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Abstract A hybrid two-phase model, incorporating lattice
Boltzmann method (LBM) and finite difference method
(FDM), was developed to investigate the coalescence of
two drops during their thermocapillary migration. The lat-
tice Boltzmann method with a multi-relaxation-time (MRT)
collision model was applied to solve the flow field for
incompressible binary fluids, and the method was imple-
mented in an axisymmetric form. The deformation of the
drop interface was captured with the phase-field theory, and
the continuum surface force model (CSF) was adopted to
introduce the surface tension, which depends on the tem-
perature. Both phase-field equation and the energy equation
were solved with the finite difference method. The effects
of Marangoni number and Capillary numbers on the drop’s
motion and coalescence were investigated.
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Introduction

A drop or bubble, suspending in an immiscible non-
isothermal fluid under microgravity, moves toward the hot-
ter region owing to the thermocapillary migration. Thermo-
capillary migration occurs since the surface tension of the
interface is a function of temperature, and thermocapillary
migration of drop is of interest in materials processing under
microgravity (Uhlmann 1982; Ostrach 1982). The thermo-
capillary motion of an isolated drop in a bulk fluid with an
imposed thermal gradient was investigated firstly by Young
et al. (1959), and they proposed the YGB model, in which
the convective transport in both momentum and energy
equations was ignored. Subsequently, the thermocapillary
migration of drop motion was studied extensively by a num-
ber of theoretical analyses (Lee and Keh 2013; Subramanian
1981; Balasubramaniam and Subramanian 1996), numerical
simulations (Treuner et al. 1996; Yin et al. 2008; Zhao et al.
2010; Ma and Bothe 2011; Yin et al. 2012) and experimen-
tal investigations (Hadland et al. 1999; Kang et al. 2008; Hu
et al. 2009).

In a quasi-static limit, the thermocapillary migration of
two drops along their center line was analyzed by Meyyap-
pan et al. (1983). They revealed that the smaller drop moved
faster in the presence of a larger drop than in its absence.
Thereafter, Meyyappan and Subramanian (1984) calculated
the thermocapillary migration of two drops at arbitrary
angle to the applied temperature gradient by using a zeroth-
order reflection approximation, and they demonstrated that
the equal-sized drops moved with the same velocity of an
isolated single drop. Later on, Anderson (1985) developed
the reflection method to the first order to simulate two arbi-
trarily oriented droplets. Sun and Hu (2003) investigated the
drops interaction by using the successive reflections method
and they presented three typical kinds of drop’s trajectories.
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Using boundary-integral technique, Zhou and Davis (1996)
simulated the thermocapillary interaction of two deformable
drops, they revealed that the interaction between two drops
resulted in a stronger effect on the smaller drop in terms
of both drop’s motion and deformation. Then, Berejnov
et al. (2001) developed the boundary-integral method to
study the influence of the deformations on the relative
motion of equal-sized drops. Based on the front tracking
method, Nas and Tryggvason (2003) simulated the interac-
tion of drops at moderate Reynolds and Marangoni num-
bers, they exhibited that the drops lined up perpendicular to
the temperature gradient and were evenly spaced in the hor-
izontal direction. A comprehensive numerical studies on the
interaction of two drops under the axisymmetric assumption
were conducted by Yin and Li (2015) with the front track-
ing technique, they revealed the effect of the ratio of the two
drop radii, their initial distance apart, etc. on the interaction
of two non-merging drops.

Although the thermocapillary migration and interaction
of two drops has been investigated numerically in litera-
ture. There is little numerical simulation on the process of
drop’s coalescence and the effects, i.e., Marangoni number
and Capillary numbers, on the drop’s motion and coales-
cence have not been numerical investigated. In this study,
we concentrate on the thermocapillary-driven motion and
coalescence of two drops along their center line, which
is perpendicular to temperature gradient. The effects of
Marangoni number (Ma) and Capillary number (Ca) on
the drop’s coalescence were investigated. Thus, an axisym-
metric hybrid two-phase model was developed. The flow
field was simulated by LBM with the multi-relaxation-time
(MRT) collision process. In the meantime, the phase-field
equation and energy equation were solved by FDM.

Mathematical Model and Numerical Method

In this section, the three basic parts of our hybrid thermal
two-phase model for axisymmetric thermocapillary-driven
drop motion are introduced as below.

Axisymmetric MRT LBM for Fluids

In practice, two different axisymmetric lattice Boltzmann
methods have been developed. The first axisymmetric LBM
model, incorporating the spatial and velocity dependent
source terms into the evolution equation to recover Navier-
Stokes equations in cylindrical coordinate, was proposed by
Halliday et al. (2001). Thereafter, several modified axisym-
metric LBM models (Lee et al. 2006; Peng et al. 2003; Reis
and Phillips 2007, 2008) were developed and applied to sim-
ulate axisymmetric isothermal multiphase flow (Premnath
and Abraham 2005; Mukherjee and Abraham 2007). The

theoretical differences for these LBM axisymmetric models
were discussed by Huang and Lu (2009) and numerical sim-
ulations were also carried out to investigate the accuracy of
these models. From the continuous Boltzmann equation in
cylindrical coordinates, Guo et al. (2009) proposed another
axisymmetric kinetic LBM model, in which the source
terms contains no gradient parts. Li et al. (2010) presented
an improved LBM model with a simplified source term to
eliminate velocity gradient for incompressible axisymmet-
ric flows.

A LBMmodel includes three ingredients. The first ingre-
dient is a discrete phase space defined by a regular lat-
tice together with a set of symmetric discrete velocities
(D2Q9 model)

eα =

⎧
⎪⎨

⎪⎩

(0, 0) , α = 0

(cos [(α − 1) π/2] , sin [(α − 1) π/2]) c, α = 1 − 4

(cos [(2α − 9) π/4] , sin [(2α − 9) π/4])
√
2c, α = 5 − 8,

(1)

where c = δx/δt is the lattice velocity. The second ingredi-
ent is the evolution equation:

fα(x+ eαδt , t + δt )−fα(x, t) = −1

τ
[fα(x, t)−f eq

α (x, t)],
(2)

where x is x = (r, z), and τ is the single relaxation time and
relate to the kinematic viscosity ν.

The third ingredient is an equilibrium distribution func-
tion

{
f

eq
α |α = 0, 1, ..., N

}
, and the equilibrium distribu-

tion function f
eq
α is adopted as (He et al. 1999; He and Luo

1997)

f eq
α = ωα

[

p + ρc2s

(
eα · u

c2s
+ (eα · u)2

2c4s
− u2

2c2s

)]

(3)

where c2s = c
/
3 , and the weight coef?cients are

ωα =
⎧
⎨

⎩

4
/
9 , α = 0

1
/
9 , α = 1, 2, 3, 4

1
/
36 , α = 5, 6, 7, 8

(4)

Next, the external force terms are added directly in the right
hand side of the evolution (2) as

fα(x + eαδt , t + δt ) − fα(x, t) = − 1

τ
[fα(x, t) − f eq

α (x, t)] +
(

1 − 1

τ

){
(eα − u) ·

[
∇ρc2s (	α − 	α (0)) + (

Fs + F1,axis

)
	α

]

−ωαF0,axis

}
(5)

where F0,axis is a source term to account for the axisymmet-
ric effect in the continuity equation, and F1,axis is the parts



Microgravity Sci. Technol. (2016) 28:67–77 69

to mimic the axisymmetric contribution for the momentum
equation:
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	α is defined as

	α = ωα

(

1 + eα · u
c2s

+ (eα · u)2

2c4s
− u2

2c2s

)

(7)

The collision step in the right hand side of the (2) is imple-
mented in velocity space, because of the drawback of the
instability at low viscosity values in the single relaxation
time LBM model, a MRT collision model, improving the
numerical stability, was proposed by d’Humieres (1992).
Lallemand and Luo (2000) further developed this model.
The collision step in the MRT model is implemented in the
moment space

� = −M−1S[m(x, t) − meq(x, t)], (8)

where m (x, t) and meq (x, t) are moments and their corre-
sponding equilibriums. The external force is implemented in
the moment space as Guo and Zheng (2008). S is a diagonal
matrix

S = diag (s0, s1, s2, s3, s4, s5, s6, s7, s8) , (9)

whose components represent the inverse of the relaxation
time for the transformed distribution functionm relaxing to
the equilibrium distribution function meq in moment space.
Furthermore, the parameters s7 and s8 are related to the col-
lision frequency τ as s7 = s8 = 1 /τ with τ = ν

/
c2s + 0.5 .

The other relaxation parameters are chosen as Lallemand
and Luo (2003): s0 = s3 = s5 = 1.0, s1 = 1.64 and
s2 = s4 = s6 = 1.2.

The transformation between the velocity space and
moment space is achieved by using the matrix M, which
serves as a transformation matrix and maps the distribution
functions f (x, t) to their moments as

m = Mf
f = M-1m.

(10)

The transformation matrix M is constructed via the Gram-
Schmidt orthogonalization procedure from some polynomi-
als of the discrete velocity components. The equilibrium
moments are obtained frommeq = Mfeq .

The flow field, including the velocity field u and the
pressure field p, is obtained from the moments of the
distribution function as

u = 1

ρ

(
1

c2s

∑

α

eαfα + 1

2
Fs + 1

2
Faxis

)

,

p =
∑

α

fα + δt

2

(
u · ∇ρc2s

)
. (11)

Phase-field Theory

The idea of the phase-field theory is taken the sharp inter-
face as a diffusive one, and therefore, the interface move-
ment and its deformation are simulated in a fixed Eulerian
grid (Celani et al. 2009; Zu and He 2013; Yue et al. 2004).
In the phase-field method, an order parameter ϕ is adopted
to distinguish the different phases: ϕ = 1 represents the
phase one and ϕ = −1 for the other. A free-energy function
(Penrose and Fife 1990) of the system is defined as

Ξ (ϕ) =
∫




[
Ψ (ϕ) + ε2 |∇ϕ|2 /

2
]
d
, (12)

where 
 is the region of space occupied by the system. The
term Ψ (ϕ) is the bulk energy density and takes the form
(Liu et al. 2013) as

Ψ (ϕ) = 1

4

(
ϕ2 − 1

)2
. (13)

The second term ε2 |∇ϕ|2 /
2 relates to the surface energy.

The chemical potential μϕ is calculated by taking the vari-
ation of the free-energy function with respect to the order
parameter (Liu et al. 2013; Jacqmin 2000) as

μϕ = δΞ

δϕ
= ∂Ψ

∂ϕ
− ε2∇2ϕ = ϕ3 − ϕ − ε2∇2ϕ , (14)

where the Laplacian of ϕ in cylindrical coordinates is

∇2ϕ = ∂2ϕ

∂r2
+ 1

r

∂ϕ

∂r
+ ∂2ϕ

∂z2
. (15)

The evolution of interface and order parameter ϕ is
described by the Cahn-Hilliard (Cahn and Hilliard 1958)
equation

∂ϕ

∂t
+u·∇ϕ = ∇M ·∇μϕ+M

(
∂2μϕ

∂r2
+ 1

r

∂μϕ

∂r
+ ∂2μϕ

∂z2

)

,

(16)

where M is a diffusion parameter named as mobility, and
the equation is described in cylindrical coordinates.

In addition, when the equations are solved numerically
on the fixed Eulerian grid, the fluid properties on this grid
are required. In terms of two-phase flow, each phase is
assumed as an incompressible flow, and the fluid properties
are taken as constant in each phase. The reconstruction of
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the fluid properties b (ϕ, t) at time t in the whole two layers
system is achieved through the order parameter

b (ϕ, t) = b2 + ϕ − ϕ2

ϕ1 − ϕ2
(b1 − b2) (17)

where b (ϕ, t) represents the fluid density ρ, thermal con-
ductivity κ , kinematic viscosity ν and heat capacity cp.
ϕ1 = 1 represents the fluid one and ϕ2 = −1 for fluid two.

Surface Tension

The surface tension is a result of the unbalanced force
exerted to the molecules near the interface of the two phases.
The continuum surface force model (CSF), which is widely
applied in two-phase flows (Brackbill et al. 1992; Zhou and
Huang 2010; Liang et al. 2011; Zhou and Huai 2014), is
adopted in this work, and the surface tension is reformulated
as a volume force in the momentum equation which only
acts in the vicinity of the interface. The expression of the
unbalanced surface tension Fs is

Fs = (−σκn + ∇sσ ) δs, (18)

where the first term is the normal surface tension and the
second term expresses the tangential force, which appears
because surface tension depends on temperature. ∇s =
(I − nn) · ∇ is the surface gradient operator and δs is the
Dirac function (Liu et al. 2013). The interface normal vector
n and curvature k are calculated from the order parameter ϕ

n = ∇ϕ

|∇ϕ| , k = ∇ · n. (19)

The second term in (18) is rewritten as

∇sσ = (I − nn) · ∇σ = ∇σ − ∇ϕ

|∇ϕ|2 (∇σ · ∇ϕ) (20)

The surface tension σ is taken as

σ (T ) = σ0 + σT (T − T0) , (21)

where σ0 is the surface tension coefficient at a reference
temperature T0, and σT is a negative constant for most
fluids.

Temperature Equation

The governing equation of the temperature field in cylindri-
cal coordinate system is formulated as

ρcp

(
∂T

∂t
+ u · ∇T

)

= ∇κ ·∇T +κ

(
∂2T

∂r2
+ 1

r

∂T

∂r
+ ∂2T

∂z2

)

, (22)

where κ and cp are coefficients of heat conduction and heat
capacity, respectively.

In this hybrid model, the equations (16) and (22) are dis-
cretized on the same grid as the evolution (2) by FDM and

they are updated at the same time. The two equations is
rewritten in a general form as

∂θ

∂t
= R (θ) = −u ·∇θ + 1

ϑ

[

∇ξ · ∇θ + ξ

(
∂2θ

∂r2
+ 1

r

∂θ

∂r
+ ∂2θ

∂z2

)]

(23)

where θ represents both the order parameter ϕ and temper-
ature T , ϑ equals to ρcp in the temperature equation, and
ξ represents the diffusion parameter. In (23), all the spatial
derivative terms are in the right hand side, and the time-
derivative term is in the left side, an explicit fourth-order
Runge–Kutta scheme is employed as below:

θ1 = δtR (tn, θn)

θ2 = δtR

(
tn + 1

2δt , θ
n + 1

2θ1

)

θ3 = δtR

(
tn + 1

2δt , θ
n + 1

2θ2

)

θ4 = δtR (tn + δt , θ
n + θ3)

θn+1 = θn + 1
6 (θ1 + 2θ2 + 2θ3 + θ4) .

(24)

Both the fourth-order and second-order Runge-Kutta
schemes are tested, although the two schemes agree well for
the monitored quantities (i.e. drop velocity and temperature
field), and the second-order scheme takes about 5 % less
CPU time than the fourth-order scheme, the fourth-order
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Fig. 1 The schematic for thermocapillary migration of two drops in
a uniform temperature gradient and the axisymmetric computational
domain
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Fig. 2 The velocity vector and
temperature contours for
thermocapillary migration of the
single drop, Ma=Re=0.1, and
Ca=0.08. a In the inertial
laboratory reference frame; b In
the reference frame moving with
the drop
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Fig. 3 The evolution of normalized migration velocities with time,
and comparison with YGB theory

Runge-Kutta scheme is finally adopted. In addition, the
hybrid framework allows a flexible choice on the discretiza-
tion scheme of the phase-field and temperature equations,
for instance, a time-split scheme with a novel semi-implicit

discretization, proposed by Badalassi et al. (2003), is also
an effective scheme for the phase field equation.

Boundary Conditions

For the D2Q9 LBM model, there are two boundary
conditions as illustrated in Fig. 1, the top, bottom and
right boundaries are solid walls and the left boundary
is the axisymmetric line. The symmetric boundary is
taken the radial velocity component and the gradients
of any macroscopic variables normal to the boundary as
zero

n · u|axis = 0
n · ∇φ|axis = 0

(25)

where φ represents ϕ, μϕ and temperature T . Specular
reflection boundary condition is employed for the distribu-
tion functions, of which f1 = f3, f5 = f6 and f8 = f7 are
executed after the collision step. The singularity at r = 0
is treated following the L’Hôpital’s rule (Reis and Phillips
2007; Premnath and Abraham 2005).

Fig. 4 Snapshots of two drops at different time, exhibiting the drops coalescence process with differentMa number
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Fig. 5 Drop’s trajectory with different Ma number

Numerical Results

In this section, firstly, the thermocapillary migration of
single drop is simulated to validate the developed model.
Subsequently, two drops motion is simulated and the effects
of Ma number and Ca number on drop’s coalescence are
investigated.

For the thermocapillary-driven drop motion, the impor-
tant dimensionless parameters are defined as:

Re = RVr

ν2
, Ma = ρ2cp2RVr

κ2
, Ca = ρ2ν2Vr

σ0
(26)

where R is the drop radius, and the subscript 2 represents
the continuous phase. Vr is the reference velocity de?ned by
the balance of thermocapillary force and viscosity force on
the drop

Vr = −σT R |∇T |
ρ2ν2

(27)

where |∇T | is temperature gradient imposed on the con-
tinuous phase. Furthermore, the so called YGB velocity
Young et al. (1959), the velocity of a spherical drop when
neglecting the convection is

VYGB = 2Vr
(
2 + 3ρ1ν1

/
ρ2ν2

) (
2 + κ1

/
κ2

) . (28)

The geometrical model with only a single drop is similar as
in Fig. 1. The fluid is initially at rest and the temperature
linearly increases from the cold bottom wall toward the hot
top wall, with Tcold = 0 and Thot = |∇T | Nz (Nz is the

Fig. 6 Snapshots of two drops at different time, exhibiting the drops coalescence process with with different Ca number



74 Microgravity Sci. Technol. (2016) 28:67–77

grids in z direction). In this paper, the results are presented
in lattice units.

Migration of Single Drop

To validate the numerical method, the rise of a single drop
owing to thermocapillary force was simulated. The dimen-
sionless parameters are chosen as Re = 0.1, Ma = 0.1,
Ca = 0.08. The material properties of the drop are equal to
the continuous fluid. In the simulation, the centroid velocity
V of the drop in z direction is calculated by

V =
∫

ϕ>0 rv (r, z) drdz
∫

ϕ>0 rdrdz
=

∑
i,j |ϕi,j >0 ri,j vi,j

∑
i,j |ϕi,j >0 ri,j

. (29)

Initially, the drop center is located at (r, z) = (0, 0.5Nz),
then, the drop is driven by the thermocapillary force towards
the hot side along the symmetric z-axis. The simulated
velocity vector and temperature contours are exhibited in
Fig. 2a, b, in which (a) is those in the laboratory reference
frame and (b) is those in the local reference frame attached
to the center of the drop. Quantitatively, the simulated veloc-
ity of the drop with three different meshes (i.e. 5R × 10R,
8R × 16R, 10R × 20R, with drop radius R = 20 lattice
units) versus time are shown in Fig. 3. The velocities are
scaled by the YGB velocity as V ∗ = V/VYGB , and time is
dimensionalized as t∗ = Vr t/R. The consistent results are
observed between the YGB analytical velocity and the sim-
ulated drop velocity with grids 8R × 16R and 10R × 20R,
and there is only negligible effect of the walls on the results
when distance of the drop to the walls increases from the
grid 8R × 16R to 10R × 20R. By comparing the simulated
result with the corresponding YGB velocity, we found that
the accuracy is acceptable when drop size is larger than 16
lattice units.

Effect ofMa Number

In this section, the effects ofMa number on the coalescence
of two drops (RT = 50, RL = 20 lattice units) are inves-
tigated. The physical properties of the drops are assumed to
be equal to the continuous fluid. The computational domain
is 8RT × 40RTlattice units. The different Marangoni num-
bers (Ma = 0.5, 50, 250) are achieved by adjusting κ1 and
κ2 while keeping κ1 = κ2. The other governing parameters
are: Re = 2.5 and Ca = 0.01. The initial distance between
the two drops is taken as RL. The dimensionless parame-
ters are computed according to the parameters of the trailing
drop.

Figure 4 shows the transient snapshots for the chasing
process of two drops, and finally their coalescence process
with Ma = 0.5, 50 and 250. The results reveal that the
drop’s coalescence becomes difficult with increasing Ma
number. The trailing drop catches up the leading drop and
start to coalesce at time t∗ = 10.3 for Ma = 0.5, and

Ca=0.25

Ca=0.01

Fig. 7 Drop’s profile with Ca=0.01 and 0.25
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at time t∗ = 16.3 for Ma = 50, but no coalescence pro-
cess is observed for Ma = 250. This phenomenon can be
attributed to the heat transfer around the drops with different
Ma number as in Fig. 4. When Ma is small, the isotherms
around the drops are almost straight. With the increase of
Ma number, the convective transport is enhanced and the
isotherms around the drops arch to the hotter region, which
resulting the temperature gradient along the drop surface is
decreased. The comparison of drops trajectory with differ-
ent Ma number are plotted in Fig. 5 for clearly observing
the process of drops motion and coalescence. It is noted
from this figure that the start time of drop’s coalescence is
influenced by the Ma number apparently.

Effect of Ca number

The Capillary number represents the ratio of viscous force
to normal surface tension, and it plays an important role in
governing the deformation and drop’s coalescence. The dif-
ferent Ca numbers (Ca = 0.01, 0.05, 0.25) are achieved
by adjusting σ0, the Reynolds and Marangoni numbers are
Re = 2.5 and Ma = 2.5 respectively, and the other param-
eters are kept as same as the above case. Figure 6 shows
the transient snapshots for the drop’s coalescence. The initi-
ation time of coalescence is t∗ = 10.7 for Ca = 0.01, and
t∗ = 12.4 for Ca = 0.05. In addition, the coalescence pro-
cess takes about 1.5 lattice time for Ca = 0.01, and about
2.8 lattice time for Ca = 0.05. In the case of Ca = 0.25,
the deformation of the leading drop is noticeable, and the
drop coalescence is not observed. Figure 7 reveals that the
deformation of leading drop depends on obviously on the
Ca number, but the effect of the Ca number on the trail-
ing larger drop deformation is relatively weak. A smaller
Ca number indicates higher magnitude of surface tension

Fig. 8 Drop’s trajectory with Ca=0.01 and 0.05

predominate viscous force and vice-versa, and the surface
tension tends to keep the drop in circle. The comparison of
drops trajectory with Ca = 0.01 and 0.05 is demonstrated
in Fig. 8, and the figure also presented that the start time of
drop’s coalescence is influenced by the Ca number.

Conclusions

A hybrid LBM has been developed to simulate axisymmet-
ric thermocapillary flow, the phase-field theory was applied
to capture the drop’s deformation and especially the coales-
cence process, and the continuum surface force model was
adopted to introduce the unbalanced surface tension. The
thermocapillary motion and coalescence of two drops have
been investigated numerically. The temporal snapshots of
drop’s motion and coalescence reveal that the drops tend to
coalesce faster and easier with a smallMa. The drop coales-
cence is not observed for the Ma. The results also indicate
that the start time of coalescence is influenced by Ca num-
ber, and no drop coalescence was observed with large Ca

number.

Nomenclature

fα density distribution function
f eq equilibrium distribution function
mα moment
meq equilibrium moment
eα discrete particle speeds
M transformation matrix
F external forces
sα relaxation rates
cp heat capacity
u velocities
p pressure
T temperature
n interface normal
k interface curvature
V velocity of the drop
d separation distance between the two drops
RT radius of the trailing drop
RL radius of the leading drop
Re Reynolds number
Ma Marangoni number
Ca Capillary number
Greeks
σ surface tension
ϕ order parameter
κ thermal conductivity
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ν kinematic viscosity
ρ density
Subscripts/ Superscripts
α discrete speed directions (α =0,. . . ,8)
eq equilibrium
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