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Abstract
Let G be an abelian group written addditively and R be a commutative graded ring of type G
with identity andm, n be positive integers. The main purpose of this paper is to introduce the
class of graded-(m, n)-prime ideals which lies properly between the classes of graded-prime
andgraded-(m, n)-closed ideals introduced recently by the authors inAhmed et al. (Moroccan
J Algebra Geom Appl 1(2):1-10, 2022). A proper graded ideal I of R is called graded-
(m, n)-prime if for some homogeneous elements a, b ∈ R, amb ∈ I implies either an ∈ I
or b ∈ I . Several characterizations of this new class of graded ideals with several original
examples are given.Moreover, we defend the actions of graded-(m, n)-prime ideals in several
extensions of graded rings, especially in idealization of gradedmodules and amalgamation of
graded rings and similarly to graded-primary decomposition,we introduce the graded-(m, n)-
decomposition of graded ideals andweprove that every graded ideal in a graded-n-Noetherian
ring has a graded-(m, n)-decomposition. Finally, the graded-(m, n)-prime avoidance theorem
is given.

Keywords Graded-(m, n)-prime ideal · Graded-(m, n)-closed ideal · Graded-n-absorbing
ideal · Avoidance theorem

Mathematics Subject Classification 13A02 · 13A15

1 Introduction

In this article, all rings under consideration are assumed to be commutative with nonzero
identity and all modules are assumed to be nonzero unital. R will always represent such a
ring, M will represent such an R-module. Also, G will represent an abelian group with an
identity element denoted by 0. Recently, there have been various generalizations of graded-
prime ideals in several papers. Among the many recent generalizations of the notion of
graded-prime ideals in the literature, we find the following; in [1], the authors introduced
the notion of graded-2-absorbing ideals, and this idea is generalized also by the authors
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in a paper to the concept of graded-n-absorbing ideals, see [2]. According to Hamoda [2,
Definition 2.1], a proper graded ideal I of R is called a graded-n-absorbing ideal if whenever
x1 . . . xn+1 ∈ I for x1, . . . , xn+1 ∈ h(R), there are n of the xi ’s whose product is in I . Thus
a graded-1-absorbing ideal is just a graded-prime ideal.

Let m and n be positive integers. Afterwards, the structure of graded-(m, n)-closed ideals
is first introduced by the authors in [3]. A proper graded ideal I of a ring R is called a graded-
(m, n)-closed ideal of R if whenever am ∈ I for some a ∈ h(R), then an ∈ I . On the other
hand, the concept of graded-1-absorbing primary ideals is introduced. According to Abu-
Dawwas [4], a proper graded ideal I of a graded ring R is said to be a graded-1-absorbing
primary if for non-unit elements a, b, c ∈ h(R) such that abc ∈ I , then either ab ∈ I or
c ∈ Gr(I ), where Gr(I ) is the graded-radical of R. Following this paper, a subclass of
graded-1-absorbing primary ideals is given in [5] and studied also in [6]. A proper ideal I of
R is called graded-1-absorbing prime if for non-unit elements a, b, c ∈ h(R) with abc ∈ I ,
then either ab ∈ I or c ∈ I .

Inspired from the ideal concepts cited above, in this paper, we introduce the notion of
graded-(m, n)-prime ideals which is a structure lies between a graded-prime and graded-
primary ideals, i.e. graded-prime ideal⇒ graded-(m, n)-prime ideal⇒ graded-primary ideal
and a generalization of the concept of (m, n)-prime ideals introduced by the authors in [7]
to the context of graded ring theory. According to Khashan [7], a proper ideal of a ring R is
said to be an (m, n)-prime ideal where m, n are positive integers if for a, b ∈ R, amb ∈ I
implies either an ∈ I or b ∈ I .

Our paper is organized as follows. In Sect. 3, we discuss all relationships among the ideal
types listed above and the new one by supporting many examples (Example 3.2, Remark 3.3,
Examples 3.4 and 3.5). Moreover, many characterizations of graded-(m, n)-prime ideals of
graded rings are proved.We determine all graded-(m, n)-prime ideals of some special graded
rings such as graded-domains and gr-zero dimensional rings. Let I be a graded ideal of a
graded ring R and n a positive integer. We define I to be of graded-maximum length n if any
ascending chain I = I0 ⊆ I1 ⊆ I2 ⊆ . . . of graded ideals of a graded ring R terminates and
n is the largest integer such that In = In+1 = . . .. Moreover, a graded ring R is called graded-
n-Noetherian if every graded ideal of R has a maximum graded length at most n. Analogous
to graded-primary ideal case, we introduce the graded-(m, n)-decomposition of I which is an
expression for I as a finite intersection of graded-(m, n)-prime ideals. It is proved that every
graded ideal in a graded-n-Noetherian ring has a graded-(m, n)-decomposition (Theorem
3.30).

In Sect. 4, We defend the actions of graded-(m, n)-prime ideals in graded-localizations,
quotient of graded rings, finite direct product of crossed products, idealization of graded
modules and amalgamation of graded rings. For a graded ideal I of R, we introduce the set
�(I )gr = {(m, n) ∈ N × N : I is graded-(m, n)-prime} and study some of its properties
(Theorem4.13).Analogous to the graded-prime avoidance theorem, the last section is devoted
to state and prove the graded-(m, n)-prime avoidance theorem (Theorem 5.3).

2 Preliminaries

We devote this section to recall some basic properties and terminology related to graded ring
theory. Unless otherwise stated, G will denote an abelian group with an identity element
denoted by 0. By a graded ring R of type G (or sometimes a G-graded ring), we mean a
ring graded by G, that is, a direct sum of subgroups Rg of R such that RgRh ⊆ Rg+h for
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every g, h ∈ G. The set h(R) = ∪g∈G Rg is the set of homogeneous elements of R. A
nonzero element x ∈ R is called homogeneous if it belongs to one of the Rg , homogeneous
of degree g if x ∈ Rg . A graded ring R is said to be a crossed product if Rg contains an
inversible element for all g ∈ G. An ideal I of R is said to be a graded ideal (or sometimes
called homogeneous ideal) if the homogeneous components of every element of I belong to
I , equivalently, if I is generated by homogeneous elements.

If I is a graded ideal of a graded ring R, then R/I is a graded ring, where (R/I )g :=
(Rg + I )/I . Let R be a graded ring and I , J a graded ideals of R and xg a homogeneous
element of R. Then, it is well known that I + J , I J , I ∩ J and (I : xg) = {

a ∈ R : axg ∈ I
}

are graded ideals of R.
Suppose that R is a graded ring and M is an R-module. By a graded R-module M , we

mean an R-module graded by G, that is, a direct sum of subgroups Mg of M such that
RgMh ⊆ Mg+h for every g, h ∈ G. The set h(M) = ∪g∈GMg is the set of homogeneous
elements ofM . A submodule N ofM is called graded if N = ⊕g∈G(N∩Mg), equivalently, if
N is generated by homogeneous elements. If N is a graded submodule of a graded A-module
M , then M/N is a graded A-module, where (M/N )g := (Mg + N )/N .

Let R be a graded ring and let M a graded R-module. If S is a multiplicatively closed
set of homogeneous elements of R, then S−1R is a graded ring and S−1M is a graded
S−1R-module, where

(
S−1R

)
g =

{a
s

| a ∈ Rh, s ∈ Rk ∩ S and h − k = g
}

and
(
S−1M

)
g =

{m
s

| m ∈ Mh, s ∈ Rk ∩ S and h − k = g
}

.

Let R and R′ be two graded rings, a ring homomorphism f : R → R′ is called graded
if f (Rg) ⊆ R′

g for all g ∈ G. A graded ring isomorphism is a bijective graded ring
homomorphism.

Let R1 and R2 be two graded rings. Then R = R1×R2 is a graded ring with homogeneous
elements h(R) = ∪g∈G Rg , where Rg = (R1)g × (R2)g for all g ∈ G. It is well known that
an ideal of R1 × R2 is of the form I1 × I2 for some ideals I1 of R1 and I2 of R2. Also it is
easily seen that I1 × I2 is a graded ideal of R1 × R2 if and only if I1, I2 are graded ideals of
R1 and R2, respectively.

A direct system
(
Rλ, φμλ

)
of graded rings is a direct system of rings such that each Rλ is

a graded ring and each φμλ is a homomorphism of graded rings. If
(
Rg

λ

)
g∈G is the graduation

of Rλ and if we have that R = lim−→Rλ, Rg = lim−→Rg
λ , then (Rg)g∈G is a graduation of R and

R is a graded ring. If φλ : Rλ −→ R is the canonical mapping, φλ is a homomorphism of
graded rings.

Let I be a graded ideal, I is said to be a graded-prime ideal if whenever xy ∈ I for some
x, y ∈ h(R), then x ∈ I or y ∈ I , equivalently, if R/I is a graded-domain, that is, if every
nonzero homogeneous element of R/I is regular. Note that, when G is a torsionfree abelian
group then I is graded-prime if and only if I is a prime ideal. A homogeneous-prime element
generates a graded-prime ideal of R. A graded ideal I is said to be graded-maximal if I �= R
and if it is maximal among graded ideals, equivalently, if R/I is a graded-field, that is, if
every nonzero homogeneous element of R/I is invertible and a graded ring is said to be
graded-local if it has a unique graded-maximal ideal.

If R is a graded ring, P is a graded-prime ideal in R, and S = h(R) \ P is the saturated
multiplicative set consisting of the homogeneous elements of R \ P , then S−1R is a graded-
local ringwith unique graded-maximal ideal S−1P , S−1R is said to be the graded-localization
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of R and will be denoted by R[P]. A graded R-module M is called graded-Noetherian if it
satisfies the ascending chain condition (a.c.c.) on graded submodules; equivalently, if each
graded submodule of R is finitely generated. A graded ring R is called graded-Noetherian
if it is graded-Noetherian as a graded R-module. It is clear that a Noetherian graded ring is
graded-Noetherian but the converse is not true in general, see [8, Example 1.1.22].

The graded height of a graded-prime ideal P denoted by gr -ht(P), is defined as the length
of the longest chain of graded-prime ideals contained in P . The graded Krull dimension of
a graded ring R is denoted by gr -dim(R) and defined as follows:

gr-dim(R) = max {gr-ht(P) |P ∈ gr-Spec(R)} .

Let I be a proper graded ideal of R. Then the graded-radical of I is denoted by Gr(I ) and
it is defined as follows:

Gr(I ) =
⎧
⎨

⎩
a =

∑

g∈G
ag ∈ R : ∀g ∈ G, ∃ ng > 0 such that a

ng
g ∈ I

⎫
⎬

⎭
.

Note that Gr(I ) is a graded ideal of R, it is the intersection of all the graded-prime ideals
of R containing I , and we have gr-Nil(R) = Gr(0), see [9, Proposition 2.5]. We refer the
reader to [9, Proposition 2.4] for the basic properties of the graded-radical. According to [10,
Definition 1.5], a proper graded ideal I is said to be graded-primary if whenever a, b ∈ h(R)

with ab ∈ I then a ∈ I or b ∈ Gr(I ).
For more informations and other terminology on graded rings and modules, we refer [11]

and [12] to the reader.

3 Graded-(m,n)-prime ideals

Webegin this section bygiving some elementary properties of graded-(m, n)-prime ideals and
by investigating graded-(m, n)-prime ideals in several classes of graded rings. In particular,
we determine the graded-(m, n)-prime ideals of graded rings in which every power of a
graded-prime ideal is graded-primary.

Definition 3.1 Let I be a proper graded ideal of a graded ring R andm, n be positive integers.
Then I is called a graded-(m, n)-prime in R if for some a, b ∈ h(R), amb ∈ I implies either
an ∈ I or b ∈ I .

After we begin our study and discussion about the relationships existing between this new
concept and all the graded classical ideals existing already in the literature, we give some
examples of graded ideals which are graded-(m, n)-prime but not (m, n)-prime emphasizing
the non-trivial nature of our generalization to the graded ring theory context. It is clear that
any graded-(m, n)-prime ideal I in a graded ring R is both graded-primary and graded-
(m, n)-closed. Hence, P = Gr(I ) is the smallest graded-prime ideal of R containing I . In
this case, we call I a graded-P-(m, n)-prime ideal of R.

Example 3.2 Let R = Z[i] be the Gaussian integer ring with its natural graduation of type
Z2; R0 = Z and R1 = iZ. Let I =< 2 >. Then I is not (2, 1)-closed ideal of R because
(1 + i)2 = 2i ∈ I and (1 + i) /∈ I , so it is not (2, 1)-prime. Likewise, J =< 4 > is not
(4, 3)-closed ideal since (1 + i)4 = −4 ∈ J , but (1 + i)3 = 2i − 2 /∈ J and so it is not
(4, 3)-prime. Still, it’s simple to see that I is graded-(2, 1)-closed (since it is a graded-prime)
and J is graded-(4, 3)-closed ideals of R.
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I is (m,n)-prime

I is graded-prime I is graded-(m,n)-prime I is graded-primary

I is graded-(m,n)-closed

I is graded-(n+ 1, n)-closed or graded-semi-n-absorbing

Fig. 1 The relations between the graded-prime like notions for a graded ideal I

Next, we justify the relationship between graded-(m, n)-prime ideals and some other kinds
of graded ideals.

Remark 3.3 Let I be a proper graded ideal of R and m, n be positive integers.

1. I is a graded-prime ideal of R if and only if I is a graded-(1, 1)-prime ideal.
2. If I is graded-(m, n)-prime in R, then it is graded-

(
m′, n′)-prime where n ≤ n′ and

m′ ≤ m.
3. If I is a graded-(m, n)-prime in R, then (I : x) a is graded-(m, n)-prime ideal in R for

all x ∈ h(R)\I .
4. If I is a graded-1-absorbing prime (resp. if I is a graded-prime) ideal of R, then I is

a graded-(m, n)-prime ideal for n ≥ 2 (resp. for all n). Indeed, let a, b ∈ h(R) with
amb ∈ I and b /∈ I . Then a is nonunit. If b is unit, then am = a · am−2 · a ∈ I and since
I is graded-1-absorbing prime, we have am−1 = a · am−2 ∈ I or a ∈ I . Repeat this
approach to obtain a2 ∈ I and so an ∈ I for all n ≥ 2, (if I is graded-prime, then a ∈ I )
as required. The converse is also true if I is a graded-radical ideal, i.e I = Gr(I ).

5. In general, we may find a graded-n-absorbing ideal that is not graded-(m, n)-prime for
all integers m and n. For example, the graded ideal 18Z[i] is graded-3-absorbing in Z[i]
which is not graded-(m, n)-prime for all integers m and n since it is not graded-primary.

6. If I is graded-(m, n)-prime in R, then I is a graded-(n + 1, n)-closed ideal of R (which
can be also called graded-semi-n-absorbing). Indeed, let a ∈ h(R) such that an+1 ∈ I .
Suppose n � m so that am ∈ I . Then an ∈ I as I is graded-(m, n)-closed in R. On the
other hand, suppose m ≤ n and note that aman+1−m ∈ I . Then by assumption, either
an ∈ I or an+1−m ∈ I and the result follows since n + 1 − m ≤ n.

Next, we describe the location of the concept of graded-(m, n)-prime ideals for all positive
integers m and n by the following diagram: Fig. 1 in which the arrows are irreversible as we
can see in the following Example 3.4.

Example 3.4 1. The graded ideal I = 8Z[i] is a graded-(5, 3)-prime that is not graded-
prime in Z[i]. Indeed, let a, b ∈ Z such that a5b ∈ I . Then ab ∈ 2Z and so 2 | a or
2 | b. if 2 | a, then a3 ∈ I . If 2 � a, then clearly we have b ∈ 8Z[i] = I .

2. The graded ideal I = 16Z[i] is graded-primary and clearly graded-(3, 2)-closed in Z[i].
However, I is not graded-(3, 2)-prime since for example, 23 · 2 ∈ I but 22, 2 /∈ I .
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3. In contrast to the case of graded-(m, n)-closed ideals, if n ≥ m, then a proper graded
ideal need not be a graded-(m, n)-prime. For example, the graded ideal I = 32Z[i] is
not graded-(3, 4)-prime in Z[i] as 23.22 ∈ I but 24, 22 /∈ I .

4. In general, if (I : xg) �= I and (I : xg) is a graded-(m, n)-prime ideal in R for all
xg ∈ h(R)\I , then I need not be graded-(m, n)-prime. Consider the graded ideal I =
8Z16[i] in the Z2-graded ring R = Z16[i]. Then, in particular for all x0 ∈ R0 = Z16

such that (I : x0) �= I , we have (I : x0) = 4Z16[i] or 2Z16[i] which are clearly a

graded-(3, 2)-prime ideals ofZ16[i]. But, I is not graded-(3, 2)-prime as 2
3
.2 ∈ I where

2
2
, 2 /∈ I .

Let R be a ring and let {X1, X2, . . .} be (commuting) algebraically (respectively, ana-
lytically) independent indeterminates over R. For s = (s1, . . . , sn) ∈ N

n , let Xs =
Xs1
1 . . . Xsn

n . Then the polynomial ring P = R [X1, . . . , Xn] is graded by Z via Pm ={∑
s∈Nn rs Xs |rs ∈ R and

∑n
i=1 si = m

}
and Pm = 0 for m < 0.

Example 3.5 The graded ideal M = 〈X1, X2〉 is a graded-maximal ideal of the graded ring
R = K [X1, X2] considered with its natural total graduation of type Z where K is a field and
so M2 = 〈

X2
1, X1X2, X2

2

〉
is graded-M-primary. On the other hand, M2 is not graded-(2, 1)-

prime in K [X1, X2] since for example, (X1 − X2)
2 ∈ M2 but (X1 − X2) /∈ M2.

Note that if I is a graded ideal of a graded ring R, then P = {a = ∑
g∈G ag ∈ R :

∀g ∈ G, ang ∈ I } need not be an ideal of R and if a is a homogeneous element, then

a ∈ P if and only if an ∈ I . For example, consider the graded ideal I = 〈
X2
1, X

2
2

〉
in the

graded ring K [X1, X2], where K is a ring, with his natural total graduation. Then X1, X2 ∈{
f ∈ K [X1, X2] : f 2 ∈ I

}
but X1 − X2 /∈ {

P ∈ K [X1, X2] : P2 ∈ I
}
as (X1 − X2)

2 /∈ I .
However, for certain types of graded ideals I such as graded-(m, n)-prime, in particular,
graded-radical (i.e. I = Gr(I )) ideals, the set P is a graded ideal of R.

Lemma 3.6 Let m and n be positive integers and I be a graded-P-(m, n)-prime ideal of a
graded ring R. Then Gr(I ) = P = {a = ∑

g∈G ag ∈ R : ∀g ∈ G, ang ∈ I }.
Proof Let a = ∑

g∈G ag ∈ P and let k be the smallest positive integer such that akg ∈ I for

every g ∈ G. Now, ag · ak−1
g ∈ I implies amg · ak−1

g ∈ I . Since I is graded-(m, n)-prime and

ak−1
g /∈ I , then ang ∈ I for every g ∈ G and so a ∈ Gr(I ), then Gr(I ) ⊆ {a = ∑

g∈G ag ∈
R : ∀g ∈ G, ang ∈ I }. The other containment is clear. ��
Proposition 3.7 Let m and n be positive integers and I be a graded ideal of a graded ring
R. If M = {a = ∑

g∈G ag ∈ R : ∀g ∈ G, ang ∈ I } is a graded-maximal ideal of R, then I
is a graded-M-(m, n)-prime ideal of R.

Proof Clearly, I is proper graded ideal of R. Let amb ∈ I for a, b ∈ h(R) such that an /∈ I .
Then a /∈ M and so am /∈ M . Since a is a homogeneous element and M is a graded-maximal
ideal of R, then M + Ram = R and so 1 = t + ram for some t ∈ M0 and r ∈ R−m . Thus,
1 = 1n = (t + ram)n = tn + sam for some s ∈ R−m . Hence, b = b · 1 = btn + bsam ∈ I
and I is a graded-(m, n)-prime in R. Moreover, Gr(I ) = M by Lemma 3.6. ��
Corollary 3.8 Let m, n, k be positive integers. If I = Mk for a graded-maximal ideal M of
R and k ≤ n, then I is graded-M-(m, n)-prime in R.

Proof It is obvious that for k ≤ n we have {a = ∑
g∈G ag ∈ R : for all g ∈ G, ang

∈ I = Mk} = M . Thus, I is graded-M-(m, n)-prime in R by Proposition 3.7. ��
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Nevertheless, if {a = ∑
g∈G ag ∈ R : for all g ∈ G, ang ∈ I } is a graded-prime ideal

which is not graded-maximal of R, then I need not be a graded-(m, n)-prime. Indeed, for a
field K and the graded ideal I = P3 of R = K [X1, X2]/

〈
X2
1X2

〉
where P = 〈X̄1〉, we have

{a = ∑
g∈G ag ∈ R : ∀g ∈ G, a3g ∈ I } = P is a graded-prime ideal of Rwhich is not graded-

maximal. But, I is not graded-(m, 3)-prime in the graded ring R = K [X1, X2]/
〈
X2
1X2

〉
, see

Example 3.16. Also, if n � k, then Corollary 3.8 may not be true, see Example 3.4.
Following [13], a proper graded ideal Q of a graded ring R is called graded-uniformly-

primary, if there exists a positive integer k such that whenever a, b ∈ h(R) such that ab ∈ Q
and b /∈ Q, then ak ∈ Q. Moreover, a graded-uniformly-primary ideal Q has order n and
write h-o(Q) = n if n is the smallest positive integer for which the aforementioned property
holds. While clearly every graded-uniformly-primary ideal is graded-primary, the converse
is not true, as shown by the following example.

Example 3.9 Consider the graded ring K [X1, X2, . . .] of type Z, where K is a field, it is the
inductive limit of the direct system of graded rings K [X1, X2, . . . Xn], n ∈ N of type Z, the

graded ideal
({

X2
i

}∞
i=1 , {X1Xi }∞i=1

)
K [X1, X2, . . .] is a graded-primary ideal that is not

graded-uniformly-primary.

For positive integers m and n, if I is graded-(m, n)-prime in R, then clearly I is graded-
uniformly-primary. Moreover, the two concepts coincide if h-o(I ) ≤ n.

Proposition 3.10 Let {mi , ni }ki=1 be positive integers and let {Ii }ki=1 be graded-P-(mi , ni )-

prime ideals of a graded ring R. Then
⋂k

i=1 Ii is a graded-P-(m, n)-prime ideal of R for all
m ≤ min {m1,m2, . . . ,mk} and n ≥ max{n1, n2, . . . , nk}.
Proof Suppose that Ii is graded-P-(mi , ni )-prime in R for all i ∈ {1, 2, . . . , k}. Let amb ∈⋂k

i=1 Ii and b /∈ ⋂k
i=1 Ii for some a, b ∈ h(R). Then b /∈ I j for some j ∈ {1, 2, . . . , k}.

Since am j b ∈ I j , then by assumption an j ∈ I j and so a ∈ P . By Lemma 3.6, we have for all
i ∈ {1, 2, . . . , k}, P = {a = ∑

g∈G ag ∈ R : for all g ∈ G, ani ∈ Ii }. Thus, an ∈ ⋂k
i=1 Ii

as a is a homogeneous element and since n ≥ max {n1, n2, . . . , nk}. Since also Gr(
⋂k

i=1 Ii )
= ⋂k

i=1 Gr(Ii ) = P , then
⋂k

i=1 Ii is a graded-P-(m, n)-prime ideal of R. ��
Remark 3.11 1. In general, if I and J are two graded-(m, n)-prime ideals with Gr(I ) �=

Gr(J ), then I ∩ J need not be graded-(m, n)-prime. For example, the ideals 2Z[i]
and 3Z[i] are graded-(m, n)-prime ideal for all positive integers n and m (since they
are graded-prime), but 2Z[i] ∩ 3Z[i] = 6Z[i] is not graded-(m, n)-prime as it is not
graded-primary.

2. If I and J are two graded-P-(m, n)-prime ideals, then I J or I k(k ≤ m) need not
be graded-P-(m, n)-prime. For instance, consider the graded ring R = Z + pXZ[X ],
with its natural graduation of type N, where p is a prime integer and the graded ideal
P = pXZ[X ] of R. Since P is graded-prime, it is graded-P-(m, n)-prime for all
m, n. However, Pk(k ≤ m) is not graded-P-(m, n)-prime as pm Xm ∈ Pk , which is
a homogeneous element of degree m but neither pn ∈ Pk nor Xm ∈ Pk .

Next, we provide further characterizations of graded-(m, n)-prime ideals.

Theorem 3.12 Let I be a proper graded ideal of a graded ring R and let m and n be positive
integers. Then the following statements are equivalent.

1. I is a graded-(m, n)-prime ideal of R.
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2. I = (I : am) for all a ∈ h(R) such that an /∈ I .
3. If a ∈ h(R) and K is a graded ideal of R with amK ⊆ I , then an ∈ I or K ⊆ I .

Proof (1) ⇒ (2) Let a ∈ h(R) such that an /∈ I and let b ∈ (I : am), since (I : am) is a
graded ideal as am is a homogeneous element of degree m, we may suppose that b ∈ h(R).
Then amb ∈ I implies b ∈ I as I is graded-(m, n)-prime in R. Thus, (I : am) ⊆ I and so
I = (I : am).
(2) ⇒ (3) Let a ∈ h(R) and K be a graded ideal of R with amK ⊆ I and suppose an /∈ I .
Then by (2) K ⊆ (I : am) = I as needed.
(3) ⇒ (1) It is straightforward. ��

Recall that a graded integral domain is said to be a graded-principal ideal domain (gr-
PID, for short) if every graded ideal is principal. Considering the aforementioned theorem,
several equivalent characterizations of graded-(m, n)-prime ideals in a gr-PID are given in
the following Corollary.

Corollary 3.13 Let R be a gr-PID and let m, n be positive integers. Then the following are
equivalent.

1. I is a graded-(m, n)-prime ideal of R.
2. I = (I : am) for all a ∈ h(R) such that an /∈ I .
3. If a ∈ h(R) and K is a graded ideal of R with amK ⊆ I , then an ∈ I or K ⊆ I .
4. If J and K are graded ideals of R with JmK ⊆ I , then Jn ⊆ I or K ⊆ I .
5. I = (I : Jm) for every graded ideal J of R such that J n � I .
6. If J is a graded ideal of R and b ∈ h(R) with Jmb ⊆ I , then Jn ⊆ I or b ∈ I .

Proof (1) ⇒ (2) ⇒ (3) Obvious using Theorem 3.12.
(3) ⇒ (4) Since R is a gr-PID and J is graded, J = 〈a〉 for some a ∈ h(R). Hence, the
claim is clear.
(4) ⇒ (5) is clear.
(5) ⇒ (6) Assume that Jmb ⊆ I and Jn � I . Then b ∈ (I : Jm) = I by (5), as needed.
(6) ⇒ (1) Let amb ∈ I and an /∈ I . Put J = 〈a〉. Hence Jmb and Jn � I which imply
using (6) that b ∈ I . Hence I is a graded-(m, n)-prime ideal of R. ��

In the following theorem, we figure out when the powers of a principal graded-prime
ideal are graded-(m, n)-prime in graded rings in which every power of a graded-prime ideal
is graded-primary

Theorem 3.14 Let R be a graded ring such that every power of a graded-prime ideal is
graded-primary. Let m, n and k be positive integers and I = 〈

pk
〉
where p is a homogeneous-

prime element of R. Then I is a graded-(m, n)-prime ideal of R if and only if k ≤ n.

Proof Assume that I = 〈
pk

〉
is a graded-(m, n)-prime ideal of R. By way of contradiction,

let’s say that k � n. If k ≤ m, then pm ∈ I but pn /∈ I , a contradiction. If m ≤ k, then
pm pk−m ∈ I but pn /∈ I and pk−m /∈ I which is also a contradiction. Hence, k ≤ n. On
the other hand, suppose k ≤ n and let a, b ∈ h(R) such that amb ∈ I and b /∈ I . Since by
assumption I is graded-primary, then am ∈ Gr(I ) = 〈p〉. It follows that a ∈ 〈p〉 and so
an ∈ 〈pn〉 ⊆ 〈

pk
〉 = I . So, I is a graded-(m, n)-prime ideal of R. ��

Corollary 3.15 Let R be either a graded-domain or a gr-dim(R)= 0 and m, n, k be positive
integers and I = 〈

pk
〉
, where p is a homogeneous-prime element of R. Then I is a graded-

(m, n)-prime ideal of R if and only if k ≤ n.
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If some power of a graded-prime ideal of R is not graded-primary, then Theorem 3.30
need not be true in general.

Example 3.16 Consider the non graded-domain R = K [X1, X2]/
〈
X2
1X2

〉
(since X2

1X2 is a
homogeneous polynomial) where K is any field. Then the graded ideal P = 〈X̄1〉 is graded-
prime in R as 〈X1〉 is graded-prime in K [X1, X2] containing

〈
X2
1X2

〉
. Now, we show that

I = P3 is not graded-primary in R. Indeed, we have X̄2
1 X̄2 = 0 ∈ I but X̄2 /∈ Gr(I ) as

X2 /∈ 〈X1〉 in K [X1, X2]. If X̄2
1 ∈ I and ϕ : K [X1, X2] → R is the projection mapping,

then X2
1 = ϕ−1

(
X2
1

)
∈ ϕ−1(I ) = 〈

X3
1, X

2
1X2

〉
which is impossible. Thus, also X2

1 /∈ I and

I = P3 is not graded-primary in R. Hence, I is not graded-(m, n)-prime in R for all positive
integers m and n and so in particular for all k = 3 ≤ n.

Now, in the purpose to contruct examples of graded-(m, n)-closed ideal of R that are not
a graded-(m, n)-prime, we direct our attention to determine when the powers of a principal
graded-prime ideal in a graded-domain are graded-(m, n)-closed.

The following result present the graded version of [14, Theorem 3.1].

Theorem 3.17 Let R be a graded-domain, m and n integers with 1 ≤ n < m, and I = 〈
pk

〉
,

where p is a homogeneous-prime element of R and k is a positive integer. Then the following
assertions are equivalent.

1. I is a graded-(m, n)-closed ideal of R.
2. k = mq + r , where q and r are integers such that q ≥ 0, 1 ≤ r ≤ n, q(m mod n)+

r ≤ n, and if q �= 0, then m = n + c for an integer c with 1 ≤ c ≤ n − 1.

Proof The proof is omitted since it is just like the ungraded case. ��
Corollary 3.18 Let R be a graded-domain, n a positive integer, and I = 〈

pk
〉
, where p is a

homogeneous-prime element of R and k is a positive integer. Then the following statements
are equivalent.

1. I is a graded-(n + 1, n)-closed ideal of R.
2. k = (n+1)q+r , where q and r are integers such that q ≥ 0, 1 ≤ r ≤ n, and q+r ≤ n.

Corollary 3.19 Let R be a graded-domain and I = 〈
pk

〉
, where p is a homogenous-prime

element of R and k is a positive integer. Then I is a graded-(3, 2)-closed ideal of R if and
only if k ∈ {1, 2, 4}.

Next, we expand these results to products of homogeneous-prime powers. Note that
if p1, . . . , pn are nonassociate homogeneous-prime elements of a graded-domain R, then〈
pk11

〉
∩ . . . ∩

〈
pknn

〉
=

〈
pk11 . . . pknn

〉
for all positive integers k1, . . . , kn .

Theorem 3.20 Let R be a graded-domain, m and n integers with 1 ≤ n < m, and I =〈
pk11 . . . pkii

〉
, where p1, . . . , pi are nonassociate homogeneous-prime elements of R and

k1, . . . , ki are positive integers. Then the following assertions are equivalent.

1. I is a graded-(m, n)-closed ideal of R.

2.
〈
p
k j
j

〉
is a graded-(m, n)-closed ideal of R for every 1 ≤ j ≤ i .

Before proving Theorem 3.20, we first establish the following two Lemmas.
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Lemma 3.21 Let R be a graded ring, m1, . . . ,mk, n1, . . . , nk positive integers, and
I1, . . . , Ik be ideals of R such that Ii is graded-(mi , ni )-closed for 1 ≤ i ≤ k.

1. I1 ∩ . . .∩ Ik is graded-(m, n)-closed for all positive integers m ≤ min {m1, . . . ,mk} and
n ≥ min {m,max {n1, . . . , nk}}.

2. I1 . . . Ik is graded-(m, n)-closed for all positive integers m ≤ min{m1, . . . ,mk} and
n ≥ min {m, n1 + . . . + nk}.

Proof (1) Let xm ∈ I1 ∩ . . .∩ Ik for x ∈ h(R), m ≤ min {m1, . . . ,mk}, and 1 ≤ i ≤ k. Then
xm ∈ Ii , and thus xmi ∈ Ii , so xni ∈ Ii since Ii is graded-(mi , ni )-closed. Hence xn ∈ I1 ∩
. . .∩ Ik for n ≥ max {n1, . . . , nk}. Thus xn ∈ I1∩. . .∩ Ik for n ≥ min {m,max {n1, . . . , nk}}.
(2) Let xm ∈ I1 . . . Ik for x ∈ h(R), m ≤ min {m1, . . . ,mk}, and 1 ≤ i ≤ k. Then xm ∈ Ii ,
and thus xmi ∈ Ii , so xni ∈ Ii since Ii is graded-(mi , ni )-closed.Hence xn1+...+nk ∈ I1 . . . Ik ,
so xn ∈ I1 . . . Ik for n ≥ n1 + . . . + nk . Thus xn ∈ I1 . . . Ik for n ≥ min {m, n1 + . . . + nk}.

��
Lemma 3.22 Let R be a graded ring, m and n positive integers, and I1, . . . , Ik be graded-
(m, n)-closed ideals of R.

1. I1 ∩ . . . ∩ Ik is a graded-(m, n)-closed ideal of R.
2. If I1, . . . , Ik are pairwise comaximal, then I1 . . . Ik is a graded-(m, n)-closed ideal of R.

Proof It is an immediate consequence of the Lemma 3.21. ��

Proof of Theorem 3.20 (1) ⇒ (2) Let I j =
〈
p
k j
j

〉
. Suppose that xm ∈ I j for x ∈ h(R). Let

y = x
(
pk11 . . . pkii

)
/p

k j
j ∈ h(R). Then ym ∈ I , and hence yn ∈ I since I is graded-(m, n)-

closed. By construction, yn ∈ I if and only if xn ∈ I j . Thus I j is a graded-(m, n)-closed
ideal of R for every 1 ≤ j ≤ i .

(2) ⇒ (1) This is clear by Lemma 3.22 since
〈
pk11

〉
∩ . . . ∩

〈
pkii

〉
=

〈
pk11 . . . pkii

〉
. ��

In view of Theorems 3.14 and 3.17, we have the following corollary.

Corollary 3.23 Let R be a graded-domain, m and n positive integers and I = 〈
pk

〉
where p

is a homogeneous-prime element of R and k is a positive integer. Then I is a graded-(m, n)-
closed ideal of R that is not a graded-(m, n)-prime ideal of R if and only if the following
hold.

1. k � n.
2. k = mq + r , where q, r ∈ N such that q ≥ 0 and 1 ≤ r ≤ n, q(m mod n) + r ≤ n, and

if a �= 0, then m = n + c for an integer c with 1 ≤ c ≤ n − 1.

Remark 3.24 Let R be a graded ring such that every power of a graded-prime ideal is graded-
primary, for instance, a graded-domain or a gr-dim(R)= 0 andm and n are positive integers. If

I =
〈
pk11 pk22 . . . pkrr

〉
where p1, p2, . . . , pr are non-associate homogeneous-prime elements

of R and k1, k2, . . . , kr are positive integers, then it is clear that I is not graded-primary in
R. Thus, I is not graded-(m, n)-prime in R. Explicitly, we can take the graded ring R = Z[i]
with its natural graduation of type Z2.

Note that Theorem 3.20 and Remark 3.24 give plenty examples of graded-(m, n)-closed
ideals that are not graded-(m, n)-prime.
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Corollary 3.25 Let R be a gr-PID, I a proper graded ideal of R andm and n positive integers.
Then I is graded-(m, n)-prime in R if and only if I is generated by a power less than or
equal n of a homogeneous-prime element in R.

Afterward, we introduce a new subclass of graded-Noetherian rings.

Definition 3.26 Let I be a graded ideal of a graded ring R. Then I is said to be of graded-
maximum length n if any ascending chain I = I0 ⊆ I1 ⊆ I2 ⊆ . . . of graded ideals of R
terminates and n is the largest integer such that In = In+1 = . . .. In addition, R is called
graded-n-Noetherian if every graded ideal of R has a graded-maximum length at most n.

Clearly, any graded-n-Noetherian ring is graded-Noetherian. But the converse is not true in
general as shown by the following example; consider the graded-Noetherian ring Z[i] which
is not graded-n-Noetherian for any positive integer n. Moreover, a graded-1-Noetherian ring
is a graded-field clearly as every graded ideal is graded-prime. If we consider the ideal 24Z[i]
of the the Z2-graded ring Z[i], then 24Z[i] ⊆ 12Z[i] ⊆ 6Z[i] ⊆ 2Z[i] ⊆ Z[i] is the chain
of graded-maximum length n = 4. In general, we have:

Example 3.27 Let R be a gr-PID and I =
〈
pk11 pk22 . . . pkrr

〉
where p1, p2, . . . , pr are non-

associate homogeneous-prime elements R. Then I is of graded-maximal length k1 + k2 +
. . . + kr .

Proof By induction on r . If r = 1, then I =
〈
pk11

〉
⊆

〈
pk1−1
1

〉
⊆ . . . ⊆ 〈p1〉 ⊆ R is the chain

of graded-maximum length n = k1. Suppose the result is true for r − 1. Then

I =
〈
pk11 pk22 . . . pkrr

〉
⊆

〈
pk11 pk22 . . . pkr−1

r

〉
⊆

〈
pk11 pk22 . . . pkr−2

r

〉
⊆ . . .

⊆
〈
pk11 pk22 . . . pkr−1

r−1

〉
⊆1 . . . ⊆k1+k2+...+kr−1 R

is the chain of graded-maximum length n = k1 + k2 + . . . + kr as desired. ��
Thus, if k = pk11 pk22 . . . pkrr for distinct homogeneous-prime p1, p2, . . . , pr elements,

then the graded ring Zk[i] is graded-n-Noetherian where n = k1 + k2 + . . . + kr .
Recall that a graded ideal I of a graded ring R is called graded-irreducible if whenever

I = K ∩ L for some graded ideals K and L of R, then either I = K or I = L , see [10, 15].
Next, we show that for m, n ∈ N, if I is a graded-irreducible ideal of length n in a graded
ring R, then I is graded-(m, n)-prime in R.

Proposition 3.28 Let m, n be positive integers and I be a proper graded ideal of R of graded-
maximum length n. If I is graded-irreducible in R, then it is graded-(m, n)-prime.

Proof Let a, b ∈ h(R) such that amb ∈ I . For each i consider the graded ideal Ii ={
x ∈ R : ai x ∈ I

}
. Then I = I0 ⊆ I1 ⊆ I2 ⊆ . . . and so In = In+1 = . . . as I is of

graded-maximum length n. So, if n ≤ k and akx ∈ I , then anx ∈ I for any x ∈ h(R).
Now, let Q = I + bR and L = I + an R which are two graded ideals of R. Hence it is
clear that I ⊆ Q ∩ L . Let y ∈ Q ∩ L , say, y = x1 + r1b = x2 + r2an where x1, x2 ∈ I .
So r2an − r1b ∈ I and then r2an+m − r1bam ∈ I . Since amb ∈ I , so r2an+m ∈ I and
so r2an ∈ I . Hence, y = x2 + r2an ∈ I and so Q ∩ L ⊆ I . Hence, I = Q ∩ L and by
assumption, either I = Q or I = L . If I = Q, then b ∈ I and if I = L , then an ∈ Q and
therefore I is graded-(m, n)-prime. ��
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Definition 3.29 Let R be a graded ring, I a proper graded ideal of R and m, n positive
integers. A graded-(m, n)-decomposition of I is an expression for I as a finite intersection
of graded-(m, n)-prime ideals, say I = ⋂k

i=1 Qi where Qi is graded-Pi -(m, n)-prime for
all i . In addition, such a graded-(m, n)-decomposition of I is called minimal if

1. P1, P2, . . . , Pk are different graded-prime ideals of R, and
2. For all j = 1, 2, . . . , n, we have I �= ⋂k

i=1
i �= j

Qi .

We say that I is graded-(m, n)-decomposable in R precisely when it has a graded-(m, n)-
decomposition. By Proposition 3.10, the intersection of graded-P-(m, n)-prime ideals is
graded-P-(m, n)-prime. Thus, similar to the case of graded-primary decomposition of graded
ideals, any graded-(m, n)-decomposition of a graded ideal can be reduced to a minimal one.

Since any graded-(m, n)-prime ideal is graded-primary, then any graded-(m, n)-
decomposable ideal is graded-decomposable. However, the converse is not true as for
example, the ideal 72Z[i] = 23Z[i] ∩ 32Z[i] is decomposable in Z[i] but not graded-
(3, 2)-decomposable. Indeed, 23Z[i] is not graded-(3, 2)-prime by Theorem 3.14 and any
graded-(3, 2)-prime ideal in Z[i] is a power of a graded-prime ideal.

Let I = ⋂k
i=1 Qi be a minimal graded-primary decomposition of a graded ideal I of a

graded ring R where Gr(Qi ) = Pi for each i = 1, 2, . . . , k. Recall that {P1, P2, . . . , Pk}
is called the set of associated homogeneous-prime ideals of I (denoted by gr-ass(I )) which
is independent of the choice of minimal graded-primary decomposition of I . Moreover, it is
well-known that a graded-prime ideal P of R is a minimal graded-prime ideal of I if and
only if P is a minimal member of gr-ass(I ).

Now, obviously any minimal graded-(m, n)-decomposition of I is a minimal graded-
primary decomposition. So, if I = ⋂k

i=1 Qi is any minimal graded-(m, n)-decomposition
of I where Gr(Qi ) = Pi for each i = 1, 2, . . . , k, then gr-ass(I ) = {P1, P2, . . . , Pk}.
Theorem 3.30 Let m, n be positive integers. If a graded ring R is graded-n-Noetherian, then
any graded-ideal of R is graded-(m, n)-decomposable.

Proof Assume that R is a graded-n-Noetherian and let I be a proper graded ideal of R. Then
I is of graded-maximal length n. Since R is graded-Noetherian, it is well-known that I is a
finite intersection of graded-irreducible ideals. Now, it remains to use Proposition 3.28, since
every graded-irreducible ideal is graded-(m, n)-prime. ��

4 Graded-(m,n)-prime ideals in extensions of graded rings,
idealization of gradedmodules and amalgamation of graded rings

The purpose of this section is to defend the actions of graded-(m, n)-prime ideals in the
graded localizations, quotient of graded rings, direct product of crossed products, idealization
of graded modules and amalgamation of graded rings. Furthermore, for a graded ideal I of
a graded ring R, we study some properties of the set �(I )gr = {(m, n) ∈ N × N : I is
graded-(m, n)-prime}.
Proposition 4.1 Let f : R1 → R2 be a graded ring homomorphism and m, n be positive
integers.

1. If J is a graded-(m, n)-prime ideal of R2, then f −1(J ) is a graded-(m, n)-prime ideal
of R1.
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2. If f is a graded epimorphism and I is a graded-(m, n)-prime ideal containing Ker f ,
then f (I ) is a graded-(m, n)-prime ideal of R2.

Proof (1) Let a, b ∈ h(R1) such that amb ∈ f −1(J ) and b /∈ f −1(J ). Since f is a graded
homomorphism so the elements f (a) and f (b) are two homogeneous elements of R2. Then
f (amb) = f (a)m f (b) ∈ J and f (b) /∈ J imply f (a)n = f (an) ∈ J . Therefore an ∈
f −1(J ), as desired.
(2) Let a := f (x), b := f (y) ∈ h(R2) for some two homogeneous elements x and y of R1

such that amb ∈ f (I ) and b /∈ f (I ). Then it is clear that f (xm y) ∈ f (I ) and so xm y ∈ I
as Ker( f ) ⊆ I . Since I is graded-(m, n)-prime, we have that xn ∈ I or y ∈ I . Hence,
an = f (xn) ∈ f (I ) or b = f (y) ∈ f (I ). ��

Based on Proposition 4.1, we have the following Corollary:

Corollary 4.2 Let R be a graded ring andm, n positive integers. Then the following statements
hold.

1. If I is a graded-(m, n)-prime ideal of R and R′ is a graded subring of R, then I ∩ R′ is
a graded-(m, n)-prime ideal of R′.

2. If I ⊆ J are two graded proper ideals of R, then J/I is a graded-(m, n)-prime ideal of
R/I if and only if J is a graded-(m, n)-prime ideal of R.

Corollary 4.3 Let I be a proper ideal of a graded ring R, X be an indeterminate and m, n be
positive integers. Then the following statements hold.

1. < I , X > is a graded-(m, n)-prime ideal of R[X ] if and only if I is a graded-(m, n)-prime
ideal of R if and only if I is an (m, n)-prime ideal of R.

2. If I [X ] is a graded-(m, n)-prime ideal of R[X ], then I is a (m, n)-prime ideal of R.

Proof 1. The isomorphisms R[X ]/ < X >∼= R and 〈I , X > / < X >∼= I are graded, we
conclude by Corollary 4.2(2) that 〈I , X〉 is a graded-(m, n)-prime ideal of R[X ] if and
only if I is a graded-(m, n)-prime ideal of R if and only if I is a (m, n)-prime ideal of R
since I ⊂ (R[X ])0 = R.

2. The same proof as (1) using (1) and Corollary 4.2(1).
��

Throughout the subsequent, h-ZI (R) denotes the set {x ∈ h(R) : xy ∈ I for some
y ∈ R\I }. Next, we study the relationship between graded-(m, n)-prime ideals and their
graded-localizations.

Proposition 4.4 Let I be a proper graded ideal of a graded ring R, S amultiplicatively closed
subset of homogeneous elements of R such that I ∩ S = ∅ and m, n be positive integers.

1. If I is a graded-P-(m, n)-prime ideal of R, then S−1 I is a graded-S−1P-(m, n)-prime
ideal of S−1R.

2. If S−1 I is a graded-P̄-(m, n)-prime ideal of S−1R and S ∩ h-Z I (R) = ∅, then I is a
graded-(P̄ ∩ R)-(m, n)-prime ideal of R.

Proof 1. Let
(

a
s1

)m (
b
s2

)
∈ S−1 I for a

s1
, b
s2

∈ h(S−1R). So (ua)mb ∈ I for some u ∈ S

which gives either (ua)n ∈ I or b ∈ I . Thus, either
(

a
s1

)n = unan

unsn1
∈ S−1 I or b

s2
∈ S−1 I .

Now, since Gr(I ) = P , then Gr(S−1 I ) = S−1Gr(I ) = S−1P .
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2. Let a, b ∈ h(R) such that amb ∈ I . Then amb
1 = ( a

1

)m ( b
1

) ∈ S−1 I . Since S−1 I is
graded-(m, n)-prime, then either

( a
1

)n ∈ S−1 I or
( b
1

) ∈ S−1 I . Thus, there are some
homogeneous elements u, v ∈ S such that uan ∈ I or vb ∈ I . Then our supposition
results in an ∈ I or b ∈ I . In addition, as Gr(I ) is a graded-prime ideal of R, we
have S−1Gr(I ) = Gr(S−1 I ) = P̄ which implies that Gr(I ) = S−1Gr(I ) ∩ R =
Gr(S−1 I ) ∩ R = P̄ ∩ R, as desired.

��
Corollary 4.5 Let I be a proper graded ideal of a graded ring R, P a graded-prime ideal of
R with I ⊆ P and m, n positive integers. Then I is a graded-Q-(m, n)-prime ideal of R if
and only if I[P] is a graded-Q[P]-(m, n)-prime ideal of R[P].

Proof ⇒) Immediately using Proposition 4.4(1).
⇐) Let a, b ∈ h(R) such that amb ∈ I . Consider the graded ideals J1 = {r ∈ R : ran ∈ I },
J2 = {r ∈ R : rb ∈ I }. Now, since I is graded-(m, n)-prime

( a
1

)m ( b
1

) ∈ I[P] implies that( a
1

)n ∈ I[P] or
( b
1

) ∈ I[P]. Thus, there are u, v ∈ R\P such that uan ∈ I or vb ∈ I . If
uan ∈ I , then J1 � P . Furthermore, J1 � L for every graded-prime ideal L such that I � L
as I ⊆ J1. Hence, J = R and an ∈ I . If vb ∈ I , then likewise, J2 = R and b ∈ I . Since
also obviously Gr(IP ) = Q[P], then I is a graded-Q[P]-(m, n)-prime ideal of R. ��

Let R be a graded ring and P a graded-prime ideal of R. For a positive integer
n, the graded kth symbolic power of P is the graded ideal P(k) = Pk R[P] ∩ R =
ϕ−1

(
Pk R[P]

)
where ϕ : R → R[P] is the natural canonical map. Hence, P(k) ={

a = ∑
g∈G ag ∈ R : sag ∈ Pk ,∀g ∈ G for some s ∈ h(R)\P}. Note that if P is a

graded-prime, then P(k) is the smallest graded-P-primary ideal containing Pk .

Corollary 4.6 Let m, k be a positive integers and P be a graded-prime ideal of a graded ring
R. Then for all k ≤ n, P(k) is the smallest graded-P-(m, n)-prime ideal containing Pk.

Proof Since PR[P] is graded-maximal in R[P] and k ≤ n, then Pk R[P] = (
PR[P]

)k is
a graded-(m, n)-prime ideal of R[P] for any positive integer m by Corollary 3.8. Hence,
P(k) = Pk R[P] ∩ R is a graded-(m, n)-prime ideal of R by Proposition 4.1(1). Now, it is
clear that Pk ⊆ P(k) since 1 ∈ h(R)\P . Let J be another graded-P-(m, n)-prime ideal with
Pk ⊆ J and let r = ∑

g∈G rg ∈ P(k). Then srg ∈ Pk, ∀g ∈ G for some s ∈ h(R)\P .
Since Pk ⊆ J , then srg ∈ J , ∀g ∈ G and so smrg ∈ J , ∀g ∈ G. Thus, either s ∈ P =
{x ∈ R : xn ∈ J } or rg ∈ J , ∀g ∈ G since J is graded-P-(m, n)-prime. Now, as we take
s ∈ h(R)\P , then rg ∈ J , ∀g ∈ G. So r ∈ G. Therefore, P(k) ⊆ J and P(k) is the smallest
graded-P-(m, n)-prime ideal containing Pk . ��
Theorem 4.7 Let R1, R2, . . . , Rk be crossed products, R = R1 × R2 × . . . × Rk and
I1, I2, . . . , Ik be graded ideals of R1, R2, . . . , Rk, respectively. For any positive integers
m and n, we have I1 × I2 × . . . × Ik is a graded-(m, n)-prime ideal of R if and only if there
exists i ∈ {1, 2, . . . , k} such that Ii is a graded-(m, n)-prime ideal of Ri and I j = R j for all
j �= i .

Proof Assume I1 × I2 × . . . × Ik is a graded-(m, n)-prime in R. Suppose that I1 and I2
are proper and choose two homogeneous elements a1 ∈ (I1)g and a2 ∈ (I2)g . Since
the Ri are crossed products, in particular R1 and R2, there exist two inversibles ele-
ments a3 and a4 of degree g in (R1)g and (R2)g , respectively. Then (a1, a4, 0, . . . , 0) and
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(a3, a2, 0, . . . , 0) are two homogeneous elements of degree g of R = R1×R2× . . .×Rk and
(a1, a4, 0, . . . , 0)m (a3, a2, 0, . . . , 0) ∈ I1 × I2 × . . . × Ik but neither (a1, a4, 0, . . . , 0)n ∈
I1× I2× . . .× Ik nor (a3, a2, 0, . . . , 0) ∈ I1× I2× . . .× Ik . So, there is i ∈ {1, 2, . . . , k} such
that I j = R j for all j �= i . Without loss of generality, suppose that I j = R j for all j �= 1.
We prove that I1 is a graded-(m, n)-prime ideal of R1. Let a, b ∈ h(R1) and amb ∈ I1. Then
(a, 0, . . . , 0)m(b, 0, . . . , 0) ∈ I1 × R2 × . . . × Rk which implies that (a, 0, . . . , 0)n ∈ I1 ×
R2×. . .×Rk or (b, 0, . . . , 0) ∈ I1×R2×. . .×Rk . Hence an ∈ I1 or b ∈ I1 and I1 is a graded-
(m, n)-prime ideal of R1. Conversely, assume that I1 is a graded-(m, n)-prime ideal of R1 and
I j = R j for all j �= 1. Assume that (a1, a2, . . . , ak)m (b1, b2, . . . , bk) ∈ I1 × R2 × . . .× Rk

but (b1, b2, . . . , bk) /∈ I1×R2×. . .×Rk for some (a1, a2, . . . , ak), (b1, b2, . . . , bk) ∈ h(R).
Then am1 b1 ∈ I1 and b1 /∈ I1 imply that an1 ∈ I . Thus (a1, a2, . . . , ak)n ∈ I1× R2× . . .× Rk ,
as desired. ��

As a particular consequence, we have the following corollary. Note that if I and J are
graded-(m, n)-prime ideals of R1 and R2, respectively, then I and J are proper and so I × J
is never graded-(m, n)-prime ideal in R1 × R2.

Corollary 4.8 Let R1 and R2 be two crossed products, R = R1 × R2 and I , J be graded
ideals of R1, R2, respectively. For any positive integers m and n, we have I × J is a graded-
(m, n)-prime ideal of R if and only if one of the following statements is satisfied:

1. I is a graded-(m, n)-prime ideal of R1 and J = R2.
2. J is a graded-(m, n)-prime ideal of R2 and I = R1.

Let R be a ring and M an R-module. The following ring construction called the trivial
ring extension of R by M (also called the idealization of M) was introduced by Nagata
[16, page 2]. It is the set of pairs (r ,m) with pairwise addition and multiplication given by
(r , e)(q, f ) = (rq, r f + qe), denoted by R ∝ M whose underlying abelian group is A× M
This construction has been useful for solving many open problems and conjectures in both
commutative and non-commutative ring theory. For more informations, the reader is referred
to [17–20]. Now, by taking R a graded ring, and M a graded R-module, Then R ∝ M is a
graded ring by (R ∝ M)g = Rg ⊕ Mg for all g ∈ G, see [21]. Recently, many papers have
studied the transfer of several graded properties in the idealization of graded modules, see
for instance [22–24].

Proposition 4.9 Let I be a proper graded ideal of a graded ring R, N be a proper graded
submodule of a graded R-module M and m, n be positive integers. Then

1. I is a graded-(m, n)-prime ideal of R if and only if I ∝ M is a graded-(m, n)-prime
ideal of R ∝ M.

2. If I ∝ N is a graded-(m, n)-prime ideal of R ∝ M, then I is a graded-(m, n)-prime
ideal of R.

Proof (1) Let I be a graded-(m, n)-prime ideal of R and (ag, xg)m(bg, yg) ∈ I ∝ M for
some (ag, xg), (bg, yg) ∈ h(R ∝ M). Then amg bg ∈ I which implies either ang ∈ I or
bg ∈ I . Hence, either (ag, xg)n ∈ I ∝ M or (bg, yg) ∈ I ∝ M . Conversely, if amg bg ∈ I
for some ag, bg ∈ h(R), then (ag, 0)m(bg, 0) ∈ I ∝ M which implies (ag, 0)n ∈ I ∝ M or
(bg, 0) ∈ I ∝ M , and so ang ∈ I or bg ∈ I , as desired.
(2) Omitted since it is similar to the proof of the converse part of (1). ��

We note that the converse of (2) of Proposition 4.4 is not true in general as shown by the
following example.
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Example 4.10 Let R = Z[i] ∝ Z[i] be the graded idealization of the Gaussian integer ring
considered with his natural Z2-graduation (a new graduation of the same type of its natural
graduation), so R is a Z2-graded ring. While 2Z[i] is a graded-(2, 1)-prime ideal in Z[i],
the graded ideal < (2, 2) > is not so in R. In fact, (2, 1)2 = (4, 4) ∈ 2Z[i] ∝ 2Z[i] but
(2, 1) /∈ 2Z[i] ∝ 2Z[i].

Let R and S be two rings, let J be an ideal of S and let f : R → S be a ring homomorphism.
The following ring construction called the amalgamation of R with S along J with respect
to f is a subring of R × S defined by:

R �� f J := {(r , f (r) + j)|r ∈ R, j ∈ J }
This construction generalize Nagata’s idealization and the so called amalgamated duplication
of a ring along an ideal (introduced and studied by D’Anna and Fontana in [25]), denoted by
R �� I , which is the subring of R × R given by: R �� I := {(r , r + i)|r ∈ R, i ∈ I }. Now,
by taking R and S two graded rings, J a graded ideal of S and f : R → S a graded ring
homomorphism, R �� f J is a graded ring by (R �� f J )g = {(rg, f (rg) + jg)|rg ∈ Rg, j ∈
Jg} for all g ∈ G. If I is a graded ideal of R and K is a graded ideal of f (R)+ J , then I �� f

J = {(i, f (i)+ j) : i ∈ I , j ∈ J } and K̄ f = {(a, f (a)+ j) : a ∈ R, j ∈ J , f (a)+ j ∈ K }
are graded ideals of R �� f J , see [26, 27].

Next, we give a characterization about when the graded ideals I �� f J and K̄ f are
graded-(m, n)-prime ideals of R �� f J , for any positive integers m and n.

Theorem 4.11 Let R, S be two graded rings, f a graded homomorphism, J , I and K be the
graded ideals cited above. For positive integers m and n, we have:

1. I �� f J is a graded-(m, n)-prime ideal of R �� f J if and only if I is a graded-(m, n)-
prime ideal of R.

2. K̄ f is a graded-(m, n)-prime ideal of R �� f J if and only if K is a graded-(m, n)-prime
ideal of f (R) + J .

Proof (1) Assume that I �� f J is graded-(m, n)-prime in R �� f J and let ag, bg ∈
h(R) such that amg bg ∈ I . So (ag, f (ag)g)m(bg, f (bg)g) ∈ I �� f J and then either

(ag, f (ag))ng ∈ I �� f J or (bg, f (bg)g) ∈ I �� f J . Hence, either ang ∈ I or
bg ∈ I and I is a graded-(m, n)-prime of R. Conversely, suppose I is graded-(m, n)-
prime in R. Let (ag, f (ag) + ( j1)g)g,

(
bg, f (bg)g + ( j2)g

)
g ∈ h(R �� f J ) such that

(
ag, f (ag)g + ( j1)g

)m (
bg, f (bg)g + ( j2)g

) ∈ I �� f J . So amg bg ∈ I and then either ang ∈ I

or bg ∈ I . It follows that
(
ag, f (ag)g + ( j1)g

)n ∈ I �� f J or
(
bg, f (bg)g + ( j2)g

) ∈ I �� f

J as desired.
(2) Assume that K̄ f is a graded-(m, n)-prime ideal in R �� f J . Let f (ag)g +
( j1)g, f (bg)g + ( j2)g ∈ h( f (R) + J ) such that ( f (ag)g+ ( j1)g

)m
( f (bg)g + ( j2)g)

∈ K . Then
(
ag, f (ag)g + ( j1)g

)m (
bg, f (bg)g + ( j2)g

) ∈ K̄ f and hence by assump-
tion,

(
ag, f (ag)g + ( j1)g

)n ∈ K̄ f or
(
bg, f (bg)g + ( j2)g

) ∈ K̄ f . It follows that(
f (ag) + ( j1)g

)n ∈ K or
(
f (bg)g + ( j2)g

) ∈ K . Conversely, suppose K is graded-
(m, n)-prime in f (R) + J . Suppose

(
ag, f (ag) + ( j1)g

)m (
bg, f (bg) + ( j2)g

) ∈ h(K̄ f )

for
(
ag, f (ag)g + ( j1)g

)
,
(
bg, f (bg) + ( j2)g

) ∈ R �� f J . Then(
f (ag)g + ( j1)g

)m (
f (bg)g + ( j2)g

) ∈ K and so
(
f (ag)g + ( j1)g

)n ∈ K or(
f (bg) + ( j2)g

) ∈ K . Therefore,
(
ag, f (ag) + ( j1)g

)n ∈ K̄ f or
(
bg, f (bg)g + ( j2)g

)

∈ K̄ f and the result follows. ��
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As a consequence, we have:

Corollary 4.12 Let I and J be two graded ideals of a graded ring R. Then I × J is a
graded-(m, n)-prime ideal of R �� J if and only if I is a graded-(m, n)-prime ideal of R.

For a graded ideal I of a graded ring R, we identify:

�(I )gr = {(m, n) ∈ N × N : I is graded-(m, n)-closed}
Likewise, we let

�(I )gr = {(m, n) ∈ N × N : I is graded-(m, n)-prime}
and assume �(R)gr = N × N. It is clear that �(I )gr ⊆ �(I )gr and this containment in
general is proper as we have seen in Example 3.4. Moreover, we have (1, 1) ∈ �(I )gr if and
only if I is graded-prime.

For a graded ideal I of a graded ring R, the following are some properties concerning
�(I )gr .

Theorem 4.13 Let I and J be graded ideals of a graded ring R, and m, n, k and t be positive
integers.

1. If (m, n) ∈ �(I )gr , then
(
m′, n′) ∈ �(I )gr for all positive integers m′ and n′ with m′ ≤ m

and n′ ≥ n.
2. If (m, n) ∈ �(I )gr , then (km, tn) ∈ �(I )gr for all t ≥ k.
3. If (m, n) ∈ �(I )gr and (n, k) ∈ �(I )gr , then (m, k) ∈ �(I )gr .
4. (m, n) ∈ �(I )gr if and only if (m + 1, n) ∈ �(I )gr . Hence, (m, n) ∈ �(I )gr if and only

if (t, n) ∈ �(I )gr for all t ≥ m.
5. If I and J are proper, then �(I × J )gr = φ. If only one of I and J is proper, then

�(I × J ) = �(I )gr ∩ �(J )gr .

Proof (1), (2) and (3): Obvious.
(4) Assume that (m, n) ∈ �(I )gr and let a, b ∈ h(R) such that am+1b ∈ I and b /∈ I . Then(
a2

)m
b ∈ I as 2m ≥ m+1. Since I is graded-(m, n)-prime, then a2n ∈ I . Thus, a ∈ Gr(I )

and so an ∈ I by Lemma 3.6. The converse is clear by (1).
(5) If I and J are proper, then �(I × J )gr = ∅ by Corollary 4.8. Assume, I �= R and J = R.
Then �(I × J )gr = �(I )gr ∩ �(J )gr since �(R)gr = N × N and by using Proposition 4.9.

��
The converse of (2) of Theorem 4.13 is not true in general as shown by the following

Example.

Example 4.14 Consider the ideal I = 〈
pk

〉
where p is a homogeneous-prime element of any

graded-domain R, I is graded-(k, k)-prime by Theorem 3.14. But, I is not graded-(1, 1)-
prime as it is not graded-prime in R.

5 Graded-(m,n)-prime avoidance theorem

The purpose of this section is to give the graded-(m, n)-prime avoidance theorem analogous
to graded-prime avoidance theorem. A covering I ⊆ I1 ∪ I2 ∪ . . . ∪ In is said to be efficient
if no Ik is superfluous. Also, I = I1 ∪ I2 ∪ . . . ∪ In is an efficient union if none of the Ik
may be excluded. It is clear that a covering I ⊆ I1 ∪ I2 ∪ . . . ∪ In naturally implies a union
I = (I ∩ I1) ∪ (I ∩ I2) ∪ . . . ∪ (I ∩ In). We begin by recalling the following lemma which
the follow-up will find useful.
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Lemma 5.1 (McCoy) Let I = I1 ∪ I2 ∪ . . . ∪ In be an efficient union of ideals where
n ∈ N \ {0, 1}. Then ⋂

i �=k Ii = ⋂n
i=1 Ii for all k.

Theorem 5.2 Let I ⊆ I1∪ I2∪ . . .∪ In be an efficient covering of graded ideals I1, I2, . . . , In
of R where 2 ≤ n. Assume that Gr(Ii ) � Gr(

(
I j : x)) for all x ∈ h(R)\Gr(I j ) whenever

i �= j . Then no Ii (1 ≤ i ≤ n) is a graded-(m, n)-prime ideal of R for all n ≤ m.

Proof Suppose on the contrary that Ik is a graded-(m, n)-prime ideal of R for some1 ≤ k ≤ n.
First, note that as I ⊆ ⋃n

i=1 Ii is an efficient covering, then I ⊆ ⋃n
i=1 (Ii ∩ I ) is also an

efficient covering. It follows that (∗)
(⋂

i �=k Ii
)
∩ I = (⋂n

i=1 Ii
)∩ I ⊆ Ik∩ I , by Lemma 5.1.

For all x ∈ h(R)\Gr(Ik) and i �= k, we have Gr(Ii ) � Gr((Ik : x)) and so we can choose
a homogeneous element ai ∈ Gr(Ii )\Gr((Ik : x)). Then, there exists the least positive inte-
ger mi such that ami

i ∈ Ii for each i �= k. Write a = a1a2 . . . ak−1, b = ak+1ak+2 . . . an

and m = max{m1,m2, . . . ,mk−1,mk+1, . . . , mn}. Then ambm x ∈
(⋂

i �=k Ii
)

∩ I . In

the remaining, we prove that ambmx ∈
((⋂

i �=k Ii
)

∩ I
)

\ (Ik ∩ I ). For that, suppose on

the way of contradiction that ambmx ∈ Ik ∩ I . Then ambm ∈ (Ik : x) ⊆ Gr((Ik : x)).
Since Gr((Ik : x)) is a graded-prime ideal by Theorem 3.12 (1) and (2), we get either
a = a1a2 . . . ak−1 ∈ Gr((Ik : x)) or b = ak+1ak+2 . . . an ∈ Gr((Ik : x)). Also, since
Gr((Ik : x)) is graded-prime, ai ∈ Gr((Ik : x)) for some i �= k, a contradiction. Thus,

ambmx /∈ (Ik ∩ I ), and so ambmx ∈
((⋂

i �=k Ii
)

∩ I
)

\ (Ik ∩ I ) which contradicts (∗).

Therefore, no Ii is a graded-(m, n)-prime ideal for every 1 ≤ i ≤ n, as desired. ��
Theorem 5.3 (Graded-(m, n)-prime Avoidance Theorem) Let I , I1, I2, . . . , In(n ≥ 2) be
graded-ideals of R such that at most two of I1, I2, . . . , In are not graded-(m, n)-prime and
Gr(Ii ) � Gr(

(
I j : x)) for all x ∈ h(R)\Gr(I j ) whenever i �= j . If I ⊆ I1 ∪ I2 ∪ . . . ∪ In,

then I ⊆ Ik for some 1 ≤ k ≤ n.

Proof Suppose that I � Ik for all 1 ≤ k ≤ n. Without loss of generality, we may assume
that I ⊆ I1 ∪ I2 ∪ . . . ∪ In is an efficient covering of graded ideals of R as any covering
can be reduced to an efficient one by omitting any unnecessary terms. It is well-known that
a covering of an ideal by two ideals is never efficient. If n ≥ 3, then no Ik is a graded-
(m, n)-prime ideal of R by Theorem 5.2. But our assumption implies that at most two of
I1, I2, . . . , In are not graded-(m, n)-prime. Thus, I ⊆ Ik for some 1 ≤ k ≤ n. ��
Corollary 5.4 Let I be a proper graded ideal of a graded ring R. If the graded-(m, n)-prime
avoidance theorem holds for R, then the graded-(m, n)-prime avoidance theorem holds for
R/I .

Proof Let J/I , I1/I , I2/I , . . . , In/I (n ≥ 2) be graded ideals of R/I such that atmost two of
I1/I , I2/I , . . . , In/I are not graded-(m, n)-prime and J/I ⊆ (I1/I )∪(I2/I )∪ . . .∪(In/I ).
Then, Corollary 4.2 implies that J ⊆ I1∪ I2 ∪ . . . ∪ In and at most two of I1, I2, . . . , In
are not graded-(m, n)-prime. Suppose that Gr(Ii/I ) � Gr(

(
I j/I : x + I

)
) for all x + I ∈

h(R/I )\Gr(
(
I j/I

)
) whenever i �= j . It is simple to check that if Gr(Ii ) ⊆ Gr(

(
I j : x))

for some x ∈ h(R), then Gr((Ii/I )) ⊆ Gr(
(
I j/I : x + I

)
) for some x + I ∈ h(R/I ).

In addition, note that if x + I ∈ h(R/I )\Gr(
(
I j/I

)
) = h(R/I )\ (

Gr(I j )/I
)
, then x ∈

h(R)\Gr(I j ). Thus, by our assumption Gr((Ii/I )) � Gr(
(
I j/I : x + I

)
) for all x + I ∈

h(R/I ))\Gr(
(
I j/I

)
) whenever i �= j . Hence, we deduce that Gr(Ii ) � Gr(

(
I j : x)) for all

x ∈ h(R)\Gr(I j )whenever i �= j . Hence, Theorem 5.3 implies J ⊆ Ik for some 1 ≤ k ≤ n.
Therefore, J/I ⊆ Ik/I for some 1 ≤ k ≤ n, as desired. ��
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