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Abstract The stability of a front of chemoconvective fin-
ger structures being spontaneously formed in a two-layer
system of fluids filling a vertical Hele-Shaw cell, each of
them containing a reactant of an exothermic A + B → S

reaction is examined. If the configuration consists of more
dense acid (or salt) on top of less dense base in the pres-
ence of gravity, the development of the Rayleigh- Taylor
instability leads to the standard scenario of density finger-
ing. Despite the widespread perception of fingering as an
irregular process, we show that, at least in some cases, the
exact balance between the instabilities involved can result
quasi-regular fingering pattern formation. In the case of
immiscible fluids, we demonstrate that the Rayleigh-Bénard
mechanism associated with intensive heat release during
the reaction performs fine-tuning of the envelope of salt
fingers. The mathematical model we develop consists in
a set of reaction-diffusion-convection equations governing
the evolution of concentrations and temperature coupled to
Navier-Stokes and energy equations, written in a Hele-Shaw
approximation. The results of linear stability analysis and
direct numerical simulations of the fully nonlinear system
are presented.
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Introduction

Hydrodynamic instabilities arising near the interface
between two or more immiscible liquids occur in a number
of important technological applications (Nepomnyashchy
et al. 2012). In many cases these processes are accompa-
nied with exothermic chemical reactions at the interface
or near it. Over the last few decades binary liquid-liquid
systems with a chemical reaction have been the subject
of increased fundamental investigations of the interaction
between reaction-diffusion phenomena and pure hydrody-
namic instabilities. In such systems, the instability of the
fluid interface may generate local convective fluxes and
thereby markedly affect the reaction as well as the interface
heat and mass transfers. In these cases, self-organization
processes may lead to a specific dissipation pattern forma-
tion of chemo-hydrodynamic nature.

Probably the first experimental evidence of convec-
tive mass transfer accompanied by chemical reaction in
liquid-liquid systems was obtained by Quincke (1888) who
observed spontaneous emulsification when a solution of
lauric acid in oil is brought in contact with an aqueous
solution of NaOH .

More recently (Sherwood and Wei 1957) observed spon-
taneous turbulence in the extraction of acetic acid from
an organic solvent into an alkaline solution and accelera-
tion of the interfacial reaction by convection. Dupeyrat and
Nakache (1978) also observed interfacial turbulence related
to the reaction of an alkyl ammonium ion with picric acid
at an oil-aqueous interface. It is not clear how the pro-
cesses in the bulk of liquid influenced the mass transfer in
these cases. But Berg and Morig (1969) gave the exper-
imental evidence that density gradients developed during
the transfer of a solute across a liquid-liquid interface exert
a strong influence on convection generated by interfacial
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tension variations. The convective motions were reported
not to be localize near the interface but stream away
from the interface and penetrating deeply into the bulk
phases.

Another example of chemo-convective mass transfer was
given by Avnir and Kagan (1995) who have studied pattern
formation at liquid-gas interfaces driven by photochemical
reactions. One more experimental example was given by
Pons et al. (2000) who have fixed the convective instability
in a thin fluid layer due to the increase of fluid density in
the subsurface layer caused by the O2 oxidation of glucose
to gluconic acid with the methylene blue as a catalyst.

For simple, irreversible chemical schemes such as an
exothermic neutralization reaction A + B → S, it has
been shown that heat and solutal effects due to the reac-
tion interplaying with a liquid-liquid interface and con-
vection may result in a novel type of instability occurring
when an organic solvent with a carboxylic acid is in con-
tact with an aqueous solution of a inorganic base (sodium
hydroxide) (Eckert and Grahn 1999). The self-sustained
dynamics and pattern formation in the form of irregular
plumes and fingers were shown to originate from the cou-
pling between different gravity-dependent hydrodynamic
instabilities such as Rayleigh-Taylor, diffusive-layer con-
vection, Rayleigh-Bénard, Marangoni and double diffusive
instabilities (Trevelyan et al. 2011; Bratsun and De Wit
2011).

In experimental work (Eckert et al. 2004), new effects
have been discovered in the same system when non-organic
base was replaced by an organic one. It has been found
that one can obtain different structures by varying the types
of reactants and their initial concentrations. Among these
structures, a periodic set of chemoconvective fingers with
one side keeping contact with the interface and the other
side propagating in the direction out of the interface appears
with an intriguing regularity (Fig. 1).

It should be noted that reactive fingering is well known
in nonlinear chemistry, but evolving structures are usually

Fig. 1 Schematic representation of transfer processes in the reactive
immiscible system

chaotic. For example, all the works devoted to the case
of miscible fluids usually state the formation of irregular
patterns of fingers (De Wit 2001; Almarcha et al. 2010;
Almarcha et al. 2011). For example, recently Almarcha
et al. (2011) have shown that the various possible convec-
tive regimes can be triggered by acid-base reactions when
a less dense acid solution (HCl) lies on top of a denser
alkaline one (NaOH ) in the gravity field. The possible
dynamics are a composition of only two asymptotic cases:
irregular plumes induced by a local Rayleigh-Taylor insta-
bility above the reaction zone and irregular fingering in the
lower solution and plumes on top induced by differential
diffusive effects. Unlike these cases, the pattern formation
demonstrated in Eckert et al. (2004) strikes by its regularity.

It was speculated that several mechanisms of hydrody-
namic instability come into play in this case. In Bratsun and
De Wit (2004), the partial role of the Marangoni instabil-
ity in pattern formation was considered theoretically. It was
found that a structure due to the combined effect of the reac-
tion and Marangoni instability is unsteady and can exist for
only a limited time. When the reaction front goes away from
the interface, the Marangoni instability alone cannot sustain
the structure any longer and it fades out. The effect of grav-
ity as applied to the same system was explored in Bratsun
and De Wit (2008, 2011). The focus of the work (Bratsun
and De Wit 2011) was the development of the Rayleigh-
Taylor instability, depending on the different values of the
chemical reaction rate. The effect of heat in that paper was
deliberately neglected from the outset. The paper (Bratsun
and De Wit 2008) was devoted to external control of pat-
tern formation in a Hele-Shaw reactor. It was shown that the
Rayleigh-Taylor instability plays a key role in the forma-
tion of structures observed. However, the model proposed
in Bratsun and De Wit (2008, 2011) could not explain fully
the experiment (Eckert et al. 2004), since in numerical sim-
ulations the periodic structure of fingers was rather quickly
destroyed after their formation. Thus, some unaccounted
stabilizing mechanism obviously exists in the system.

As it is known, Rayleigh-Bénard convection is the insta-
bility of a fluid layer which is confined between two
thermally conducting plates, and is heated from below to
produce a fixed temperature difference. Since liquids typ-
ically have positive thermal expansion coefficient, the hot
liquid at the bottom of the layer expands and produces an
unstable density gradient. If the density gradient is suffi-
ciently strong, the hot fluid will rise, causing a convective
flow. If the layer is heated from above, the same mechanism
acts trying to stabilize the layer since the cooler, denser liq-
uid is already at the bottom. The purpose of the present work
is to focus on the particular role of this Rayleigh-Bénard
mechanism which should manifest itself clearly in the pat-
tern formation during an exothermic reaction. We show that
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while the Rayleigh-Taylor instability acts as a main motor
of the reactive fingering, the Rayleigh-Bénard mechanism
associated with intensive heat release during the reaction
may perform fine-tuning of the finger front.

Theoretical Model

Let two immiscible liquids fill a Hele-Shaw cell. The
upper layer is dilute acid solution in an organic solvent,
and the lower layer is alkaline water. Carboxylic acids
(acetic, formylic, propionic) have been used in the experi-
ments (Eckert et al. 2004). Tetra methyl ammonium hydrox-
ide (TMAH) and some other substances have been used
as a base. From a chemical kinetics perspective the sys-
tem undergoes the following reactions. The acid permeating
through the interface into the lower layer dissociates there
disintegrating into hydronium cation and acid residue anion
(as exemplified by propionic acid):

CH3CH2COOH + H2O → CH3CH2COO− + H3O
+.

(1)

At the same time the dissociation process of TMAH base
takes place in water, where the base disintegrates in the
following way:

(CH3)4NOH → (CH3)4N
+ + OH−. (2)

In aqueous solution cations H3O
+ find anions OH− and

form water:

H3O
+ + OH− → 2H2O. (3)

At the same time the base cations find acid residue
anions resulting in salt formation (methylammonium salt of
propionic acid):

CH3CH2COO− + (CH3)4N
+ →

(CH3)4NOOCCH3CH2. (4)

Thus, the neutralization reaction accompanied by signif-
icant heat release Q takes place in the lower layer. In (4)
the reaction enthalpy is about -57 kJ/mol. The chain of
reactions (1–4) could be presented in simplified form:

A + B → S + Q. (5)

It should be noted here that the reaction (5) is localized
solely in the lower layer since TMAH and its salt do not dis-
solve in the upper layer. The system’s non-autonomy is its
another important peculiarity, as the reagents are not added
during the reactions.

Let us outline the key assumptions, which have been
taken into account in developing a theoretical model:

1. The gap h between the vertical plates is sufficiently
small to consider the fluid flow as quasi-two- dimen-
sional: the typical gap width of the cell in the experi-
ment (Eckert and Grahn 1999) was 0.1 cm, while the
height was more than two orders of magnitude;

2. The concentrations of chemical species are small
enough (typically about 1 mol/l (Eckert et al. 2004))
so that the liquid’s properties are independent on
concentration;

3. The density of both liquids is equal to ρ (the density
of the organic solvent in the upper layer is close to the
value of the density of water);

4. All reagents have a similar diffusion coefficient D:
this assumption is made in order to all the effects
associated with a double-diffusion instability did not
affect the results of this work;

5. Based on experimental observations in Eckert et al.
(2004) we assume that the base B and salt S do not
dissolve in the upper layer: the reaction takes place
solely in the lower layer;

6. All phenomena connected with the surface tension
are neglected in order to concentrate the attention
to gravity-dependent phenomena. As it mentioned
before, it was shown in Bratsun and De Wit (2004)
that depending on the nature of reactants used,
Marangoni effects due to surface tension gradients
can come into effect as well. But the Marangoni insta-
bility is transient and can act for only a limited time
since the reaction front gradually moves away from
the interface. Moreover, the maximum value of the
stream function for the flow induced by the pure
Marangoni effect is approximately an order of magni-
tude less than in the case of the gravity-induced flow.
Notice that by playing different organic reactants the
there is evidence that the use of organic reagents
with longer chain allows for possible increased influ-
ence of their surface activity and even adsorption-
desorption phenomena. In this paper, however, we
consider acids with enough short chain to prevent
these phenomena;

7. The interface remains plain and non- deformable,
which is motivated by the experimental observations
in a vertically oriented Hele-Shaw cell (Bratsun and
De Wit 2004). In contrast to that, if the Hele-Shaw
cell is tilted off the gravity, the instabilities in the
system are characterized by the large scale interfa-
cial deformation with a spatio-temporal periodicity
together with the chemo-Marangoni convection (Shi
and Eckert 2007);
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8. Wide planes of a Hele-Shaw cell are considered ther-
mally insulated until the contrary is not stated;

9. Initial concentrations of acid A0 and base B0 are
equal;

10. The reaction rate k is fixed and equals to D/h2A0.

The latter assumption means that the ratio of the chem-
ical reaction rate to the diffusive mass transfer rate (the
Damköhler number) is equal to 1. It is done to reduce the
number of dimensionless parameters in the final equations
and to focus on the effect under consideration. In fact, the
possible variation of the Damköhler number can not affect
the results qualitatively, as this variation can be accounted
for changing the unit for temperature and rescaling of the
thermal Rayleigh number.

Let us assume that coordinates x and z are drawn along
the wide planes of a Hele-Shaw cell so that the line z = 0
determines the surface between the layers. The cell bound-
aries are stated to be 0 ≤ x ≤ H , −Lb ≤ z ≤ Lu.

We choose the following units of measurement: length -
h, time - h2/D, velocity - D/h, temperature - QA0/ρCp ,
pressure - ρν1D/h2 and concentration - A0. In what fol-
lows ηi , νi , κi , χi define dynamic and kinematic viscosity,
coefficients of thermal conductivity and temperature con-
ductivity. The values with the index 1 and 2 refer to the
lower and upper layers respectively. Then we shall get
the convection-reaction-diffusion equations in a Hele-Shaw
approximation for the lower layer:

1

Sc

(
∂�1

∂t
+ 6

5

∂(	1, �1)

∂(z, x)

)
= ��1 − 12�1+

+R
∂T1

∂x
− RA

∂A1

∂x
− RB

∂B1

∂x
− RS

∂S

∂x
, (6)

∂T1

∂t
+ ∂(	1, T1)

∂(z, x)
= Le�T1 + A1B, (7)

∂A1

∂t
+ ∂(	1, A1)

∂(z, x)
= �A1 − A1B, (8)

∂B

∂t
+ ∂(	1, B)

∂(z, x)
= �B − A1B, (9)

∂S

∂t
+ ∂(	1, S)

∂(z, x)
= �S + A1B (10)

for the upper layer:

1

Sc

(
∂�2

∂t
+ 6

5

∂(	2, �2)

∂(z, x)

)
= ν��2 − 12ν�2+

+Ra
∂T2

∂x
− RA

∂A2

∂x
, (11)

∂T2

∂t
+ ∂(	2, T2)

∂(z, x)
= χLe�T2, (12)

∂A2

∂t
+ ∂(	2, A2)

∂(z, x)
= �A2, (13)

Here we use a two-field formulation for movement equa-
tion, and we introduce the stream function 	 and vorticity
� = −�	. The advection terms in (6-13) have been written
in the compact form of the Jacobian determinant:

∂(A, B)

∂(z, x)
= ∂A

∂z

∂B

∂x
− ∂A

∂x

∂B

∂z
.

The equations (6) and (11) differ from a standard Navier-
Stokes equation by one more additional term linear in the
vorticity. This term appearing within the Hele-Shaw approx-
imation may be interpreted as the average friction force due
to the presence of the plates and are analogous to the linear
velocity term in Darcy’s law valid for fluid flow in porous
media. The equations (7) and (12) do not contain the anal-
ogous additives, as the vertical planes are considered to be
thermally isolated.

One should provide boundary conditions to the equations
(6-13):

z = −Lb : 	1 = 0,
∂	1

∂z
= 0,

∂T1

∂z
= 0,

∂A1

∂z
= 0,

∂B

∂z
= 0,

∂S

∂z
= 0,

z = Lu : 	2 = 0,
∂	2

∂z
= 0,

∂T2

∂z
= 0,

∂A2

∂z
= 0; (14)

z = 0 : 	1 = 0, 	2 = 0,
∂	1

∂z
= ∂	2

∂z
, �1 = η�2,

T1 = T2,
∂T1

∂z
= κ

∂T2

∂z
,
∂S

∂z
= 0,

∂B

∂z
= 0; (15)

A1 = A2,
∂A1

∂z
= κ

∂A2

∂z

and the initial conditions at :

z < 0 : 	1 = 0,
∂	1

∂z
= 0, T1 = 0, A1 = 0, B = 1;

z > 0 : 	2 = 0,
∂	2

∂z
= 0, T2 = 0, A2 = 1. (16)

The full list of dimensionless parameters appeared in the
system of equations (6–16) is given in the Table 1. As there
are a lot of dimensionless parameters, a variety of phenom-
ena described by the equations (6–16) is very wide. To focus
on the effect of the heat release, we evaluated most of the
parameters on the basis of the experimental data (Eckert
et al. 2004). The Table 1 shows that Schmidt and Lewis
numbers representing the relations of characteristic time of
acid diffusion to the characteristic values of hydrodynamic
and thermal time equal to Sc = 980 and Le = 130, respec-
tively. This means that the diffusion processes of reagents
are significantly slower than other diffusion processes in the
system. Therefore the diffusion processes determine nonlin-
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Table 1 List of dimensionless parameters

Definition Name of the parameter

Sc = ν1/D Schmidt number

Le = χ1/D Lewis number

R = gβT QA0χ1h
3/Dκ1ν1 Rayleigh number for heat

RA = gβAA0h
3/Dν1 Rayleigh number for acid

RB = gβBA0h
3/Dν1 Rayleigh number for base

RS = gβSA0h
3/Dν1 Rayleigh number for salt

κ = κ2/κ1 heat conductivity ratio

χ = χ2/χ1 heat diffusivity ratio

ν = ν2/ν1 kinematic viscosity ratio

η = η2/η1 dynamic viscosity ratio

ear dynamics of the system. Values for the solutal Rayleigh
number for the propionic acid (CH3CH2COOH ), TMAH
((CH3)4NOH ) and their salt appear to be equal to RA =
2200 , RB = 1800, RS = 1100 (Bratsun and De Wit
2008). Thus, thermal Rayleigh number R is the only param-
eter left undefined. Since the configuration of more dense
acid on top of less dense base (RA > RB ) is unstable in
the presence of gravity one can expect the development of
the Rayleigh-Taylor instability which is usually accompa-
nied by density-driven fingering with the irregular behavior
of the downward front.

Base State

Let us assume that the fluid is at rest in both layers. The
system of equations (6–16) allows for an important class of
non-steady solutions, which describe the dynamics of the
reaction-diffusion processes. Let us term this system state
as the base state. Then we consider the concentration and
temperature fields depending from the vertical axis solely:
T 0

i (t, z), A0
i (t, z), B0(t, z), S0(t, z). Then we get:

∂T 0
1

∂t
= Le

∂2T 0
1

∂z2
+ A0

1B
0,

∂T 0
1

∂t
= χLe

∂2T 0
2

∂z2
,

∂A0
1

∂t
= ∂2A0

1

∂z2
− A0

1B
0,

∂A0
2

∂t
= ∂2A0

2

∂z2
,

∂B0

∂t
= ∂2B0

∂z2
− A0

1B
0,

∂S0

∂t
= ∂2S0

∂z2
+ A0

1B
0, (17)

z = −Lb : T 0
1 = 0, A0

1 = 0, B0 = 1, S0 = 0, (18)

z = Lu : T 0
2 = 0, A0

2 = 1, (19)
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Fig. 2 Temperature profile (solid line) and reagent concentration
(dotted line) of the base reaction-diffusion state at t = 1

z = 0 : T 0
1 = T 0

2 ,
∂T 0

1

∂z
= ∂T 0

2

∂z
,

∂B0

∂z
= 0,

A0
1 = A0

2, ,
∂A0

1

∂z
= ∂A0

2

∂z
,

∂S0

∂z
= 0. (20)

The problem (17–20) can be solved only numerically.
The numerical method used for the integration (17–20)
is analogous to the numerical method for the integration
(6–16) and is discussed further. Figure 2 shows the profiles
of reagents concentrations and temperature in a moment of
time t = 1. A line in the space, where the concentrations
of acid and base are the same, shall be designated as the
reaction front. The front position is determined by the exact
balance between diffusion-reaction processes, and its posi-
tion in the space becomes quasi-steady at the equal reagent
concentrations.

As we see from Fig. 1, the temperature curve has a local
maximum. The existence of this maximum in the bulk can
be evidenced analytically. Indeed, the temperature profile in
the upper layer can be readily derived:

T 0
2 (t, z) = ξ(t)exp

(
−

√
α

χLe
z

)
,

where ξ(t) denotes the temperature at the interface, α is
a positive constant. With boundary conditions (20) for a
temperature gradient we get

∂T 0
1

∂z
|z=0 = −κξ(t)

√
α√

χLe
.

One can be clearly seen that the right part of this formula
is always negative. By taking into account the boundary
condition for the temperature (18), we can conclude that
at least one maximum of the temperature profile should
be placed between the interface z = 0 and point z =
−Lb . Our conclusion is supported by the numerical analy-
sis (see Fig. 2). The location of the temperature maximum
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is practically similar to the one of reaction front, because
the maximal number of molecule pairs of acid and base is
concentrated on the front line, thus emitting the maximum
amount of heat.

Although the described process is simple in form, it
results in a temperature gradient formation, which motivates
the development of thermogravitational Rayleigh-Bénard
instability in the area between the interface surface and
reaction front (heating from below in the classic Rayleigh-
Bénard problem) and suppression of the instability below
reaction front (heating from above in the same problem).
This is the peculiarity of the given system.

Linear Stability Analysis

The next step in our analysis involves finding the conditions
under which the reaction-diffusion non-stationary base state
defined by (17–20) loses stability to give rise to convective
solutions. To do so, we analyze the stability of the base state
by linearizing the original system of equations (6–13) near
it. We assume that small, monotonic disturbances periodic
in the x-direction are superimposed upon the base state (17–
20) in the following manner:⎛
⎜⎜⎜⎜⎜⎜⎝

�i(t, x, z)

	i(t, x, z)

Ti(t, x, z)

Ai(t, x, z)

B(t, x, z)

S(t, x, z)

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0

T 0
i (t, z)

A0
i (t, z)

B0(t, z)

S0(t, z)

⎞
⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎝

ϕi(t, z)

ψi(t, z)

ϑi(t, z)

ai(t, z)

b(t, z)

s(t, z)

⎞
⎟⎟⎟⎟⎟⎟⎠

eIkx, (21)

where ψi, ϕi, ϑi, ai, b, s are the amplitude of the distur-
bances of vorticity, the stream function, temperature, acid,
base and salt concentrations respectively while k is their
wavenumber. I is the imaginary unit.

By inserting the expansions (21) into the equaitons (6–
13) and by linearising the latter near the base state, we
obtain the following system of non-steady amplitude equa-
tions to define the critical disturbances:

1

Sc

∂ϕ1

∂t
= �ϕ1 − 12ϕ1 − k2(Rϑ1 − RAa1 − RBb − RSs),

1

Sc

∂ϕ2

∂t
= ν�ϕ2 − 12νϕ2 − k2(Rϑ2 − RAa2),

∂ϑ1

∂t
= Le�ϑ1 + A0

1b + B0a1 + ψ1
∂T 0

1

∂z
,

∂ϑ2

∂t
= χLe�ϑ2 + ψ2

∂T 0
2

∂z
,

∂a1

∂t
= �a1 − A0

1b − B0a1 + ψ1
∂A0

1

∂z
,

∂a2

∂t
= �a2 + ψ2

∂A0
2

∂z
,

∂b

∂t
= �b − A0

1b − B0a1 + ψ1
∂B0

∂z
,

∂s

∂t
= �s + A0

1b + B0a1 + ψ1
∂S0

∂z
, (22)

with boundary conditions:

z = −Lb : ϕ1 = 0, ψ1 = 0, ϑ1 = 0, a1 = 0, b = 0, s = 0;

z = Lu : ϕ2 = 0, ψ2 = 0, ϑ2 = 0, a2 = 0;

z = 0 : ϕ1 = ηϕ1, ψ1 = ψ2 = 0,
∂ψ1

∂z
= ∂ψ2

∂z
,
∂b

∂z
= 0,

ϑ1 = ϑ2, a1 = a2,
∂ϑ1

∂z
= κ

∂ϑ2

∂z
,
∂a1

∂z
= κ

∂a2

∂z
,
∂s

∂z
= 0.

Here: � = ∂2/∂z2 − k2.
The spectral amplitude problem involves both the equa-

tions to define the disturbances (22) and the equations
system to define the base state (17–20). Nonsteady nature
of the base state (17–20) and amplitudes is a feature of
the problem obtained. The method of Initial Value Problem
(IVP) suggested originally in Tan and Homsy (1986) has
been used to solve the problem in this work. The method is
a sort of Cauchy’s problem - simple integrating of spectral
amplitude equations for disturbances together with dynami-
cally driven base state starting from some initial conditions.
It was shown that the method gives adequate results, except
for a short initial period of time, when the functions describ-
ing the base state are very quickly changed. In the case
under analysis the initial time trouble resolves itself, as crit-
ically growing disturbances arise only after some time after
the evolution begins, which is known to be longer the relax-
ation time in IVP method. More details about linear analysis
in non-autonomous systems are given in papers (Bratsun
and De Wit 2004; Tan and Homsy 1986).

In the problem (17–20) and (22) the acid is the dis-
turbances generator, whereas the disturbances of velocity
and temperature are ”adjusted” to slowly developing dis-
turbances of reagents concentrations due to large values
of Schmidt and Lewis numbers. Thus, the increment λ is
conveniently constructed through the disturbances of acid
concentration:

λ(t) = 1

N

N∑
j=1

1

�t
ln

a1j (t + �t)

a1j (t)
, (23)

where �t is the integration time step and N is the number
of independent realizations (typically N is equal to 10-15).
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Fig. 3 Neutral curve for the Rayleigh-Taylor instability at R = 500.
Time axis is shown in a logarithmic scale

It should be noted that the expression (23) has been writ-
ten similarly to a Lyapunov exponent. Because the growth
rate λ is sensitive to the given initial data, each indepen-
dent integration starts from white noise with an amplitude
less than 10−4. We have fixed the occurrence of instabil-
ity to the time when λ(t) averaged over several realizations
changes sign from negative to positive. The start of instabil-
ity (or exit from it) is fixed at the moment of the change of
increment sign (23), averaged by the number of independent
realizations N .

Figure 3 shows the neutral curve for the Rayleigh-Taylor
instability obtained in the frame of the linear analysis for
R = 500. As the system is non-autonomous, the time serves
as a problem parameter here. The Figure illustrates that all
modes are steady at the very beginning of the evolution. In
a moment of time t ≈ 0.1 disturbance with a wave number
k ≈ 2.6 is the first to lose stability. Then more and more
waves are involved into the instability area. One can see
that the Rayleigh-Taylor instability (inside the area limited
by loop in the Fig. 3) includes a wide spectrum of wave-
lengths. We found that the wave number of the structure
slightly decreases with time. This occurs because the maxi-
mum growth rate of perturbations in the region of instability
is shifted towards longer wavelengths.

Numerical Method for Fully Non-Linear Problem

The problem (6–16) has been solved numerically by a finite-
difference method. A detailed description of the method is
given in our previous paper (Bratsun and De Wit 2011).
The numerical scheme we use is a scheme proposed
in Simanovskii and Nepomnyashchy (1993). An explicit

scheme has been used, and in order to ensure the stability of
the method, the time step was calculated by the formula

�t = �x2

2(2 + max(|	i |, |�i|)) .

The Poisson equations are solved by the iterative Lieb-
mann successive over-relaxation method at each time step:
the accuracy of the solution is fixed to 10−4. At the inter-
face the vorticity was calculated by the formula suggested
in Simanovskii and Nepomnyashchy (1993):

�2(x, 0) = −2(	1(x, −�z) + 	2(x, �z))

�z2(1 + η)
,

�1(x, 0) = η�2(x, 0).

Here �x, �z is a mesh size for the corresponding horizontal
and vertical coordinates. We have generalized the numerical
scheme by considering additional concentration fields for
the reacting chemical species. The acid concentration at the
interface was calculated by the second-order approximation
formula:

A1(x, 0) = A2(x, 0) = 1

6
(4A1(x, −�z)−

A1(x, −2�z) + 4A2(x, �z) − A2(x, 2�z)).

For all fields at the vertical boundaries x = 0, H we
apply periodic boundary conditions. In most calculations we
define the area as H = 40, Lu = 30, Lb=40. We perform
the calculations at uniform rectangular mesh 200 by 350.
As the initial condition we use a random distribution of the
stream function field with amplitude less than 10−3.

It is known that a chemical reaction and convection may
interact in following way: if reaction influences the con-
vection’s intensity via the formation of light (or heavy) salt
and heat release, the convective flow significantly affects
the reaction rate, thus ensuring more intensive mixing of
the reacting substances. That is why the following integral
characteristic gives valuable information:

Re(t) = 1

HLb

∫ 0

−Lb

∫ H

0
ζ(t, x, z)dxdz,

where field ζ = 1 in all cases, when the salt concentra-
tion is above some limit S(t, x, z) > S∗, and zero in all
other points in the area. The threshold S∗ is a small, arbi-
trary value. Since typical values of the salt concentration in
the problem does not exceed 0.1 (see Fig. 4), we define this
limit as S∗ = 10−3 . Thus, value Re(t) may be interpreted
as the time-dependent reaction rate computed in terms of
the area of the reacted zone normalized by the width of the
system.



300 Microgravity Sci. Technol. (2014) 26:293–303

Fig. 4 Non-linear evolution of
the salt concentration from an
initially perturbed base state to a
fingering pattern for R = 500
(upper row) and R = 5000
(lower row). The frames pertain
to times t = 1.8, 2.6, 4.2, 5.0,
5.8 respectively. The drastic
change in the evolution of the
system is reflected in the
reaction rate Re(t) variation in
time shown in Fig. 5

Results of Numerical Simulation

A levelling effect of the Rayleigh-Bérnard mechanism on
the envelope of the chemoconvective structures is clearly
seen in Fig. 4, where the frames of the evolution of salt
concentration field S for five successive times for the cases
R = 500 and R = 5000, respectively, are presented. The
graph of integral reaction rate Re(t) as a time function is
shown in Fig. 5.

First, let us look at the case R = 500. We should note
here that the time in this problem may be considered as a
bifurcation parameter, because the pattern formation condi-
tions dynamically change. The process of pattern formation
in a system undergoes, at least, four stages of development.
The first stage 0 < t < 1.4 is characterized by the devel-
opment of the pure diffusive scenario with no convection
taking place (Fig. 2). The acid penetrates in the lower layer
through the free surface and enters in the reaction with alkali
there. Due to diffusion the reaction zone advances according
to a root law (Fig. 5, R = 500). At this stage nonsteady con-
figuration is developed in the system: the gradient of acid
concentration is directed upwards in both layers, thus aris-
ing the Rayleigh-Taylor instability. Although the gradient of
the base in the lower layer is directed downwards, this sta-
bilizing factor is balanced by the opposite gradient of salt,
which is gradually accumulated in the system as a result of
reaction. First, convection takes place in the upper layer, but
starting from t ≈ 1.4 convection appears also in the lower
one. As a result in the lower layer a regular structure of salt
fingers is formed, reflecting the exact balance between the
reaction, diffusion and convection (Fig. 4, t = 1.8). This

structure consists of a periodic array of fingers elongating
away from the free surface: the wave number is about 1.9
(12 fingers per 40 length units). This value is a bit lower
than the critical wave number 2.6 at the minimum of the
neutral curve at t = 0.1 (Fig. 3). Since the problem is tran-
sient, the wave number of the structure slightly decreases
with time. Thus, at this moment the curve of the salt fin-
gers is a practically ideal straight line. But according to
the diagram of the integral reaction rate (Fig. 5, R = 500,
t ≈ 3), the system is evolving again in accordance with dif-
fusive scenario: the envelope is slowly moving away from
the interface. However, the regular system of salt fingers
eventually is destroyed - the envelope of the structure expe-
riences a zigzag instability (Fig. 4, t = 2.6). This is due
to the acid inflow to the lower layer and accumulation of
the reaction product. The Rayleigh-Taylor instability starts
to prevail, and finally the front collapses by large salt fin-
gers (Fig. 4, t = 5). This immediately manifests itself in the
intensification of the spatial reaction rate (Fig. 5, R = 500,
t > 4).

The heat release plays a significant role in the envelope
dynamics. Figure 2 shows that in the lower part of lower
layer the temperature gradient is directed upwards, and the
rate of fluid flow here abruptly decreases because of the
Rayleigh-Bénard mechanism. The suppression of the vor-
tex structures propagating large fingers down takes place at
quite powerful heat field. When convection is suppressed
the salt fingers diffuse and dissolve. The lower row in
Fig. 5 presents evolution of salt field at more expressed
thermal effect R = 5000. We can clearly see that the
tips of all fingers are levelling at one line, even when the
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Fig. 5 Numerical simulations of the integral reaction rate Re(t) as
a function of time for different values of the Rayleigh number R =
50; 500; 5000. The Biot number is fixed to Bi = 0 (lines) and Bi = ∞
(squares)

dynamics of these chemoconvective structures are already
chaotic (Fig. 4). At the same time the reaction rate grows lin-
early (Fig. 5, R = 5000, t > 3), reflecting the fact of accu-
rate balance between the reaction-diffusion and convection
processes.

The numerical simulation for weaker thermal effect sup-
ports this conclusion - transfer to irregular distribution of
large salt fingers takes place at the early stage of evolution
(Fig. 5, R = 50). Complete switching off of the thermal
field immediately results in irregular density fingering.

Effect of the Biot Number

As one can see from the definition of the thermal Rayleigh
number (see Table 1), there is no physical value that would
allow you to change easily this parameter during one series
of experiments. The heat Q released during exothermic
reaction creates the main effect. This value is determined
by a combination of acid-base pairs and is fixed for a series
of experiments with these reagents. On the other hand, the
replacement of reagents changes both the value of the ther-
mal Rayleigh number R and solutal Rayleigh numbers RA,
RB , RS .

For experimental verification of the effect one can act
differently. In order to weaken the effect of the thermo-
gravitational mechanism one can remove the heat through
the wide planes of a Hele-Shaw cell. It can be done by
changing the thermal conductive properties of the planes by
means of placing them in close contact with a highly thermal
conductive body. In this case the heat is rather dissipated
through the wide place, than accumulates and diffuses along
the layer. It means that the effective value of the Rayleigh

number decreases sharply. The experiments with local cool-
ing of the reactor’s walls carried out in Bratsun et al.
(2005) indirectly support the conclusion of this paper about
the effect of self-alignment of the envelope of the finger
structures by the intensive thermal field: if we remove the
heat from a Hele-Shaw reactor, there immediately appeared
irregular fingering characterized by the chaotic propaga-
tion of the large salt fingers under strong Rayleigh-Taylor
instability.

To illustrate this effect numerically we introduce the new
parameter:

Bi = hγT

2κ1
(24)

The dimensionless Biot number Bi is defined by (24),
where γT is the heat exchange coefficient between
the fluid and the solid walls and κ1 is the coeffi-
cient of thermal conductivity of water in the lower
layer. Depending on the plates composition and their
thickness l, the Biot number Bi may take a value
from 0 to ∞. Taking into account this effect, the
energy equation (7, 12) can be rewritten respectively as
follows:
∂T1

∂t
+ 3

5

(5 + 2Bi)

(3 + Bi)

∂(	1, T1)

∂(z, x)
=

= Le�T1 − Le
12Bi

3 + Bi
T1 + A1B, (25)

∂T2

∂t
+ 3

5

(5 + 2Bi)

(3 + Bi)

∂(	2, T2)

∂(z, x)
=

= χLe�T1 − χLe
12Bi

3 + Bi
T2, (26)

Similarly to motion equations (6) and (11), heat equa-
tions (25) and (26) differ from a standard heat equation by
the additional Darcy-like term in the right hand part. This
term relates to the process of dissipation of heat through the
solid plates. The difference with the Darcy term in (6–11) is
that this term vanishes if the plates are made from thermo-
isolated material for which Bi = 0. If the plates are highly
conductive, the dissipation rate is maximal and Bi = ∞.
Comparing the equaitons (7, 12) with (25, 26) one can see
that from the very beginning we have assumed that the dis-
sipation of heat through the sidewalls is missing Bi = 0.
It was done in order to maximize the effect of alignment of
salt fingers on which we focus in this paper.

We can estimate the Biot number for a typical experimen-
tal setup (for example, as in Eckert and Grahn 1999; Eckert
et al. 2004). The heat exchange coefficient γT may be esti-
mated as γT ≈ κs/l, where κs is the thermal conductivity of
the solid plates and l is their thickness. Taking into account
that l ≈ h/2 and that plates are made of glass, the conduc-
tivity of which is close to the conductivity of water filling
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Fig. 6 Non-linear evolution of the salt concentration from an initially
perturbed base state to a fingering pattern for R = 5000 and Bi = ∞.
The frames pertain to times t = 1.8, 2.6, 4.2, 5.0, 5.8 respectively.
The Biot number effect manifests itself in the appearance of irregular

density-driven fingering (compare with Fig. 4, lower row). The corre-
sponding reaction rate Re(t) variation in time is indicated in Fig. 5 by
squares

the lower layer where the reaction occurs, we obtain Bi ∼ 1,
which means that heat dissipation during the experiment is
quite intensive.

The effect of high-conductivity of the Hele-Shaw cell
sidewalls is clearly seen in Fig. 6, where the frames of the
evolution of salt concentration field S for five successive
times for the case R = 5000 and Bi = ∞ are presented.
Numerical simulation was made for the same parameter
values as in the case shown in Fig. 4 (R = 5000, lower
row). If the heat is dissipated through the lateral boundaries,
the deterring effect via Rayleigh-Bénard mechanism disap-
pears, and there comes a time for disordered fingering due to
the uncompensated Rayleigh-Taylor instability. The drastic
change in the evolution of the same system for two different
Biot number is reflected also in the reaction rate Re(t) varia-
tion in time shown in Fig. 5. The cases Bi = 0 and Bi = ∞
are indicated by the solid line and squares respectively.

Conclusions

In immiscible two-layer systems oriented vertically in the
gravity field, convection can set in upon diffusion of a chem-
ical species A from the upper to the lower layer where a
species B is initially dissolved. The purpose of the present
work is to focus on the particular role of thermal effect
manifesting itself clearly in the pattern formation during
exothermic reaction A + B → S taking place solely in the
lower layer. We have shown that while the Rayleigh-Taylor
instability acts as a main motor of the reactive fingering, the
Rayleig-Bénard mechanism associated with intensive heat
release during the reaction performs fine-tuning of the fin-
ger front. The maximum effect is observed when all the
heat released during the reaction remains inside the Hele-
Shaw cell. In the case of dissipation of heat through the wide
sidewalls the effect of self-alignment of fingers envelope
weakens or even disappears completely.
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