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Abstract This work discusses the role of gravity on the
shape of interfacial waves between miscible liquids under
horizontal vibrations. A big difference in the shape of an
interfacial pattern has recently been observed in low-gravity
experiments when compared to earth-based one. The evolu-
tion of an interfacial pattern from zero to normal gravity is
discussed in the context of non-linear simulations in a con-
fined system. The development of vibration-induced frozen
waves with gravity is characterized by three distinct regimes
that are associated with the wave height and the angle at the
vertices of saw-tooth shape of the interface.

Keywords Miscible Liquids · Interfacial Pattern · Frozen
Waves · Vibrations

Introduction

The stability of the system under periodic vibrations per-
pendicular to the direction of gravity has attracted large
research interest in different problems studied under micro-
gravity (Mialdun et al. 2008; Gaponenko and Shevtsova
2008; 2010; Melnikov et al. 2008; Mazzoni et al. 2010;
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Shevtsova et al. 2010; Shevtsova et al. 2015a; Beysens 2014;
Lyubimova et al. 2014; Gandikota et al. 2014a) and normal
gravity conditons (Wolf 1969; Ivanova et al. 2001; Jalikop
and Juel 2009; Lappa 2014; 2015; Shevtsova et al. 2015b).
Liquid-liquid interfaces may become unstable if a shear
stress is applied and a well-known example is the Kelvin-
Helmholtz instability. Horizontal vibration of the flat liquid-
liquid interface produces an instability in the form of frozen
waves caused by a shear-driven mechanism similar to the
Kelvin-Helmholtz instability (Talib et al. 2007; Yoshikawa
and Wesfreid 2011; Gaponenko et al. 2015a). The distinc-
tion is that, as a result of a harmonic change in the flow
direction, the wave remains on average in the same place,
as its profile is frozen in the reference frame of a vibrating
container.

In the present study we are interested in miscible fluids,
when surface tension vanishes. The idea that the miscible
interface should be endowed with a dynamic surface ten-
sion was first raised by Korteweg and continues to develop
(Pojman et al. 2009; Vorobev 2014). However, the surface
tension in miscible liquids is transient and its measurement
is complicated (Pojman et al. 2006; Lacaze et al. 2010).
Recently, it was demonstrated by Gaponenko et al. (2015a)
that the surface tension σ can be determined from the
vibrational experiment by measuring the wavelength at the
threshold of frozen waves. Particularly, the surface tension
between twomixtures of water-isopropanol of different con-
centrations, which are discussed in the present study, was
determined as σ ≈ (5.84 ± 1.05) · 10−6N/m. The advan-
tage of this approach with respect to other techniques is that
the measurements are made shortly after the initial contact
of the miscible liquids. The time delay for the interfacial
instability to emerge is only a few seconds and the transient
interfacial tension at this point is undiminished.

http://crossmark.crossref.org/dialog/?doi=10.1186/10.1007/s12217-016-9499-4-x&domain=pdf
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Instability in miscible systems caused by horizontal
vibrations is noticeably different from immiscible ones
because of its transient nature. One of the features that high-
lights the difference between immiscible and miscible fluids
is the shape of frozen waves. For immiscible fluids, the
shape of frozen waves is sinusoidal (Jalikop and Juel 2009;
Ivanova et al. 2001; Yoshikawa and Wesfreid 2011). The
curvatures of the crests and troughs of the wave are equal at
onset, but as the wave grows, the trough curvature increases
more steeply than the crest (Jalikop and Juel 2009) or vice
versa (Ivanova et al. 2001) depending on the properties of
liquids. The sinusoidal shape of the interface evolves to
resemble a trochoid. This qualitative change in the wave
shape starts when the vibrational forcing exceeds some crit-
ical value of the modified Froude number (Jalikop and Juel
2009).

Modification of the wave shape was observed at a liquid–
vapour interface in the experiments with near–critical
hydrogen subjected to horizontal vibrations (Gandikota
et al. 2014a). These experiments at varying gravity were
conducted using a magnetic levitation device, thus both
gravity and surface tension were reduced when approach-
ing the critical point. The authors reported a sharp triangle
shape far from the critical point and a somewhat rounded
shape closer to the critical point. To describe the triangle
shape of the liquid-vapor interface Gandikota et al. (2014b)
suggested using the phenomenon of dynamic equilibrium.
Following Wolf (1969) and considering the interface from a
mechanical point of view, it was proposed that an initially
horizontal fluid interface attains a dynamic equilibrium at
angle α between the vertical and interface positions

sin α = 2gL

πA2ω2

ρl + ρv

ρl − ρv

, (1)

here L is the greater lateral width in the case of a rect-
angular container, ρ is the density of a liquid (l) or vapor
(v). According to assumptions, this relation is valid for so
strong vibrational forcing when the role of surface tension
is not important. It is worth noting that the angle α depends
on a container length. The authors (Gandikota et al. 2014b)
attempted to apply Eq. (1) not to the entire interface, but
for one side of the triangle and found reasonable agreement
with the experiments for small values of α at a certain level
of microgravity, g = 0.05g0.

Our recent experiments (Gaponenko et al. 2015a;
Shevtsova et al. 2015b) demonstrated that an interfacial
instability may occur between two miscible liquids of
similar (but non-identical) viscosities and densities under
horizontal periodic excitations. In a gravity field, a spa-
tially periodic saw-tooth frozen structure is generated on the
interface under horizontal vibrations somewhat similar to
immiscible liquids. Under the low gravity conditions of a
parabolic flight, the crests widen and the final and long-lived

pattern consists of a series of vertical columns of alternating
liquids (Gaponenko et al. 2015b).

So far, the experimental studies in miscible liquids are
limited by normal or reduced gravity of parabolic flights.
The present numerical simulations are performed in order
to examine the evolution of the interfacial wave shape for
parameter ranges that are out of reach experimentally, i.e.,
when gravity changes within the range from zero up to the
Earth’s gravity.

The present paper is organized as follows. The prob-
lem description and mathematical model for a miscible
multiphase system are presented in Section “Problem
Description”. The relevant experimental results of
recent studies are compared with numerical findings in
Sections “Interfacial Pattern in Normal Gravity” and
“Interfacial Pattern in Microgravity”. The effect of gravity
on the amplitude and shape of the waves is discussed in
Section “Modification of Interfacial Pattern with Gravity”.

Problem Description

We consider two superposed layers of incompressible and
miscible liquids placed in a rectangular container, see geom-
etry in Fig. 1. The denser liquid is placed in the lower
layer, so that the configuration is gravitationally stable. The
lower liquid is less viscous than the upper one, correspond-
ing to the physical properties listed in Table 1. Both layers
have the same thickness H=3.75mm and the length of the
cavity is L=15mm. Our previous calculations in normal
and reduced gravity have shown that the phenomena is
essentially two-dimensional (Gaponenko et al. 2015a). The
liquids are solutions of alcohol (isopropanol or IPA) in water
of different concentrations, 0.90 water (liquid 1) and 0.50
water (liquid 2) in mass fraction, and they are miscible in all
proportions.

Fig. 1 Geometry of problem. The dimensions used in the computer
simulations correspond to the experiments discussed in papers by
(Gaponenko et al. 2015a; 2015b): L=15mm, 2H=7.5mm, W=5mm
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Table 1 The physical properties of the mixtures 90%water-10% IPA
and 50%water-50% IPA (mass fraction) at 25oC: density ρ, kinematic
viscosity ν, diffusion coefficient D and the Schmidt number Sc =
ν/D

C0, water ρ ν D Sc

mass fraction kg/m3 10−6m2/s 10−10m2/s

(1) 0.90 980.1 1.44 7.11 2 030

(2) 0.50 902.4 3.39 1.62 20 930

Let us consider the mass fraction of the heavier liquid,
water, as an independent variable (c̃), then the initial con-
centration of liquid 1 is c̃o

1=0.90 and liquid 2 is c̃o
2=0.50 and

�c̃ = (c̃o
1 − c̃o

2). Furthermore, let us introduce the relative
concentration of water to describe both layers with single
independent concentration C

C = (c̃ − c̃o
2)/�c̃, 0 ≤ C ≤ 1. (2)

Then the initial concentrations of the liquids are: Co = 1 in
the lower layer and Co = 0 in the upper layer. Due to large
concentration gradients at interfaces, density dependence
on concentration cannot be disregarded. The dependence of
the liquid density ρ̃ on the concentration c is defined by a
simple linearized relation valid for almost all liquid/liquid
interfaces due to a small density contrast (i.e. ρ2/ρ1=0.92).

ρ = ρ2
(
1 − βc C

)
, βc = (ρ2 − ρ1)/ρ2 = − 0.087 (3)

The mixture viscosity is a function of concentration with
a maximum at c̃o=0.5. In the region of interest, 0.5 ≤
c̃ ≤ 0.9, the viscosity can be approximated by a linear
dependence.

μ(c) = μ2
(
1−βμ C

)
, βμ = (μ2 − μ1)/μ2 = 0.538 (4)

The origin of a Cartesian coordinate system is at the bot-
tom left corner of the cell, and the X-axis is parallel to the
undeformed fluid interface, and the Z-axis is parallel to the
Earth’s gravity, see Fig. 1. In the coordinate system associ-
ated with the cell, the acceleration applied to the system is
the sum of gravitational and vibrational accelerations:

g + Aω2 cos(ωt) e,

where g is the gravity vector which is the parameter of the
problem but its direction coincides with the the Earth’s grav-
ity, so, g = (1, 0, 0) and e is the unit vector along the axis
of vibrations.

It was mentioned in the Introduction that the surface ten-
sion for this system is two-three orders of magnitude smaller
than that for typical immiscible liquids and we do not take
into account interfacial tension in the mathematical model.
It allows us to consider a one-layer system with a sharp
change in water concentration at Z = H at the initial step.

The system is considered isothermal. The equations of
motion and mass transport are written as

∂tV + (V · ∇)V = − 1

ρ2
∇P +

μ2

ρ2
∇[

(1 − βμ C)∇V
] − βC C

(
g + Aω2 cos(ωt) e

)
,

∂tC + V · ∇ C = D∇2C, (5)

∇ · V = 0.

Here V is the velocity vector. The cell boundaries are rigid
with no–slip condition for velocity and non-permeable for
concentration:

V = 0; ∂C/∂n = 0; (6)

The initial condition for velocity: V = 0.
On the interface between liquids the concentration lin-

early changes within the small zone of the thickness δ =
0.08H :

C = 2(Z − δ)/H, for H/2 − δ < Z < H/2 + δ (7)

C = 1 for 0 < Z ≤ H/2 − δ;
C = 0 for H/2 + δ < Z ≤ 1.

The commercial solver FLUENT v.6.3 was used for
solving governing Eqs. (5)-(7) in two space in dimen-
sional variables. The effect of the grid size and the time
step were carefully tested for convergence by Gaponenko
et al. (2015a). The numerical model is limited to a 2-D
study because the previous simulations of 3-D non-linear
equations have shown that the problem is essentially 2-D.

Interfacial Pattern in Normal Gravity

The frozen wave instability has a threshold which depends
on the frequency and amplitude. The characteristics of the
interfacial pattern and its evolution depends critically on the
frequency and amplitude of imposed vibrations. Here our
focus is on the periodic excitation of high frequencies when
non-zero mean flows are formed. It assumes that the period
of vibration is much smaller than the reference viscous and
diffusion times:

1/f � min(H 2/νi, H 2/D). (8)

The diffusion time is large, thus the smallest viscous time
plays the decisive role, i.e., τ2 = H 2/ν2 = 4.15. It was
recently shown (Shevtsova et al. 2015a) that for such kind
of problems the sign ”�” means at least 15-20 times. Con-
sequently, the range of frequencies above 10Hz will be
considered. Another assumption is that the amplitude is
smaller than the cell size.
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Fig. 2 (Ground based experiment) The temporal evolution of the
interface in the case of high frequency (f = 22.5Hz) and moderate
amplitude (A = 3.7mm) in normal gravity. The cell height in the pic-
tures is cropped off by 0.5H at the top and bottom. The length of the
cell is in scale

Experiment

We will briefly recall the results of the recent ground exper-
iments (Gaponenko et al. 2015a) with the focus on the wave
shape. The typical example of a wave evolution at high
frequencies (f =22.5Hz) and moderate amplitude forcing
(A=3.7mm) is shown in Fig. 2 at different times. The flow
dynamics in the experiments was monitored from the side
by direct shadowgraphy of the interface, and it was adjusted
to see the concentration gradient. Correspondingly, the only
region where concentration changes can be visible is the
region near the contact line between liquids. Here we draw
your attention to the shape of the interfacial wave, which
has a saw-tooth shape. A tiny interfacial tension is respon-
sible for the very large curvature observed at the peaks and
troughs of the triangle waves that develops on the interface.

The shape of the interface is described by the normal
projection of the stress balance between liquids (the normal
vector n directed into liquid 1)

[P1 − P2] − (n S1 n − n S2 n) = σK. (9)

Here S = μ(∂Vi/∂xk + ∂Vk/∂xi) is the viscous stress ten-
sor, K is the curvature, P is the pressure. Considering the
interface as frozen, the viscous terms can be omitted. Then
�P ∼ σK and in the case of miscible liquids the vanish-
ing interfacial tension σ → 0 should be compensated by a
very large curvature, K → ∞, at the crests and troughs. It
results in a sawtooth-like wave shape. It has been noticed
in different experiments that “frozen ” waves are slightly
moving, but these displacements are much smaller than the
amplitude of the waves. These small displacements sug-
gest that for a very large viscosity or/and viscosity ratio the
viscous terms in Eq. (9) cannot be discarded completely.
Correspondingly, it can explain the sinousoidal shape in the

Fig. 3 (Numerical simulations.) The snapshot of the gradient of the
concentration field at t=2.85 s for the parameters similar to those in
Fig. 2, f = 22.5Hz and A = 3.75mm in normal gravity. Only the
central part of the cell is shown in height

experiment with miscible liquids when the viscosities of the
liquids differ by 1000 times (Legendre et al. 2003).

Another point to notice is the temporal evolution of the
spatial amplitude of the waves. The process begins when
capillary waves appear on the free surface, then rearrange,
grow in amplitude and reach the maximal height. The time
from the initiation of the excitation until the saw-tooth inter-
facial pattern attains the peak amplitude is about t=3.0 s and
this image is shown in Fig. 2. In the course of time the
driving force, that is the density difference across the dif-
fusive interface, diminishes and the wave amplitude slowly
decreases as can be seen in Fig. 2 at the time moment
t=7.1 s. Note, that the wavelengths excited in the experi-
ments are comparable to, but smaller than the lateral extent
of the cell, so endwall effects can be important (Shevtsova
et al. 2015b).

Numerical Modeling

The non-linear numerical simulations of Eqs. (5)-(7) are
conducted for the same liquids that were used in ground
(Shevtsova et al. 2015b; Gaponenko et al. 2015a) and micro-
gravity experiments (Gaponenko et al. 2015b). To reproduce
numerically the experimental results the calculations were
performed using a very fine mesh of 800 × 400 points and
time step τ = 2.5·10−5 s. Keeping in mind that in the exper-
iments the monitored signal was the concentration gradient,
for quantitative comparison of the results the same quantity
is displayed in Fig. 3 at the time instant t=2.85 s. The results
of computer simulations nicely reproduce the experimen-
tal observations in Fig. 2 in terms of the existence, shape,
and temporal development of interfacial patterns. Indeed,
the wavelength averaged by three central peaks obtained in
calculations is λnum= 13.9mm while the experimental value
is λexp=13.6±0.7mm. The values of the angle α in the tri-
angle waves (see definition in Fig. 9), averaged over four
peaks, are also in excellent agreement between the experi-
ment and computations α ≈ 35◦. This gives us confidence
in the correctness of the mathematical model and numerical
approach. Visual comparison of wavy structures between
Figs. 2 and 3 can be a bit misleading, because the images in
Fig. 2 do not have axes and notations on them.
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Fig. 4 (Parabolic flight experiment.) The snapshot of the interfacial
pattern in reduced gravity when the frequency is f = 22Hz and ampli-
tude is A = 3.1mm. The two white lines indicate the inclination and
thickness of the interface at t=0. The cell picture is in scale

Interfacial Pattern in Microgravity

One of the first attempts to study the behavior of a misci-
ble liquid in microgravity under vibrations parallel to the
interface was undertaken in 1997 (Duval and Tryggvason
). However, due to technical reasons the local mass trans-
port was enhanced and the interface instability was not
observed. The recent microgravity experiments were con-
ducted using parabolic flights (Gaponenko et al. 2015b).
The parabolic flights provided repeated periods of approx-
imately 20 s of reduced gravity preceded and followed by
20 s of hypergravity (up to 1.8g0), and then normal gravity.
The microgravity level during the parabolas was |gZ/g0| ≤
0.05.

Experiment

The behavior of miscible liquids becomes totally different
when vibrations are applied to the system under reduced
gravity. In microgravity, after the formation of waves on
the interface, they grow without saturating until the inter-
face reaches the upper and lower walls as shown in Fig. 4.
The final enduring flow pattern consists of a series of
vertical columns of alternating liquids, which occupy the
whole height of the cell. The shape and width of differ-
ent columns are non-identical when they reach a maximal
elongation. Primarily, the selection of patterns depends on
vibrationl forcing. However, an additional violation of sym-
metry between the left and right sides of the cell is imposed
by experimental conditions. Due to flight manoeuvers, in
the microgravity experiments the interface is tilted between
5◦–7◦ degrees with respect to the X − Z plane. The initial
position of the interface and its thickness are outlined by
two white lines in Fig. 4. Consequently, the columns on the
left side reach faster the top of the cell while the columns on
the right side reach faster the bottom of the cell. It is impor-
tant to note that at a long time scale all the columns reach
the top and bottom walls of the cell without touching.

Fig. 5 (Numerical results) A time sequence of interfacial patterns in
a vibrating cell at A=5mm, f=20Hz in the absence of gravity, g=0.
The concentration gradient in a two-layered system of miscible liquids
is shown at (a) t=0.7 s; (b) t=1.1 s; (c) t=2.0 s

Numerical Modeling

In this paragraph, we do not pursue the target to reproduce
the experimental pattern because the gravity level is vari-
able during the parabola, it can even change the direction
while remaining in the range |gZ/g0| ≤ 0.05. The com-
puter simulations were performed in zero gravity with focus
on the evolution of the wave shape and its amplitude. A
time sequence of interfacial patterns in a vibrating cell at
A=5mm, f =20Hz is presented in Fig. 5. At the initial stage
of excitations, two harmonic waves moving from different
sides come into contact and a spatially modulated wavy
structure is formed as shown in Fig. 5a at t=0.7 s. The wavy
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pattern is spacially symmetric with respect to the cell cen-
tre, but it is necessary to compare the profile close to the
bottom near the left side with the profile close to the top on
the right side. This is associated with two different temporal
phases of profiles near the endwalls. On the left side of the
figure the waves are passing through a minimum near the
endwall, while in the right figure they are passing through a
maximum. Such kind of symmetry was also observed at ear-
lier times. The viscosity difference introduces an additional
non-symmetry of the pattern with respect to the mid-height,
the columns move slightly faster to the bottom (less viscous)
part.

The numerical patterns perfectly support the experimen-
tal observations that all the columns reach the cell walls
without touching. Importantly, the background wavelength
of the pattern (associated with the number of the columns)
is predefined at the initial stage and, as can be seen in
Fig. 5a, the wavelength is uniform at that time. A finer
adjustment of the pattern with changes in the flow at a
later time develops defects. In the cases where the spac-
ing would not sustain two new columns, one column grows
into a rectangular shape while the other has a defect in
the shape; the dynamics of the defect can be traced in the
succession of snapshots in Fig. 5. As a result, the third col-
umn from the left has a triangular rather than a rectangular
profile.

The defect of the interfacial pattern is also seen in the
experimental image in Fig. 4 where the initial inclination of
the interface only aggravates the situation.

Modification of Interfacial Pattern with Gravity

Transient wave formation between miscible liquids prevents
a wave shape from being easily quantified. To highlight
the role of gravity the experimental images in Fig. 2b and
Fig. 4 are shown at the same time instant for two extreme
cases: g=0 and g = g0. These interfacial patterns provide
evidence that depending on the gravity level, at least two
distinct regimes of instability can be identified: (a) when the
wave amplitude reaches saturation and (b) when the wave
grows without saturation approaching the cell walls. Yet is
still interesting to examine by which law the gravity affects
the amplitude and the shape of the waves between these two
extremes.

Wave Amplitude

Close examination reveals that depending on the gravity
level three regimes of wave formation can be identified
based on the type of the long-lived interfacial pattern. The
first regime is observed at relatively high gravity levels,
g ≥ 0.4g0. Fig. 6 presents a sequence of interfacial patterns

Fig. 6 The time sequence of interfacial patterns in a vibrating cell
at A=5mm, f =20Hz at a slightly reduced gravity, g=0.75 g0. The
concentration gradient in a two-layered system of miscible liquids is
shown at (a) t=0.7 s; (b) t=1.1 s; (c) t=2.0 s. Only the central part of
the cell is shown

for the same vibrational forcing as in Fig. 5 but at a mod-
erately reduced gravity, g = 0.75 g0. At the initial stage of
excitations, instability develops at the diffuse interface in
the form of triangle waves with a spatially modulated ampli-
tude. Comparing Fig. 5a and Fig. 6a at early times, e.g.,
t=0.7 s, we still find the common features between the pat-
terns in zero and reduced (g = 0.75g0) gravity: the waves
with the largest amplitude occur near the walls and the
amplitude diminishes towards the center. Furthermore, the
number of peaks in both cases is somewhat similar. How-
ever, this obscure similarity is observed only at a strong
excitation, i.e., when vibrational velocity exceeds the crit-
ical value Vos = Aω > V cr

os . For weaker excitations the
gravity damps the instability (Gaponenko et al. 2015b). Par-
ticularly in this study we consider the set of parameters
corresponding to Vos=0.63m/s.

Later in time, in the snapshot at t=1.1 s in Fig. 6b, the
wavy pattern reveals another structure, when the amplitude
of the central peak is the largest. This kind of pattern is sim-
ilar to that observed in normal gravity (Fig. 2). In line with
the experimental findings, at the later stage of excitation
the amplitude of all the peaks in Fig. 6c slightly decreases.
Thus, the signature of the first regime is that the height
of waves varies smoothly as low-high-low and the central
peaks have the largest amplitude.

The second regime is associated with non-regular varia-
tion of the wave height over the interface and is observed at
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Fig. 7 The snapshot of the interfacial pattern typical for the 2nd
regime; here g/g0 = 0.25, f = 20Hz, A = 5.0mm and t=1.7 s

a lower gravity level, e.g., at 0.15 < g/g0 < 0.4. Specifi-
cally, the amplitude of the central peak remains smaller than
that of the neighbor peaks, while the overall spacial ampli-
tude of the pattern starts to decrease as can be seen in Fig. 7.
The third regime of wave dynamics occurs at low gravity
0 < g/g0 < 0.15, and is characterized by rapidly grow-
ing waves when all the peaks have the same height in the
final stage. Moreover, the waves height gets close to the cell
height.

The temporal evolution of the wave height a measured
as a crest-to-trough length at different gravity levels is
shown in Fig. 8. Curves 1-6 correspond to g/g0=0, 0.1,
0.25, 0.5, 0.75, 1. At given time the height a was defined
as the maximal value among the peaks on the interface.
Fig. 8 reveals additional distinct features typical for the first
regime (curves 4, 5 and 6): (a) the wave height a does not
exceed the height of one layer, a < H ; (b) the wave ampli-
tude has a pronounced maximum forming at t ≈ 1.1-1.3 s;
(c) the wave amplitude relaxes to its final saturated state
which depends on the gravity level. In the second regime
(curve 3), which occurs at 0.2 < g/g0 < 0.4, the maxi-
mum of the time-dependent wave amplitude, even when it

Fig. 8 The time-dependence of the wave height (the crest-to-trough
length) at different levels of gravity when the cell is horizontally
vibrating at A=5mm, f =20Hz. The curves 1-10 correspond to
g/g0=0, 0.1, 0.25, 0.5, 0.75, 1

Fig. 9 Maximal height of the interfacial waves as a function of the
gravity level for the same parameters as in Fig. 8. The three regimes
of the wave amplitude dynamics can be outlined: (I) 0.4 < g/g0 < 1,
almost linear growth of the amplitude; (II) 0.15 < g/g0 < 0.4, strong
growth; (III) 0.0 < g/g0 < 0.15, waves with the height approaching
the cell size

exists, is featureless. The third regime (curves 1 and 2) can
be characterized by a continuous growth of the wave height
until reaching asymptotic value.

Figure 9 summarizes the above-mentioned waves behav-
ior in different regimes displaying the maximum of the
wave height as a function of gravity. Here the distinction
between regimes is determined based on a qualitative anal-
ysis of waves in terms of the wave height variation with
gravity. This figure examines observations from a differ-
ent perspective and provides additional interpretation of the
results in Fig. 8. Although the separation of wave dynamics
in three regimes has been made not without some ambi-
guity, it highlights the role of gravity. In the first regime
the amplitude of the waves grows almost linearly when the
gravity reduces from the Earth’s value down to g ∼ 0.4g0.
With further decreasing of gravity (the second regime) the
growth rate of the wave height essentially accelerates. The
third regime includes a rather narrow range of gravity levels,
g < 0.15g0, and is associated with wave growth practi-
cally without saturation up to the walls of the cell without
touching them.

Changes of the Angle of Interfacial Waves with Gravity

The interfacial waves in miscible liquids have a triangle
shape at the onset of the frozen wave instability, and they
remain triangle above the threshold for g > 0.15g0, this is
confirmed experimentally and numerically. To describe the
shape of the wave, we have introduced the angle α between
the vertical upward position and interface position under
vibrations (inclined position) as shown in Fig. 10b. For the
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Fig. 10 Gravity dependence of the shape of the interfacial pattern, i.e.,
shape of triangle, when frozen wave instability is caused by vibrationl
forcing with A=5mm, f=20Hz. The lower panel presents the defi-
nition of the clockwise angle. The filled rhombi show results for the
aspect ratio � = L/2H = 2 and the open squares correspond to the
aspect ratio � = 4

cases, shown in Fig. 3 and Fig. 6c, the angle was determined
at the time instant when the amplitude attained the maximal
value. Although we took the average value over 3-4 central
peaks, the scattering was very small. For the set of param-
eters where the defect of the pattern as in Fig. 5 occurs,
the angle was evaluated not without some ambiguity. In this
case the angle was averaged by all the peaks.

Dependence of the wave angle on gravity in Fig. 10a dis-
plays almost linear behavior but with two distinct slopes:
(1) in the wide range of the gravity levels covering I and II
regimes in Fig. 9, i.e. 0.15 < g/g0 ≤ 1.0, the slope is about
d sin(α)/dg=0.48; (2) the sharp decrease of the angle down
to zero in low gravity, i.e. 0.0 < g/g0 < 0.15. On the one
hand, these results support linear dependence of sin(α) on
gravity which was suggested in Eq. (1); on the other hand,
the linear dependence holds only locally.

We have also studied the influence of the length of the
cavity L on the angle of a saw-tooth wave. Our results did
not reveal any apparent difference in sin(α) with increasing
the cell length by two times; the open squares in Fig. 10a
show results obtained at the aspect ratio � = L/2H = 4 and

they display only a minor difference from those at � = 2.
So, the linear dependence of sin(α) on the cavity length
suggested by Eq. (1) is not confirmed for ordinary miscible
liquids.

Conclusions

We have presented a numerical study of the nonlinear
evolution of waves at the interface between two miscible
liquids subjected to horizontal oscillations at different grav-
ity levels. A detailed comparison between simulations and
recent experimental observations in normal and low gravity
showed an excellent agreement.

The obtained results delineate parameter space where
gravity affects differently interfacial instability. Based on
qualitative observation of a large number of snapshot
sequences and an extensive quantitative analysis, three dis-
tinctive regimes of instability were identified depending on
the gravity level.

The first regime (0.4 < g/g0 < 1.0) is associated with
the typical frozen wave instability similar to that observed
at normal gravity. While gravity decreases from the normal
level down to g = 0.4 g0 only quantitative changes of the
pattern occur: the increase of the height of the waves and the
decrease of the angle in triangle waves.

The second regime (0.15 < g/g0 ≤ 0.4) is characterized
by a rapid increase in the wave height, but the amplitude
sequence in the pattern typical for frozen waves ”low-high-
low” is disrupted before it reaches saturation.

In the third regime (0.0 < g/g0 < 0.15) waves grow
without saturation until they approach the walls and the final
enduring flow pattern consists of a series of vertical columns
of alternating liquids.

Our study has shown that the angle of the waves
decreases linearly with gravity, but the slope abruptly
changes on the boundary between the 2nd and 3rd regimes.
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