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Abstract Steady thermo-solutocapillary convection in
axisymmetric liquid bridge with dynamic free surface is
numerically studied in the absence of gravitational effects.
The upper and lower disks of liquid bridge maintain at con-
stant temperature and solute concentration. The deformable
free surface is obtained by Level set method. Numerical
simulations are carried out for Prantle number Pr = 1, Cap-
illary number Ca = 0.1, Marangoni number 1≤ Ma ≤ 100,
and thermal to solutal Marangoni number ratio −10 ≤
Rσ ≤ 0.1. The results show that there are three modes of
free surface deformation in thermo-solutocapillary convec-
tion under low Marangoni number: 1) as −10 ≤ Rσ < −1,
the free surface bulges out near the lower disk and bulges in
near the upper disk; 2) as Rσ = −1 the free surface bulges
out near the lower and upper disks and bulges in at the cen-
tral region of the liquid bridge; 3) as−1Rσ ≤ −0.1, the free
surface bulges out near the upper disk and bulges in near the
lower disk. Moreover, the effect of Marangoni number on
free surface deformation also is discussed.
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Introduction

Thermo-solutocapillary convection is driven by surface
tension gradient due to the variation of temperature and
solute concentration at free surface. This phenomenon
widely exists in crystal growth process, welting process,
and many other industrial processes. The most widely
studied model associated with the thermo-solutocapillary
convection is a liquid bridge with temperature and solute
concentration differences between two disks. As early as
1969, Levich and Krylov (1969) had made an analysis of
the coupling of thermocapillary convection and solutocap-
illary convection. The first time numerical investigation of
thermo-solutocapillary convection in liquid bridge or float
zone is by You and Hu (1992), they found that the solutal
Marangoni number has obvious influence on the stream-
line function and the solute distribution but has relatively
slight effect on the temperature distribution. Wanschura
et al. (1995) made a linear stability analysis of thermo-
and solutocapillary convection in a cylindrical liquid bridge,
and they obtained critical Reynolds numbers for different
parameter variations. Artemyev et al. (2001) numerically
investigated the heat mass transfer processes in germa-
nium crystal growth by the floating zone method under
microgravity conditions, the thermal and solutal kinds of
Marangoni convection in the molten zone was considered.
Walker et al. (2002) numerically investigated the thermo-
solutocapillary convection under a strong magnetic field.
Joly et al. (2004) investigated the transport dynamics and
stability limit of the axisymmetric steady flow driven by a
surface tension variation in a liquid bridge configuration,
in which the thermal and solutal Marangoni effect were
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included. Minakuchi et al. (2004) numerically studied the
effect of solutal Marangoni convection during the SixGe1−x

crystal growth by the floating-zone technique under zero
gravity, the results show that the contribution of the solutal
Marangoni convection to the flow structure was significant
although the strength of the solutal Marangoni convection
is much weaker than that of the thermal Marangoni convec-
tion. Lin et al. (2005) numerically investigated Marangoni
flows in a floating zone of germanium-silicon crystals, the
competition between the thermocapillary and solutocapil-
lary flows in the floating zones was qualitatively examined,
and in their model the static deformable free surface was
used. Lyubimova et al. (2007a, b; 2011a, b) made a lot of
investigation on thermo-solutocapillary convection in float
zone crystal growth, they studied the flow structure and
flow instability of the convection, and obtained the effect
of constant axial magnetic field on the thermosolutocap-
illary convection Recently, Minakuchi et al. (2012, 2014)
studied the thermo-solutal Marangoni convection occur-
ring in a liquid bridge of a silicon-germanium system
under zero gravity, and they also investigated the relative
contributions of thermal and solutal Marangoni convec-
tions on transport structures in a liquid bridge under zero
gravity.

The literatures show that the thermo-solutocapillary con-
vection in liquid bridge or float zone has been investigated
extensively, however, all the above studies were dedicated
to the situation of nondeformable free surface or static
deformable free surface, and the dynamic deformation of
free surface was neglected in order to avoid the simula-
tion complexity associated with the unknown free surface
shapes. It is well known that the deformation of free sur-
face has an important influence on the pure thermocapil-
lary convection, in particular for the onset of the oscilla-
tory flow in liquid bridge (Sim et. al 2004). Micrograv-
ity experiment by Koster (1994) indicated that, a detailed
investigation of thermocapillary convection in multilay-
ered fluid systems needed to take account for finite inter-
face deformations in conjunction with a suitable dynamic
contact line condition. Moreover, the dynamic deforma-
tion of free surface in pure thermocapillary convection of
liquid bridge has been considered by many investigators
(Kuhlmann and Nienhuser (2002); Kawajia et al. (2006);
Liang et al. (2014)).

To the authors’ knowledge, the dynamic deformation
of free surface in the numerical simulation of thermo-
solutocapillary convection has not been considered. There-
fore, in the present work we report on the simulations of
steady thermo-solutocapillary convection with a deformable
free surface in axisymmetric liquid bridge by level set
method, and the effects of thermal to solutal Marangoni
number ratio and Marangoni number on the thermo-
solutocapillary convection are discussed.

Physical and Mathematical Models

The liquid bridge with radius R0 and height H is suspended
between two coaxial disks and surrounded by the gas in
a cylindrical container with radius 2R0 and height H as
shown in Fig. 1. The Aspect ratio of the liquid bridge is
A=H/R0 =1.2. The liquid bridge is filled with a binary
fluid, which is a two-component mixture working medium.
The interface between the fluid and gas is a deformable
free surface. Different temperatures and concentrations are
applied at the upper disk (T1, C1) and lower disk (T2, C2),
where T1 > T2 and C1 > C2. The no-slip boundary con-
dition is adopted for the upper and lower disks, and the
surface tension force acts on the free surface. All the thermal
properties are assumed to be constant except for the surface
tension, and the surface tension is allowed to vary linearly
with the liquid temperature and solute concentration. Thus
the surface tension can be formulated as,

σ = σ0 − γT (T − T0) − γC(C − C0)

where σ0 = σ (T0, C0), γT = − (∂σ/∂T ), γC =
− (∂σ/∂C)T . Thermophysical properties of the fluid are
estimated at the reference temperature T0 and concentration
C0, which are set to be equal to T1 and C1, respectively.
Moreover, only the liquid surface tension increases with
concentration and decreases with temperature are consid-
ered. The fluid flow is assumed to be laminar, and buoyancy
effects are neglected in present study.

The nondimensional variables of velocity, temperature,
solute concentration, coordinates, time and pressure are
defined as V = u

U
, Θ = T −T1

T2−T1
, C∗ = C−C1

C2−C1
, (R, Z) =

(r,z)
R0

, τ = tU
R0

, P = p/
(
ρlU

2
)
, respectively. Here, U =

γTΔT/μl is characteristic velocity. The level set method

0

Z

GasLiquid

T2, C2

T1, C1

Free surface

Fig. 1 Physical model
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is employed to capture the free surface implicitly by intro-
ducing a smooth level set function, with the zero level
set as the free surface, positive value outside the free sur-
face, and negative value inside the free surface. Then,
the non-dimensional Navier-Stokes equations governing the
thermo-solutocapillary convection are expressed as follows:

∇ · V = 0 (1)

∂V
∂τ

+ ∇ · (VV) = − 1

ρ̃
∇P + 1

ρ̃Re
∇ · (μ̃∇V)

+ 1

ρ̃Re
∇ · (μ̃∇V)T + 1

ρ̃Re

(
∇sΘ + ∇sC

∗

Rσ

)
δ(φ)

+ 1

ρ̃Re

(
1

Ca
+ Θ + C∗

Rσ

)
k(φ)δ(φ)∇φ

ρ̃
(2)

∂�

∂τ
+ V · ∇� = 1

ρ̃C̃pMa
∇ · (λ̃∇�) (3)

∂C∗

∂τ
+ V · ∇C∗ = 1

LeMa
∇ · (D̃∇C∗) (4)

∂φ

∂τ
+ V · ∇φ = 0 (5)

where μ̃ = μ/μl , ρ̃ = ρ/ρl , λ̃ = λ/λl , D̃ = D/Dl

and C̃p = Cp/Cpl are the dimensionless viscosity, density,
thermal conductivity, solute diffusivity, and specific heat,
respectively. φ is the Level set function, δ is the smeared-out
Dirac delta function, and ∇s = (I − nn) · ∇ is free surface
gradient operator. The dimensionless parameters are defined
as follows: thermal Marangoni number MaT = γT ΔT R0

μlαl
,

Solutal Marangoni number MaC = γCΔCR0
μlαl

, Marangoni

number Ma = |MaT|, Reynolds number Re = UR0
νl

,

Capillary number Ca = |CaT CaC|, CaT = γT ·ΔT
σ0

and

CaC = γc·ΔC
σ0

, the ratio of thermal Marangoni number to

solutal Marangoni Rσ = γT ·�T
γC ·�C

, Prandtl number Pr = νl

αl

and Lewis number Le = αl

Dl
. The Marangoni number equals

to the product of Reynolds number and Prandtl number,
namely Ma = Pr∗Re. The subscripts of g and l note the
gas and liquid, respectively. The continuum surface force
(CSF) model (Brackbill et al. 1992) is used to reformulate
the surface tension as a volume force, and the fourth and
fifth terms at the right hand of the momentum equation are
the tangential and normal surface tension, respectively.

The corresponding physical variants can be expressed as

ρ̃ = ηρ + (1 − ηρ)H(φ),

μ̃ = ημ + (1 − ημ)H(φ) (6)

where ηρ = ρg/ρl, ημ = μg/μl , H(φ) is the smeared-out
Heaviside function defined by

H(φ) =

⎧
⎪⎨

⎪⎩

1
1
2 + φ

2ξ
+ 1

2π
sin

(
πφ
ξ

)

0

φ < −ξ

−ξ ≤ φ ≤ ξ

φ > ξ

(7)

where ξ is a tunable parameter that determines the size
of the bandwidth of numerical smearing. A typical good
value is ξ = 1.5ΔR, and ΔR is the grid step spacing in
R-direction

To keep the level set function as a distance function from
the front, an approach based on solving the hyperbolic par-
tial differential equation has been presented in reference
(Sussman et al. 1994). The reinitialization equation is

φY = sign (φ0) (1 − |∇φ|) , φ (R, 0) = φ0 (R) (8)

Where |∇φ| =
√

φ2
R + φ2

Z , and the sign function

signξ (φ0) = φ√
φ2+ξ2

.

Moreover, in order to make the total mass completely
satisfy the mass conservation in time, the mass conserving
procedure proposed by Liang et al. (2011) is used.

Boundary and Initial Conditions

Θ = 0, C∗ = 0, V = 0,
∂φ

∂Z
= 0 at Z = 0 (9-a)

Θ = 1, C∗ = 1, V = 0,
∂φ

∂Z
= 0 at Z = 1.2 (9-b)

VR = 0,
∂VZ

∂R
= 0,

∂Θ

∂R
=0,

∂C∗

∂R
= 0,

∂φ

∂R
= 0 at R = 0 (9-c)

VR = 0, Vz = 0,
∂Θ

∂R
= 0,

∂C∗

∂R
= 0,

∂φ

∂R
= 0 at R = 2 (9-d)

Θ = 0, C∗ = 0, V = 0, φ (1, Z) = 0, P = 0 at τ = 0 (9-e)

In this paper, we consider the contact conditions of
interface with the upper and lower disks is contact points
fixed.

Computational Method

In this article we use the Runge-Kutta Crank-Nicholson
(RKCN) projection method presented by Ni et al.
(2003) to solve the governing equations The Crank-
Nicholson implicit technique is employed to update the
diffusion term, and the low storage three-stage Runge-Kutta
technique is employed to update the convective term. This
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method has second-order temporal accuracy for variable-
density unsteady incompressible flows. The diffusion term
in momentum equation is discretized using standard cen-
tral difference schemes, while the convective term is dis-
cretized by high-order compact schemes. The convective
term in the level set equation using the third-order essen-
tially nonoscillatory (ENO) scheme. The non-dimensional
time step for all the simulations is 1 × 10−3. This detailed
description of the computational method can refer to our
previous paper (Zhou and Huang 2010) The numerical code
is validated by comparing computed surface deformation
of pure thermocapillary convection with those from Sim
et al. (2004) in Fig. 2. The parameters for the simulation
are Pr =1, A = 1, Ca = 0.05 and Re = 1 The numer-
ical results at Bi = are in good agreement with Sim’s
results

The axisymmetric liquid bridge is discretized with a
uniform mesh, and this mesh is determined by refin-
ing the mesh size until convergence and constancy of
flow velocity, temperature, concentration and free surface
deformation is achieved. The grid number 200R∗200Z is
used, which is found to be sufficient to accurately cap-
ture the free surface, temperature, solute concentration and
flow fields.

Results and Discussions

In the liquid bridge, both the temperature and solute
concentration differences between the upper and lower

Fig. 2 Comparison of free surface deformation in liquid bridge with
Sim’s results

disks produce a surface tension gradient at free surface,
so the thermocapillary and solutocapillary convection can
be induced. The numerical simulations are carried out for
Prandtl number Pr = 1, Lewis number Le = 100, Capillary
number Ca = 0.1, Marangoni number 1 ≤ Ma ≤ 100 and
thermal to solutal Marangoni number ratio −10 ≤ Rσ ≤
−0.1. All the simulations start from the all-zero initial field
V= P = Θ = C∗ = 0 and the thermo-solutocapillary con-
vection is considered to be fully developed as the velocity,
temperature, solute concentration and free surface defor-
mation keep constant in computational process, namely the
final steady thermo-solutocapillary convection. The conver-
gence criteria can be defined as follows: for each time step

the quotient Q =
∣∣ϕn+1−ϕn

∣∣

|ϕn
max | is calculated for all dependent

variables in all grid points, and the index n+1 denotes a dis-
crete point of time which follows the point of time n after
a time step �τ . If Q ≤ 10−5 is valid for all variables in all
grid points the thermo-solutocapillary convection is inter-
preted as a steady flow. In our simulations, the density ratio,
dynamic viscosity ratio, thermal conductivity ratio, solute
diffusivity ratio and specific heat ratio of gas and liquid are
ηρ = 2×10−4, ημ = 3×10−3, ηλ = 10−3, ηD = 10−3 and
ηCp = 5, respectively. The initial shape of the free surface
of liquid bridge is a vertical non-deformable plane, and the
computational results at the time of τ = 500 are given in the
paper.

Influence of Thermal to Solutal Marangoni Number Ratio

The streamlines distribution of thermo-solutocapillary con-
vection under different Rσ with Ca = 0.1, Le = 100, Ma
= 1 is shown in Fig. 3, in which solid lines denote clock-
wise rotating cell and dashed lines denote anticlockwise
rotating cell. As Rσ =-0.1, the flow field consists of one
anticlockwise rotating convective cell, and from the fluid
flow direction at free surface we can know that this convec-
tion is driven by solutocapillary effect. As Rσ = −1, the
flow field consists of one anticlockwise and one clockwise
rotating convective cells, and the lower and upper convec-
tive cells are driven by thermocapillary and solutocapillary
effects, respectively. As Rσ = −10, the flow field consists
of one clockwise rotating convective cell, which is driven by
thermocapillary effect.

Figure 4 gives free surface deformations and surface
pressure distribution under different Rσ with Ca = 0.1, Le
= 100 and Ma = 1. It can be seen that the free surfaces is
almost asymmetric about the central point (R = 1, Z = 0.6)
of free surface. As Rσ = −1 the free surface deformation is
very small, the order of magnitude is O(10−6), whose ampli-
fied figure is shown in Fig. 4b. Meanwhile, the free surface
bulges out near the lower and upper disks and bulges in at
the central region of the liquid bridge. As Rσ < −1, the
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(a) (b) (c)

Fig. 3 Streamlines distribution with Ca=0.1, Le=100, Ma=1 and various Rσ

free surfaces bulge out near the lower disk and bulge in near
the upper disk, and with the decrease of Rσ the free surface
deformation increases. The surface deformation is O(10−3),
and its maximum value is 0.0011 at Rσ = −10, Ca = 0.1,
Le = 100 and Ma = 1. As Rσ > −1, the free surfaces bulge
out near the upper disk and bulge in near the lower disk,
and the free surface deformation increases with the increase
of Rσ . The free surface deformation is mainly caused by

surface pressure gradient, so the mechanism of free surface
deformation can be explained by the surface pressure dis-
tribution The corresponding surface pressure distribution of
Fig. 4a is shown in Fig. 4c. As Rσ = −1, the surface pres-
sure approximates to zero, this means the pressure gradient
is zero, therefore this surface pressure distribution does not
induce a obvious free surface deformation. As Rσ < −1,
the surface pressure decreases along z axis, namely the

Fig. 4 Free surface
deformations (a), amplified
figure of Rσ =-1 (b) and surface
pressure (c) distribution with Ca
= 0.1, Le = 100, Ma = 1 and
various Rσ

(a) (b)

(c) 
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Fig. 5 Surface axial velocity
(a) and surface tension (b)
distribution with Ca = 0.1, Le =
100, Ma = 1 and various Rσ

(a) (b)

pressure gradient is negative, this leads to the free surface
bulges out near the lower disk. Meanwhile, the absolute
pressure gradient increases with Rσ decreasing, so the free
surface deformation increases with the decrease of Rσ . As
Rσ > −1, the change tendency of surface pressure and
pressure gradient along Z axis is opposite to that of Rσ <

−1.
Figure 5 shows surface axial velocity distribution with

Ca = 0.1, Le = 100, Ma = 1 and various Rσ . As Rσ = −1,
the axial velocity is very small. As Rσ < −1, the surface
axial velocity is negative, this means the free surface fluid
flow from the upper disk to the lower disk, and it’s mag-
nitude increases with Rσ decreasing. As Rσ > −1, the
surface axial velocity is positive, which means the free sur-
face fluid flow from the lower disk to the upper disk, and it’s
magnitude increases with Rσ increasing. Figure 5b shows
non-dimensional surface tension distribution under different
Rσ with Ca = 0.1, Le = 100, and Ma = 1. As Rσ = −1, the
non-dimensional surface tension is unit, this means that the
thermocapillary forces is balanced by solutocapillary forces
at free surface. As Rσ < −1, the non-dimensional sur-
face tension is monotous decreasing, and it increases with
Rσ decreasing. As Rσ > −1, the non-dimensional surface

tension is monotous increasing, and it increases with Rσ

increasing.

Influence of Marangoni Number

Figure 6 shows streamlines distribution under different
Marangoni number with Rσ = −1, Ca = 0.1, Le = 100. As
Ma = 1, the streamlines distribution is shown in Fig. 3b, the
flow field consists of one anticlockwise and one clockwise
rotating convective cells, and the size of the both cells are
comparable. With Marangoni number increasing, the size
of the lower convective cell increases, but that of the upper
convective cell decreases. At the same time, the flow field
is dominated by the lower cell, which is driven thermocap-
illary effect. This reason can be attributed to the thermal
diffusivity is larger than that of mass diffusivity, which
causes the convective cell driven by thermocapillary effect
is formed before that driven by solutocapillary effect. More-
over, with Marangoni number increasing the temperature
gradient is more quickly established across the surface and
the clockwise rotating convective cell is generated, and this
leads to the convective cell driven by solutocapillary effect
is confined in the upper corner.

(a) (b) (c)

Fig. 6 Streamlines distribution with Rσ =-1, Ca = 0.1, Le = 100, and various Ma
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Fig. 7 Free surface
deformations (a) and surface
pressure (b) distribution with
Rσ =-1, Le = 100, Ca = 0.1,
and various Ma

(a) (b) 

Figure 7 shows free surface deformations and surface
pressure distribution under various Marangoni numbers
with Rσ = −1, Le = 100 and Ca = 0.1. We can see that
the free surface deformations near the upper and lower disks
almost equals to each other at Rσ = −1, Ma = 1, Le = 100
and Ca = 0.1, as shown in Fig. 4b. However, Fig. 7a shows
that, as the Marangoni number increases the deformation
near the lower disk increases deeply, but that near the upper
disk decreases. Meanwhile, the maximal free surface defor-
mation point travels to the lower disk, and the free surface
deformation of Ma = 100 is less than that of Ma = 50. In
Fig. 7b, the absolute value of pressure gradients at zone 1
and zone 2 is larger than that at the central region as Ma =
10, this leads to the free surface bulges out near the upper
and lower disks. As Ma = 50 and 100, the obvious surface
pressure gradient just occurs near the lower disk, this causes
the free surface bulges out near the lower disk. Moreover,
even if the pressure gradient near the lower disk of Ma =
100 is larger than that of Ma = 50, but the boundary effect
of the lower dick damps the free surface deformation, which
results in the free surface deformation in case Ma = 100 is
smaller.

In the next, we shall discuss the effect of Marangoni
number in the case of Rσ = −10. With the increase
of Marangoni number the flow fields remain unchanged,
and similar to Fig. 3c, so we do not give the flow fields
under various Marangoni numbers here. Figure 8 shows
free surface deformations and surface pressure with Rσ =
−10, Le = 100, Ca = 0.1 and various Ma. For different
Marangoni numbers, the free surfaces bulge out near the
lower disk and bulge in near the upper disk. As Marangoni
number increases, the free surface deformation near the
upper disk is reduced, and the length between the maxi-
mal point and the minimal point also is reduced. Therefore,
the free surface deformation is reduced with the increase
of Marangoni number. The surface pressures distribution
in Fig. 8b show that, the absolute of pressure gradient
decreases with Marangoni number increasing, then results
in the free surface deformation decreases.

Figure 9 shows surface axial velocity and surface ten-
sion distribution under various Marangoni numbers with
Rσ = −10, Le = 100 and Ca = 0.1. With Marangoni
number increasing the surface axial velocity increases, and
the inhomogeneity is enlarged. As for the non-dimensional

Fig. 8 Free surfaces (a) and
surface pressure (b) distribution
with Rσ =-10, Le = 100, Ca =
0.1 and various Ma

(a) (b)
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Fig. 9 Surface axial velocity
(a) and surface tension (b)
distribution with Rσ = −10, Le
= 100, Ca = 0.1, and various Ma

(a) (b)

surface tension, it manifests as linear variation along z axis.
However, with Marangoni number increasing the distor-
tion of the surface tension increases, particularly near the
lower disk, which means the thermocapillary convection is
enhanced as Marangoni number increases.

Conclusions

In this paper, steady thermo-solutocapillary convection in a
liquid bridge with dynamic deformable free surface under
zero gravity condition is numerically simulated, and the
effects of thermal to solutal Marangoni number ratio and
Marangoni number on the flow and free surface deformation
are discussed. The following conclusions were drawn:

1) As −10 ≤ Rσ < −1, the free surface bulges out
near the lower disk and bulges in near the upper disk
under low Marangoni number, and the flow field exists
one anti-clockwise rotating convective cell which is
driven by thermocapillary effect. With the increase
of Marangoni number the free surface deformation
decreases.

2) As Rσ = −1, the free surface bulges out near the lower
and upper disks and bulges in at the central region of the
liquid bridge under low Marangoni number, the flow
field consists of one clockwise and one anti-clockwise
rotating convective cells, them are driven by soluto-
capillary and thermocapillary convection, respectively.
With the increase of Marangoni number the free surface
deformation mode is changed.

3) As −1 < Rσ ≤ −0.01, the free surface bulges out near
the upper disk and bulges in near the lower disk, and the
flow field consists of one clockwise rotating convective
cell, which is driven by solutocapillary effect.
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