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Abstract A detailed statistical analysis of bubble disper-
sion in turbulent jets based on data from drop tower exper-
iments is presented here. A stochastic model is also intro-
duced in order to capture these statistics to a large extent,
treating bubbles as passive tracers with a local diffusivity
given by a k-ε description of the turbulence. Bubble-bubble
and bubble-flow interactions are neglected. Simple scaling
analysis suggests that this approach is justified sufficiently
far downstream. It is also found that, although interac-
tions cannot be neglected very close to the inlet, the model
predictions for the overall spatial distribution of the bub-
ble ensemble are compatible with data within experimental
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Universitat de Barcelona, Av. Diagonal 647,
08028-Barcelona, Spain

2 Departament de Quı́mica, Fı́sica i Inorgànica, Universitat
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08034-Barcelona, Spain

uncertainty, and within the limited statistics of the experi-
ments. In addition, the velocity fluctuations from the same
experiments are analyzed, obtaining the local standard devi-
ation of bubble velocities. We also find good agreement
between experimental data and the effective model. Slight
deviations between the model predictions and the experi-
mental data are found at the jet margins, concerning the
dependence on Reynolds number of jet angle and the rela-
tive velocity fluctuations. Consequently, significant bubble-
flow interactions seem to be confined at the boundaries of
the jets.

Keywords Turbulent jet · Bubble dispersion · Bubble
interactions · Microgravity · Drop tower · Velocity
fluctuations

Introduction

The management and control of two phase flows in micro-
gravity is a key area of research in space technology, due to
direct applicability in critical areas such as life support sys-
tems, power generation and propulsion, or thermal manage-
ment with gas-liquid heat exchangers (National Research
Council of the National Academies 2012). In the study of
dynamics of bubbly flows, a common problem is the diffi-
culty of controlling the characteristics and the regularity of
the generation of bubbles when no buoyancy is present. In
this respect, Carrera et al. (2008) introduced the strategy of
injecting previously-formed liquid-gas slug flows into a liq-
uid cavity, instead of injecting gas directly, with the idea that
creating the bubbles prior to injection would allow a better
control of the bubble formation mechanism in a gravity-
insensitive manner. Specifically, the method consisted of
injecting gas into a liquid cross-flow in capillary T-junction,
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to form a regular slug flow, and then inject the slug flow
into a cavity. Indeed, the methods produced very periodic
trains of bubbles of a prescribed size, as opposed to direct
injection of gas into a liquid cavity, which in the absence
of gravity produces in general much more dispersed bubble
sizes. Carrera et al. (2008) established the theoretical basis
for the mechanism by which bubbles were detached by the
drag forces of the liquid crossflow competing with the capil-
lary forces, being buoyancy forces negligible in comparison
to the other two. The outcome was then independent of the
level of gravity. The size of the bubbles generated with this
procedure was typically of the order of the diameter of the
capillary tube, but it could be slightly tuned. Altogether with
the bubble formation frequency and the bubble-bubble dis-
tance, their size could also be modified by adjusting the
liquid and gas injection rates into the T-junction. Detailed
characterization of the performance of this two-phase T-
junction was exhaustively studied by Arias et al. (2009,
2010).

Carrera et al. (2008) also conducted a series of micro-
gravity experiments in the drop tower of ZARM in Bremen,
in which this bubble generator was used for the first time in
microgravity. They created and injected uniform slug flows
into a quiescent cubic cavity. In the absence of buoyancy
effects, the injection of the slug flow resulted in the forma-
tion of a turbulent jet across the cavity, in which bubbles
were dispersed in a roughly conical shape (Fig. 1). While the
velocity field of the carrying fluid could not be visualized,
the jet region occupied by the bubbles appeared statistically
stationary once formed, although the axial symmetry was
lost due to the remnants of the flow generated by the rising
bubbles at the 1g stage prior to microgravity. Remarkably,
with the use of this injection method, the size distribution
of the injected bubbles was highly monodisperse and eas-
ily controllable even in microgravity. In their paper, Carrera

Fig. 1 Snapshot of a typical experiment of slug bubble injection after
2.5 seconds of microgravity

et al. (2008) showed how the experimental mean velocity of
bubbles (measured at different points along the axis and at
the boundaries of the experimental bubble cones) followed
to a large extent the analytical solution for the averaged tur-
bulent flow of a liquid jet without any dispersed phase, as
described by Schlichting (1979). This result implied that the
presence of bubbles did not affect significantly the mean
liquid flow, except for an increase of the total injected
momentum. Here we extend and complete the analysis of
the same series of microgravity experiments to the statistics
of velocity fluctuations to elucidate to what extent and under
what conditions the potential two-way interactions between
bubbles and turbulence can be quantified and/or possibly
neglected. To do so we will introduce an effective stochas-
tic model that neglects such interactions and then confront
it to the experimental data. This model includes the finite-
size effects of the container and treats the averaged effects
of turbulence within k-ε scheme, solving the correspond-
ing transport equations with a finite volume method in a 2D
axisymmetric mesh.

The structure of this paper is as follows. Section “Experi-
mental Setup and Theoretical Model” is devoted to the
description of the experimental setup and the stochastic
model for an ensemble of passive bubbles that fixes the
reference to detect possible deviations from this passive
behavior in the turbulent jet. In Sections “Spatial Structure
of Bubble Jets” and “Velocity Statistics and Jet Boundaries”
we analyze experimental data regarding the spatial struc-
ture of the bubble jet and velocity statistics, and compare
them to the numerical simulations based on the effective
model. While most of the results are consistent with numer-
ical simulations of our effective model within experimental
uncertainty, some discrepancies seem to point out to sig-
nificant bubble-flow interactions in some cases. Finally
we present a brief discussion and the main conclusions in
Section “Conclusions”.

Experimental Setup and Theoretical Model

Experimental Setup

The experimental setup was already described by Carrera
et al. (2008). It consists of a cavity of 100x100x100 mm3,
as sketched in Fig. 2, in which a bubble jet (air in water) is
generated through the injection of a slug flow. This slug flow
is previously formed in a 1.5 mm diameter T-junction. The
bubble diameter depends on the injection parameters but it
is roughly of the order of the capillary. In Fig. 2 we also
show the structure of a typical mean velocity field obtained
numerically in the case of a single-phase flow.

The analysis of the experimental results will focus on the
position and instantaneous velocity of all bubbles for the
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Fig. 2 Experimental cell schematics with contour levels of mean
velocity (cm/s), as obtained by CFD calculation, for a liquid jet with
Re = 690. The origin of the coordinated system is located at the
entrance of the cavity in the central axis of the jet

most typical and well behaved experiments, corresponding
to the cases with Re = 690 (with parameters of injection
Ql=41 ml/min, and Qg=16 ml/min and resulting bubbles
of diameter dB � 1.8mm) and Re = 1170 (with Ql=74
ml/min, Qg=18 ml/min and dB � 1.4mm). The defini-
tion of Reynolds number used will be described later in
Section “The Mean Velocity Field”. More details on the
experimental setup can be found in Carrera et al. (2008).

In order to measure the position and velocity of each bub-
ble during the experiments, all the images taken by the high
speed video camera were processed so that an automatic
particle tracking software enabled us to identify the paths
described by all bubbles. To do so, first it was necessary to
homogenize the background of all the frames by subtract-
ing, to each of them, a picture taken by the same camera in
the absence of bubbles. After the background correction, we
used a standard filter to highlight the interphase of each bub-
ble. Finally we used particle tracking methods to identify
and follow the trajectories of all bubbles (Bitlloch 2012).

Since the experimental data is taken from 2D snapshots
where the real 3D configuration has been projected, some of
the information is lost in the process. In the first place, the
component of the velocity of bubbles in the direction z, per-
pendicular to the plane of the snapshot, cannot be measured.
This is not a major issue since the main component of the
velocity is ux , in the axial direction x. In addition to this,

the properties of the flow in the directions y and z should be
statistically equivalent. A more serious limitation is the fact
that we cannot measure the depth z at which any bubble is
placed, therefore when we conduct a statistical analysis of
bubble velocities, we are inevitably mixing velocities that
were in fact at different layers of the jet. This fact will be
properly incorporated in the statistical analysis.

Description of the Single-Phase Jet

In theoretical framework of the so-called k − ε models, it
is assumed that one can decompose the total velocity field
of a turbulent flow in two parts, a mean flow component
and a fluctuating part. Regarding the first component, it is
well known that the spatial structure of the mean flow veloc-
ity field of a turbulent single-fluid jet is independent of Re
(Schlichting 1979). In these models the fluctuating part of
the flow is described in terms of two continuous fields, the
local turbulent kinetic energy k of the fluctuating part, and
its dissipation rate ε. Closed transport equations for these
fields are then postulated. In the case of interest here for the
application of this approach, namely the study of turbulent
jets, the standard k − ε model it is known to over predict the
opening angles of jets (Shih et al. 1995). Being that angle
an important point in our study, we have used the improved
version that is known to correct this aspect, the so-called
realizable k − ε model (Shih et al. 1995), which introduces
the transport equations

∂(ρk)

∂t
+∇·(ρkU)=∇·

[(
μ + μt

σk

)
∇k

]
+2μtEij ·Eij−ρε ,

(1)

∂(ρε)

∂t
+∇·(ρεU) = ∇·

[(
μ + μt

σε

)
∇ε

]
−ρC2

ε2

k + √
νε

,

(2)

being U the local mean velocity, ρ the density and Eij the
rate-of-strain tensor

Eij = 1

2

(
∂Uj

∂xi

+ ∂Ui
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)
. (3)

μ refers to viscosity and μt to eddy viscosity, defined by

μt = ρCμ

k2

ε
, (4)
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and the other constants, i.e.

A0 = 4.04, , As = √
6 cos φ , (8)

φ = 1

3
cos−1

(√
6

EijEjkEki

(
√

EijEij )3

)
, (9)

C2 = 1.9, σk = 1.0, σε = 1.2 , (10)

have been adjusted to the values that offer an optimal
performance of the model.

Stochastic Model for the Bubble Jet

Since the experimental results of Carrera et al. (2008) indi-
cated that the local averaged velocities of bubbles coincide
to a good extent to the mean flow velocity field of a tur-
bulent single-fluid from the solution of Schlichting (1979),
the spreading of the spatial distribution of bubbles must be
directly related to the fluctuating part of the flow. In Fig. 3
we can appreciate how the streamlines of the flow that are
actually being injected into the cell only suffer a slight open-
ing (of no more than twice its initial separation dT ) after the
full length of the jet. It is easy to see how the larger width of
the jet is determined by its external layers, that incorporate
streamlines from the recirculating flow. In addition, turbu-
lence provides a mechanism that mixes all those layers of
mean flow, allowing the dispersion of bubbles through them.
Hence, we need to make use of the local characteristics of
turbulence in order to properly describe the dispersion of
bubbles through the transversal layers of the flow and, at
the same time, to confine them inside the boundaries of the
jet, preventing them from freely disperse through the whole
experimental cell.

Fig. 3 Streamlines of the mean flow in the experimental cell, obtained
from a simulation with axial symmetry

Within the above-mentioned realizable k-ε model of tur-
bulence, we will associate a local diffusivity to bubbles that
is inherited from the diffusivity of the kinetic energy of the
turbulent component of the flow in the absence of bubbles.
The main assumption is thus that bubbles are also pas-
sive with respect to the fluctuating component of the flow.
As mentioned before, this assumption must be correct in
principle sufficiently far downstream, where the bubble sus-
pension becomes more and more dilute and the bubble size
becomes negligible compared to the scales of the flow.

Since bubbles are not point-like and the number of them
is relatively small, the aim of the model is to formulate an
equation for the probability distribution of finding a bub-
ble at a certain location. The model does not intend to be
a good description of the individual trajectories of bubbles,
which are far from diffusive at small scales of the flow
due to strong spatial and temporal correlations of the car-
rying flow. This implies, for instance, that the model will
be inappropriate to describe properties related to the geom-
etry of the bubble trajectories themselves or the correlations
between them, such as the probability of bubble encounters
and consequently of possible coalescence. Despite this lim-
itation of the model, the assumption of a local diffusivity of
the probability of finding bubbles may be reasonably jus-
tified to describe the spatial distribution of an ensemble of
realizations, provided that coalescence events are rare.

For the purposes of studying the spatial bubble disper-
sion, the above model pictures the dynamics of bubbles as
described by a biased random walk. We write explicitly
the instantaneous velocity of a bubble uB as a stochastic
(Langevin) equation of the form

uB(t) = U(s(t)) + u′(t), (11)

where U(s(t)) is the local mean fluid velocity at the posi-
tion s(t) of the bubble and u′(t) is a fluctuating term of zero
mean. This fluctuating term is responsible for the diffusivity
of bubbles, therefore it should depend on the local proper-
ties of the turbulent flow. As mentioned above, we relate
this diffusivity to that of the kinetic energy of the turbulent
component of the flow without bubbles. Then, both terms of
this decomposition (mean and fluctuating velocities) can be
obtained from the integration of a k-ε model. In particular,
writing the fluctuating term as a Gaussian zero-mean white
noise with correlation

〈u′(t1)u′(t2)〉 = 2Dpδ(t1 − t2) . (12)

The noise intensity Dp is taken as proportional to the diffu-

sivity of the turbulent kinetic energy k2

ε
in the context of the

k-ε model

Dp = μt

ρlσp

= Cμ

σp

k2

ε
, (13)
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where Cμ = 0.09 according to the standard model, and σp is
in principle a fitting parameter that connects the diffusivity
of P to the eddy viscosity μt . The prediction of this model
regarding the spatial structure of the bubble jet does not
seem very sensitive to the parameter σp, so we take σp = 1
as in the transport equation of k (i.e., σk = 1), considering
that both diffusivities must be similar, being both equally
originated by the eddy mixing (Versteeg and Malalasekera
1995).

The Langevin equation (11) can be numerically inte-
grated using standard methods, with the result of individual
trajectories of single independent bubbles. Examples of
such integration are shown later, in the next section. Within
this scheme one may easily determine the probability den-
sity P(s, t) of finding a bubble in a certain position at any
instant of time. This distribution coincides with the concen-
tration of an ensemble of independent bubbles, and is given
by the so-called Fokker-Planck equation associated to the
stochastic differential Eq. 11. This equation has the form

∂P (s, t)
∂t

+ ∇ · (UP) = ∇ · [
Dp∇P

]
. (14)

In this framework, the concentration of bubbles, propor-
tional to the probability distribution P , diffuses as a passive
scalar advected with the mean flow velocity U(s, t), but with
a diffusion coefficient Dp(s, t) which depends on the local

properties of the turbulence through the field k2

ε
.

The Mean Velocity Field

The reported calculations were carried out with the help
of the commercial software FLUENT, using a 2D axisym-
metric mesh consisting of 56100 cells arranged in a non-
uniform distribution, in order to obtain higher density of
cells in the critical areas with higher gradients of flow veloc-
ity. The volumes for the cells ranged from 3 · 10−13 m3 up
to 2 · 10−7 m3 (of the total 7.7 · 10−4 m3). Tests of different
meshes with various cell densities were performed without
noticeable variations in the outcome.

Taking into account that the presence of bubbles in the
injector increases the velocity of the liquid slugs between
them, for the simulation of the effective single-phase jet the
effective injected momentum J is defined as

J = ρlQl 〈UT 〉 = Ql(Ql + Qg)
ρl

AT

, (15)

Ql and Qg being respectively the volumetric flow rates of
liquid and gas injected into the T-junction. Note that the
effect of the presence of bubbles is here reduced to a modifi-
cation of the injected momentum, but the medium is treated
as an effective continuum, so the intermittent presence of
bubbles at any a given point is lost.

The appropriate definition of Reynolds number for the jet
will be given by taking the characteristic length Lc as the

local diameter of the jet at any position, and the character-
istic velocity at this same position as given by the injected
momentum Uc = √

J/(ρlAc), with Ac = πL2
c/4, which

leads to

Re = Lc

ν

√
J

ρlAc
= 4

√
Ql(Ql + Qg)

πνdT

, (16)

with dT the diameter of the inlet, which coincides in the
experiments with that of the T-junction capillary tubes.

It is worth remarking that the effective Reynolds number
of the jet, in principle depending on the characteristic scales
of length Lc and velocity Uc whose local values vary with
the distance from the injection point, remains constant all
along the jet. This can be easily shown (Schlichting 1979)
by observing experimentally that the opening angle of a tur-
bulent jet remains constant with the distance, while on the
other hand, the flow velocity scale is inversely proportional
to the distance. This causes that, to a first approximation,
the turbulent flow is statistically self-similar along the jet,
under the appropriate rescaling of length and time, i.e. the
characteristic eddy velocities are being reduced downstream
in the same proportion as their size increases.

In Figs. 2 and 3 we show the structure of the mean
velocity field for the single-phase turbulent jet as computed
within the k-ε model. In these figures it is easy to see how
the finite size of the experimental cell plays an important
role in the flow structure, specially in the areas with strong
recirculation and near the stagnation disk. In Fig. 4 we dis-
play the results obtained from the numerical integration of

Fig. 4 Collapse of many curves of Ux · (x + x0) for a jet with
Re = 690. r is the radial distance in cylindrical coordinates. Dashed
lines show the simulation results at various transversal sections of the
jet. Solid line corresponds to Schlichting (1979) analytical solution of
an infinite single-phase turbulent jet with an infinitely small slit. x0
has been adjusted to 1.2 cm in order to overlap all the curves from the
simulations, due to the finite size of the inlet
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the model for the radial variation of the axial velocity at
different positions along the jet axis, and compare with the
analytical Schlichting solution for an infinite system. We
can observe how the numerical solution of the jet presents
a sharper opening angle than the case of the solution for
an infinite system, with a significantly higher velocity at
the jet axis for the former, given the same injected momen-
tum. Despite this finite-size effect on the opening angle, the
jet maintains its velocity decay roughly proportional to 1

x
,

as well as its dependence with the ratio r
x

, which is main-
tained for the internal layers of the jet up to r

x
� 0.10.

Outside these boundaries, the recirculation due to the finite
size conditions become appreciable and, accordingly, the
corresponding streamlines differ significantly.

The Bubble-Turbulence Coupling

Since the bubble size is not only monodisperse but pre-
served through the evolution, while the scales of the tur-
bulent flow increase downstream, the degree of interaction
between bubbles and flow is expected to change along the
jet. Far downstream the bubbles become effectively point-
like and must eventually behave as passive tracers because,
since beyond a certain distance from the injector, the small-
est eddies will become bigger than the bubbles. On the
contrary, the situation is very different at the regions close to
the jet inlet, where bubbles are comparable to the jet diam-
eter and to the scale of velocity gradients. In those regions,
bubbles will necessarily be active in relation to the liquid
flow field.

Measuring the Kolmogorov scales of turbulence (Landau
and Lifshitz 1987; Brennen 2005) as well as the Stokes bub-
ble response time (Maxey et al. 1996; Brennen 2005) for
the typical parameters of our experiments, we found that
bubbles become smaller than the larger scales of turbulence
at distances greater than 4 cm, but they should not become
passive tracers until distances greater than 80 cm. Being the
size of our experimental cell of 10 cm, based on this sim-
ple scaling argument bubbles should in principle be active
and generate some appreciable back reaction to the flow for
most of the jet length. This effect should appear even bigger
taking into account that we can only measure velocities of
bubbles themselves, since we do not have any other tracer
on the flow. However, it is also important to realize that the
overall effect of the presence of bubbles on the statistics of
turbulence will depend also on the void fraction. For the typ-
ically small values of void fraction at hand, their effect may
still be quantitatively small. In fact, as already mentioned,
the results of Carrera et al. (2008) showed that the mean
flow is not significantly affected by the presence of bubbles.
Furthermore, as we will see later, the statistical uncertainty
of our measurements does not allow us to detect significant
deviations from the prediction of the numerical results under

the assumption of passive bubbles. We attribute this, in the
first place, to the small void fraction, which drops below the
10 % on gas after the first centimeter of jet (once we take
into account the initial opening of the jet due to the injector
size), and also to the smallness of the effect of wakes created
behind bubbles at our small Reynolds numbers.

Spatial Structure of Bubble Jets

Computation of the Spatial Distribution of Bubbles

In order to try to resolve the possible bubble-turbulence cou-
pling in the jet, it is convenient to obtain, as a reference,
results for completely passive bubbles, i.e. when bubbles
follow the local velocity field without modifying it. To this
end we will use a stochastic model in which the bubble
velocity is the result of the addition of the local mean flow
plus a stochastic diffusive contribution depending on the
local intensity of the turbulence.

To visualize the degree of inhomogeneity in the present
model regarding the diffusivity of bubbles, we plot in Fig. 5

the quantity k2

ε
, which is in principle proportional to the

effective local diffusion coefficient of bubbles. The local
diffusivity is remarkably homogeneous in a certain central
area and abruptly drops on the sides, defining relatively
clear-cut jet boundaries. This drop in diffusivity is larger
than one order of magnitude in a relatively narrow layer.
This explains the small sensitivity of the results to small
changes in σp on the determination of the diffusion coeffi-
cient DP , since bubbles disperse through the whole central
region, delimited by this narrow boundary layer. For larger

Fig. 5 Contours of constant k2

ε
(10−1 cm2/s), as obtained by CFD

calculations
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variations of σp (of around one order of magnitude) we
reach the extreme behaviors possible for any scalar trans-
port equation. In the case with σp � 10 the advection term
predominates over diffusion, impeding a significant disper-
sion of P over the various layers of the jet. In this case
P remains appreciable along the central streamlines of the
mean flow, thus strongly underestimating the opening angle
of the bubble jet. On the contrary, for σp � 0.1, diffusion
predominates over advection, resulting in an overestimation
of the opening angle and unrealistic results near the injector,
as a result of an extreme diffusivity.

In Fig. 6 we show the resulting bubble concentration con-
tours, obtained from the numerical integration of Eq. 14.
As indicated earlier, bubble spreading is limited by the jet
boundaries, and the resulting spatial distributions are sim-
ilar to those of experiments. Remarkably, this is not the
case if a homogeneous diffusivity is used (instead of one

locally depending on k2

ε
). The use of a single value of dif-

fusivity for the whole system results in a distribution of
bubbles that either opens in a very small angle (consistent
with a scalar transport dominated by advection), or spreads
out of the limits of the jet following an unrealistic behav-
ior (corresponding to a transport dominated by diffusion),
depending on the value taken for the diffusivity. An example
of bubble distribution P in the case of constant diffusiv-
ity is shown in Fig. 7. We therefore conclude that, within
the k-ε model, an inhomogeneous diffusivity is essential to
capture the qualitative shape of the spatial distribution of
bubbles.

Fig. 6 Contours of mean bubble concentration in an arbitrary scale,

corresponding to a local diffusivity proportional to k2

ε
, as obtained by

integration of the Fokker Planck equation by using the CFD results

Fig. 7 Contours of mean bubble concentration in an arbitrary scale,
corresponding to a homogeneous bubble diffusivity, as obtained by
integration of the Fokker Planck equation. Unrealistic degree of diffu-
sion is present close to the injector

Bubble Distribution. Experimental vs Numerical
Results

In order to compare the mean superficial density of bub-
bles ρb from the experimental snapshots with that from the
numerical results, we integrate the probability density of
bubbles P over the visual dimension z in the form

ρb(x, y) = Cb

∫ ∞

−∞
P(x, y, z) dz . (17)

Since P has been calculated in an arbitrary scale (we have
not fixed the frequency of bubble injection), we introduce
Cb as a constant to fix the density scale in the simulations
in order to fit the experimental results. In Fig. 8 we com-
pare the experimental results with the numerical predictions
of ρb for different sections of the jet. The experimental val-
ues have been obtained by measuring the mean number of
bubbles on small areas of the snapshots, averaged over the
whole duration of the microgravity conditions. The constant
Cb in Eq. 17 has been fixed by imposing the same mean
number of bubbles on the section at x = 3cm for both
numerical and experimental results. This number of bubbles
is obtained by calculating the area below the curves in Fig. 8
at that distance.

As discussed in Carrera et al. (2008), the experimen-
tal protocol to generate a uniform slug flow requires to
start injecting bubbles some time prior to the micrograv-
ity conditions. This is done in order to avoid the relative
long transients that precede a stationary generation of a uni-
form slug flow. The downside of this procedure is that the
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Fig. 8 Superficial density of
bubbles at various sections of a
jet (x = 1cm, 3cm, 5cm and
7cm) for the cases of jets with
Re = 690 and Re = 1170. Solid
lines correspond to simulations
and crosses to experimental
results
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gas injected during normal gravity conditions is acceler-
ated due to buoyancy forces and drags some of the liquid,
producing a weak, residual liquid flow. Although buoyancy
forces disappear immediately at the start of the microgravity
conditions, a slow relaxation of this residual flow remains,
breaking the cylindrical symmetry of the jet and giving it a
slight inclination upwards. This can be observed in the small
lateral shift of the experimental measures in Fig. 8. Also, the
opening angle of the bubble jet seems to be slightly smaller

in the simulations, as it can be observed in the figure at
high distances from the injection point (i.e., x = 5cm and
x = 7cm), arguably produced by the real effect of the finite
size conditions of our experimental cell. With the above dis-
claimers and taking into account that the statistics of the
data is necessarily limited because of the restricted access
to the microgravity conditions, the experimental data fit rea-
sonably well with the numerical prediction of our model,
in particular in the intermediate range of distances to the
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inlet, when the prediction of the model is most accurate. At
the end of the jet, the cumulative effect of the symmetry-
breaking spurious flow associated to the normal-gravity
preparation of the initial condition is most pronounced.

In Figs. 9 and 10 we show a 3D representation of the
superficial density of bubbles ρb, but in this case for any
point of the projected xy plane, corresponding to all the
points where the data can be measured from the experimen-
tal snapshots.

Velocity Statistics and Jet Boundaries

Mean Velocity. Experimental vs Numerical Results

As before, since we cannot know the z coordinate of the
bubbles position, we need to integrate the numerical pre-
dictions over that dimension. In this case, one must take
into account that not all planes at different depths contribute
equally to the statistics. Indeed, layers where there are more
bubbles will contribute more significantly. Accordingly, in
order to compare the experimental velocity profiles

〈
u

exp
x

〉
with the numerical results obtained by numerical compu-
tations

〈
usim

x

〉
, it is necessary to introduce this projection

effect into the simulation outcome. The way of achieving
this is by integrating the velocity of the flow ux(x, y, z)

over the visual dimension z with the help of a weight fac-
tor P �(x, y, z) which stands for the proportion of bubbles
at each point. P � corresponds to the probability density of
bubbles P(x, y, z) normalized over the visual dimension z

in the form

P �(x, y, z) ≡ P(x, y, z)∫ ∞

−∞
P(x, y, z) dz

, (18)

∫ ∞

−∞
P �(x, y, z) dz = 1 . (19)

Fig. 9 Superficial density of bubbles ρb (cm−2) obtained from a
simulation with Re = 690, for all points on the projected xy plane

Fig. 10 Superficial density of bubbles ρb (cm−2) obtained experi-
mentally in the case of Re = 690, for all points on the projected xy

plane

Then, the projected mean velocities of the flow, given by
the simulations are〈
usim

x

〉
=

〈∫ ∞

−∞
dz P �(x, y, z) ux(x, y, z, t)

〉
, (20)

which, under permutation of the order of the dimensional
integration and the statistical mean “〈 〉”, yields
〈
usim

x

〉
=

∫ ∞

−∞
dz P �(x, y, z) 〈 ux(x, y, z, t) 〉 (21)

Now, we describe the velocity ux as the sum of a mean
velocity Ux plus a fluctuating part u′

x with zero mean that
describes the degree of fluctuations over time.

ux(x, y, z, t) = Ux(x, y, z) + u′
x(x, y, z, t) (22)

〈 ux(x, y, z, t) 〉 = Ux(x, y, z) + 〈
u′

x(x, y, z, t)
〉

= Ux(x, y, z) (23)

Applying it to Eq. 21 we finally obtain
〈
usim

x

〉
=

∫ ∞

−∞
dz P �(x, y, z) Ux(x, y, z) (24)

Due to the inherent uncertainty on the actual Reynolds num-
ber injected in the experiments, which may slightly fluctuate
and deviate from the nominal value in a rather uncontrolled
way, we have left an overall factor on the velocity scale
of the simulations as an adjustable parameter. Since the
structure of the jet should be equivalent for small injection
variations, we scaled the velocity results of the simulations
so that the maximum velocity

〈
usim

x

〉
in the section x = 3 cm

coincide with the experimental measurements, i.e.,〈
usim

x (x = 3cm)
〉
Max

= 〈
u

exp
x (x = 3cm)

〉
Max . (25)

For the case with Re = 690 the simulated velocities have
been scaled by a factor 0.69, and the ones of the case with
Re = 1170 by a factor 0.79. The same factor has been
applied to all measured observables corresponding to the



216 Microgravity Sci. Technol. (2015) 27:207–220

same experiment. In Fig. 11 we compare the numerical
results with the experimental data from our measurements.

Velocity Fluctuations. Experimental vs Numerical
Results

For the study of the magnitude of the velocity fluctuations
σsim we will have to follow a similar procedure, but we have
no free parameter left for the fitting. This time, for the sake
of simplicity of notation, we will not show the dependencies
of each variable. In the study of the velocity fluctuations

in our projected images, it is important to distinguish the
intrinsic fluctuations due to turbulence with respect to the
local mean flow, from the apparent velocity variations along
the visual direction already contained in the mean flow,
which will already give a finite contribution even if the flow
is laminar. Starting from the definition of variance

(
σ sim

x

)2 ≡
〈 (

usim
x

)2
〉
−

〈
usim

x

〉2
, (26)

Fig. 11 Mean axial velocity at
various sections of a jet (x =
1cm, 3cm, 5cm and 7cm) for the
cases of jets of Re = 690 and
Re = 1170. Solid lines
correspond to simulations

〈
usim

x

〉
and crosses to experimental
results

〈
u

exp
x

〉
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and using the relations previously seen in Eqs. 20 and 21,
we find

(
σ sim

x

)2 = 〈∫ ∞
−∞ dz P � u2

x

〉 − 〈∫ ∞
−∞ dz P � ux

〉2

= ∫ ∞
−∞ dzP �

〈
U2

x +2Uxu
′
x +u′2

x

〉−(∫ ∞
−∞ dz P �

〈
Ux +u′

x

〉)2

= ∫ ∞
−∞ dz P �

(
U2

x + 〈
u′2

x

〉) − (∫ ∞
−∞ dz P � Ux

)2
.

(27)

Knowing that the definition for the kinetic energy of
turbulence k is

k = 1

2

( 〈
u′2

x

〉
+

〈
u′2

y

〉
+

〈
u′2

z

〉 )
, (28)

and assuming for simplicity that turbulence is sufficiently
isotropic, we obtain

〈
u′2

x

〉
=

〈
u′2

y

〉
=

〈
u′2

z

〉
, (29)

Fig. 12 Velocity fluctuations at
various sections of a jet (x=1cm,
3cm, 5cm and 7cm) for
Re = 690 and Re = 1170. Solid
lines correspond to simulations
σ sim

x and crosses to experimental
results σ

exp
x . Dashed red lines

correspond to σk , defined on
Eq. 34
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k = 3

2

〈
u′2

x

〉
, (30)

which, when introduced into Eq. 27 and after rearrang-
ing, allow us to express the magnitude of the velocity
fluctuations of bubbles σ sim

x as

(
σ sim

x

)2 =
∫ ∞

−∞
dz P � U2

x −
(∫ ∞

−∞
dz P � Ux

)2

+2

3

∫ ∞

−∞
dz P � k . (31)

This equation can actually be expressed as(
σ sim

x

)2 = σ 2
0 + σ 2

k , (32)

σ 2
0 =

(∫ ∞

−∞
dy P � U2

x

)
−

(∫ ∞

−∞
dy P � Ux

)2

, (33)

σ 2
k = 2

3

∫ ∞

−∞
dz P � k . (34)

In these expressions, σ0 stands for the magnitude of the
apparent fluctuations due to the 3D structure of the jet,
already present for the mean flow and which arise from the
comparison of mean velocities at layers of different depth
along the visual line. On the other hand, σk stands for the
projection of the intrinsic fluctuations of the velocity at the
different layers of the jet, that is, those due to turbulence.

In Fig. 12 we compare the velocity fluctuations of the
experimental data with the numerical predictions calculated
with Eq. 31, with no additional fitting parameter, since the
velocity scale has already been fitted using the velocity
measurements.

Dashed lines show the value of σk as defined in Eq. 34, to
illustrate the magnitude of the intrinsic velocity fluctuations
due to turbulence in relation to the apparent ones. As for
the measurements on the bubble spatial dispersion, for both
the measurements of mean values and dispersion of bubbles
velocities, the prediction of the k-ε model is also reasonably
accurate, within the inherent uncertainties of the experimen-
tal data, and taking into account the symmetry breaking of
the experimental data to the already mentioned residual flow
from the preparation procedure under normal gravity.

Jet Boundaries

Simulations seem to predict slightly smaller opening angles
of the bubble jet at large distances from the injection point.
It is not clear if this could be attributed to an extra over-
spreading of bubbles due to the stagnation disk or some
other spurious effect of the injection of bubbles in the stage
prior to microgravity. In any case, one should take into
account that the boundary of the turbulent jet may not be
well described within the frame of a k-ε model, because the
latter implies a smooth variation of the properties k and ε,

whereas in reality at the boundary between the jet and the
laminar flow there can be significant changes of local flow
characteristics. Moreover the boundary between the turbu-
lent jet and the laminar flow is expected to fluctuate over
time, and interactions between bubbles and flow could be
important at that fluctuating boundary, for instance ejecting
bubbles out of the turbulent part of the jet. Consequently, the
average effect on the bubble dispersion and velocity statis-
tics displayed by bubbles near the jet boundary is likely to be
missed by our simple model. In fact, when looking at the dif-

fusion coefficient k2

ε
of the model, plotted in Fig. 5, we find

a fast decay of this magnitude in a narrow distance, but this
is still a smooth spatial variation and, most importantly, con-
stant in time. It is thus not surprising to find deviations from
the prediction of the model in the experimental observation
made on the margins of the jet.

One way to define a the position of the jet boundary is
to assume that turbulence effectively vanishes past a cer-
tain threshold value of k. In Fig. 13 we show the relative
fluctuations of the flow for three simulations with different
degrees of turbulence. If we argue that the flow becomes
laminar when the relative fluctuations of the flow (k/U2)
drop below a certain value, then we can see on the figure
that the tendency is that the radius of the jet (i.e., its opening
angle) increases for decreasing Reynolds number. We find
the same tendency if we define the boundary of the bubble
jet at some intrinsic property of the curve, for instance its
inflection point. In this case, in addition, we also find that
the relative fluctuations of the velocity at the jet margin as
measured by k/U2 do increase with the Reynolds number.

The above predictions of the model seem to be chal-
lenged by experimental observations. Indeed, Carrera et al.
(2008) reported an opposite dependence of the measured
bubble opening angle (although measured very close to the
injector), which increased with Re until saturation value for
Re ≈ 700. In addition, the effect of Reynolds number on
the relative velocity fluctuations at the jet boundary does
not appear to be consistent with the model results. For this

Fig. 13 Profiles of k/U2 in function of the radial distance, at x=3cm
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Fig. 14 Experimental measures of relative velocity fluctuations at the
edges of the bubble jet

latter comparison, we have measured velocity fluctuations
by carefully choosing bubbles one by one at the apparent
jet boundary, at maximal distance from the jet axis, in the
projected plane of the images, thus minimizing the possible
component along the visual coordinate z. In Fig. 14 we show
the relative velocity fluctuations of the bubble velocities
measured on the bubbles at the margins of the experimental
images. The figure shows a weak decreasing tendency of the
relative velocity fluctuations of bubbles at the boundaries
when increasing Reynolds number, which would contradict
the prediction from the k-ε model defining the jet boundary
at the inflection point. Although not fully conclusive, these
observations seem to point out a limitation of the model
to capture the behavior of bubbles near the jet boundaries,
and consequently suggest active bubble-flow interactions in
those regions. Much more involved CFD simulations should
be invoked to be able to account more precisely for the
behavior at that level of detail, a problem that goes much
beyond the scope of the present study.

Conclusions

A stochastic model that captures the essential statistics of
bubble spatial dispersion in turbulent bubble jets formed
by injection of capillary slug flows is presented. The treat-
ment of bubbles as passive tracers with a local diffusivity
associated to the k-ε model seems to reasonably explain
the ensemble dynamics of the bubbles. Numerical results
obtained with our model compare well with experiments.

Simple scaling analysis comparing the bubble size and
the scales of turbulence indicate that the interaction between
bubbles and its effect upon the carrying flow cannot be
neglected in the regions relatively close to the inlet. How-
ever, our analysis shows that, even though potentially impor-
tant, to the degree of approximation that is consistent with

the inherent uncertainty of the experiments, such inter-
actions can be statistically neglected in the cases of the
overall spatial distribution of bubbles, their mean velocity
and the root-mean-square of their velocity fluctuations. This
approximation is expected to be progressively more accu-
rate for increasing distance downstream, since the flow is
essentially self-similar with the scale fixed by the jet radius,
while the bubbles become relatively smaller (effectively
point-like) with respect to the flow scales.

Potential deviations of the effective model from the
experimental statistics of bubble dispersion and velocity
fluctuations have been detected at the margins of the jets.
Indeed we found signs of a weak dependence of the rela-
tive velocity fluctuations with Reynolds number that does
not seem to be captured by the effective model. Similarly,
the weak dependence of the jet opening angle predicted by
the model differs from measurements from Carrera et al.
(2008). Although the limited statistics of the experiments
is not fully conclusive, these observations suggest that the
boundaries of the jet are regions where the bubble dynam-
ics is most sensitive, and where inaccuracies of the model
may be more apparent, even relatively far downstream. This
points to the possible failure of the hypothesis of passive
bubbles, assumed in the model, and hence to the relevance
of the bubble-flow interactions at the boundaries of the jet.

Our stochastic model works reasonably well to describe
the ensemble statistics of many realizations of bubble jets,
but cannot provide relevant information contained in the
properties of the actual bubble trajectories, for instance
to define the probability of bubble encounters, and conse-
quently of potential coalescence events.

A more accurate description of the system should also
aim at a more realistic modeling of the bubble trajecto-
ries. Diffusive trajectories are indeed too erratic on small
scales and overestimate significantly the probability of bub-
ble encounters. Introducing a more realistic tracking of the
flow trajectories, even if still as passive tracers, should take
into account statistical correlations of the flow which would
clearly modify the statistics of bubble encounters. This
point has remarkable practical relevance because reduc-
ing the degree of bubble coalescence is important to keep
the monodispersivity of the suspension, and ultimately the
control of the surface-to-volume ratio. Our jets do exhibit
a remarkably low degree of bubble coalescence, a point
that was already discussed by Carrera et al. (2008). A full
description of the dynamics of suspensions of spherical bub-
bles, including bubble-bubble interactions and bubble-flow
interactions could be approached with large scale Lattice-
Boltzmann simulations, in the spirit of the work of Yin
et al. (2006). In the case of bubble jets, however, the non-
homogeneous conditions along the jet makes this analysis
very demanding. It is particularly difficult to incorporate
correctly the physics of the two-phase flow right at the exit
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of the injector, where bubbles may significantly deform due
to the strong slowing-down as they enter the cavity, and the
variations of the flow field are strong at the scale of bubbles.
There the problem is that of a turbulent multiply connected
free-boundary problem of great numerical difficulty.
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