|)) . (28)

Here �x is a mesh size for the corresponding coordinate.
The Poisson equations are solved by the iterative Liebmann
successive over-relaxation method at each time step: the
accuracy of the solution is fixed to 10−4. The approximation

for a vorticity providing the second order of accuracy was
used on the horizontal solid boundaries:

Φ(x, ±L) =±Ψ (x,±L ∓ 2�z) − 8Ψ (x,±L ∓ �z)

2�z
. (29)

Two kinds of boundary conditions have been applied at
x = 0, H . The first one is the condition of periodicity for
all fields, and the second one includes the no-flux condition
for species and no-slip condition for the stream function and
vorticity. Numerical simulations have showed no significant
difference between these two cases. We have performed the
calculations at uniform rectangular mesh. The typical reso-
lution was 5×5 nodes for a square of unit side. For example,
for the area H = 40, L = 30 we used the mesh 200 by 300.
As the initial condition we applied a noisy distribution of
the stream function with amplitude less than 10−3.

Static Inertial Field

Figure 4 presents the time evolution of the stream function
maximum separately calculated for the part of the domain
above (z > 0) and below (z < 0) the initial contact
line. Since we consider the case of miscible liquids, at first
glance, such a separation does not look very reasonable.
But two different chemo-convective instabilities were found
to arise independently in the upper and lower part of the
domain. Thus, each maximal stream function characterizes
the development of its own instability. The evolution of the
total density ρ(t, x, z) defined by Eq. 21 is illustrated by the
frames for three consecutive moments of time in Fig. 5.

The dynamics of the system has been developing almost
independently in the upper and lower parts of it, and can
be divided in several stages. First, a pure reaction-diffusion
process takes place up to t ≈ 3 (Fig. 5, t = 3). Then,
the convection arises, first in the lower layer where the cel-
lular chemoconvection with a perfectly periodic structure
induced by the concentration-dependent diffusion mecha-
nism has been observed (Fig. 5, t = 4). The instability
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Fig. 4 Time evolution of the maximal stream function of the system
under the static gravity field. The values calculated for the lower and
upper layer are indicated by the dashed and solid line, respectively
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is shown: 0 < x < 50, −10 < z < 10. The line z = 0 corresponds to
the initial contact line between layers

occurs inside the “density pocket”, i.e. the local minimum
in the density profile (Fig. 2). The resulting convection in
the lower layer at the very beginning looks like the fingering
process manifesting itself in the acceleration of the move-
ment of the finger tips away from the contact line (Fig. 5,
t = 5). The main driving force behind this movement is
the heavy droplets of salt that fall into the zone of the low
density. But since the density pocket is enclosed within the
regions with a stable stratification, the fingering process is
weakening (see Fig. 4, dashed line), and the convection can
develop further only at the expense of the overall growth of
the pocket width due to diffusion (Fig. 2). Thus, the mass
transfer in the lower layer generally develops under the con-
trol of the diffusion processes. Another consequence of the
existence of a local minimum density is a leveling effect
on the envelope of the chemoconvective structures. This is
why the structure shown in Fig. 5 appears uncommonly
for the fingering process. We have found in Bratsun (2014)
that the salt fingers can be leveled via the Rayleigh-Bénard

mechanism, i.e. due to heat release of the exothermic reac-
tion. Now it is clear that there are other mechanisms of the
leveling. The occurrence of a local minimum density due
to concentration-dependence of the diffusion coefficients of
species is one of these mechanisms.

In the upper domain the diffusive layer convection trigger
the vigorous fingering process above the initial contact line,
which manifest itself in a sharp rise of the stream function
maximum at t > 5 (see Fig. 4, solid line). Thus, the mass
transfer in the upper layer develops under the control of the
convective processes. Since the DLC instability many times
was described in the literature (see, for example, Trevelyn
et al. 2015; Turner 1974; Lemaigre et al. 2013), we do not
focus on it here in detail.

We only mention here that the wavelengths of the CDD
and DLC instabilities are substantially different, because of
the different characteristic widths of two density minima
(Fig. 3). The solution of a nonsteady linear stability prob-
lem obtained in Bratsun et al. (2015) has shown that at the
very beginning the DLC instability wavelength is about six
times more than the wavelength of the CDD convection.
Over time, the wavelengths of the developed perturbations
gradually converge in magnitude.

Variable Inertial Field

Figure 6 presents the time evolution of the stream function
maximum under the influence of a periodically varied iner-
tial field I (24). The amplitude of vibrations is μ = 4 and
the period is τ = 0.1. The dynamics in the upper (z > 0)
and lower (z < 0) parts of the domain are indicated by
the solid and dashed lines, respectively. The corresponding
evolution of the total density ρ(t, x, z) defined by Eq. 21
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is illustrated by the frames for three consecutive moments
of time in Fig. 5 during one period of vibrations. Taking
into account that the time has been put in the dimensionless
form by using the characteristic diffusive time, the oscilla-
tion of the inertial field with the period τ = 0.1 should be
considered as low-frequency vibrations.

We found that the pure reaction-diffusion process similar
to those in the static case also takes place when the sys-
tem is under the influence of vibrations. But this stage lasts
not for long: after t > 0.3 one can observe the exponen-
tial growth of the critical disturbances. We found that the
vibrations parametrically excite the synchronous response
of the system (Fig. 6). It can be noted that this excitation
of the convective instability occurs almost simultaneously
both at the bottom and top of the domain. The stream func-
tion reaches its maximum at about t ≈ 1 and then slightly
decreases tending to some quasi-equilibrium value.

The time series of the stream function shown in Fig. 6
has two characteristic peaks within one period of vibra-
tion. The origin of these peaks becomes clear from Fig. 3.
When the direction of the inertial field reverses sign, the
zones of unstable density stratification right of both minima
(Fig. 3, top) are replaced by the unstable stratification zones
adjacent to the minima on the left (Fig. 3, bottom). Thus,
during the first half cycle of vibration the most danger-
ous perturbations are the DLC and CDD instabilities having
double-diffusive nature (Fig. 7, top frames, t = τ/3). Dur-
ing the second half cycle the DLC and CDD instabilities
begin to decay, and the most dangerous perturbations are
excited via the Rayleigh-Taylor mechanism of the instabil-
ity (Fig. 7, bottom frames, t = τ ). The intermediate frames
shown in Fig. 7 at t = 2τ/3 represent the mixed-mode con-
vection, when all kinds of instabilities are active and coexist
simultaneously in real-time. Technically, it looks like the
oscillations of the spatial location of the convective vortices
near the local maximum density. Consequently, the vibra-
tions help to merge two regions (separated in the static case)
into a single entity with the joint mass transfer.

Thus, the combined effect of the processes of reaction-
diffusion and vibrations of low frequency applied in the
perpendicular direction to the reaction front may result in
the development of the localized cellular convection within
the bulk of almost motionless liquid.

Experimental Observations

Let us discuss the results of experiments obtained under the
condition of the static gravity. The experiments were per-
formed in a vertically oriented Hele-Shaw cell made of two
glass plates (width 2.5 cm × height 9.0 cm) separated by
a thin gap of 0.12 cm. The cell was filled with aqueous
solutions of nitric acid HNO3 (the upper layer) and sodium
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Fig. 7 Temporal evolution of the stream function Ψ (t, x, z) (left) and
total density ρ(t, x, z) (right). The frames from up to down pertain to
times t = τ/3, 2τ/3, τ during one vibrations period τ , respectively.
The domain of integration is 0 < x < 40, −30 < z < 30, but only
part of the full domain is shown: 0 < x < 20, −15 < z < 25. The line
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hydroxide NaOH (the bottom layer) whose concentration
always provided a steady stratified density distribution. Dur-
ing the filling of the cell with the upper solution, the lower
layer was separated by a thin plastic slide inserted in two
narrow (0.3 mm) slots made in the walls (the initial con-
tact line can be seen in Fig. 8). In order to visualize a
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Fig. 8 Velocity field (left) and interferogram (right) obtained at dif-
ferent time moments after the start of the experiment with aqueous
solutions of nitric acid HNO3 above and sodium hydroxide NaOH
below: a - 300 s; b - 1100 s; c - 2250 s. Initial concentrations of acid
and base are the same and equal 1 mol/l

refractive index distribution, we have used Fizeau interfer-
ometry. The distribution of the refractive index is caused by
inhomogeneities induced by the concentration distribution
of species and reaction exothermicity. The latter was found
to be negligible because the deviation due to temperature
was at least one order of magnitude smaller than that caused
by concentration. Silver-coated hollow glass spheres were
added to the liquids to observe the convective patterns which
form during the reaction.

The Fig. 8 demonstrates the evolution of the velocity
(left) and concentration (right) during formation of the cel-
lular convective structure under the static gravity. Right after
the prepared solutions were brought into contact, the transi-
tion zone started to form between them where the reagents
were transported towards the reaction front only via the dif-
fusion mechanism. Then the occurrence of a depleted layer
just above the diffusion zone has given rise to the formation
of plumes clearly visible in Fig. 8a which result in the devel-
opment of weak buoyancy-driven convection in the whole
upper layer (the DLC instability).

One can see that before the cells appear there forms a
depression of the interference fringes above the reaction
front (see Fig. 8a, right). It indicates the occurrence of
inflection on the density profile and therefore the formation
of the “density pocket”. Thus, a few minutes after the begin-
ning of the experiment, the fluid flow in the form of the
periodic array of convective cells (Fig. 8b) has been formed
within the diffusion zone just above the reaction front. The
cells of which have appeared due to the CDD instability
were arranged between two areas of immobile fluid which
definitely indicated the formation of a local “pocket” with
the unstable density stratification. One can note that the
cellular structure did not interact directly with the DLC
convection in the upper layer (Fig. 8b,c).

We have found that the structure can exist for several
hours with the band slowly widening with time that results
in the wavelength growth (Fig. 9). As in the experiment,
the boundaries of the structure obtained numerically slowly
move apart with time (Fig. 5). For example, at t = 3 the pat-
tern wavelength is about 4.2 (in dimensionless units), which
is in good agreement with the experimental data (Fig. 9).

Thus, the experimental observations presented in Figs. 8
and 9 reveal a good agreement with the results of the
numerical simulations for the development of the CDD
convection.

Fig. 9 Time evolution of the wavelength of the CDD pattern in
time obtained experimentally (squares) and numerically within the
theoretical model (solid line)
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Conclusions

We have considered the development of the convective
instability in a two-layer system of miscible liquids placed
in a narrow vertical gap of the Hele-Shaw cell. The upper
and lower layers are formed, respectively, with aqueous
solutions of acid and base with the strong concentration-
dependence of the diffusion coefficients. When the layers
are brought into contact, the frontal neutralization reac-
tion A + B → S starts. Since this system was found to
be sensitive to the inertia, we have studied the influence
of the static and periodic inertial field. The mathemati-
cal model has been developed on the base of a system
of reaction-diffusion-convection equations written within a
Hele-Shaw approximation. The laws of diffusion coeffi-
cients for species have been evaluated on the base of the
data for a specific pair of reagents: the nitric acid HNO3

and sodium hydroxide NaOH. In the static gravity, we have
found that two kinds of instabilities develop in the vicin-
ity of the reaction front: one of them is the diffusive layer
convection occurring traditionally in such problems, and a
new type, the concentration-dependent diffusion instability
that arises when the diffusion coefficients of species depend
on their concentrations. The important feature of the latter
chemo-convective pattern is its localization within the reac-
tion zone and the periodicity of convective cells along the
reaction front. In the case of the periodically varied inertia,
we have found the mixed-mode instability which represents
a combination of the instabilities of double-diffusive nature
(the DLC and CDD instabilities) and the Rayleigh-Taylor
mechanism of the convection. The experimental part of the
study was carried out for the case of the static gravity. Flow
visualization was made using interferometry and adding the
light-scattering particles to the flow. The obtained results
of the numerical simulations was found to be in good
agreement with the experimental observations.
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