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Abstract
The spectral mapping theorem, in conjunction with the concept of a spectral set, is uti-
lized to construct reducing pairs of subspaces for a given operator. By leveraging the theory
of functional calculus, we revisit the well-established spectral mapping theorem for various
spectra, with a particular focus on the point spectrum. Concluding this discussion, we present
an application wherein we collect and establish properties of the point spectrum of a com-
pact exponentially m-isometry. Also, we examine the behavior of solutions of a system of
differential equations associated with exponentially m-isometric matrices.
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1 Introduction

LetX be a non-trivial complex Banach space. Denote by L(X ) the algebra of bounded linear
operators on X . For an operator T ∈ L(X ), let σ(T ), σap(T ), σsu(T ) and σp(T ) denote its
spectrum, approximate point spectrum, surjectivity spectrumand point spectrum respectively.
A very basic property of the spectrum of an operator on a complex Banach space is that it
is a nonempty compact subset of C. Recall also that the approximate point spectrum σap(T )

is a nonempty closed subset of C that includes the boundary ∂σ (T ) of the spectrum σ(T )

and the following inclusions σp(T ) ⊆ σap(T ) ⊆ σ(T ) hold. It is worth noting that the point
spectrummay be empty. It is also well known that σap(T ) = σsu(T ∗) and σsu(T ) = σap(T ∗).
Additionally, it is essential to recall that a neighborhood of a subset A in C is defined as any
open set G such that A ⊂ G.

Within the realm of advanced studies encompassing operator theory and functional anal-
ysis, it is consistently demonstrated that if p(z) = anzn +· · ·+a1z+a0 is a polynomial, and
p(T ) represents the operator obtained by formally substituting an operator T ∈ L(X ) for z
in p(z), then σ(p(T )) = p(σ (T )). This result stands as a highly specialized case within a
powerful theory, allowing the association of a broad class F(T ) of analytic functions (which
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includes all polynomials) such that for each f ∈ F(T ) an operator f (T ) can be defined
whose spectrum σ( f (T )) coincides with f (σ (T )).

The following result proves to be very useful as it encompasses the algebraic properties of
operators f (T ). This collection of properties is commonly known as "functional calculus."

Theorem 1.1 [1, Theorem 6.29] The mapping f �→ f (T ), from F(T ) to L(X ), is an alge-
braic homomorphism. That is, for each pair f , g in F(T ) and all scalars ξ and β in C we
have

(ξ f + βg)(T ) = ξ f (T ) + βg(T ) and ( f g)(T ) = f (T )g(T )

Moreover:

(1) If S ∈ L(X ) commutes with T , then S commutes with f (T ). In particular, T f (T ) =
f (T )T for each f ∈ F(T ).

(2) If f ∈ F(T ), then f ∈ F (T ∗) and f (T ∗) = f (T )∗.
(3) If a function f satisfies f (λ) = ∑∞

n=0 anλ
n for all λ in a neighborhood of σ(T ), then

f ∈ F(T ) and f (T ) = ∑∞
n=0 anT

n.

Further comprehensive presentations of functional calculus can be explored in the classic
monographs authored by Dunford and Schwartz [9] as well as Hille and Phillips [14].

The spectral mapping theorem is employed in tandem with the concept of a spectral set
to construct reducing pairs of subspaces for a given operator. Using the theory of functional
calculus, we are prepared to revisit the well-established spectral mapping theorem for the
spectrum.

Theorem 1.2 (The spectral mapping theorem for spectrum) If T ∈ L(X ), then for every
function f ∈ F(T ) we have σ( f (T )) = f (σ (T )).

The spectralmapping theorem introduced earlier pertains to the entire spectrum.Of course,
numerous other results exist concerningvarious classical spectra,which have been established
by several authors. These include findings related to the approximate point spectrum and the
surjectivity spectrum, as affirmed in the following Theorem [2].

Theorem 1.3 Let T ∈ L(X ), and let f : � → C be an analytic function on a neighborhood
� of σ(T ). Then

σsu( f (T )) = f (σsu(T )) and σap( f (T )) = f
(
σap(T )

)
.

Let us denote by

σes(T ) := {λ ∈ C : λI − T is not essentially semi-regular }.
The set σes(T ) is called the essentially semi-regular spectrum of T and has been investigated
by Rakočević [19] and Müller [16]. The following theorem has been established for this
spectra.

Theorem 1.4 Given an operator T ∈ L(X ), and an analytic function f defined on a
neighborhood � of σ(T ), then

f (σes(T )) = σes( f (T )).
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Recall the definition of upper semi-Fredholm and lower semi-Fredholm operators for a
bounded operator T ∈ L(X ): an operator T is considered upper semi-Fredholm if its range
R(T ) is closed and the dimension of its kernel, denoted by α(T ), is finite. On the other hand,
T is termed lower semi-Fredholm if the codimension of its range, denoted by β(T ), is finite.
The sets of all upper semi-Fredholm and lower semi-Fredholm operators are respectively
denoted by 	+(X ) and 	−(X ). The class of all Fredholm operators, denoted by 	(X ),
comprises operators that belong to both 	+(X ) and 	−(X ).

Thanks to [24], we recall that for T ∈ L(X ), the ascent, a(T ), and the descent, d(T ), are
defined by a(T ) = inf{n ≥ 0 : N(T n) = N(T n+1)} and d(T ) = inf{n ≥ 0 : R(T n) =
R(T n+1)}, respectively; the infimum over the empty set is taken to be ∞.

Two significant classes of operators within Fredholm theory are the upper semi-Browder
operators, denoted as B+(X ), and the lower semi-Browder operators, denoted as B−(X ).
The former comprises operators T ∈ 	+(X ) with finite ascent, while the latter consists of
operators T ∈ 	−(X ) with finite descent. These classes, B+(X ) and B−(X ), have been
subjects of investigation by various authors, as documented in [13, 15, 18]. The class of
Browder operators, denoted as B(X ), is defined as the intersection of B+(X ) and B−(X ).

These classes of operators lay the groundwork for defining several spectra. For instance,
the upper semi-Browder spectrum of T ∈ L(X ) is defined as

σub(T ) := {λ ∈ C : λI − T /∈ B+(X )} ,

while the lower semi-Browder spectrum of T ∈ B(X ) is expressed as

σlb(T ) := {λ ∈ C : λI − T /∈ B−(X)} ,

and finally, the Browder spectrum of T ∈ L(X ) is defined as

σb(T ) := {λ ∈ C : λI − T /∈ B(X )}.
For these spectra, the following theorem was established in [11, 17, 20, 23].

Theorem 1.5 Let T ∈ L(X ), and suppose that the function f is defined on a neighborhood
� of σ(T ). If 
 is one of the spectra σub(T ), σlb(T ), and σb(T ), then

f (
(T )) = 
( f (T )).

Shifting our focus, let’s now delve into the spectral mapping theorem concerning point
spectrum. It’s noteworthy that Halmos [12], Brezis [7], and Garcia et al. [10] laid the
groundwork for the spectral mapping theorem for point spectrum, primarily focusing on
its polynomial version. Recent inquiries from esteemed colleagues have prompted a closer
examination of the nuanced validity of this theorem in a broader context. Insights from
esteemed experts, Professor Dan TIMOTIN and Professor Pietro AIENA, provide valuable
perspectives on this matter.

Professor Pietro AIENA reflected on the theorem’s general applicability, stating, "But I
think that in general, it does not hold for the point spectrum. But I am not completely sure;
I have never seen that." Meanwhile, Professor Dan TIMOTIN pinpointed a key challenge:
"Just a quick remark. It’s the possible absence of point spectrum that usually prevents a
nice spectral mapping theorem for it. For instance, if you take any operator T without point
spectrum, while f is the identically zero function, then the spectrum of f (T ) is {0}, but f
applied to the spectrum of T is the empty set."

Therefore, the purpose of this note is to present and revisit a new, more general version of
the spectral mapping theorem, focusing on the point spectrum, as affirmed by the following
theorem.

123



M. A. Aouichaoui

Theorem 1.6 (The spectral mapping theorem for point spectrum) Let T ∈ L(X ) be an
operator, � a neighborhood of σ(T ), and f a complex analytic function within � that is
non-constant in any component of �. Then

f
(
σp(T )

) = σp( f (T )).

We employ functional calculus to elucidate this general version. Consequently, the proof
provided herein warrants dissemination within the mathematical community. This proof
represents a slight variation on Halmos’ proof for the polynomial case [12] and, according to
an expert, it can also be found in [21]. Furthermore, we give in Theorem 2.1 an application
of the general version, which delves into the properties of the set of eigenvalues of compact
exponentially m-isometries. We will also discuss the diagonalizability of an exponentially
m-isometric matrix based on the behavior of the solutions an associated system of differential
equations.

2 Proof of Theorem 1.6 and an application

Proof of Theorem 1.6
The direct inclusion always holds true for any analytic function f on�, even if it does not

satisfy the non-constant condition in any component of�. Indeed, let ξ ∈ σp(T ). Then, there
exists x 
= 0 such that T x = ξ x . Consequently, ξ ∈ σ(T ). Define the function g : � → C

by

g(λ) =
{

f (λ)− f (ξ)
λ−ξ

if λ 
= ξ

f ′(ξ) if λ = ξ

Clearly, g is analytic on � and satisfies

f (λ) − f (ξ) = g(λ)(λ − ξ).

According to Theorem 1.1, this implies

f (T ) − f (ξ)I = g(T )(T − ξ I ).

As (T − ξ I )x = 0, f (ξ) ∈ σp( f (T )).
Now, let us establish the other inclusion. Let ξ ∈ σp( f (T )). Given the assumption made

on f , we observe that f − ξ does not vanish identically in any component of �. Moreover,
we have

ξ ∈ σp( f (T )) ⊂ f (σ (T )).

Put

A := f −1({ξ}) ∩ σ(T ).

Since σ(T ) is a compact subset of� and f − ξ does not vanish identically in any component
of �, the non-empty set A is finite. Consider α1, . . . , αn as the zeros of f − ξ in σ(T ), each
counted with respect to its multiplicity. Write

f (λ) − ξ = g(λ) (λ − α1) · · · (λ − αn) ,

where g is analytic on � and has no zeros on σ(T ). The classical spectral mapping theorem
ensures the invertibility of g(T ). Moreover, we have

f (T ) − ξ I = g(T ) (T − α1 I ) · · · (T − αn I ) .
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As ξ stands as an eigenvalue of f (T ) and f (T ) − ξ I lacks injectivity, it follows from the
last equation that at least one of the operators T − αi I fails to be injective. The respective
αi resides in σp(T ), and due to f (αi ) = ξ , we conclude the proof of the second inclusion,
thereby achieving the intended equality.

An Application
Let H denote an infinite-dimensional complex Hilbert space, and L(H) represent the set

of all bounded linear operators onH. For an operator T ∈ L(H), we define the�T ,m operator
as:

�T ,m =
m∑

k=0

(−1)k
(
m

k

)

T ∗m−kT m−k .

An operator T is termed an m-isometry if �T ,m = 0.
J. Alger and M. Stankus have published excellent papers on m-isometric operators [3–

5]. They showed that m-isometries have interesting spectral properties. For instance, they
demonstrated that if T is an invertible m-isometry, its spectrum lies on the unit circle.

In recent studies, several authors have delved deeper into the spectral properties of m-
isometries and their associated classes. For example, Aouichaoui has expanded upon the
concept of m-isometries, providing a comprehensive analysis of their spectral properties, as
detailed in [6]. Furthermore, within the framework of functional calculus for m-isometries,
Salehi and Hedayatian introduced the notion of exponentially m-isometric operators in [22],
defining them as operators T for which �eT ,m = 0.

We now present a significant application, wherein we collect and establish properties of
the point spectrum of a compact exponentially m-isometry.

Theorem 2.1 Let T ∈ L(H) be a compact exponentially m-isometry. Then the following
properties hold:

(1) σp(T ) is a non-empty subset of the imaginary axis.
(2) If λ ∈ σp(T ), then λ̄ = −λ ∈ σp(T ∗) + 2iπZ.

(3) If σ(T ) consists of a finite number of points, then

σp(T
∗) = {−λ : λ ∈ σp(T )}.

In particular, σp(T ∗) is also a non-empty subset of the imaginary axis.

Proof (1)From [22, Corollary 3.11] and [8, Corollary 6.13], it follows that the point spectrum
of T is non-empty. Additionally, as mentioned earlier, the point spectrum of any invertible
m-isometric operator is a subset of the unit circle. Consequently, Theorem 1.6 implies that
the point spectrum of every exponentially m-isometric operator lies on the imaginary axis.
(2) Let λ ∈ σp(T ). Then by Theorem 1.6, eλ ∈ σp(eT ). Let x be a non-zero vector such that
eT x = eλx . By induction, we obtain ekT x = ekλx , for all k ≥ 0. We have

0 =
∑

0≤k≤m

(−1)m−k
(
m

k

)

ekT
∗
ekT x

=
∑

0≤k≤m

(−1)m−k
(
m

k

)

ekT
∗
ekλx

=
m∑

k=0

(−1)m−k
(
m
k

)

ek(T
∗+λ)x .
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It follows that

(eT
∗+λ − I )mx = 0.

Hence, e−λ = eλ̄ ∈ σp

(
eT

∗)
. Again, applying Theorem 1.6 yields

λ̄ = −λ ∈ σp(T ∗) + 2iπZ.

(3) follows from (1) and [22, Corollary 3.11]. ��
In what follows, for n ≥ 1, we write Mn for the set of n × n complex matrices. The matrix
exponential, the range, and the kernel of M ∈ Mn are denoted by eM , R(M), and N(M),
respectively.

In the context of systems of differential equations, finding solutions becomes straight-
forward when the associated matrix is diagonal. Therefore, it is advantageous to initially
explore the possibility of transforming the system into a diagonalizable form. Of course, by
the uniqueness of the Dunford-Jordan decomposition, an exponentially m-isometric matrix
is diagonalizable if and only if its nilpotent part is null. In the following discussion, as we
conclude this paper, we will provide another criterion for the diagonalizability of an expo-
nentially m-isometric matrix based on the behavior of the solutions of an associated system
of differential equations.

A continuous dynamical system is a curve x(t) in a set E that evolves according to some
rule as t runs over an interval I ⊆ R. For M ∈ Mn, consider the homogeneous system

x′(t) − Mx(t) = 0, t ∈ R. (1)

Theorem 2.2 Let M ∈ Mn be an exponentially m-isometry. Then M is diagonalizable if and
only if all solutions of (1) are bounded over R.

Proof "�⇒" If we denote {v1, . . . , vn} as a basis of Cn formed by eigenvectors of M and
denote λ1, . . . , λn as the associated eigenvalues respectively, one can see that the set of
vector-valued functions of t

{
etMv1, . . . , etMvn

} = {
etλ1v1, . . . , etλnvn

}
forms a basis for

the set of solutions of the homogeneous system (1), i.e., of the null space of the linear
transformation that maps x(t) into x′(t) − Mx(t). This implies that any solution of (1) is a
linear combination of the elements of this basis. Since M is an exponentially m-isometry, it
follows from Theorem 2.1 that all the λk lie on the imaginary axis. Therefore, all solutions
of (1) are bounded over R.

"⇐�" Let λ = iα ∈ σp(M) and X 
= 0 be an eigenvector of M associated with λ. Let
Y ∈ N(M − λIn)2 and put Z = (M − λIn)Y .

For any t ∈ R, we have

etMY = etλet(M−λIn)Y

= etλ
(

Y + t (M − λIn) Y +
+∞∑

k=2

tk

k! (M − λIn)
k Y

)

= etλ(Y + t Z).

By assumption, the solution of (1), ϕ(t) = etMY is bounded over R. If Z 
= 0, then

‖ϕ(t)‖ = et Re(λ)‖Y + t Z‖ = ‖Y + t Z‖ −→ ∞, as t → ∞
which is absurd. Therefore, (M − λIn) Y = 0. Thus, we have shown that N (M − λIn)2 ⊂
N (M − λIn). This implies that for any k ≥ 1, N (M − λIn)k = N (M − λIn), which in turn
implies that M is diagonalizable. ��
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