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Abstract Due to spaceflight, astronauts experience serious,
weightlessness-induced bone loss because of an unbalanced
process of bone remodeling that involves bone marrow mes-
enchymal stem cells (BMSCs), as well as osteoblasts, osteo-
cytes, and osteoclasts. The effects of microgravity on osteo-
cells have been extensively studied, but it is only recently
that consideration has been given to the role of BMSCs. Pre-
vious researches indicated that human BMSCs cultured in
simulated microgravity (sim-g) alter their proliferation and
differentiation. The spaceflight opportunities for biomedical
experiments are rare and suffer from a number of opera-
tive constraints that could bias the validity of the experiment
itself, but remain a unique opportunity to confirm and
explain the effects due to microgravity, that are only par-
tially activated/detectable in simulated conditions. For this
reason, we carefully prepared the SCD — STEM CELLS
DIFFERENTIATION experiment, selected by the European
Space Agency (ESA) and now on the International Space
Station (ISS). Here we present the preparatory studies per-
formed on ground to adapt the project to the spaceflight
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constraints in terms of culture conditions, fixation and stor-
age of human BMSCs in space aiming at satisfying the
biological requirements mandatory to retrieve suitable sam-
ples for post-flight analyses. We expect to understand better
the molecular mechanisms governing human BMSC growth
and differentiation hoping to outline new countermeasures
against astronaut bone loss.
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Abbreviations

AT-MSCs Adipose Tissue derived Mesenchymal Stem
Cells

BMSCs Bone Marrow Mesenchymal Stem Cells

CcC Culture Chamber

EU Experimental Unit

ESA European Space Agency

EH Experiment Hardware

FM Flight Model

GM Ground Model

ISS International Space Station

MSCs Mesenchymal Stem Cells

ng Microgravity

OM Osteogenic Medium

RPM Random Positioning Machine

sim-|g Simulated microgravity

SCs Stem Cells

SM Standard Medium

Vit D3 1,25-dihydroxy vitamin D3
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Introduction

The goal of sending people farther in space, extend-
ing the duration of missions from months to years,
requires space medicine to face new challenges. Long-
term exposure to microgravity (g) produces in astro-
nauts a number of physio-pathological alterations lead-
ing to problems such as motion sickness, cardiovascular
deconditioning, muscle atrophy, and bone demineraliza-
tion. Many of these diseases parallel the aging pathologies,
but they occur and develop much more rapidly in space
(Vernikos and Schneider 2009). One of the most crit-
ical diseases suffered by astronauts is bone loss. The
studies of the bone loss observed in astronauts after
spaceflight (Orwoll et al. 2013) and in ground simu-
lated microgravity (sim-pLg) experiments (bed rest, hindlimb
unloading, as well as in vitro studies of cellular mod-
els) have been extensively reviewed by Nagaraja and
Risin (Nagaraja and Risin 2013). The phenomenon begins
immediately on arrival in space. It has been observed
that bone density decrease is about 1-2 % per month
in weight bearing bones, truly accelerated compared to
the 2-3 % loss per year observed in postmenopausal
females.

Most physiological effects due to short duration space-
flights resolve shortly after return to earth, but bone
demineralization can be a permanent and dangerous con-
sequence of long-duration spaceflight. During the past
decade, researchers considered and investigated failures in
osteoblast and osteoclast activity as responsible for bone
mass loss in g (Blaber et al. 2013). Now, the focus is on
Stem Cells (SCs), which play a major role in the mainte-
nance of bone mass, being the main source of osteoblasts
during bone remodeling and repair (Senarath-Yapa et al.
2014; Rosset et al. 2014). The recruitment of an ade-
quate number of osteoblasts is dependent on the availabil-
ity of Mesenchymal Stem Cells (MSCs) and their proper
response to growth, differentiation, and chemotactic sig-
nals in the microenvironment. Recent papers investigated
the behavior of MSCs in sim-ug using ground simulators
such as the Rotating Wall Vessel and the Random Posi-
tioning Machine (RPM). Although some discrepancies in
results exist due to differences in origin of MSCs, biore-
actors and differentiation stimuli, it is clear that sim-ug
profoundly affects MSC behavior in terms of proliferation,
differentiation, and senescence (Bradamante et al. 2014).
While many cell types have already been tested in orbital
flight, cultured human MSCs have never experienced real
pg. In 2009, based on the bone researches performed at
that time (van Loon et al. 1996; Hughes-Fulford 2004;
Knippenberg et al. 2005; Hughes-Fulford et al. 2006;
Knippenberg et al. 2006; Versari et al. 2007; Bacabac
et al. 2007, 2008; Knippenberg et al. 2009), we presented
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a spaceflight proposal to the “International Life Science
Research Announcement 2009 (ILSRA 2009) convinced
that a spaceflight experiment is the only way to clarify
the influence of real ug on human MSC behavior and to
help the identification of the molecular mechanisms for
reversing bone loss that may be translated to human osteo-
porosis and in general to aged related bone pathologies.
There is increasing evidence that most of the diseases
related to aging are associated with a progressive decline
in the number and/or function of SCs (Fukada et al. 2014,
Oh et al. 2014). The goal of our original proposal was a
general one, being focused also on tissue engineering appli-
cations; nevertheless, our spaceflight experiment had to be
restricted to the study of the alterations in microgravity of
human MSCs derived from bone marrow due to some lim-
itations in the offered spaceflight opportunity. Our project
named SCD - STEM CELL DIFFERENTIATION (previ-
ously ARIES) was selected by the European Space Agency
(ESA) for the Soyuz 428 spaceflight mission schedule on
March 27 2015. The experiment has been already in space
and is currently analyzed. Here we report the results of
the exhaustive ground study performed to prepare, in terms
of biological and engineering requirements, our experiment
aimed at investigating the effects of spaceflight on human
BMSGCs. In details, the ground study was focused mainly
on: a) optimization of cell culture conditions to maintain
cell viability in the proposed experiment hardware (EH);
b) feasibility of the proposed spaceflight protocol and opti-
mization of the osteogenic medium; c) efficiency of the
non-toxic fixative NOTOXhisto in samples preservation and
in fixing cells for Oil Red O and Alizarin Red staining
procedures.

Recent researches have shown the beneficial effects
of hypoxia on proliferation/differentiation of MSCs
(Estrada et al. 2012; Hung et al. 2012) and dif-
ferent lines have been combined toward the identifi-
cation of major space genes (Clement 2012) During
the preparation period, in line with the above men-
tioned papers we investigated also the influence of oxy-
gen concentration in the cultivation of human MSCs
in sim-pug (Versari et al. 2013a) using the genomic
approach.

Materials and Methods

Human bone marrow MSCs (BMSCs) were purchased from
Lonza, Allendale, NJ, USA. Cells were positive for CD105,
CD166, CD29, and CD44 and negative for CD14, CD34 and
CD45.

Cells were cultured on Thermanox collagen coated cov-
erslips for 14 days either in Standard Medium (SM) or
in Osteogenic Medium (OM) the composition of which
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Fig.1 SCD - Stem Cell
Differentiation mission profile
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were the following: a) SM: DMEM (Dulbecco’s Modi-
fied Eagle’s medium) supplemented with 12.5 mM HEPES,
10 U/mL heparin, 200 mM glutamine, 500 pg/mL strepto-
mycin sulphate, 600 pg/mL penicillin; b) OM: SM added
with 0.1 M ascorbic acid, 10 mM b-glycerophosphate, and
1078 M 1,25 dihydroxy vitaminD3 (Vit D3). All chemi-
cals were purchased from Sigma Aldrich, Saint Louis, MO,
USA. Thermanox coverslips were purchased from Thermo
Fisher Scientific Inc. Waltham, MA USA. Due to safety con-
straint in space, we selected NOTOXhisto (Scientific Device
Laboratory, USA) as non-toxic fixative.

To evaluate the influence of oxygen in culturing human
BMSCs we repeated the experiments already performed
on human Adipose tissue derived MSCs (AT-MSCs)
(Versari et al. 2013a). Briefly, to simulate microgravity,
we used the RPM, a device in which the gravity vector
is continually reoriented with direction and speed random-
ization (maximum velocity of 60 °/s). In our conditions,
the maximum ‘residual g’ was expected to be 107* g

Scheme 1 SCD spaceflight
experiment scenario
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(Borst and van Loon 2009). Cells were seeded in Opti-
Cells™ fully filled with the medium previously degassed
and then enriched with the selected oxygen concentration
(5 % or 21 %). Then, Opticells™ were accommodated
inside sealed metallic vessels filled either with a 5 %
CO»/air mixture (O concentration in the range 20-21 %) or
5 % CO2: 5 % O3: 90 % N, mixture and subjected to sim-
pg or accommodated on the bottom platform of the RPM as
static controls (1g). At day 7, medium was quickly changed
stopping the RPM for no longer than 5 min. Four experi-
mental conditions were considered: 1) 1g at 5 % O», 2) 1g
at 20 % O3, 3) sim-ug at 5 % O, 4) sim-ug at 20 % O;.

A focused array, the Human Mesenchymal Stem Cell
RT? Profiler™ PCR Array (SABiosciences) that profiles
the expression of 84 key genes involved in human MSC
pluripotency, self-renewal status and differentiation has
been used to evaluate the effects of the different experimen-
tal conditions. The analysis of statistically significant gene
expression changes was performed with the SABiosciences
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PCR Array Data analysis tool. This web-based software
automatically performs all AACt based fold-change calcu-
lations from the uploaded raw threshold cycle (CT) data.
The threshold cycle indicates the fractional cycle number
at which the mount of amplified target reaches a fixed
threshold. A 2-fold change cut-off was selected to identify
the genes hose expression was significantly differentially
regulated.

Stem Cell Differentiation Flight Experiment Global
Profile

During the SCD experiment, human BMSCs will be
incubated in pg for several days at conditioned tempera-
ture with regular medium refresh. Standard and osteogenic
medium will be used. At the end of the active phase of the
experiment, cells and medium will be separated, suitably
fixed and stored for post-flight analyses as shown in the
diagram of Fig. 1.

Human BMSCs will be cultured in the SCD Experi-
mental Unit (EU) developed by Kayser Italia (Livorno,
Ttaly; http://kayser.it/), that were already used in the ESA-
SPHINX experiment (Versari et al. 2013b). The SCD
EU consists of a brick made of biologically compat-
ible plastic [polyetheretherketone (PEEK)] containing 5
cylinders (fluid-reservoirs, 1.8 ml each), a culture cham-
ber (CC, 230 mm?), and connecting channels. Five small
valves were placed to separate the different fluids and the
CC. Each cylinder has a piston (not shown) that, when
released by a preloaded spring, injects the fluid into the
CC; the waste medium is collected in the previously emp-
tied cylinder and suitably preserved. During the experi-
ment (Scheme 1), all the medium exchanges and fixation
operations were automated on the basis of a predefined
timeline.

Results and Discussion

We here report the definition and optimization of some of
the SCD experimental procedures and approaches in order

Fig. 2 SCD Experimental Unit (EU) with integrated electronics
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to successfully achieve the objective of the SCD study
i.e. to determine how human BMSCs react to a prolonged
(approx. 2 weeks) exposure to microgravity in terms of
growth, senescence and differentiation toward osteoblasts
when treated with Vit D3. A SCD spaceflight experiment
possible scenario is reported in Scheme 1. During the exper-
iment, all the medium exchanges and fixation operations
will be automated based on a predefined timeline. 4 days
before the launch (L) ground control (GM, n = 12) and
spaceflight (FM n = 12) modules will be prepared on the
launch site to be ready for handover. After the 4 days esti-
mated to be necessary to reach the ISS, to be installed in
KUBIK and to be warmed again to 37 °C, the SCD exper-
iment will start (7p) with a first medium exchange (ME).
The second ME will be after 7 days (Tp + 7 days) and
third one with PBS only after 14 days (7p + 14 days).
The experiment will be stopped by means of 2 subsequent
RNAlater fixations (Sigma-Aldrich) separated by an inter-
val of 6 min. After each exchange, the exhausted culture
medium will be fixed using a protease inhibitor cocktail
(Sigma-Aldrich). After the experiment will be completed,
the EH modules will be kept at 6 °C inside the KUBIK
incubator or moved in MELFI (Minus Eighty-Degree Lab-
oratory Freezer for ISS) operating at +2 °C, before being
returned to Earth. The 12 identical EH control modules pre-
pared at the launch site will be run in parallel using the
same experimental protocol. At the end, each module will
provide a 230-mm? cell sample and the related preserved
media.

Optimization of Cell Culture Conditions to Maintain
Cell Viability in the Proposed Experimental Hardware
(EH)

Being the proposed hardware (Fig. 2) totally sealed, it
is mandatory to buffer the medium by adding HEPES to
the culture medium. We tested whether the addition of
HEPES to the culture medium could affect cell viabil-
ity. In details, human BMSCs (low passage number) were
seeded on Thermanox coverslips in SM added with HEPES,
loaded in the SCD bioreactors and cultured at 37 °C for
2 days. Two different HEPES concentrations were tested:
12.5 mM and 25 mM. At the end of the experiment,
cells were trypsinized, stained with Trypan blue solution
(0.4 %) and the viable cells were counted using a Burker
chamber. The results in cell viability were compared with
those obtained in standard culture conditions (5 % CO,,
no HEPES). As shown in Fig. 3a, no significant difference
in terms of cell number was found between HEPES-added
medium and standard conditions. The 12.5 mM HEPES was
selected as optimal concentration for the spaceflight exper-
iment as 25 mM HEPES seems to affect, although slightly,
cell viability.
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Fig. 3 A) Cell viability in HEPES-added SM for 2 days at 37 °C.
N=12; *no HEPES vs. HEPES 25 mM p< 0.05. B) Cell prolifer-
ation simulating the selected spaceflight protocol: 4 days at 27 °C

Testing the Feasibility of the Proposed Spaceflight
Protocol

Human BMSCs (low passage number) were seeded
on Thermanox coverslips, loaded in the SCD EU and
cultured simulating the proposed spaceflight protocol: 4
days at 27 °C (Soyuz scenario utilized until 2014, from
launch to installation in KUBIK, today reduced to 2 days)
followed by 3 days at 37 °C. At day 4, medium was
changed automatically (using the release system) or man-
ually (with a pipette). Cell number was determined at day
4 and 7.

Four days culturing in the bioreactors at 27 °C pro-
foundly affects cell viability (Fig. 3b). Nevertheless, when
the bioreactors are moved to 37 °C, cell number is sufficient
to resume proliferation, thus guaranteeing the feasibility of
the spaceflight protocol and enough material for post-flight
analyses. In addition, no significant difference between

followed by 3 days at 37 °C with automatic (A) or manual (®)
medium exchange at day 4. Control experiments: 7 days at 37 °C with
automatic () or manual () medium exchange at day 4

automatic or manual medium exchange was found, thus
confirming that the pressure exerted during the automatic
fluid exchange was not detaching cells.

Optimization of the Osteogenic Medium

The standard protocol for MSC osteogenic differentiation
requires OM to be refreshed every 3 days (Aslan et al. 2006;
Boland et al. 2004). SCD spaceflight hardware and protocol
request OM to be refreshed every 7 days, thus affect-
ing osteogenic differentiation efficiency (Fig. 4, middle).
We tested whether doubling osteogenic stimuli concen-
tration in the OM overcomes this experimental constrain.
In details, confluent human BMSCs (low passage num-
ber) were seeded on 6-well plates and incubated for 14
days with the two different osteogenic stimuli concentra-
tions (ascorbic acid phosphate, B-glycerophosphate, and Vit
D3): 1X and 2X. OM was refreshed at day 7. At the end

control experiment,OM 1X
refreshed every 3 days

OM 1X
refreshed every 7 days

OM 2X
refreshed every 7 days

Fig. 4 Alizarin Red staining of human BMSCs at day 14. (Left): control experiment, OM 1X refreshed every 3 days; (Middle) OM 1X and (Right)
OM 2X refreshed every 7 days. OM 2X changed every 7 days is capable of inducing osteogenic cell differentiation
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of the experiment, osteogenic differentiation was evalu-
ated with Alizarin Red staining and results were compared
with the control experiment (OM 1X, medium refreshed
every 3 days).

As shown in Fig. 4, OM 2X (right) refreshed every 7
days is as efficient as the control OM 1X refreshed every
3 days (left) in the induction of osteogenic differentiation,
thus overcoming the experimental constrain.

Efficiency of the Non-toxic Fixative NOTOXhisto: A)
in Samples Preservation Towards PFA One Month
After Fixation; B) in Fixing Cells for Oil Red O

and Alizarin Red Staining Procedures

Standard fixation protocol in current laboratory practice
requires the use of paraformaldehyde (PFA, Sigma). PFA
is a very toxic fixative and, to be used in a spaceflight
experiment, requires additional levels of containment and,

PFA 4% solution 10 min

NOTOX solution 30 min
2 Y [

control cells not induced to
differentiate

control cells not induced to
differentiate

Osteogenic induction.

Fig. 5 A Images of human BMSCs one month after fixation with:
PFA 4 % for 10 min; and NOTOXhisto for 10 min; 20 min; and 30 min.
Microscope magnification: 10X; camera magnification: 4X. B Images
of human BMSCs after Oil Red O and Alizarin Red staining
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consequently, additional costs for EH improvement. For this
reason, we tested whether the non-toxic fixative NOTOX-
histo was suitable for the preservation of the sample in
our spaceflight experiment. In details, human BMSCs were
seeded in 6-well plates at a density of 20.000 cells/cm? and
cultured in SM. At confluence, cells were washed with PBS
and fixed with 4 % PFA solution in PBS for 10 min or
NOTOXhisto solution (Scientific Device Laboratory, USA)
for 10, 20 and 30 min. After fixation, cells were washed
and stored in PBS at 4 °C for 1 month, and examined with
a conventional inverted microscope. As shown in Fig. Sa,
after one month storage cells were in very good shape and
no differences were found between cells fixed in PFA 4 %
and cells fixed in NOTOXhisto. The same cells, at conflu-
ence, cultured as before in SM, were treated for 14 days
with adipogenic or osteogenic medium to induce cell differ-
entiation. At the end of the experiment, cells were washed
with PBS, fixed with NOTOXhisto solution for 10 min and
analysed with conventional microscopy after Oil Red O or
Alizarin Red staining, markers of adipogenic or osteogenic
differentiation, to evaluate the presence of lipid droplets
or calcium deposition respectively. As shown in Fig. 5b,
the staining procedure after fixation with NOTOXhisto was
working properly.

Effects of Oxygen Concentration: the Genomic
Approach

In vivo, human MSCs reside in specific “perivascu-
lar niches” (Moore and Lemischka 2006) and the var-
ious tissues where these cells are found are character-
ized by a low oxygen tension (pO;z) of about 2-8 %
(Kofoed et al. 1985; Harrison et al. 2002; Matsumoto et al.
2005; Pasarica et al. 2009; Mohyeldin et al. 2010). It has
been shown that pO; plays a key role in regulating SC fate
(Csete 2005; Panyukhin et al. 2008). Since the effects of

sim-ug

[ 5%°0, |
| |

[ [ 1
START 7d, change medium 14 d, END
SM/OM

|

SM
oM

Scheme 2 Experimental protocol applied to compare the proliferation
and differentiation responses of human BMSCs cultured in different
gravity and oxygen concentration conditions. 1g = ground control;
sim-llg = microgravity simulated with the RPM; SM = standard
medium; OM = osteogenic medium (SM + ascorbic acid phosphate,
B-glycerophosphate, and Vit D3); d = days
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Fig. 6 VENN diagram showing the number of genes enriched in sim-pg vs. 1g at 5 % O» (red circle) and 21 % O, (green circle) in the SM (left
panel) and OM (right panel) and their overlaps. A 2-fold change cut-off was set to identify genes whose expression was significantly differentially

regulated

“reduced pO,” in the cultivation of human MSCs in sim-ug
was not considered in the past, we performed a wide and
interesting analysis on human AT-MSCs cultured at differ-
ent oxygen concentration and g levels (Versari et al. 2013a)
to investigate whether different O, tensions modulate their
gene expression profiles. We concluded that oxygen seems
to play a marked role in amplifying the alterations in “adhe-
sion and communication” pathways, common features in all
of the sim-ug experiments. Considering the actual interest
in the role of oxygen concentration in the proliferation, dif-
ferentiation, and senescence events (Boyette et al. 2014),
we evaluated whether different O, tensions in sim-ug affect
also human BMSCs that we selected for the SCD experi-
ment. We chose a focused array, the Human Mesenchymal
Stem Cell RT? Profiler™ PCR Array (SABiosciences) that
profiles the expression of 84 key genes involved in human
MSC pluripotency, self-renewal status and differentiation.
In details, human BMSCs (low passage number) were sub-
jected to the two previously tested oxygen concentrations
(5 % O3 and 21 % O3) in SM or OM in sim-pug using the

RPM (Scheme 2) for 14 days. The results were compared
with those obtained at 1g in the same conditions (ground
controls).

At day 14 samples were harvested and a) Prolifera-
tion was measured with trypan blue cell counting; b) Cell
death was evaluated with ToxiLight™BioAssay kit; c) Total
RNA was extracted, purified, and Human Mesenchymal
Stem Cell RT? Profiler™ was performed. Oxygen concen-
tration in sim-Ug influences human BMSC gene expression
profile, but does not affect proliferation and cell death
(data not shown). As shown in Fig. 6 in SM a) at 5 %
0O, 7 genes were found significantly modulated in sim-
1g compared to the related 1g controls, whereas b) at
21 % O, 2 genes. No overlap between the two com-
parisons was found (left panel). In OM a) at 5 % O,
15 genes were found significantly modulated in sim-pug
compared to the related 1g controls, whereas b) at 21 %
O, 12 genes. An overlap of 4 genes, that represent the
genes enriched in both oxygen conditions, was found (right
panel).

Table 1 List of the genes

significantly modulated in Gene name 5% Oy SM 21 % O, SM Function Annotation
sim-lg vs.1g in the two FC FC
comparisons analysed (5 % O»
and 21 % O3) in SM COLI1A1 n.m. 23 hMSC specific Collagen, type I, alpha 1
CD44 2,2 n.m. hMSC specific CD44 molecule
HGF 2,1 n.m. hMSC specific Hepatocyte growth factor
KITLG 2,1 n.m. hMSC specific KIT ligand
NT5E 2,0 n.m. hMSC specific CD73
MCAM -25 n.m. hMSC specific Melanoma cell adhesion molecule
JAG1 n.m. 23 Miogenesis Jagged 1
GDF5 2,4 n.m. Tenogenesis Growth differentiation factor 5
RUNX2 2,0 n.m. Osteogenesis Runt-related transcription factor 2

FC fold change, n.m. not modulated
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Table 2 List of the genes

21 % O OM  Function

Annotation

Stemness

Stemness

hMSC specific
hMSC specific
hMSC specific
hMSC specific
hMSC specific
hMSC specific
hMSC specific
hMSC specific
hMSC specific
hMSC specific
hMSC specific
hMSC specific
hMSC specific
hMSC specific
hMSC specific
hMSC specific

Fibroblast growth factor 2

Leukemia inhibitory factor
Brain-derived neurotrophic factor
Endoglin

Interleukin 6 (interferon, beta 2)
Nudix-type motif 6

Nestin

Platelet-derived growth factor receptor
Transforming growth factor, 83

Thy-1 cell surface antigen

Vascular endothelial cell Growth factor «
Activated leukocyte cell adhesion mol
Caspase 3

Catenin (cadherin-associated protein) 1
Integrin, alpha V, antigen CD51

Integrin, beta 1, antigen CD29
Microphthalmia-ass transcription factor
5’-nucleotidase, ecto (CD73)

significantly modulated in Gene name 5 % O, OM

sim-lg vs.1g in the two FC FC

comparisons analysed (5 % O

and 21 % O,) in OM FGF2 3,0 3,7
LIF n.m. 4,1
BDNF n.m. 22
ENG n.m. 18,7
1L6 n.m. 2.4
NUDT6 4,8 3,1
NES n.m. —2,6
PDGFRB n.m. 2,7
TGFB3 2,2 —4,0
THY1 — -2.5
VEGFA 3,6 —18,9
ALCAM 5,1 n.m.
CASP3 2,9 n.m.
CTNNBI1 2,5 n.m.
ITGAV 2,7 n.m.
ITGB1 3,6 n.m.
MITF 2,2 n.m.
NTSE 3,6 n.m.
SMURF2 4,0 n.m.
SMAD4 24 n.m.
SOX9 2,0 n.m.
HAT1 4,2 n.m.
GDF15 n.m. 3,3

Osteogenesis SMAD specific E3 ubiquitin prot ligase 2
Tenogenesis SMAD family member 4
Chondrogenesis ~ SRY (sex determining region Y)-box 9
Chondrogenesis  Histone acetyltransferase 1
Chondrogenesis ~ Growth differentiation factor 15

FC fold change, n.m. not modulated

The most significant changes were found in some
specific pluripotency and self-renewal genes (e.g. CD44,
CD73, HGF, COL1Al, FGF2, LIF, IL6, TGFB3, VEGFA)
and differentiation (GDF5, GDF15, RUNX2, SMURF2,
SMAD4, SOX9, HAT1) markers. See Tables 1 and 2
for details.

These preliminary results point to oxygen as an impor-
tant factor influencing human MSC behaviour in sim-ug.
It is noteworthy that differences in oxygen concentra-
tion induce the modulation of genes not only involved
in hypoxia/hyperoxia response, but also in self-renewal,
pluripotency, and differentiation.

In Table 2, in hyperoxia is worth noting A) a
marked up-regulation of endoglin (CD105), a gene cod-
ing for a Type I homodimeric transmembrane glycoprotein
which binds with high affinity transforming growth fac-
tor (TGF)-B1 and TGF-B3. In addition there is evidence
that endoglin plays an important role in the dediffer-
entiation mechanism (Barbara et al. 1999; Frobel et al.
2014). It is noteworthy that the overexpression of endoglin
markedly reduces osteogenic differentiation of MSC as
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detected by Alizarin Red staining (private communica-
tion),B) a marked down-regulation of Vascular Endothe-
lial Growth Factor (VEGF). This is an interesting result
since VEGF is an essential coordinator of extracellu-
lar matrix remodeling, angiogenesis and bone formation
(Schipani et al. 2009).

Conclusion

The SCD - Stem Cell Differentiation experiment addresses
an important question: how human MSCs respond to the
real microgravity environment. Based on these preliminary
tests and on the positive outcome of the optimization of
the spaceflight experimental procedures and analytical tech-
niques, we are confident that the aims of the application will
be achieved. We here anticipate that the specific benefits
of the conceived space experiment will range from a bet-
ter understanding of the molecular mechanisms governing
human BMSC growth and differentiation to the possibil-
ity of outlining new countermeasures against astronaut bone
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loss. The potential fall-out on ground of the STEM CELL
DIFFERENTIATION experiment concerns both the fields
of age-related bone pathologies and tissue engineering.
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