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Abstract Microgravity is a major abiotic stress in space.
Its effects on plants may depend on the duration of expo-
sure. We focused on two different phases of microgravity
responses in space. When higher plants are exposed to short-
term (seconds to hours) microgravity, such as on board
parabolic flights and sounding rockets, their cells usually
exhibit abiotic stress responses. For example, Ca2+-, lipid-,
and pH-signaling are rapidly enhanced, then the produc-
tion of reactive oxygen species and other radicals increase
dramatically along with changes in metabolism and auxin
signaling. Under long-term (days to months) microgravity
exposure, plants acclimatize to the stress by changing their
metabolism and oxidative response and by enhancing other
tropic responses. We conclude by suggesting that a system-
atic analysis of regulatory networks at the molecular level
of higher plants is needed to understand the molecular sig-
nals in the distinct phases of the microgravity response and
adaptation.
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Introduction

Plant microgravity science has been one of the most active
fields in space biology since the first satellite was launched
in 1957. Studies on higher plants in space have two main
goals: bioregenerative life support systems for long-term
missions and fundamental plant biology research. Long-
term human space exploration missions require a life sup-
port system capable of regenerating all the essentials for
astronauts’ survival. Plants are considered a key factor in
such a bioregenerative system, because photosynthesis can
provide food, such as carbohydrates, proteins, lipid oils, and
vitamins, as well as the oxygen that is vital to maintaining a
balance between the partial pressures of oxygen and carbon
dioxide. Studies on plants in bioregenerative life support
systems have been extensively reviewed (Salisbury and
Bugbee 1988; Kliss et al. 1994; Tako et al. 2010; Wheeler
2010; Paul et al. 2013a). This review will focus on short-
term and long-term space experiments using higher plants,
with an emphasis on their perception of, responses to,
and adaptation to microgravity under spaceflight conditions
(Fig. 1).

The ability of plant organs to use gravity to guide growth
is called gravitropism; gravitropism maximizes the uptake
of water and nutrients from the soil by roots and solar
energy capture by leaves on the ground. Many studies
have demonstrated that plant growth is severely impaired in
space (Briarty and Maher 2004; De Micco et al. 2011; Paul
et al. 2013b). Plants grown in microgravity (i.e., on space-
flights) or in simulated microgravity (i.e., on clinostats)
exhibit spontaneous curvatures or changes in growth direc-
tion, called automorphosis (Hoson et al. 1995; Driss-Ecole
et al. 2008) or automorphogenesis (Stanković et al. 1998).
Recent advances in plant genomics and proteomics and
microgravity experiments on spaceflights, which allow real
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Fig. 1 Schematic diagram of short- and long-term responses of plant cells toward microgravity

changes in the orientation and/or intensity of the gravity
vector, allow the mechanisms of perception, response, and
adaptation of plants to microgravity signals to be addressed.
The action of microgravity has been hypothesized to depend
on the duration of exposure (Claassen and Spooner 1994;
Matı́a et al. 2009). Upon exposure to short-term (seconds
to hours) microgravity, plant cells initially exhibit abiotic
stress responses, such as dramatically increasing the produc-
tion of reactive oxygen species (ROS) and other radicals,
while in long-term (days to months) microgravity, plants
change metabolically and adapt to oxidative stress (Tables 1
and 2). However, key questions remain. How does micro-
gravity affect plant growth and development? Do particular
molecular signals exist? And, if so, are they specific to the
distinct phases of microgravity response and adaptation?

Drop towers, sounding rockets, and aircrafts during
parabolic flight can be used to offer a short-term micrograv-
ity. Although the duration of these platforms is very short
(seconds to minutes), it is enough to cause signaling changes
in calcium, lipids, and cytosolic pH that alter ROS signals,
the redistribution of auxin, and changes in metabolic activ-
ity leading to an adaptive plant response. The opportunities
for long-term space experiments are very scarce. Therefore,
ground-based facilities, such as clinostats, have been devel-
oped to simulate microgravity, but the influence of gravity
will never fully be neutralized on the ground (Briegleb
1992).

Satellites, spacecraft, and space shuttles can offer rel-
atively long-term days to months) microgravity. Many of
the insights into fundamental plant biology in space were
enabled by these types of space platforms. For example,
the effects of microgravity on overall plant metabolism,
growth, development, and reproduction were determined
(Zheng et al. 2008; De Micco et al. 2014). The genomic
and proteomic responses of plants to space flight were also
analyzed (Table 1 and 2). The upmass and capsule volume
are still limiting factors for the study of long-term plant
responses to space environments.

Reception and Response

Strong evidence now shows that plants can perceive gravity
on the time scale of a second. For example, the sedimen-
tation of statoliths (amyloplasts) in gravity-sensing col-
umella cells of Arabidopsis roots occurred in less than 1 s
(Hejnowicz et al. 1998; Perbal et al. 2002; Perbal and
Driss-Ecole 2003), and the redistribution of auxin and root
curvature growth could be observed within 10 s (Leitz et al.
2009). However, the underlying molecular mechanisms of
these responses in plant cells remains unknown. Numerous
signaling pathways, such as Ca2+, lipid, and cytosolic pH,
have been implicated in short-term microgravity-induced
signal transduction (Table 1).

Calcium Signaling

Environmental changes are signaled through a transient
increase in the intracellular Ca2+ concentration, which is
also thought to be an important second messenger for
sensing and responding to gravity (reviewed in Plieth 2005,
Toyota et al. 2008). The plasma membrane is considered
the primary site for sensing microgravity, which causes
an influx of Ca2+. The movement of Ca2+ in the wall
might regulate extension growth and that free intracellular
Ca2+ might mediate signaling in statocytes in response to
an altered gravity vector. However, the mechanistic under-
standing of the role of Ca2+ in response to microgravity still
lack (Leitz et al. 2009) Recently, the responses of cytoso-
lic calcium, hydrogen peroxide H2O2), and related gene and
protein expressions in Arabidopsis cell cultures on parabolic
flights has been studied (Hausmann et al. 2014). Ca2+-
dependent genes, such as members of the Ca2+–binding
family and Ca2+-dependent protein kinases, exhibited
increased expression at the end of the microgravity phase
of the parabola (Hausmann et al. 2014). A close interrela-
tionship between Ca2+ and ROS signaling was also reported
(Wong et al. 2007; Takeda et al. 2008). For example,
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seconds of exposure to microgravity could increase both
cytosolic Ca2+ and H2O2 levels in parallel (Hausmann et al.
2014). Ca2+ influx caused by microgravity can activate a
Ca2+-dependent protein kinase (CDPK), which phosphory-
lates the N-terminal region of the H2O2-producing NADPH
oxidase, thus increasing H2O2 production. The latter led
to the up-regulation of H2O2 scavengers such as ascorbate
peroxidases (APX4, APX6), glutathione peroxidase, cata-
lases (CAT1), and superoxide dismutase. H2O2 production
and degradation will consequently reach a new balance in
long-term microgravity.

Lipid Signaling

Membrane lipids can serve as signaling molecules in addi-
tion to their structural function because of their specific
distribution in cellular compartments (Toker 2002). Most
of these molecules, such as phosphatidylinositol (PtdIns)
and its phosphorylated derivatives, the water-soluble inosi-
tol (1,4,5), trisphoshate (InsP3), sterols, and sphingolipids,
are involved in vesicle trafficking, which is essential for the
auxin transport facilitators PINs recirculation during gravit-
ropic responses (Smith et al. 2013; Boutté and Grebe 2009).
InsP3 is involved in releasing intracellular calcium after
altered gravity stimuli, and its signal peaks appear at both
the sensing site and elongation zone of roots (Krinke et al.
2007; Im et al. 2010; Gillaspy 2011; Perera et al. 1999,
2001). Although the downstream receptor of InsP3 is
still unknown, it participates in regulating the redis-
tribution of auxin in response to altered gravity. For
example, when InsP3 was hydrolyzed or its synthesis
blocked by chemical inhibitors like U73122, the estab-
lishment of an asymmetric auxin distribution in roots
was delayed, and gravitropic response was also attenuated
(Perera et al. 2001; Andreeva et al. 2010; Salinas-
Mondragon et al. 2010).

Cytosolic pH Signaling

The pH in apoplasts of central columella cells of roots
increased from 7.2 to 7.6 during statolith sedimentation
(Fasano et al. 2001). This alkalinization may be an addi-
tional result of calcium ion channel activation, which
usually activates a plasma membrane H+/OH−conduc-
tance (Boonsirichai et al. 2006; Monshausen et al. 2011;
Sato et al. 2014). However, this alkalinization is absent
in starchless pgm mutants (Fasano et al. 2001). Transcrip-
tomic data obtained in microgravity showed that many
genes are closely related to calcium processes and cytoso-
lic pH signaling (Paul et al. 2011, 2012). The capac-
ity to regulate cytoplasmic pH has been suggested to
be a crucial factor in determining cell survival under
microgravity.
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ić

et
al

.,
20

07

tr
ea

tm
en

ti
n

co
m

pa
ri

so
n

w
ith

th
os

e
un

de
r

hy
pe

rg
ra

vi
ty

.

A
ra
bi
do
ps
is
th
al
ia
na

ca
llu

s
2-

D
cl

in
os

ta
tr

ot
at

io
n

18
pr

ot
ei

ns
in

vo
lv

ed
in

ge
ne

ra
ls

tr
es

s
re

sp
on

se
,m

et
ab

ol
ic

pa
th

w
ay

s,
ge

ne
W

an
g

et
al

.,
20

06

ac
tiv

at
io

n/
tr

an
sc

ri
pt

io
n,

pr
ot

ei
n

sy
nt

he
si

s
an

d
ce

ll
w

al
lb

io
sy

nt
he

si
s

Microgravity modifies the dynamics of fluids and small
particles, thus altering the diffusion of gases (e.g., carbon
dioxide and oxygen) and the uptake of water and nutrients
(Wolff et al. 2014). Plant cells grown in such an environment
might exhibit hypoxia. Oxygen-deficit stress induces cyto-
plasmic acidification. To prevent acidosis, plant cells grown
under microgravity can enhance the activity of fermentative
pathway (Paul et al. 2001) and probably accumulate amino
acids, such as alanine, to regulate the pH within the anoxic
cells. The lack of high-resolution instrumentation is a major
obstacle to studying the effects of microgravity on intra-
and extracellular pH (Ruyters and Braun 2014). The use
of novel fluorescent pH reporter proteins, like Ptilosarcus
gurneyi green fluorescent protein (Pt-GFP), and fluorescent
biosensor technology enables more accurate measurement
of intracellular pH (Monshausen et al. 2011; Gjetting et al.
2012; 2013; Geilfus et al. 2014) . Fluorescence microscopy
and confocal live-cell imaging have begun to be used in
space experiments (Ruyters and Braun 2014) and may pro-
vide more details about changes in intra- and extracellular
pH in space.

Auxin Reflux and Signaling

Asymmetric application of H2O2 promoted gravitropism
in maize roots, indicating the involvement of the auxin
signaling pathway (Joo et al. 2001). Recently, compar-
isons of global differential gene expression in Arabidopsis
wild-type (WT) and mutant (i.e.,pin2 and pin3) seedlings
grown under parabolic flight conditions were performed
using DNA microarrays,the results demonstrated that the
regulation of auxin responsive genes in transient micrograv-
ity is PIN3-dependent. PIN2-mediated auxin responses are
located downstream of the primary transient microgravity
response (Aubry-Hivet et al. 2014). These data partially cor-
roborate previous proteomic analysis of Arabidopsis WT
and pin2 roots under clinorotation and hypergravity condi-
tions (Tan et al. 2011). In addition, three-dimensional cli-
norotation remarkably increased the expressions of PsPIN1
and PsAUX1 in pea epicotyls (Hoshino et al. 2004). Notably,
these proteins are regulated by light as well as gravity
(Ruyters and Braun 2014; Vandenbrink et al. 2014). Only
a microgravity environment could distinguish the two stim-
uli (Vandenbrink et al. 2014). Studies have been carried
out in microgravity recently on the International Space
Station (ISS) (Vandenbrink et al. 2014). The impacts and
cross-talk of light and gravity, nevertheless, in particular on
indole-3-acetic acid transport, require further evaluation.

Metabolic Changes

Rapid metabolic responses in higher plants were also
observed in short-term hypergravity and microgravity.



Microgravity Sci. Technol. (2015) 27:377–386 383

For example, transient microgravity enhanced carbohy-
drate metabolism in WT and pin2 but not in pin3 roots
(Aubry-Hivet et al. 2014), indicating an increased demand
for energy during the response. Increased phosphorylation
of triosephosphate isomerase (glycolysis), pyruvate dehy-
drogenase (glycolysis), and citrate synthase (citrate cycle)
was detected in Arabidopsis callus cells upon exposure to
microgravity for 20 s (Hausmann et al. 2014). Thus, short-
term microgravity stimulation is sufficient to alter the tran-
script levels of many genes, mainly Ca2+- and ROS-related
ones.

Adaptation

The long-term and short-term effects of microgravity on
plant growth and development appear to be different. For
example, a number of metabolic products, ions, and sig-
nal molecules accumulated during short-term micrograv-
ity, but their levels did not continue to increase during
long-term microgravity. Long-term adaptation to micro-
gravity is essential to plant growth and proper devel-
opment in spaceflight conditions. Plants show a strong
capacity to withstand long-term spaceflight conditions
via metabolic changes and adaptation to oxidative stress
(Table 1). Primary and secondary metabolic changes in
plants on U.S. space shuttles and the ISS have been
recently reviewed (Paul et al. 2013a); three main strategies
are usually used by plants: altered metabolism, adapta-
tion to oxidative stress, and enhancement of other tropic
responses.

Metabolic Adaptation

Characterizing metabolic changes has been generally con-
sidered among the most direct approaches for studying
physiological responses of plant cells to microgravity
(Tripathy et al. 1996; Hampp et al. 1997; Volovik et al.
1999). Genomic and proteomic changes have been analyzed
in spaceflight experiments. For example, in Arabidopsis
callus 14d grown on board the Chinese spacecraft SZ-8,
many key enzymes of the carbohydrate metabolic path-
way, such as GDH1 and GDH2, were greatly upregulated,
ensuring an effective cellular energy state during the adap-
tion to microgravity (Zhang et al. 2015). The impact of
microgravity on cellular trafficking and energy state might
alter plant cell construction and metabolism. A thinner cell
wall and decrease in cell wall constituents (polysaccha-
rides) were observed under spaceflight conditions (Hoson
et al. 2001; Soga et al. 2002; Nedukha 1997). Concerted
changes in transcriptional and protein expression patterns
and physiological traits have been noticed under long-term
spaceflight stress. The expressions of cell wall-associated

CsExps genes in cucumber seedlings peg were reduced 4-
fold in microgravity compared with those in the ground
control (Link et al. 2001). Lignin production is often
reduced in spaceflight along with the activities of pheny-
lalanine ammonia lyase and peroxidase, as particularly
shown in pine seedlings (Cowles et al. 1984; Cowles et al.
1988). In Brassica stems, the concentration of 3-butenyl
glucosinolate increased in orbit compared with ground
controls.

Adaptation to Oxidative Stress

Removal of ROS species produced under spaceflight stress
in plant cells is essential to minimizing oxidative damage
to biological macromolecules. Reconstruction of antioxi-
dant defense mechanisms to scavenge the ROS is key to
plant adaptation to microgravity. Using transgenic Ara-
bidopsis plants harboring the alcohol dehydrogenase pro-
moter linked to a β -glucuronidase (GUS) reporter gene,
Paul et al. (2001) showed that spaceflight affects stress-
signal perception and transduction. The adaptive response
was observed in altered expression of heat shock pro-
teins (HSPs) in Arabidopsis cell cultures,HSP genes were
induced exclusively in response to prolonged micrograv-
ity on board the ISS and under sustained clinorotation,
but transient microgravity intervals in parabolic flight
and various hypergravity conditions failed to induce them
(Paul et al. 2005; Zupanska et al. 2013; Kozeko and
Kordyum 2009).

Increases in Other Tropic Responses

Many plants can complete their life cycles in micro-
gravity and spaceflight experiments (reviewed by
Correll and Kiss 2008; Correll and Kiss 2011). According
to early space experiments, gravity was not necessary to
maintain normal growth and proper development. How-
ever, more recent studies have indicated that those results
could be attributed to the flexible adaptation mechanisms
of plants. Analyses of Arabidopsis plants carried by the
space shuttle to the ISS demonstrated how gravity con-
tributed to intrinsic growth patterns (Johnsson et al. 2009;
Solheim et al. 2009). To compensate for the lack of grav-
itropism, plants under microgravity strengthened other
tropic responses. For example, Arabidopsis hypocotyls
display increased blue-light phototropism (Millar et al.
2010). Recently JAXA’s HydroTropi experiments on the
ISS showed that roots of cucumber seedlings became
sensitive to moisture gradients, bending strongly toward
moistened medium, and auxin-inducible genes such as
CsIAA1 andCsPIN5 were expressed much more strongly
in the responsive position of bending roots(Moriwaki et al.
2013).
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Conclusions

Our knowledge of the short-term and long-term micrograv-
ity responses of plants in space has been greatly improved
by recent advances in plant genomics and proteomics and in
growth chambers allowing adequate environmental control
for plant cultivation on space flights. Genome-wide DNA
microarrays and global proteomic analyses have shown that,
shortly after microgravity exposure, numerous genes are
transiently up-regulated, many of which function in gen-
eral stress responses, such as Ca2+, lipid, and cytosolic pH
signaling (Aubry-Hivet et al. 2014; Hausmann et al. 2014).
However, after long-term acclimation, only a few genes
remain at the elevated level and they are often functionally
important for microgravity adaptation, probably via oxida-
tive stress tolerance, metabolic changes, and tropic growth
(Paul et al. 2005; Mazars et al. 2014; Zhang et al. 2015).

In the coming decade, plant research in space should con-
sider the molecular regulatory network level, with emphasis
on an advanced understanding of long-term micrograv-
ity effects and the molecular basis of plant adaptation to
space. Plant growth facilities and sophisticated scientific
equipment would be perfect for use in space. Genomic
and proteomic studies will offer the promise of new data
to better resolve the mechanism of plant responses and
adaptation to short- and long-term microgravity. Long-
term, uninterrupted, multigenerational, plant experiments
will be possible on board the ISS and Chinese space
station, which is expected to be fully operational by
2020.
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