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Abstract An experimental investigation has been per-
formed to study a supercritical flow driven by the combined
effects of buoyancy and thermocapillary forces, in a non-
isothermal liquid cylindrical column heated from above
(liquid bridge). The liquid zone was of 3 mm in radius and
2.58 mm in height made of n-decane. Changing tempera-
ture of air in the experimental chamber via controlling the
temperature at its external wall, the conditions at the onset
of instability of the flow, as characterized by the critical
value of the imposed temperature difference, were deter-
mined for several values of the liquid volume. Performing
”chaos analysis” of the obtained data, different regimes
of the supercritical flow were identified. The experimen-
tal observations are supported by a computer modeling of
the thermoconvective flow made for the experimental con-
ditions neglecting deformations of the liquid-gas interface.
It is shown that the spatial structure of the flow may change
with external conditions in the ambient gas.
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Introduction

For majority of fluids, surface tension is a decreasing
function of temperature, hence any thermal non-uniformity
inevitably generates a surface flow transporting warm fluid
and aiming at eliminating cooler regions. A fluid motion
driven by surface tension differences resulting from thermal
gradients along a fluid-gas interface is called thermocap-
illary (Marangoni) convection. This type of flows is very
common in numerous technological processes and indus-
trial applications, in which e.g., evaporation or welding are
involved, and is of great importance to chemical engineers.

Attention to the thermocapillary flows and their hydro-
dynamic stability has been spawned by the prospect of
processing materials by containerless methods to avoid con-
tamination from crucible walls. Particularly, containerless
growth of semiconductor crystals by the so-called float-
ing zone technique in space has been considered as a way
to reduce convection in crystal melts in order to produce
high-quality homogeneous materials, highly anticipated by
the electronics industry. The expected homogeneity, how-
ever, has not been acquired and it has been blamed on
presence of buoyancy. Eliminating it did not resolve the
problem and it has been understood that the reason for the
azimuthally variable properties of the crystals was not buoy-
ancy but Marangoni convection (Chang and Wilcox 1976).
Though buoyant forces are strongly reduced in micrograv-
ity, thermocapillary effect at the interface is the dominant
mechanism to drive fluid motion.

We study a non-isothermal liquid column, a liquid bridge,
that represents a half of a floating zone. In the studied sys-
tem, a temperature difference between the supporting disks
is imposed. At small values of the temperature gradient,
the flow settles into a form of a two-dimensional toroidal
cell. The two-dimensional roll becomes unstable as soon as
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the temperature gradient achieves a critical value, and the
flow becomes three-dimensional, either steady or oscilla-
tory. The type, pulsating or not, of the supercritical flow is
defined by the balance between heat conduction (dominant
for low Pr numbers) and heat convection (dominant for high
Pr numbers).

In the present paper, �Tcr refers to the temperature
difference for the onset of three-dimensional convection
characterized by oscillating temperature disturbances. A liq-
uid bridge is an example of a complex dynamical system
displaying many interesting non-linear phenomena, such as
chaos (Melnikov et al. 2004; Ueno et al. 2003).

It was shown by Schwabe and Scharmann (1979), and by
Chun and Wuest (1979) that the hydrothermal instability in
a liquid bridge sets in through a supercritical Hopf bifurca-
tion. Both the critical temperature difference and the regime
of the supercritical flow are defined by the physical proper-
ties of the fluid the liquid bridge is made of, as well as are
dependent on the geometry of the system (liquid volume,
the ratio of the height to the radius of the column - aspect
ratio �) and on ambient conditions (properties of the sur-
rounding gas, gravity, vibrations, to name a few). In a liquid
with a high Prandtl number (Pr = ν/k, kinematic viscosity
ν to thermal diffusivity k ratio), the hydrothermal instability
is oscillatory and a hydrothermal wave, either traveling in
the azimuthal direction or standing, is initiated. The three-
dimensional supercritical flow has a modal structure with
integer number m of pairs of hot and cold patterns visible
when the perturbed temperature field is visualized (see e.g.
Shevtsova et al. (2003)). m is called the azimuthal wave
number. The perturbations can be visualized by subtracting
the two-dimensional temperature field, obtained by averag-
ing the temperature in the azimuthal direction, from the full
three-dimensional solution.

Both theoretical (see e.g. Kuhlmann (1999)-Lappa
(2005)) and experimental (Preisser et al. 1983; Shevtsova
et al. 1999) studies on the onset of instability and the iden-
tification of the flow regimes in liquid bridges are being
performed over several decades. The critical temperature
difference, or suitably defined the critical thermocapillary
Reynolds number Recr ∝ �Tcr , and the wave num-
ber m were calculated and measured for different liquids,
including liquid bridges with non-cylindrical free surface
(Shevtsova and Legros 1998).

It is worth mentioning separately a number of works on
the effect of heat exchange through interface on hydrother-
mal stability of a Marangoni flow ((Kamotani et al. 2003)
- (Shevtsova et al. 2013)), which is a very important aspect
in many technological applications, such as surface tension-
driven and buoyancy convection inside evaporating droplets.
It was found (Shevtsova et al. 2005; Ueno et al. 2010;
Gaponenko and Shevtsova 2012; Melnikov and Shevtsova
2014) the strength of the effect of the heat transport through

the interface on the stability of the thermocapillary flow
strongly depends on the rate of heat exchange (the Biot
number), temperature and velocity profiles in the gaseous
phase, and on the physical properties of the liquid.

In the current effort, we study influence of thermal con-
ditions in the gas phase surrounding a liquid bridge on
stability of the Marangoni flow. The heat is carried away
(or towards in case of heating) from the fluid by convection,
conduction and radiation. Experimentally, the local heat
flux is proportional to the temperature difference between
the fluid and the surrounding gas that we call the ambi-
ent temperature. Changing temperature in the gas phase
changes the amount of transported heat per unit time. The
experimental setup, used for the present work, allows us pre-
scribing and maintaining a uniform ambient temperature far
away from the interface, at the distance of about 30 times of
the radius of the liquid zone.

Computer modeling has been employed to con-
firm/support the experimental findings. In addition to the
experimental conditions, thermally insulated free surface
and a linear temperature distribution in the gas phase were
considered.

Experimental apparatus and conditions

The experimental setup, shown in Fig. 1, was designed and
built by Prof. Schwabe and his co-workers from University
of Giessen in Germany. The liquid bridge of a radius of
3mm is created inside a chamber of a large volume, which
serves to isolate the liquid bridge from the disturbing con-
vection in the laboratory. The chamber has thick walls with
the inner diameter of approximately 100 mm, and it has
four glass windows for optical observation from the side.
The upper rod is made of sapphire, and the bottom brass
rod is placed exactly beneath the upper one. The transparent
top rod allows us to have a top view on the flow field. The
two rods have a specially treated edges allowing creating a
liquid bridge of a relatively large volume. The bottom rod
was coated with EGC-1700 liquid to prevent leakage of n-
decane. For the undertaken experimental work, in order to
avoid undesired buoyant convection, the top rod was heated
and the bottom plate was kept at the constant temperature
of Tc = 20 ◦C by using thermostatic baths. During each
experimental run, the wall of the chamber Tout was main-
tained at a constant temperature using a thermostatic bath. It
allowed us to study different external conditions by varying
Tout between 10 and 40 ◦C. The liquid bridge was formed
by injecting the liquid through the circular inlet of a very
small radius at the center of the bottom rod.

We used type K Chromel-Alumel thermocouples (with
a sensitivity of approximately 41μV/◦C and a good accu-
racy of about 0.75 % at room temperature) to control the
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Fig. 1 Experimental setup: a
sketch showing the liquid bridge
and the external chamber, b a
photograph of two rods between
which a liquid bridge is created

temperatures at both rods, of the chamber and to record
temperature oscillations. Besides the obvious importance of
maintaining the imposed �T constant, the temperature of
the chamber Tout is another important factor to control as
it is capable of influencing the experimental conditions via
heat exchange between the fluid and air inside the chamber.
In order to avoid this influence, it has always been thermally
stabilized and controlled.

The thermocouples have been calibrated using the ther-
mally regulated water cooling system. The thermocouple,
used for measuring local temperature of the liquid, was not
supposed to interfere the convection in fluid. For this rea-
son, it has been installed at approximately the middle of the
liquid column, and approximately 0.25 mm away from the
liquid-gas interface in air. This installation allowed us to
avoid creating mechanical disturbances into the fluid flow.
In order to have a fast response of the thermocouple to
changes of temperature, the thermocouple was very thin
with the tip of approximately 40 microns. The distance d

between the rods is adjustable allowing us to study different
aspect ratios.

The working liquid is n-decane (molecular formula
C10H22), which is an evaporating liquid (Yasnou et al.
2012), (Melnikov et al. 2013). The evaporation rate was
monitored using the same approach as in (Melnikov et al.
2013) and the losses of the liquid volume were continuously
compensated through the bottom cold rod using an auto-
matic syringe pump. As the evaporation rate was found to
be growing with the increase of the imposed temperature
difference, the higher Th was imposed the more we had to
compensate. Simple estimations showed that the velocity of
the injected liquid at the inlet did not exceed 40 microns per
second and the thermocapillary flow was not disturbed by
this procedure.

We were visualizing the flow field with the help of two
types of particles injected into the liquid bridge: (1) gold-
coated acrylic particles of 15 microns in diameter, whose
density is 1470 kg/m3; (2) hollow glass microspheres (Ecco-
spheres) of different diameters between 20 and 100 microns
having the density of 790 kg/m3 (Melnikov et al. 2013). Two
cameras were used: one for the top view with a frame rate
of 30 fps; the other for the side view.

Experimental procedure

As the first step, special care was taken about adjusting
the experimental setup in the strictly horizontal position.
A careful alignment of the rods was done using computer
image processing.

As the second step, an image of a plumb-line was
acquired and analyzed to ensure that the camera was posi-
tioned vertically. The optical distortion produced by the lens
were negligible.

Each experiment consisted of the following steps:

(i) Careful cleaning and drying the liquid bridge cell.
The rods were coated with the anti-wetting EGC-
1700 agent and were dried.

(ii) Creating a liquid bridge of the desired volume by
injecting the necessary amount of liquid from the
syringe. The experiments were performed for differ-
ent volume ratios. The injected liquid volume was
always checked.

(iii) Establishing a required temperature of the chamber’s
wall. We were waiting for about 60 minutes for the
temperature to stabilize.

(iv) Heating and cooling the rods. We were waiting for
about 20 minutes to allow the temperatures to reach
the steady state and to thermocapillary flow to estab-
lish. The imposed temperature difference �T was
varied between 3 and 13 K .

(v) Recording local temperature of the fluid.
(vi) Recording top view images during 20–30 seconds by

a camera. A small amount of particles has been added
to the liquid for observing the flow pattern.

Experimental observations

Keeping the chamber’s wall temperature at 25 ◦C, values
of critical temperature difference were measured within a
wide range of liquid volume. To calculate �Tcr we used the
fact that the amplitude of temperature oscillations increases
as a square root of the distance from the bifurcation point,
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Fig. 2 Stability diagram: experimentally measured critical tempera-
ture difference versus fluid volume ratio. Temperature at the wall of
the chamber was stabilized at 25 ◦C

i.e. A2 ∼ (�T − �Tcr). Thus, calculating the amplitude
at several supercritical values of �T one can find the crit-
ical temperature difference. For completing this procedure,
several measurements at sub-critical values of �T were
done to measure the offset. As there are always random
thermal disturbances and fluctuations present in the flow
and thermocouples, while having a short response time,
never have the absolute accuracy, the temperature records
always contain noise that must be filtered off. The experi-
mentally calculated offset for the amplitude of temperature
oscillations was small, about 0.01–0.02 ◦C.

Figure 2 shows findings for a wide range of liquid bridge
volume. Critical temperature difference is plotted versus
volume ratio V r , which is the ratio of the injected fluid vol-
ume to the volume of the cylinder πR2d . For the study, the
temperature of the chamber’s wall Tout was kept at 25 ◦C.

Though, the change of the critical temperature difference
is not very big, there are two branches of the stability dia-
gram. One observes the flow stabilization at about V r = 0.9
where the value of �Tcr becomes relatively high. At first,
we have associated the two branches with different flow
structures, as it occurred in the experiments of (Shevtsova
et al. 2003).

To prove it, the flow structure was visualized and quan-
tified using small particles denser than the fluid. In those

Fig. 4 Experimentally measured critical temperature difference ver-
sus temperature at the wall of the chamber for different liquid volume
ratios

cases, where the particles accumulated in a coherent struc-
ture (PAS) (Melnikov et al. 2011; Pushkin et al. 2012;
Melnikov et al. 2013), we could find the mode m of the
supercritical flow. A PAS may be formed under certain con-
ditions; they are imposing strong requirements on the flow
to be characterized by a strong one-mode periodic travel-
ing wave. Figure 3 presents some examples of the particles
accumulation structures recorded for 4 different volume
ratios. Though a PAS was not always formed, we could
identify a m = 2 traveling wave for the volume ratios
between 0.82 and 1.05.

To check how the external thermal conditions can affect
the onset of instability, a set of experiments has been
performed in which Tout was varied between 10 (strong
cooling) and 40◦C (strong heating).

The observations prove that increasing the external tem-
perature results in a weak stabilization of the thermocapil-
lary flow. The critical temperature difference slightly rises,
as shown in Fig. 4. The slope, however, depends on the
liquid volume. Whereas the �Tcr versus Tout curve is con-
cave for V r = 0.98 and 1.05, it is convex for V r = 0.92.
Figure 4 shows the following trend: the larger volume of
the liquid bridge, the stronger the effect of the ambient tem-
perature. The similar behavior was previously observed in
the experiments with silicone oils (Kamotani et al. 2003;

Fig. 3 Experimental snapshots of particles distributions for different fluid volume ratios: a - 0.87, b - 0.92, c - 0.98, d - 1.05. Temperature at the
wall of the chamber was stabilized at 25◦C. The particles are seen as black specks. Here the mode of the flow m is 2
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Shevtsova et al. 2005). Varying the temperature of the wall
of the chamber did not result in changing the mode m = 2
of the flow. As it will be seen below in Chapter 2, this result
appears to be crucial for drawing a conclusion about the
actual temperature distribution in air inside the chamber.

The critical conditions were not the only interest of the
study. Another question was related to how the dynamics of
the flow change while one moves farther away from the crit-
ical point as �T increases. To trace the transitions occurred
in the system, the frequency of temperature oscillations
were analyzed. Any significant change of the dynamics is
expected to be seen on frequency curves.

The frequency of temperature oscillations depends on
�T and the temperature at the chamber’s wall Tout seems to
have a weak effect on it. As Fig. 5 shows, this dependency
is not the same for any volume ratio. However, just after the
onset of instability, the frequency is always decreasing with
the increase of �T for the three studied volume ratios as is
shown in Fig. 5.

The fundamental frequency curves versus �T for V r =
0.98 and 1.05 are rather smooth, but we have found a strong
frequency drop in a liquid bridge of 0.92 volume ratio. The
two fundamental frequencies belonging to the two curves
(at small and at high values of �T in Fig. 5a) are not com-
mensurate, hence corresponding to two different regimes
characterized by different wave numbers. The oscillations
observed right after the critical point are of a very high
frequency. The m = 2 mode exists immediately after the
frequency drop; it was confirmed by the observations of
a PAS. No PAS was formed before it, and for this rea-
son we cannot say anything about the mode of the flow
there. The value of �T , at which the frequency drop occurs,
depends on Tout . The higher the temperature at the external
chamber’s wall the larger �T of the drop.

To identify changes in the system’s dynamics, not revea-
led by the frequency plots, a chaos analysis was performed.

Chaos analysis

Several approaches to quantify the degree of ”noisiness” of
a signal have been proposed. For the problem of hydrother-
mal instability in a liquid bridge, Shevtsova et al. (Shevtsova
et al. 2003) and Melnikov et al. (Melnikov et al. 2004;
2005) have successfully applied the Shannon concept of
entropy to the time series of temperature.

In the present paper, in order to apply nonlinear anal-
ysis to the experimental data, we use a different method
based on the Takens embedding theorem (Takens 1981) to
transform the time-series, recorded for temperature, into a
pseudo-phase space. After the reconstruction, the level of
the deterministic dynamics (order of chaos) of the system is
evaluated. We employ the translation error Etrans to charac-
terize the non-linearity of the flow. We adopted the approach
of Wayland et al. (Wayland et al. 1993) to calculate Etrans .
First, an experimental attractor should be constructed from
the given experimental time series (s(t1), s(t2), ..., s(tN)).
The attractor is a sequence of vectors x(ti) defined as:

x(ti ) = (s(ti ), s(ti+τ), ..., s(ti+(D−1)τ )), i = 1, ..., N−(D−1)τ,

where the time lag τ and the embedding dimension D are
to be found. The translation error is calculated as

Etrans = 1

k + 1

k∑

i=0

|vi− < v > |2
| < v > |2 , < v >= 1

k + 1

k∑

i=0

vi , (1)

where vi = x(ti+τ)−x(ti) is the translation vector, and |v|
denotes the Euclidean length of the vector v. k is the number
of the neighboring points. For the present analysis, k = 4.

The higher the stochasticity of the system, the larger the
translation error. Generally, its value for the stochastic (ran-
dom) data is close to 1, whereas that of the deterministic
data (a limit cycle) is close to 0. Values of Etrans in the range
between 0 and 0.1 correspond to deterministic time series,

Fig. 5 Fundamental frequency as a function of temperature difference �T observed at different ambient temperatures at the external wall of the
chamber: Tout = 10 (circles), 25 (squares) and 40 ◦C (triangles). Experiments were performed for three different volume ratios V r : a - 0.92, b -
0.98, c - 1.05
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Fig. 6 Translation error as a function of temperature difference calcu-
lated for the temperature oscillations in liquid bridge of three volume
ratios: V r = 0.92 (triangles), 0.98 (squares) and 1.05 (circles). There
are two regions, delimited by Etrans . Bellow approximately 0.01 the
oscillations are periodic, above approximately 0.1 the oscillations are
aperiodic. At the intermediate values of the translation error they are
characterized by a spectrum with several commensurate frequencies.
The insertions are the phase portraits of the system characteristic for
the corresponding regimes

range between 0.1 and 0.5 - to the chronological noise. The
translation error represents the colored noise when its value
reaches 0.5 or more.

We use the method proposed by Cao (Cao 1997) to esti-
mate the dimension D of the embedded space. We do not
supply further details of the algorithm of the calculation of
Etrans , but only show the results of its implementation to
the experimentally recorded time-series.

Many experiments have been processed in order to obtain
the dimension D. In the majority of cases, the minimum
embedding dimension is equal to 6 or 7, except a small
amount of experiments were its value reached 9.

Figure 6 summarizes the results of the chaos analysis
performed for three volumes when Tout = 25 ◦C. The inser-
tions show the corresponding phase portraits of the system
in the pseudo-phase space (T (t), T (t + τ), T (t + 2τ)). It
is only in the most slender of the three liquid bridge that

Etrans exceeds 0.1 (triangles in Fig. 6). The point, where
the translation error sharply decreases again, coincides with
the mode change observed in Fig. 5a. Therefore, bifurcation
of another spatial mode of the flow is preceded by a gen-
eration of a spectral noise. This is seen in Fig. 7 presenting
the temperature oscillations and the corresponding power
spectrum. The oscillations are irregular with a quite noisy
spectrum.

In the liquid bridges of the higher volume ratios, no spec-
tral noise was recorded. The small peak of Etrans in case of
V r = 1.05 between �T = 9 and 9.5K (circles in Fig. 6) is
rather insignificant, although the trajectory of the system in
the pseudo-phase space becomes more complicated (see the
insertions in Fig. 6).

Fourier analysis made for the temperature oscillations
within this range of �T explains what happens there.
Figure 8 shows the temperature oscillations together with
the corresponding power spectrum of the signal for the
”fat” liquid bridge at �T = 8.85K . In the parameters
space, where the translation error grows, a second frequency
appears. The two frequencies are commensurate, and it
results in characteristic ”beatings”.

Summarizing the results in Fig. 6, it turns out that the
shape of the liquid-gas interface has a significant impact of
the trajectory of the system in the phase space. The used
quantity Etrans characterizes the quality of the traveling
wave. This parameter plays an important role in the non-
linear dynamics, e.g. for determination of the parameters
space where PAS exits.

Model

Governing equations and boundary conditions

To model the experiment, we consider a flow in a cylindrical
liquid bridge, i.e. V r = 1.0, of radius R = 3.0 mm and
of d = 2.58 mm in height (thus the aspect ratio is d/R =
0.86). The interface is assumes cylindrical and straight, as
is sketched in Fig. 9. The temperatures Th and Tc (Th >

Tc) are prescribed at the upper and lower walls respectively,

Fig. 7 Temperature time-series
(a) and the corresponding power
spectrum (b) for V r = 0.92 at
�T = 8.80 ◦C corresponding to
upper insert in Fig. 6
characterized by Etrans > 0.1.
The spectrum is noisy
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Fig. 8 Temperature time-series
(a) and the corresponding power
spectrum (b) for V r = 1.05 at
�T = 8.85◦C corresponding to
lower insert in Fig. 6
characterized by
Etrans ∈ (0.01, 0.1). The
spectrum is composed of two
commensurate frequencies

yielding the temperature difference �T = Th− Tc. Density
ρ, surface tension σ, and kinematic viscosity ν of the liquid
are taken as linear functions of the temperature:

ρ(T ) = ρ0 − ρ0β(T − T0), β = − 1

ρ0

∂ρ

∂T
,

σ(T ) = σ0 − σT (T − T0), σT = − ∂σ

∂T
,

ν(T ) = ν0 + νT (T − T0), νT = ∂ν

∂T
.

where subscript 0 indicates the quantities at the reference
temperature T0 = Tc.

The governing dimensionless Navier-Stokes, continuity
and energy equations for an incompressible fluid are:

∂V
∂t

+ (V · ∇)V = −∇P + Rν · 2S × ∇�

+ (1 + Rν�)∇2V + �ez Gr �, (2)

∇ · V = 0, (3)

∂�

∂t
+ V · ∇� = 1

Pr
∇2�, (4)

where V = (Vr , Vϕ, Vz) is velocity, � = (T − T0)/�T

is temperature and t is time, S is the strain rate tensor. The
scales for the radial and axial coordinates are the radius

Fig. 9 Liquid bridge

R and the height d of the liquid column, respectively. The
scales for time, velocity and pressure are tch = d2/ν0,
Vch = ν0/d and Pch = ρ0V

2
ch. ∇ is the nabla operator.

The rigid walls are inert, impermeable, no-slip bound-
aries held at constant temperatures:

V(r, ϕ, z = 0, t) = V(r, ϕ, z = 1, t) = 0 and
�(r, ϕ, z = 0, t) = 0, �(r, ϕ, z = 1, t) = 1.

The interface is a stress-free non-insulated surface:

Vr = 0, 2[1+Rν�]S · er+Re

(
ez∂z+eφ

1

r
∂φ

)
� = 0,

(5)

∂�/∂r = −Bi(�−�amb) (6)

where Bi is the Biot number and �amb is the dimension-
less temperature of the gas near the interface defined as
�amb = (Tamb − T0)/�T . As seen from Eq. 6, the heat
exchange between the liquid and the gas is controlled by
both the Biot number and the temperature profile in the gas.
The Biot number is a dimensionless parameter whose value
depends not only on the properties of the media but also on
features of the flow (Shevtsova et al. 2003).

There are the following non-dimensional parameters.
Three of them, the Grashof number, Gr , the ”thermocapil-
lary” Reynolds number, Re, and the viscosity contrast, Rν ,
are proportional to �T :

Gr = gβ�T d3

ν2
0

, Re = σT �T d

ρ0ν
2
0

, Rν = νT �T

ν0
,

The others are the Prandtl and Biot numbers and the aspect
ratio

Pr = ν0

k
, Bi = hR

λ
, � = d

R
.

where k, β are thermal diffusivity, thermal expansion coef-
ficient, λ is the thermal conductivity of the liquid. h is
the convection heat transfer coefficient and g is the Earth
gravity. Properties of n-decane are given in Table 1.

We adopt the numerical approach of (Shevtsova et al.
2001) on a staggered mesh, which is non-uniform both in
the radial and axial directions. The computational grid is
filling the physical domain with 100 intervals in the radial
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Table 1 Physical properties of n-decane at working temperature

Property Value

Density ρ, kg/m3 730

Kinematic viscosity ν, m2/s 1.17 × 10−6

Kinematic viscosity-temperature −1.36 × 10−8

coefficient νT , m2/(s ·K)

Thermal diffusivity k, m2/s 8.68 × 10−8

Thermal conductivity λ, W/(m ·K) 0.13

Thermal expansion βT , 1/K 1.06 × 10−3

Surface tension σ , N/m 2.39 × 10−2

Surface tension-temperature coefficient

σT , N/(m ·K) 1.18 × 10−4

and in the axial directions and with 32 intervals in the
azimuthal direction. Description of the numerical method
and code validation could be found in (Melnikov et al.
2004).

Heat transfer model

There are three major mechanisms involved in transport of
heat through the interface - convective, radiative and evap-
orative. They will have an impact on the resulting Biot
number. In the following analysis, neither thermal radiation
nor evaporation are considered. The value of Bi is estimated
using the expression of (Kays and Crawford 1980) for a
forced laminar convection. The ambient gas is entrained by
the Marangoni flow along the interface, and the absolute
value of the velocity of the fluid at the interface averaged
over the surface is chosen as the characteristic velocity of
the gas phase:

Vi = 1

2π

∣∣∣∣∣

∫ 2π

0

∫ 1

0
Vz(r = 1)dϕ dz

∣∣∣∣∣ .

The average heat transfer coefficient over the length d in
a forced laminar convection is estimated as:

h = 0.664 Re
1/2
air P r

1/3
air

λair

d
, (7)

where Reair = Vid/νair is the Reynolds number in gas
phase, the Prandtl number of air is Prair = 0.713.

The calculations performed for the thermally insulated
interface at the onset of instability resulted in Vi ≈ 70,
thus yielding Reair ≈ 5.3. Setting Reair to this small value
ensures the laminar regime of convection in air. Finally,
using Equation (7) one obtains h = 13.6 and Bi = 0.31.
Accounting for the disregarded mechanisms of heat transfer
will inevitably increase the value of Bi. Without being able
to supply the real value of the Biot number in the exper-
iment, the modeling was performed for a vast region of
Bi ∈ [0, 1].

Results of computer modeling

To model the experiments, along with the thermally insu-
lated interface, different profiles of Tamb were considered:

1 - Tamb = const and varied between 10 and 40 ◦C;
2 - linear Tamb = Tc +�T z (◦C), Tc = 20 ◦ C.

As we consider the liquid bridge of V r = 1, the results of
the calculations are compared with the experimental ones
for the closest liquid volume, i.e. for V r = 0.98. The critical
temperature difference was calculated with an accuracy of
0.1 ◦C.

The computer modeling brought both discoveries and
questions. A comparison between the CFD simulations and
the experiments for the critical conditions is shown in
Fig. 10. Dashed and solid lines represent the stability curves
for Bi = 0.25 and 0.5 (shown by dashed and solid lines in
Fig. 10), while the experimental data are plotted by diamond
symbols. The results reveal the noticeable reduction of the
stability of the two-dimensional flow with the increase of
ambient temperature in air. At the same time, imposing the
linear temperature profile in the gas phase results in a slight
increase of the critical temperature difference with respect
to that at Bi = 0 (compare dotted and dashed-dotted curves
in Fig. 10) that is similar to the experimental observations.

As shown in Fig. 11, the flow is continuously destabiliz-
ing with the increase of Tamb (while keeping the value of
Bi constant). Varying values of Bi between 0 and 1 for the
linear profile in the gas phase and for Tamb ≤ 25 ◦C (room
temperature) reveales a stabilization of the thermocapillary

Fig. 10 Critical temperature difference obtained via computer model-
ing of flow in liquid bridge of � = 0.86 with Bi = 0.25 (black dashed
line) and 0.5 (black solid line) at different thermal conditions in the
ambient gas and compared to the experimentally measured values (red
diamond symbols) for liquid bridge of volume ratio 0.98. Blue dotted
and green dashed-dotted lines correspond to linear temperature profile
in the gas Tc+�T z and adiabatic interface (Bi = 0), correspondingly.
For the modeling, Tout is equal to the ambient temperature in the gas
phase Tamb
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Fig. 11 Critical temperature difference obtained via computer model-
ing of flow in liquid bridge of � = 0.86 at various thermal conditions
in the ambient gas: linear profile Tc + �T z (blue dotted line), 10 ◦C
(red solid line), 25 ◦C (black dashed line) and 40 ◦C (green dashed-
dotted line). The lines represent the fits through the calculated points
at Bi = 0, 0.25, 0.5 and 1. Only a part of the solid curve is shown due
to the very strong growth of the critical Reynolds number in case of
the strong cooling at Tamb = 10 ◦C

flow. When the gas is cold, increasing the rate of the heat
transfer (value of Bi) results in a very strong stabilization
of the flow: �Tcr = 9.6 and 14.4◦ C for Bi = 0.5 and 1,
respectively.

The stability diagram for Tamb = 40 ◦C is different from
those for the other cases (see Fig. 11). When the air is hot,
the critical temperature difference starts decreasing, and is
growing after reaching a minimum at about Bi = 0.5. The
stability curve for Tamb = 40 ◦C has a small peak at about
Bi = 0.35. It is a consequence of a change of the critical
wave number m of the flow, which will be explained below.
The value of �Tcr at Bi = 0.5 is very close to the one found
experimentally.

One may argue that the critical temperature difference
for Bi = 0 (shown as dashed-dotted line in Fig. 10) is not
far from the experimental one either, and thus the heat flux
was negligible in the experiments. However, agreement with
the experimental observations will require the similar mode
m = 2 of the supercritical flow, and this is where all the
simulated cases, except the one with Tamb = 40 ◦C, fail (see
a summary of the computational results in Table 2).

Figure 12 shows snapshots of disturbances (perturba-
tions) of temperature field made for two weakly supercrit-
ical cases at �T = 8 ◦C: (a) thermally insulated interface,
(b) interface surrounded by hot ambient air at Tamb = 40 ◦C
when Bi = 0.5. The disturbances are defined as deviations
of the three-dimensional field from the azimuthally aver-
aged solution (its axisymmetric part). They are calculated
and visualized to determine the azimuthal wave number (see
e.g. (Shevtsova et al. 2001)):

f ∗=f (r, ϕ, z, t)−f̄ (r, z, t), f̄ = 1

2π

∫ 2π

0
f(r, ϕ, z, t)dϕ,

(8)

f is any physical variable, e.g. temperature or velocity. f ∗
does not show the complete perturbations but only their
three-dimensional parts.

There are three pairs of hot-cold patterns visible at the
cross section and at the interface in the case of thermally
insulated free surface, whereas for Tamb = 40 ◦C there
are two pairs, corresponding to m = 2 - the mode that
was observed experimentally (see Fig. 3c). The experimen-
tal mode was confirmed only when Tamb = 40 ◦C and
Bi > 0.35 (as shown in Table 2). It is for this reason that
the linear temperature profile in gas is also ruled out.

No mode change was observed between Bi = 0 and 1
for the considered cases, except at Tamb = 40 ◦C as is men-
tioned above. It is always 3 for the linear profile, cold gas
and room temperature. In case of the hot environment, the
mode is 2 between Bi = 0.35 and 1. This is another indica-
tion on that the temperature in the ambient gas phase in the
experimental chamber was high and rather homogeneous.
Changing Tout had no effect on the structure of the thermo-
capillary flow in the experiments. The homogeneity of the
gas temperature was probably due to the Marangoni flow
entraining the hot air downwards.

Discussion

As was shown above, there is a number of disagreements
between the model and the experiment. A question arises
whether some of them can be neglected or should be worked
on to be reduced. For example, as can be seen in Fig. 10, the
experimental and theoretical stability diagrams have differ-
ent slopes. Or, while the mode m = 2 was observed in the
experiments at any considered Tout , the calculations con-
firmed the experimental findings only at Tamb = 40 ◦C and
Bi > 0.35, and they revealed m = 3 mode for the other
cases.

This discussion merely serves to emphasize that discrep-
ancies between the two sets of data rule out the model. It
should rather be stated that whenever a disagreement occurs
between model and experiment, its possible reasons in both
the experiment, the model, or both must be considered.

There are a few reasons of the divergences between the
results of the computer modeling and the experimental data.
We have to recall that a number of features of the problem
were neglected in the ad hoc model. Among them are the
deformations of the interface, which are always non-zero on
ground, and the transport processes taking place in ambient
gas. Our model is one-phase laminar flow of incompressible
fluid, and the heat flux through the interface is calculated
by Eq. 6 under the assumptions of Tamb = Tout , an ide-
alized temperature profile in gas and the Biot number to
be independent of the coordinates. These are, however,
straightforward and strong simplifications. In reality, it is
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Table 2 Critical mode m of the flow in case of insulated interface and
for Bi ∈ [0, 1] under different surrounding conditions at the interface.
Tc = 20◦ C

Tamb(
◦C) 10 25 40 Tc +�T z Bi = 0

m 3 3 3 (Bi < 0.35) 3 3

2 (Bi > 0.35)

already a separate problem of how to measure the distribu-
tion of the heat flux and which locations should be chosen
to measure the temperature of gas phase to be considered as
Tamb.

The shape of the interface, related to the liquid volume,
affects the critical conditions as shown in Fig. 2. The max-
imal impact of V r on Tcr , however, does not exceed 6 %
over the range of V r = 0.75 − 1.05, whereas the calcu-
lated values of the critical temperature difference are larger
than the corresponding experimental ones (for Tout = 10 ◦C
the difference attains its maximum of 37 %). Therefore,
it seems most likely that the discrepancy originates either
in the ambient temperature distribution in the gas phase
unknown from the experiment or in the value of the Biot
number considered as uniform, i.e. constant along the entire
interface, and independent of the external temperature Tout .

It is possible that changing the temperature at the exter-
nal wall of the experimental chamber did not change much
the gas temperature near the interface due to a number of
reasons. It could be, e.g., because of the boundary being far
away from the liquid bridge (the distance between the wall
and the interface is 33 times the radius of the bridge), and/or

due to the features of the design of the experimental setup
visible on the right picture of Fig. 1 (it is discussed below).

Shevtsova et al. (2005) and Tiwari and Nishino (2010)
experimentally measured temperature distribution in air
near the interface for thermocapillary convection in liquid
bridges of aspect ratios of 1 and 1.2 made of 5 and 10 cSt
silicone oils. It was shown there is a thermal boundary layer
in air near the free-surface with a large thermal gradient,
and the ambient temperature reached a more or less constant
value at approximately 6 − 7 times of the radius of the liq-
uid bridge away from the interface. Therefore, the obtained
experimental data were processed and are shown in Fig. 10
as the circle symbols (we call it processed experiment). In
frame of this approach, Tamb was assumed constant and
recalculated at the point located 7R = 21mm away from the
free surface. The temperature at the free surface is estimated
as Ts = Tc + 0.7�Tcr (Shevtsova et al. 2003), whereas
the temperature in the gas beyond the boundary layer is
assumed to be changing linearly between the free surface
and the external wall. The latter is 97 mm away from the
interface. Hence,

Tamb = Ts + (Tout − Ts)
21(mm)

97(mm)
.

Doing so noticeably contracts the experimental points in
Fig. 10 and increases the growth rate of the critical temper-
ature difference against Tout .

The design of the setup, of course, affects the tempera-
ture inside the chamber. The cold and hot boundaries spread
beyond the edges of the rods. Moreover, the liquid bridge
is confined between two horizontal disks of a large radius.

(a) (b)

Fig. 12 (Color online) Snapshots of deviations of temperature field
�∗ from the azimuthally averaged solution in supercritical regime near
the critical point: a insulated interface, i.e. Bi = 0; b Tamb = 40 ◦ C

and Bi = 0.5. Mid-gray and darkest gray (red and blue) indicate hot
and cold regions, respectively
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The present configuration makes the experimental condi-
tions similar to those studied in (Tiwari and Nishino 2006;
2010) with presence of two horizontal partition boundaries,
which were shown to be capable of affecting the critical
conditions of the flow.

As for the value of the Biot number, the parameter quan-
tifying the rate of the heat exchange, variations of Tout will
affect the gas flow induced by buoyancy, which, in turn, will
modify the convection heat transfer coefficient h (Kays and
Crawford 1980; Bejan and Kraus 2003) (it is proportional
to V 0.5

air and |Tout − Ts |0.25, where Vair is the characteris-
tic velocity of air, which at the same time is entrained by
the fluid flow and driven by buoyancy due to the horizontal
temperature gradient in the chamber).

Conclusions

The present work reports on results of both experimen-
tal and theoretical study of the influence of heat transfer
on the stability of a flow, caused by a combined effect
of thermocapillary forces and buoyancy, in a liquid bridge
differentially heated at the opposite boundaries.

We have measured the critical temperature difference in
liquid bridges of different volume ratios varied between 0.7
and 1.05. One of the findings for the considered system (liq-
uid bridge of n-decane with Pr = 13.5) is that the liquid
volume, i.e. the curvature of the interface, has a weak effect
on the critical parameters. The highest value of the imposed
temperature difference, at which the onset of temperature
oscillations occurs, was measured in a liquid bridge of vol-
ume ratio of 0.9. It is only about 10 % and 6 % larger than
those obtained at 0.7 and 1.05 volume ratios respectively.

Volume ratio, however, is capable in changing the
dynamics of the flow. In a thin liquid bridge of volume ratio
0.92, we have observed non-periodic oscillations within
an extensive range of �T , whereas the oscillations were
regular and periodic in a fat liquid bridge.

The mode of the supercritical flow was found via observ-
ing particles accumulation structures in the flow, which was
forming in the range of the volume ratios between 0.87 and
1.05. Over this range, the mode was always 2.

It was found that changing the temperature at the rigid
wall of the experimental chamber, which was about 10 mm
away from the liquid-gas interface, results in stabilization
of the flow and the critical temperature difference slightly
increases.

To support the experimental observations, a set of three-
dimensional computer modeling was performed. It is cru-
cial that the heat flux through the interface be properly
accounted for in order to reproduce the experimental results.
The heat transfer was modeled by the Newton’s law. It was
shown that the ambient temperature inside the chamber had

to be high and the Biot number greater than 0.35 to have a
good agreement with the experimental data.

It was obtained that the spatial structure of the supercrit-
ical flow is quite susceptible to change of the experimental
conditions in the surrounding air. Increasing temperature of
surrounding gas results in changing the wave number. It
does not occur, however, when the Biot number is small.

The calculations revealed that increasing the rate of the
heat transfer through the interface (value of the Biot num-
ber) stabilizes the thermocapillary flow when the interface
is cooled. Increasing the ambient temperature in the gas
phase has an ambiguous impact on the stability of the flow.
The stability diagram has a pronounced minimum at about
Bi = 0.5.

The performed modeling has shown how important it is
to consider the heat transfer through the interface in order
to reproduce the experimental observations. The presented
analysis clearly demonstrates that neglecting heat transfer
through the liquid-gas interface may lead to inconsistent
results.
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