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Abstract
We study the Hermite interpolation problem on the spaces of symmetric bivariate polynomi-
als. We construct regular Hermite interpolation schemes that solve the problem, where the
interpolation points lie on the upper parts of symmetric quadratic curves and the derivatives
are induced from the natural parametrization of the curves. We also give a Newton type
formula for the interpolation polynomial.
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1 Introduction

Multivariate polynomial interpolation problems are difficult to solve. We are interested in
studying some of them. The first problem is to choose a set of interpolation conditions such
that the corresponding interpolation problem has a unique solution on a space of multivariate
polynomials. The interpolation points are usually in restrictive distribution. For example,
these points can be collected from hypersurfaces, where each hypersurface contains a certain
number of points (see [2, 3, 8]). The second one is to find an effective formula for the
interpolation polynomial. In particular, the Newton type formula is not available for many
multivariate interpolation schemes.

LetP(R2) be the vector space of all polynomials (of real coefficients) inR2 andPd(R
2)

the subspace consisting of all polynomials of degree at most d . Let Sd be the vector space
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of even bivariate polynomials with respect to the second variable y of degree at most d ,

Sd = {p ∈ Pd(R
2) : p(x, y) = p(x,−y)}.

In the paper of Carnicer and Godés [6], the authors proved that

dimSd = [d + 2

2

] · [d + 3

2

]
.

We consider a problem of Hermite interpolation by a polynomial in Sd . More precisely,
the problemmeans to find a polynomial inSd whichmatches, on a set of distinct points inR2,
values of a function and its partial derivatives. It is required that the number of interpolation
conditions equals the dimension of Sd . If the interpolation problem has a unique solution,
then we say that the problem is regular.

Problem 1 Find a set A = {a1, . . . , am} be m distinct points inR2 and differential operators
μ1, . . . , μNd at points of A with Nd = dimSd for which the interpolation problem

μi ( f ) = fμi , 1 ≤ i ≤ Nd ,

has a unique solution in Sd for any given preassigned data { fμi }. Find an explicit formula
for the interpolation polynomial.

In the case where m = Nd and μi is the evaluation functional defined by μi ( f ) = f (ai ),
i = 1, . . . , Nd , Problem 1 becomes the Lagrange interpolation problem for Sd which was
first studied by Carnicer and Godés. In [6], the authors constructed a regular set X in the
upper half plane called anSd -Berzolari-Radon set. More precisely, X consists of Nd distinct
points distributed on lines, where each line contains a certain number of points. They also
established a Newton type formula for the symmetric interpolation polynomial. To prove the
regularity of X , Carnicer and Godés showed that the interpolation operator corresponding to
the Berzolari-Radon set is a bijective map onto the spaceSd . They constructed a symmetric
polynomial of the Newton form that matches the value of the interpolated function at X .

In [12], we introduced the multipoint Berzolari–Radon sets (MBR sets for short) whose
points are not necessarily distinct and lie on the upper half plane. When a point a is repeated
ν times in a MBR set, we get the directional derivatives up to the order ν − 1 with respect
to the vector that is parallel with the line containing a. We showed that the MBR set solves
the Hermite interpolation problem. To prove the regularity of the the MBR set, we use the
factorization method to verify that the interpolation operator corresponding to the MBR set
is an injective map from Sd to R

Nd , and consequently it is a bijective map. To establish
a Newton type formula for the interpolation polynomial, we first constructed a bivariate
polynomial that interpolates (in Hermite type) a function at points in the MBR set lying on
a line. We then used these polynomials corresponding interpolation conditions to the lines
to obtain the formula. Moreover, the formula enabled us to prove a continuity property of
Hermite interpolation at MBR sets with respect to the interpolation points.

In this paper, we investigate the Hermite interpolation problem for Sd , where the
interpolation points distribute on quadratic curves in the following three forms:

(i) parabola: x − α − β y2 = 0, α ∈ R and β �= 0;
(ii) circle (x − α)2 + y2 − R2 = 0, α ∈ R and R > 0;
(iii) hyperbola: (x − α)2 − β y2 − 1 = 0, α ∈ R and β > 0.

Let Q be the class of all quadratic curves mentioned above. Note that any curve in Q is
symmetric with respect to the horizontal axis. Moreover, the curve intersects the X -axis at
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one point (the parabola) or two points (the circle and the hyperbola). We treat the three types
of curves separately in Sects. 2 and 3.

Let C be a curve inQ. The first type of interpolation condition is the evaluation functional
corresponding to a intersection point ofC and the X -axis.We use the natural parameterization
t �→ ρ(t) of C to define the second type of interpolation conditions. More precisely, they
are differential operators of the form F �→ (F ◦ ρ)(k)(t0), where the point ρ(t0) lies on
the upper half part of C . In Sect. 2, we construct an interpolation polynomial of Hermite
type associated with the above-mentioned interpolation conditions on C . It is a bivariate
polynomial, however it depends only on the first variable x . In Sect. 3, we use the differential
operators to get a divisibility criterion for the quadratic polynomial q that defines C . We
show that a polynomial P ∈ Sd is divisible by q if all differential operators corresponding
to C vanish at P . The criterion enables us to use the factorization method in order to prove
the regularity of the Hermite scheme. In Sect. 4, we establish a Newton type formula for the
Hermite interpolation polynomial. Here every term of the formula contains an interpolation
polynomial constructed in Sect. 2. We also give some examples in which we compute the
Hermite interpolation polynomials precisely and study their continuity property.

We note that the factorization method is used by many authors to prove the regularity of
interpolation schemes (see [2–5, 11, 14]), where the space of polynomials is the set of all
polynomials of degree at most d . It is different from the space of symmetric polynomialsSd

considered in this paper. In a recent work [7], the authors studied the stability property of
the Lagrange interpolation operator in R

n and its even and odd parts with respect to the last
variable. They showed that that the Lesbesgue constants of the even and odd operators are
less than the Lebesgue constant of the full Lagrange operator. For details, we refer the reader
to [7].

Finally, it isworth saying that theHermite ormore complexHermite-Birkhoff interpolation
can be used in the potential applications. For example, in [9, 10, 16, 17], the authors solved
the interpolation problems in the framework of scattered data with different kind of basis
functions and gave numerical results.

2 Bivariate Hermite interpolation associated with curves inQ

The construction of Hermite interpolation on curves heavily rely on univariate Hermite
interpolation. It is defined as follows.

Let t1, . . . , tn be n + 1 distinct real numbers. Let ν1, . . . , νn be n positive integers and
l = ν1 + · · · + νn . The following classical result can be found in [1, Theorem 1.1].

Theorem 1 Given a function f for which f (νi−1)(ti ) exists for i = 1, . . . , n. Then there exists
a unique polynomial p of degree at most l − 1 such that

p( j)(ti ) = f ( j)(ti ), 1 ≤ i ≤ n, 0 ≤ j ≤ νi − 1.

The polynomial p in Theorem 1 is denoted by H[{(t1; ν1), . . . , (tn; νn)}; f ] and called the
Hermite interpolation polynomial. In the special case where l = n and ν1 = · · · = νn = 1,
the interpolation polynomial becomes the ordinary Lagrange interpolation polynomial. If
n = 1, then H[{(t1; l)}; f ] is identity with the Taylor expansion of f at t1 to order l. We
can regards the set of pairs of nodes and multiplicities {(t1; ν1), . . . , (tn; νn)} as a multipoint
set {u1, . . . , un} ⊂ R. Here, (ti ; νi ) means that ti is repeated νi times. For example, A =
{(0; 2), (−2; 3), (3; 1)} can be identified with {0,−2, 0,−2, 3,−2}. Hence, we can write
H[{u1, . . . , ul}; f ] instead ofH[{(t1; ν1), . . . , (tn; νn)}; f ]. The most useful formula for the
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Hermite interpolation polynomial is the Newton representation

f (t) = f [u1] + f [u1, u2](t − u1) + · · · + f [u1, u2, . . . , ul ](t − u1) · · · (t − ul−1) (1)

where the coefficients f [u1, u2, . . . , ui ] are the divided differences.
Let C be a curve in the class Q. We set

C+ = C ∩ {(x, y) ∈ R
2 : y > 0}.

Let c be a point on C+ and � be a positive integer. We denote by Diff(C , c, �) the set of
differential operators:

(i) If C is the parabola x − α = β y2 and c = (α + β y20 , y0) with y0 > 0, then

Diff(C , c, �) =
{
μ : μ(F) = dk

dyk
F(α + β y2, y)

∣
∣
∣
y=y0

, k = 0, 1, . . . , � − 1
}
;

(ii) If C is the circle (x − α)2 + y2 − R2 = 0 and c = (α + R cos t0, R sin t0) with
0 < t0 < π , then

Diff(C , c, �) =
{
μ : μ(F) = dk

dtk
F(α + R cos t, R sin t)

∣∣∣
t=t0

, k = 0, 1, . . . , � − 1
}
;

(iii) If C is the hyperbola (x −α)2 −β y2 = 1 and c =
(
α + et0 + e−t0

2
,
et0 − e−t0

2
√

β

)
with

t0 > 0, then

Diff(C , c, �) =
{
μ : μ(F) = dk

dtk
F

(
α + et + e−t

2
,
et − e−t

2
√

β

)∣
∣
∣
t=t0

, k = 0, 1, . . . , � − 1
}
.

To study bivariate Hermite interpolation, we must compute the derivatives of composite
functions. For convenience to the readers, we recall the Faà di Bruno formula which can be
found in [15].

Theorem 2 If f (t) and g(t) are functions for which the necessary derivatives are defined,
then

(
f (g(t))

)(n) =
∑ n!

k1! · · · kn ! f
(k)(g(t))

(g(1)(t)

1!
)k1(g(2)(t)

2!
)k2 · · ·

(g(n)(t)

n!
)kn

,

where k = k1+· · ·+kn and the sum is over all k1, . . . , kn for which k1+2k2+· · ·+nkn = n.

The first result is focused on the parabola.

Lemma 1 Let �, ν1, . . . , νn be positive integers such that ν1 + · · · + νn = �. Let b be the
intersection point of the parabola C of the equation x − α − β y2 = 0 with the horizontal
axis, i.e. b = (α, 0). Let ci = (α + β y2i , yi ), yi > 0, i = 1, . . . , n, be n distinct points on
C+. We set

A = {(b; 1), (c1; ν1), . . . , (cn; νn)}
and

A = {(α; 1), (α + β y21 ; ν1), . . . , (α + β y2n ; νn)}.
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For a function F defined on C for which the necessary derivatives are defined, we set f (x) =
F

(
x,

√
x−α
β

)
. Then the polynomial HC [A; F] defined by

HC [A; F](x, y) := H[A; f ](x)
belongs to S� and satisfies the following relations

HC [A; F](b) = F(b), μ(HC [A; F]) = μ(F), μ ∈
n⋃

i=1

Diff(C , ci , νi ).

Proof Since ν1 + · · · + νn = �, H[A; f ](x) is a polynomial of degree at most �. Therefore,
HC [A; F] ∈ S�. By the definition, we have

HC [A; F](b) = H[A; f ](α) = f (α) = F(b).

From the relation

d j

dy j
H[A; f ](α + β y2i ) = d j

dy j
f (α + β y2i ), 1 ≤ i ≤ n, 0 ≤ j ≤ νi − 1,

we can use the Faà di Bruno formula to obtain the following relations

d j

dy j
H[A; f ](α + β y2)

∣∣∣
y=yi

= d j

dy j
f (α + β y2)

∣∣∣
y=yi

. (2)

Indeed, let us set g(y) = α + β y2. Using Theorem 2, we can write

d j

dy j
H[A; f ](α + βy2)

∣∣
∣
y=yi

d j

dy j

(
H[A; f ] ◦ g(y)

)∣∣
∣
y=yi

=
∑ j !

k1! · · · k j ! (H[A; f ])(k)(g(yi ))
( g(1)(yi )

1!
)k1( g(2)(yi )

2!
)k2 · · ·

( g( j)(yi )

j !
)k j

=
∑ j !

k1! · · · k j ! f
(k)(g(yi ))

( g(1)(yi )

1!
)k1( g(2)(yi )

2!
)k2 · · ·

( g( j)(yi )

j !
)k j = d j

dy j
( f ◦ g)(y)

∣
∣∣
y=yi

,

where k = k1+· · ·+k j and the sum is over all k1, . . . , k j for which k1+2k2+· · ·+ jk j = j .
Remark that F(α +β y2, y) = f (α +β y2) for y > 0. For 1 ≤ i ≤ n and 0 ≤ j ≤ νi −1,

we have

d j

dy j
HC [A; F](α + β y2, y)

∣∣∣
y=yi

= d j

dy j
H[A; f ](α + β y2)

∣∣∣
y=yi

= d j

dy j
f (α + β y2)

∣∣∣
y=yi

= d j

dy j
F(α + β y2, y)

∣∣∣
y=yi

,

where we use (2) in the second equality. The last relation can be rewritten as

μ(HC [A; F]) = μ(F), μ ∈
n⋃

i=1

Diff(C , ci , νi ).

��

123



P. Van Manh et al.

Lemma 2 Let �, ν1, . . . , νn be positive integers such that ν1 + · · · + νn = �. Let b be an
intersection point of the circle C of the equation (x −α)2 + y2 − R2 = 0 with the horizontal
axis, i.e. b ∈ {(±R + α, 0)}. Let ci = (α + R cos ti , R sin ti ), 0 < ti < π , i = 1, . . . , n, be
n distinct points on C+. We set

A = {(b; 1), (c1; ν1), . . . , (cn; νn)}
and

A = {(±R + α; 1), (α + R cos t1; ν1), . . . , (α + R cos tn; νn)}.
For a function F defined on C for which the necessary derivatives are defined, we set f (x) =
F

(
x,

√
R2 − (x − α)2

)
. Then the polynomial HC [A; F] defined by

HC [A; F](x, y) := H[A; f ](x)
belongs to S� and satisfies the following relations

HC [A; F](b) = F(b), μ(HC [A; F]) = μ(F), μ ∈
n⋃

i=1

Diff(C , ci , νi ).

Proof The proof is analogous to the proof of Lemma 1. Evidently, HC [A; F] ∈ S�. We first
see that

HC [A; F](b) = H[A; f ](±R + α) = f (±R + α) = F(b).

The Faa di Bruno formula along with the interpolation conditions for H[A; f ],
dk

dtk
H[A; f ](α + R cos ti ) = dk

dtk
f (α + R cos ti ), 1 ≤ i ≤ n, 0 ≤ k ≤ νi − 1,

lead to
dk

dtk
H[A; f ](α + R cos t)

∣∣∣
t=ti

= dk

dtk
f (α + R cos t)

∣∣∣
t=ti

. (3)

By the definition, we have F(α + R cos t, R sin t) = f (α + R cos t) for 0 < t < π . For
1 ≤ i ≤ n and 0 ≤ k ≤ νi − 1, we have

dk

dtk
HC [A; F](α + R cos t, R sin t)

∣∣∣
t=ti

= dk

dtk
H[A; f ](α + R cos t)

∣∣∣
t=ti

= dk

dtk
f (α + R cos t)

∣∣∣
t=ti

= dk

dtk
F(α + R cos t, R sin t)

∣∣∣
t=ti

,

where we use (3) in the second equality. In other words,

μ(HC [A; F]) = μ(F), μ ∈
n⋃

i=1

Diff(C , ci , νi ).

��

Next, we state the result corresponding to the hyperbola without proof.

123



Hermite interpolation with symmetric polynomials associated…

Lemma 3 Let �, ν1, . . . , νn be positive integers such that ν1 + · · · + νn = �. Let b be the
intersection point of the right branch of hyperbola C of the equation (x −α)2 −β y2 −1 = 0
with the horizontal axis, i.e. b = (α + 1, 0). Let ci = (

α + eti +e−ti

2 , eti −e−ti

2
√

β

)
, ti > 0,

i = 1, . . . , n, be n distinct points on C+. We set

A = {(b; 1), (c1; ν1), . . . , (cn; νn)}
and

A = {
(α + 1; 1), (α + et1 + e−t1

2
; ν1

)
, . . . ,

(
α + etn + e−tn

2
; νn

)}
.

For a function F defined on C for which the necessary derivatives are defined, we set f (x) =
F

(
x,

√
(x−α)2−1

β

)
. Then the polynomial HC [A; F] defined by

HC [A; F](x, y) := H[A; f ](x)
belongs to S� and satisfies the following relations

HC [A; F](b) = F(b), μ(HC [A; F]) = μ(F), μ ∈
n⋃

i=1

Diff(C , ci , νi ).

Remark 1 We consider the case where the interpolation set contains only one point, that is
A = {(b; 1)}with b ∈ C ∩Ox . The Hermite interpolation of a function F atA is the constant
polynomial defined by

HC [A; F](x, y) := F(b).

It is an element of S0.

3 A divisibility criterion

In this section, we give a divisibility criterion for polynomials in Sd .

Lemma 4 Under the assumption of Lemma 1, if P ∈ S� satisfies the relations

P(b) = 0, μ(P) = 0, μ ∈
n⋃

i=1

Diff(C , ci , νi ),

then P is a multiple of q(x, y) = x − α − β y2.

Proof Let us set Q(y) = P(α + β y2, y). We see that Q is an even polynomial of degree at
most 2�, because

Q(−y) = P(α + β(−y)2,−y) = P(α + β y2, y) = Q(y).

The relation P(b) = 0 gives Q(0) = 0. For each i ∈ {1, . . . , n}, the equations

μ(P) = 0, μ ∈
n⋃

i=1

Diff(C , ci , νi )
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imply Q( j)(yi ) = 0 for j = 0, . . . , νi−1.Moreover, since Q is even,we have Q( j)(−yi ) = 0
for j = 0, . . . , νi − 1. It follows that

Q(y) = y
n∏

i=1

(y − yi )
νi (y + yi )

νi Q∗(y) (4)

The last relation forces Q∗ = 0, because if Q∗ �= 0, then the degree of polynomial at the
right hand side of (4) is greater or equal to 1+ 2

∑n
i=1 νi = 2� + 1, which is strictly greater

than deg Q. Consequently, Q = 0, which is equivalent to P(α + β y2, y) = 0 for all y ∈ R.
This means that is P vanishes on C , and hence P is a multiple of x − α − β y2. ��
Lemma 5 Under the assumption of Lemma 2, if P ∈ S� satisfies the relations

P(b) = 0, μ(P) = 0, μ ∈
n⋃

i=1

Diff(C , ci , νi ),

then P is a multiple of q(x, y) = (x − α)2 + y2 − R2.

Proof Observe that Q(t) := P(α+R cos t, R sin t) is a trigonometric polynomial of degree at
most �. The hypothesis P(b) = 0 becomes Q(0) = 0 or Q(π) = 0. Let us fix i ∈ {1, . . . , n}.
By assumption, we have

d j

dt j
Q(ti ) = 0, j = 0, . . . , νi − 1.

In other words, ti is a root of multiplicity νi of Q. In addition, since P(x, y) = P(x,−y),
we conclude that Q(−t) = Q(t), and hence Q( j)(−ti ) = 0 for j = 0, . . . , νi − 1. This says
that −ti is also a root of multiplicity νi of Q. Since ν1 + · · · + νn = �, the trigonometric
polynomial Q(t) has, counted with multiplicity, 2� + 1 roots. Now, we can use Theorem 1.7
in [18, Chapter X] to obtain Q = 0. The relation P(α + R cos t, R sin t) = 0 for all t ∈ R

says that P vanishes on C . It follows that P is a multiple of (x − α)2 + y2 − R2. ��
Lemma 6 Under the assumption of Lemma 3, if P ∈ S� satisfies the relations

P(b) = 0, μ(P) = 0, μ ∈
n⋃

i=1

Diff(C , ci , νi ),

then P is a multiple of q(x, y) = (x − α)2 − β y2 − 1.

To prove the lemma, we need an elementary result concerning the vanishing of derivatives
of functions. It was proved in [13, Lemma 2.6].

Lemma 7 Let k be a natural number. Let g and h be k-times differentiable functions at t0 ∈ R.
If g(t0) �= 0 and (gh)(i)(t0) = 0 for i = 0, . . . , k, then h(i)(t0) = 0 for i = 0, . . . , k.

Proof of Lemma 6 Since P is a polynomial of degree at most �, there exists a univariate
polynomial Q of degree at most 2� such that

Q(et ) = e�t P

(
α + et + e−t

2
,
et − e−t

2
√

β

)
.

For 1 ≤ i ≤ n and 0 ≤ j ≤ νi − 1, we have

(
e−�t Q(et )

)( j) ∣∣∣
t=ti

= d j

dt j
P

(
α + et + e−t

2
,
et − e−t

2
√

β

) ∣∣∣
t=ti

= 0.
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Applying Lemma 7, we obtain
(
Q(et )

)( j)
∣
∣
∣
t=ti

= 0, 1 ≤ i ≤ n, 0 ≤ j ≤ νi − 1 (5)

We will show that
Q( j)(eti ) = 0, 1 ≤ i ≤ n, 0 ≤ j ≤ νi − 1. (6)

To prove the relation, let us fix i ∈ {1, . . . , n}. The assertion is obvious true when j = 0.
Assume that the assertion holds for j = 0, . . . , s − 1 with s < νi − 1; we will prove it holds
for s. From (5) we can use Faà di Bruno’s formula (see Theorem 2) to get

0 = (
Q(et )

)(s)
∣
∣
∣
t=ti

=
∑ s!

k1! . . . ks !Q
(k)(eti )

(
eti

1!
)k1

· · ·
(
eti

s!
)ks

, (7)

where k = k1+· · ·+ks and the sum is overall k1, . . . , ks for which k1+2k2+· · ·+ sks = s.
Note that k ≤ s and k = s only if k1 = s, k2 = k3 · · · = ks = 0. Hence, by induction
hypothesis, all terms in the sum in (7) vanish except the term corresponding to k1 = s,
k2 = · · · = ks = 0. It follows that Q(s)(eti )esti = 0, and so Q(s)(eti ) = 0. The assertion is
proved completely.

Next, by the symmetry of P , we can write

Q(e−t ) = e−�t P

(
α + et + e−t

2
,−et − e−t

2
√

β

)
= e−�t · P

(
α + et + e−t

2
,
et − e−t

2
√

β

)
.

Relations (5) and Lemma 7 give
(
Q(e−t )

)( j)
∣∣∣
t=ti

= 0, 1 ≤ i ≤ n, 0 ≤ j ≤ νi − 1 (8)

We now apply the above argument again, with Q(et ) replaced by Q(e−t ), to obtain

Q( j)(e−ti ) = 0, 1 ≤ i ≤ n, 0 ≤ j ≤ νi − 1. (9)

Moreover, the hypothesis P(b) = 0, b = (α + 1, 1), is equivalent to Q(0) = 0. Combining
this fact with (6) and (9), we get the following factorization

Q(x) = x
n∏

i=1

(x − eti )νi (x − e−ti )νi Q1(x) (10)

Since ν1 + · · · + νn = �, the degree of the factor x
∏n

i=1(x − eti )νi (x − e−ti )νi equals to
2�+ 1 which is strictly greater than deg Q. This forces Q1 = 0, and consequently Q = 0. In
view of the definition of Q, we can say that P vanishes on the right branch of the hyperbola
C . In particular, two curves {(x, y) ∈ R

2 : P(x, y) = 0} and C have more than 2� common
points. The Bézout theorem shows that P is a multiple of (x − α)2 − β y2 − 1. ��
Remark 2 Lemma 6 is also true when b = (α − 1, 0) and the ci lies on the left branch of the
hyperbola.

4 Regular Hermite interpolation schemes

In this section, we always assume that d is a positive integer. We also set m = [ d2 ] + 1 and
sk = d − 2k + 2 for k = 1, 2, . . . ,m. Remark that s1, . . . , sm−1 are positive, whereas sm is
non-negative. The following simple result is used to prove the regularity of Hermite schemes.
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Lemma 8 We have
m∑

k=1

(sk + 1) = dimSd .

Proof Since d = [ d
2

] + [ d+1
2

]
and m = [ d

2

] + 1, we have

m∑

k=1

(sk + 1) =
m∑

k=1

(d − 2k + 3) = m(d − m + 2)

=
([d

2

]
+ 1

)
·
([d + 1

2

]
+ 1

)
=

[d + 2

2

]
·
[d + 3

2

]

= dimSd .

��
Theorem 3 Let C1,C2, . . . ,Cm be m distinct curves in Q. For 1 ≤ k ≤ m, let bk be an
intersection point of Ck with the real horizontal line. For sk > 0, let ck1, . . . , cknk be nk
distinct points on C+

k with nk ≤ sk (if Ck is a hyperbola then the points are chosen on its one
branch). Let νk1, . . . , νknk be positive integers such that νk1 + · · · + νknk = sk . Assume that
{bk, cki : i = 1, . . . , nk} ∩ C j = ∅ for k > j .

1. In the case sm > 0, for any suitable defined function F, there exists a unique P ∈ Sd

such that
P(bk) = F(bk), k = 1, . . . ,m, (11)

and

μ(P) = μ(F), μ ∈
m⋃

k=1

nk⋃

i=1

Diff(Ck, cki , νki ). (12)

2. In the case sm = 0, for any suitable defined function F, there exists a unique P ∈ Sd

such that
P(bk) = F(bk), k = 1, . . . ,m, (13)

and

μ(P) = μ(F), μ ∈
m−1⋃

k=1

nk⋃

i=1

Diff(Ck, cki , νki ). (14)

Here, "suitable defined function F" means that F is defined at bk and is (νki − 1)-times
differentiable at cki .

Proof Wefirst prove the statement corresponding to sm > 0. Since Diff(Ck, cki , νki ) contains
νki differential operators, the number of interpolation conditions in (11) and (12) is equal to

m∑

k=1

(
1 +

nk∑

i=1

νki
) =

m∑

k=1

(1 + sk) = dimSd (15)

where we use Lemma 8 in the second equality. Hence, it suffices to show that if P ∈ Sd

satisfies the following interpolation conditions

P(bk) = 0, μ(P) = 0, k = 1, . . . ,m, μ ∈
m⋃

k=1

nk⋃

i=1

Diff(Ck, cki , νki ), (16)
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then P = 0.
We take the polynomial qk such that Ck = {(x, y) ∈ R

2 : qk(x, y) = 0}. For k = 1,
relation (16) gives

P(b1) = 0, μ(P) = 0, μ ∈
n1⋃

i=1

Diff(C1, c1i , ν1i ),

Since ν11 + · · · + ν1n1 = s1 = d , we can use Lemmas 4–6 to get

P = q1P1, P1 ∈ Ss1 .

For each 2 ≤ k ≤ m, relation (16) becomes

(q1P1)(bk) = 0, μ(q1P1) = 0, μ ∈
m⋃

k=2

nk⋃

i=1

Diff(Ck, cki , νki ).

Since {bk, cki : i = 1, . . . , nk} ∩ C1 = ∅, we have q1(bk) �= 0 and q1(cki ) �= 0 for
i = 1, . . . , nk . Hence, Lemma 7 implies

P1(bk) = 0, μ(P1) = 0, 2 ≤ k ≤ m, μ ∈
m⋃

k=2

nk⋃

i=1

Diff(Ck, cki , νki ).

In the same manner we can see that P1 is divisible by q2, and hence we can find P2 ∈ Ss2
such that P1 = q2P2.

We continue in this fashion to obtain

P = ( m∏

k=1

qk
) · Pm+1 (17)

It follows from relation (17) that P = 0. Conversely, suppose that P �= 0. We see that the
degree of the polynomial at the right hand side of (17) is at least 2m > d . This contradicts
the fact that deg P ≤ d , and the proof of the first statement is complete.

In the case sm = 0, we have one interpolation condition on Cm , that is P(bm) = 0. Since
sm + 1 = 1, relation (15) also holds true in this case. The passage to the factorization similar
to the above implies that

P = ( m−1∏

k=1

qk
) · Q. (18)

We have d = 2(m − 1) since sm = 0. Hence, from relation (18) we deduce that Q is a
constant polynomial. Moreover, P(bm) = 0 and qk(bm) �= 0 for 1 ≤ k ≤ m − 1, because
bm does not lie on Ck . It follows that Q(bm) = 0, and hence Q = 0. This forces P = 0. ��

We now state two extremal cases of Theorem 3. The first one contains the maximum
number of points on each curve which gives a unisolvent set forSd . In the second one, each
curve contains two points (the last curve may contain one point).

Corollary 1 Let C1,C2, . . . ,Cm be m distinct curves inQ. For 1 ≤ k ≤ m, we take a set Ak

of sk + 1 distinct points on Ck , where one point is on the horizontal axis and the remaining
points lie on C+

k (if Ck is a hyperbola then the points are chosen on its one branch). We
assume that Ak ∩ C j = ∅ for k > j . Then the set

A =
m⋃

k=1

Ak
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is unisolvent for Sd . In other words, for any function F : A → R, there exists a unique
P ∈ Sd such that

P(a) = F(a), a ∈ A.

Corollary 2 Let C1,C2, . . . ,Cm be m distinct curves in Q. For 1 ≤ k ≤ m, we take two
points bk ∈ Ck ∩ Ox and ck ∈ C+

k (if Ck is a hyperbola then the points are chosen on its
one branch). We assume that {bk, ck} ∩ C j = ∅ for k > j .

1. In the case sm > 0, for any suitable defined function F, there exists a unique P ∈ Sd

such that
P(bk) = F(bk), k = 1, . . . ,m,

and

μ(P) = μ(F), μ ∈
m⋃

k=1

Diff(Ck, ck, sk).

2. In the case sm = 0, for any suitable defined function F, there exists a unique P ∈ Sd

such that
P(bk) = F(bk), k = 1, . . . ,m,

and

μ(P) = μ(F), μ ∈
m−1⋃

k=1

Diff(Ck, ck, sk).

Note that the set of interpolation points contains exactly m points on the horizontal axis.
The interpolation conditions at these points are the evaluation functionals, i.e., bk �→ f (bk).
The following examples show some singular Hermite schemes when the derivatives at the
bk appear.

Example 1 Consider the case d = 2 and m = [ d
2

] + 1 = 2. We have s1 = 2 and s2 = 0. We
choose two quadratic curve C1 = {(x, y) : x2 + y2 − 1 = 0} and C2 = {(x, y) : x − y2 =
0}. We take b1 = (1, 0) on C1 and b2 = (0, 0) on C2. Consider the following Hermite
interpolation scheme

F �−→ dk

dtk
F(cos t, sin t)

∣∣∣
t=0

, k = 0, 1, 2, F �−→ F(b2).

Remark that the above Hermite scheme consists of 4 interpolation conditions that matches
the dimension of S2. Let us choose

Q(x, y) = 2x2 − 2x + y2.

Direct computations show that Q(b1) = Q(b2) = 0 and

d

dt
Q(cos t, sin t)

∣∣∣
t=0

= d2

dt2
Q(cos t, sin t)

∣∣∣
t=0

= 0.

It follows that the above Hermite scheme is not regular for S2.

Example 2 As in Example 1, we take d = 2, s1 = 2 and s2 = 0. Let us choose C1 = {(x, y) :
x−y2 = 0} andC2 = {(x, y) : x2+y2−1 = 0}. Take two points b1 = (0, 0) and c1 = (1, 1)
on C1. Let b2 = (1, 0) be the point C2. Evidently, the polynomial Q(x, y) = x2 − x belongs
to S2 and satisfies the following relations

Q(b1) = Q(c1) = Q(b2) = 0,
d

dy
Q(y2, y)

∣∣∣
y=0

= 0.
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Hence, the Hermite interpolation scheme

F �−→ F(b1), F �−→ F(c1), F �−→ d

dt
F(y2, y)

∣
∣
∣
t=0

, F �−→ F(b2), .

is not regular.

5 A formula for Hermite interpolation polynomial

The aim of this section is to establish a Newton type formula for bivariate Hermite
interpolation polynomial.

Theorem 4 Under the assumptions of Theorem 3 where Ci = {(x, y) : qi (x, y) = 0}, the
interpolation polynomial P can be written as

P = P1 + · · · + Pm,

where

P1 = HC 1 [A1; F], Pk = q1 · · · qk−1HC k

[
Ak; F − P1 − · · · − Pk−1

q1 · · · qk−1

]
, k = 2, . . . ,m,

with

Ak = {(bk; 1), (ck1; νk1), . . . (cknk ; νknk )}.
Proof We only prove the theorem corresponding to sm > 0. The proof for the case sm = 0
is the same, where we replace m by m − 1 in the third step.

Step 1.Wewill show that the polynomial P belongs to the spaceSd . Since the polynomial
HC k [Ak;G] ∈ Ssk and qi ∈ S2 for i = 1, . . . ,m, we have deg Pk ≤ sk + 2(k − 1) = d .
Moreover, Pk is also a symmetric polynomial. Hence, Pk ∈ Sd , and consequently P ∈ Sd .
It is sufficient to show that P satisfies interpolation conditions,

P(bk) = F(bk), μ(P) = μ(F), k = 1, . . . ,m, μ ∈
m⋃

k=1

nk⋃

i=1

Diff(Ck, cki , νki ). (19)

We will prove (19) in the next two steps.
Step 2.We shall check that P(bk) = F(bk) for k = 1, . . . ,m. Since Pj contains the factor

qk for j > k, Pj vanishes at bk for j > k. It follows that

P(bk) =
k∑

i=1

Pi (bk). (20)

On the other hand, since bk ∈ Ak , the interpolation property of Hermite interpolation in
Lemmas 1–3 gives

Pk(bk) = q1(bk) · · · qk−1(bk)
F(bk) − P1(bk) − · · · − Pk−1(bk)

q1(bk) · · · qk−1(bk)
= F(bk) − P1(bk) − · · · − Pk−1(bk). (21)

Combining (20) and (21), we obtain P(bk) = F(bk).
Step 3.We remain to show that

μ(P) = μ(F), k = 1, . . . ,m, μ ∈
m⋃

k=1

nk⋃

i=1

Diff(Ck, cki , νki ). (22)
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Let us fix k ∈ {1, . . . ,m} and μ∗ ∈ Diff(Ck, cki , νki ). It suffices to check that

μ∗(P) = μ∗(F). (23)

Since Pj contains the factor qk for j > k, Pj (x, y) = 0 for every (x, y) ∈ Ck , j > k. It
concludes from the definition of μ∗ in Sect. 2 that

μ∗(Pj ) = 0, j > k. (24)

Next, we will prove that

μ∗(Pk) = μ∗(F) − μ∗(P1) − · · · − μ∗(Pk−1). (25)

We only prove (25) in the case where Ck is a circle with qk(x, y) = (x −αk)
2+ y2− R2

k . The
proof for the parabola and the hyperbola is the same. For simplicity, we set�k = q1 · · · qk−1

and 	k = P1 + · · · + Pk−1. Without loss of generality, we assume that

μ∗ : G �→ d�

dt�
G(αk + Rk cos t, Rk sin t)

∣
∣
∣
t=tk1

,

where ck1 = (αk + Rk cos tk1, Rk sin tk1) and 0 ≤ � ≤ νk1 − 1. Using the Leibniz rule, we
can write

μ∗(Pk) = d�

dt�

(
�kHCk

[
Ak; F − 	k

�k

]
(αk + Rk cos t, Rk sin t)

)∣
∣
∣
t=tk1

=
�∑

i=0

(
�

i

)
d�−i

dt�−i
�k(αk + Rk cos t, Rk sin t)

∣∣
∣
t=tk1

di

dti

(
HCk

[
Ak; F − 	k

�k

]
(αk + Rk cos t, Rk sin t)

)∣
∣
∣
t=tk1

=
�∑

i=0

(
�

i

)
d�−i

dt�−i
�k(αk + Rk cos t, Rk sin t)

∣
∣∣
t=tk1

di

dti
F − 	k

�k
(αk + Rk cos t, Rk sin t)

∣
∣∣
t=tk1

= d�

dt�

(
�k

F − 	k

�k
(αk + Rk cos t, Rk sin t)

)∣
∣
∣
t=tk1

= d�

dt�

(
(F − 	k)(αk + Rk cos t, Rk sin t)

)∣
∣
∣
t=tk1

= d�

dt�
F(αk + Rk cos t, Rk sin t)

∣
∣
∣
t=tk1

− d�

dt�
	k(αk + Rk cos t, Rk sin t)

∣
∣
∣
t=tk1

= μ∗(F) − μ∗(	k),

wherewe useLemma2 in the third equality, and (25) is proved completely. Finally, combining
(24) and (25), we obtain

μ∗(P) = μ∗(	k) + μ∗(Pk) +
m∑

j=k+1

μ∗(Pj ) = μ∗(F).

��
In Sect. 2, we have proved that the Hermite interpolation on the curve C is identity with

a univariate Hermite interpolation,

HC [A; F](x, y) := H[A; f ](x).
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Since univariate Hermite interpolation polynomial is continuouswith respect to the interpola-
tion points and the interpolated function (see [12, Theorem 2]), so is theHermite interpolation
polynomial on C . This result is an analogue of [12, Lemma 5]. Hence, we can use Theorem
4 and the method used in [12, Theorem 4] to get a continuity property of bivariate Hermite
interpolation polynomial. Here, the interpolation points on the horizontal axis are kept fixed.
The details are left to the readers.

Example 3 Let us consider the case d = 1 and C1 = {(x, y) ∈ R
2 : x − 1 − β y2 = 0}.

We have m = 1 and s1 = 1. Let us choose A = A1 = {((1, 0); 1), ((β + 1, 1); 1)} and
F(x, y) = xy2. From Theorem 4, we get

P(x, y) = P1(x, y) = HC 1 [A1; F](x, y).
On the other hand, Lemma 1 enables us to write

HC 1 [A1; F](x, y) = H[{(1; 1), (β + 1; 1)}; g](x)
= g(β + 1) − g(1)

β
(x − 1) + g(1)

= (
1

β
+ 1)(x − 1),

where g(x) = F
(
x,

√
x−1
β

) = x(x−1)
β

. It follows that

P(x, y) = (
1

β
+ 1)(x − 1) (26)

Next, we consider a family of parabolas C (n)
1 = {(x, y) ∈ R

2 : x − 1 − 1
n y

2 = 0} and
unisolvent sets A(n) = A(n)

1 = {((1, 0); 1), (( 1n + 1, 1); 1)}. Note that A(n) converges to
A(∗) = {((1, 0); 1), ((1, 1); 1)} as n → ∞ and A∗ is not unisolvent for S1, because the
nonzero polynomial Q(x, y) = x − 1 vanishes at (1, 0) and (1, 1). From relation (26), the
bivariate Hermite interpolation polynomial is equal to (n+1)(x−1)which does not converge
as n → ∞.

Example 4 Consider the case d = 2 and m = [ d
2

] + 1 = 2. We have s1 = 2 and s2 = 0. We
choose two quadratic curvesC1 = {(x, y) : x− y2 = 0} andC2 = {(x, y) : x2+ y2−1 = 0}.
We take b1 = (0, 0) on C1 and b2 = (1, 0) on C2. We choose a points c1 = (y21 , y1) on C1

with y1 > 0. Let A1 = {(b1; 1), (c1; 2)} and A2 = {(b2; 1)}. We will compute the bivariate
Hermite interpolation polynomial of the function F(x, y) = x2y4 + y2. From Theorem 5.1
we have

P = P1 + P2

where

P1 = HC 1 [A1; F](x, y) = H[{(0; 1), (y21 ; 2)}; f ](x)
with f (x) = F(x,

√
x) = x4 + x , and

P2(x, y) = q1(x, y)
F(b2) − P1(b2)

q1(b2)
, q1(x, y) = x − y2.

Using the Newton representation in (1) we have

P1(x, y) = f (0) + f [0, y21 ]x + f [0, y21 , y21 ]x(x − y21 ) = 3y41 x
2 + (1 − 2y61 )x .
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Hence

P2(x, y) = (2y61 − 3y41 − 1)(x − y2).

Combining the above computation we get

P(x, y) = 3y41 x
2 − 3y41 x − (2y61 − 3y41 − 1)y2.

Letting y1 → 0, we see thatA1 converges to A∗
1 = {(b1; 3)} and P(x, y) tends to P∗(x, y) =

y2. Observe that P∗ interpolates F at A∗
1 and A2, i.e.,

dk

dyk
P∗(y2, y)

∣∣
∣
y=0

= dk

dyk
F(y2, y)

∣∣
∣
y=0

, k = 0, 1, 2, P∗(b2) = F(b2).

However, the Hermite interpolation scheme

F �−→ dk

dyk
F(y2, y)

∣
∣
∣
y=0

, k = 0, 1, 2, F �−→ F(b2)

is singular forS2, because the polynomial Q(x, y) = x2−x+y2 inS2 satisfies the following
relations:

dk

dyk
Q(y2, y)

∣∣∣
y=0

= 0, k = 0, 1, 2, Q(b2) = 0.
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