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Abstract
In a recent paper, the unit-Gompertz (UG) distribution has been introduced and some of its
properties have been studied. In a follow up paper, some of the subtle errors in the original
paper have been corrected and some other interesting properties of this new distribution
have been studied. In the present work, some more important properties are investigated.
Moreover, to the best of our knowledge, no characterization results on this distribution have
appeared in the literature. These are addressed in the present paper.
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1 Introduction

Data are generated in all branches of social, biological, physical and engineering sciences.
They are modelled bymeans of probability distributions for better understanding. It is impor-
tant and necessary that an appropriate probability distribution be fitted to empirical data, so
that meaningful and correct conclusions can be drawn.

In this connection, characterization results have been used to test goodness of fit for prob-
ability distributions. Marchetti and Mudholkar [23] showed that characterization theorems
can be natural, logical and effective starting points for constructing goodness-of-fit tests.
Nikitin [27] observed that tests based on characterization results are usually more efficient
than the other tests. Goodness-of-fit tests based on new characterizations results abound in
the literature. Baringhaus and Henze [5] studied two new omnibus goodness of fit tests for
exponentiality, each based on a characterization of the exponential distribution via the mean
residual life function. Akbari [2] presented characterization results and new goodness-of-
fit tests based on these new characterizations for the Pareto distribution. Earlier, Glänzel
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[10] derived characterization theorems for some families of both continuous and discrete
distributions and used them as a basis for parameter estimation.

The main purpose of the present work is to present characterization results for the unit-
Gompertz distribution introduced by Mazucheli et al. [25]. Essentially, this new distribution
is derived from the Gompertz distribution. Recall that the density function of the Gompertz
distribution is given by

g (y | α, β) = αβ exp
(
α + β y − αeβ y) ,

where y > 0; and α > 0 and β > 0 are the shape and the scale parameters, respectively.
Using the transformation

X = e−Y ,

this new distribution with support on (0, 1) , which is referred to as the unit-Gompertz dis-
tribution, is obtained. For brevity, we shall refer to it subsequently as the UG distribution. Its
pdf and cdf are given by

f (x | α, β) = αβ exp
[−α

(
1/xβ − 1

)]

x1+β
; α > 0, β > 0, x ∈ (0, 1) (1)

and
F (x | α, β) = exp

[−α
(
1/xβ − 1

)]
, (2)

respectively.
Mazucheli et al. [25] used this new distribution to model the maximum flood level (in mil-

lions of cubic feet per second) for Susquehanna River at Harrisburg, Pennsylvania (reported
inDumonceaux andAntle [9]) and tensile strength of polyester fibers as given inQuesenberry
andHales [29]. Jha et al. [14] considered the reliability estimation in amulticomponent stress-
strength based on an unit-Gompertz distribution. As an application, Jha et al. [15] discussed
the problem of estimating multicomponent stress-strength reliability under progressive Type
II censoring when stress and strength variables follow UG distributions with a common scale
parameter.

Inferential issues have also been studied. In this connection, mention may be made of
Kumar et al. [20] who were concerned with the inference for the unit-Gompertz model based
on record values and inter-record times. Arshad et al. [4] were interested in the estimation of
the parameters under the framework of the dual generalized order statistics. Anis and De [3]
not only corrected some of the subtle errors in the original paper of Mazucheli et al. [25], but
also discussed some reliability properties and stochastic ordering among others. However,
no characterization results of this new distribution have been studied.

This paper attempts to fill in this gap and is organized as follows. At first some more
properties—which were not investigated earlier—are presented in Sect. 2. The characteriza-
tions of the distribution are studied in Sect. 3. Section4 concludes the paper.

2 Properties

Most of the important properties of this distribution were considered in Mazucheli et al.
[25] and the complementary paper by Anis and De [3]. For completeness, we consider
the L-moments, two new measures of entropy, aging intensity and reversed aging intensity
functions.
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2.1 L-Moments

L-Moments are summary statistics for probability distributions and data samples. These
L-moments are computed from linear combinations of the ordered data values (hence the
prefix L). Hosking [13] showed that the L-moments possess some theoretical advantages
over ordinary moments. Moreover, they are less sensitive to outliers compared to the con-
ventional moments. Computation of the first few sample L-moments and L-moment ratios
of a data set provides a useful summary of the location, dispersion, and shape of the distri-
bution, from which the sample was drawn. They can be used to obtain reasonably efficient
estimates of parameters when a distribution is fitted to the data. As noted in Hosking [13],
the main advantage of L-moments over conventional moments is that L-moments, being
linear functions of the data, suffer less from the effects of sampling variability; are more
robust than conventional moments to outliers in the data and enable more secure inferences
to be made from small samples about an underlying probability distribution. L-moments
sometimes yield more efficient parameter estimates than the maximum likelihood estimates.

These L-moments can be defined in terms of probability weighted moments (PWMs) by
a linear combination. The probability weighted moments Mp,r ,s are defined by

Mp,r ,s =
∫ ∞

−∞
x p [F (x)]r {1 − F (x)}s f (x) dx .

Observe that Mp,0,0 represents the conventional noncentral moments. We shall use the quan-
tities M1,r ,0 when the random variable x enters linearly. In particular, we define τr = M1,r ,0

as the probability weighted moments. The τr
′s find application, for example, in evaluating

the moments of order statistics (discussed in Anis and De [3]). Hosking [13] showed that
the linear combination between the L-moments (denoted by λi ) and the PWMs τr , for the
first four moments, are as given below:

λ1 = τ0;
λ2 = 2τ1 − τ0;
λ3 = 6τ2 − 6τ1 + τ0;
λ4 = 20τ3 − 30τ2 + 12τ1 − τ0.

In the particular case of the unit-Gompertz distribution, after routine calculation, we find that
the r−th PWM is given by

τr = α1/β (r + 1)
1
β

−1 e(r+1)α�

(
1 − 1

β
; (r + 1) α

)
,

where � (s; x) is the upper incomplete gamma function and is defined as

� (s; x) =
∫ ∞

x
ts−1e−t dt . (3)

Hence, the the L-moments can be obtained. It should be noted that the algebraic expressions
are rather involved; but for given values of the parameters α and β, these L-moments can
be easily obtained numerically. As an example, we give in Table 1, the L-moments for some
specific values of the parameters α and β of the unit-Gompertz distribution. Here we have
chosen the parameter values α = 0.25, 0.50, 0.75 and β = 1.0, 1.5, 2.0, 2.5, 3.0. From
Table 1, we can observe that as the value of parameter α increases, the value of L-moments
significantly increase. This is apparent from the expression of τr because α appears as a
power of exponential.
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Table 1 L-Moments for some
specific values of the parameters
α and β of the unit-Gompertz
distribution

α β L−Moments
λ1 λ2 λ3 λ4

0.25 1.0 0.3210 0.5034 1.0234 2.3391

1.5 0.1084 0.3218 0.8596 2.0027

2.0 0.0986 0.2714 0.7197 1.7099

2.5 0.0948 0.2467 0.6451 1.5390

3.0 0.0928 0.2320 0.5992 1.4301

0.50 1.0 0.8244 1.8939 6.1146 22.1506

1.5 0.4302 1.5175 4.9348 15.5469

2.0 0.3699 1.2788 4.2198 13.0778

2.5 0.3415 1.1503 3.8039 11.7269

3.0 0.3248 1.0708 3.5382 10.8788

0.75 1.0 1.5878 5.1348 24.1150 126.5564

1.5 1.0209 4.1530 17.2223 79.2986

2.0 0.8655 3.5325 14.4635 63.0053

2.5 0.7874 3.1815 12.9534 54.9079

3.0 0.7404 2.9597 12.0074 50.0893

2.2 Entropy

Entropy is used to measure the amount of information (or uncertainty) contained in a random
observation regarding its parent distribution (population). A large value of entropy implies
greater uncertainty in the data. Since its introduction by Shannon [31], it has witnessed many
generalizations. Anis and De [3] discussed the popular Shannon and Rényi entropies for the
unit-Gompertz distribution. For completeness, we list them below:

The Shannon entropy IS :

IS = 1 − ln (αβ) − (1 + β)
eα

β
� (0;α) , α > 0, β > 0;

The Rényi entropy IR (γ ) :

IR (γ ) = 1

1 − γ

[
αγ + (1 − γ )

β
ln α − (1 − γ ) ln β + 1

β
{1 − γ (1 + β)} ln(γ )

+ ln

(
�

(
γ + 1

β
(γ − 1) , αγ

))]
, α > 0, β > 0; γ > 0.

Next, we look at four other genralizations.

2.2.1 The Tsallis entropy

The Tsallis entropy was introduced by Tsallis [36] and is defined by

IT (γ ) = 1

γ − 1

(
1 −

∫ ∞

−∞
[ f (x)]γ dx

)
, 0 < γ �= 1.

Clearly, the Tsallis entropy reduces to the classical Shannon entropy as γ → 1. There
are many applications of the Tsallis entropy. In physics, it is used to describe a number
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of non-extensive systems [12]. It has found application in image processing [43] and signal
processing [34]. Zhang et al. [45] used a Tsallis entropy-based measure to reveal the presence
and the extent of development of burst suppression activity following brain injury. Zhang
and Wu [44] used the Tsallis entropy to propose a global multi-level thresholding method
for image segmentation.

For the unit-Gompertz distribution, the Tsallis entropy is given by

IT (γ ) = 1

γ − 1

⎡

⎣1 − α
1−γ
β βγ−1

γ
γ+βγ−1

β

eαγ �

(
γ + βγ − 1

β
;αγ

)
⎤

⎦ , 0 < γ �= 1, α > 0, β > 0;

where � (s; x) is defined in (3).

2.2.2 The Mathai–Haubold entropy

Mathai and Haubold [24] introduced a new measure of entropy. It is defined by

IM H (γ ) = 1

γ − 1

(∫ ∞

−∞
[ f (x)]2−γ dx − 1

)
, γ �= 1, γ < 2.

The entropy IM H (γ ) is an inaccuracy measure through disturbance or distortion of sys-
tems. As γ → 1, the entropy IM H (γ ) reduces to the Shannon entropy. In case of the
unit-Gompertz distribution, the Mathai-Haubold entropy is given by

IM H (γ ) = 1
γ−1

[
α

(γ−1)
β β1−γ

(2−γ )

[
(1+β)(1−γ )

β
+1
] eα(2−γ )�

(
(1+β)(1−γ )

β
+ 1;α (2 − γ )

)
−1
]

,

γ �= 1, γ < 2, α > 0, β > 0;
where � (s; x) is defined in (3).

2.2.3 The Varma entropy

Varma [38] introduced a new measure of entropy, indexed by two parameters, γ and δ,

which make this new measure of entropy much more flexible, thereby enabling several mea-
surements of uncertainty within a given distribution. It plays a major role as a measure of
complexity and uncertainty in different areas such as coding theory and electronics, engi-
neering and physics to describe many chaotic systems. To understand the use of entropy in
information theory, one can refer to Cover and Thomas [8]. The Varma entropy is defined as

IV (γ, δ) = 1

δ − γ
ln

[∫ ∞

−∞
f γ+δ−1 (x) dx

]
, δ − 1 < γ < δ, δ ≥ 1, γ �= δ.

When δ → 1 and γ → 1, then IV (γ, δ) → IS (γ ) , the Shannon entropy. For the unit-
Gompertz distribution, the Varma entropy is given by

IV (γ, δ) = 1

δ − γ

{[
α (γ + δ − 1)

]+
[
ln

{
α

2−δ−γ
β βγ+δ−2 (γ + δ − 1)

2+β−(1+β)(γ+δ)
β

}]}

+ 1

δ − γ

[
ln

{
�

(
(1 + β) (γ + δ − 2)

β
+ 1;α (γ + δ − 1)

)}]
, α, β > 0;

where � (s; x) is defined in (3).
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2.2.4 The Kapur entropy

Kapur [18] proposed another measure of entropy. It is defined as

IK (γ, δ) = 1

δ − γ
ln

{∫∞
−∞ f γ (x) dx
∫∞
−∞ f δ (x) dx

}

.

Clearly, if δ = 1, then the Kapur entropy reduces to the Rényi entropy. Furthermore, if
δ = 1 and γ → 1, then the Kapur entropy converges to the Shannon entropy. It has
varied uses. For example, Upadhyay and Chhabra [37] used Crow Search Algorithm based
on the Kapur entropy to estimate optimal values of multilevel thresholds. Specifically, for
the unit-Gompertz distribution, the Kapur entropy is given by

IK (γ, δ) = 1

δ − γ

{
[
α (γ − δ)

]+
[
ln

{
α

δ−γ
β βγ−δ (δ)

δ+δβ−1
β �

(
(γ + βγ − 1)

β
;αγ

)}]}

− 1

δ − γ

[
ln

{
γ

γ+βγ−1
β �

(
(δ + βδ − 1)

β
;αδ

)}]
,

where � (s; x) is defined in (3).

2.3 Aging intensity and reversed aging intensity functions

The reliability related functions like the hazard rate function, mean residual life function,
reversed hazard rate function and expected inactivity time of the unit-Gompertz distribution
were discussed in Anis and De [3]. For completeness, we shall simply list down the final
expressions of these functions for the unit-Gompertz distribution.

Hazard rate function:

h(x) = αβ exp
[−α

(
1/xβ − 1

)]

x1+β
{
1 − exp

[−α
(
1/xβ − 1

)]} ;

Mean Residual Life function:

e (t) = 1

F̄ (t)

{
eαα1/β

[
�

(
1 − 1

β
;α

)
− �

(
1 − 1

β
; α

tβ

)]}
− t,

where � (s, x) is the upper incomplete gamma function defined in (3);
Reversed hazard rate function:

r (x) = αβ

x1+β
;

Expected inactivity time function:

I (x) = eα/xβ
α1/β

β
�

(−1

β
; α

xβ

)
,

where � (s, x) is the upper incomplete gamma function defined in (3).

Next, we shall discuss two relatively new but important functions.
Let f , F and F̄ = 1− F be the pdf, cdf and survival function of the random variable X .

Jiang et al. [16] defined the aging intensity function (AIF), denoted by L (x) , as

L (x) = x f (x)

−F̄ (x) ln
[
F̄ (x)

] , x > 0.
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Fig. 1 Plots of aging intensity function for different values of α and β

Though L (x) is related to the failure rate function, it does not determine the distribution
uniquely. Numerically, L (x) > 1, if the failure rate is increasing; L (x) = 1, if the failure
rate is constant and L (x) < 1, if the failure rate is decreasing. The larger the value of L (x) ,

the stronger is the tendency of aging and vice versa. Thus, it describes the aging property
quantitatively. It can also be interpreted as the percentage the cdf changes (decreases) when
the lifetime x changes (decreases) by a small amount. Jiang et al. [17] used the AIF for
parameter estimation when the data are heavily censored. For the UG distribution, we have

L (x) = −αβ H (α, β)

xβ [1 − H (α, β)] ln (1 − H (α, β))
, α > 0, β > 0;

where H (α, β) = exp
[−α

(
1/xβ − 1

)]
.

Figure1 shows the plots of the AIF for different values of α and β. These plots clearly
show that the AIF is bathtub-shaped.

The dual concept of reversed aging intensity function L̃ (x) is defined by

L̃ (x) = x f (x)

−F (x) ln [F (x)]
, x > 0.

The larger the numerical value of the reversed aging intensity function, the weaker is the
tendency of aging. The aging intensity function L and the reversed aging intensity function
L̃ do not characterize the family of distribution uniquely. See Szymkowiak [32] and Buono
et al. [6] for details.

For the UG distribution, we get

L̃ (x) = β

1 − xβ
, β > 0.

Observe that the first derivative of L̃ (x) is

L̃
′
(x) = β2xβ−1

(1 − xβ)2
, β > 0.

For x ∈ (0, 1), L̃
′
(x) > 0 implies that the reversed aging intensity function is always non-

decreasing and this can be visualised from Fig. 2. It can also be observed from Fig. 2 that
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Fig. 2 Plot of reversed aging intensity function for different values of β

the value of L̃(x) increases as the value of β increases and is an asymptote at x = 1 for all
values of β > 0.

3 Characterizations

We shall now give characterizations of the unit-Gompertz distribution based on (i) truncated
first moment; (ii) hazard function; (iii) reversed hazard function; (iv) Mills ratio and (v)
elasticity function.

3.1 Characterizations based on the truncated first moment

We shall begin with characterizations based on the truncated first moment. To prove the
characterization results, we shall need two lemmas and an assumption, which are presented
first.

Assumption A: Assume that X is an absolutely continuous random variable with the pdf
given in (1) and the corresponding cdf given in (2). Assume that E (X) exits and the density
f (x) is differentiable. Define η = sup {x : F (x) < 1} and ζ = inf {x : F (x) > 0} .

Lemma 3.1 Under Assumption A, if E (X | X ≤ x) = g (x) τ (x) , where g (x) is a contin-

uous differentiable function of x with the condition that
∫ x
ζ

u−g′(u)
g(u)

du is finite for all x > ζ,

and τ (x) = f (x)
F(x)

, then

f (x) = c exp

[∫
x − g′ (x)

g (x)
dx

]
,

where the constant c is determined by the condition
∫ η

ζ
f (x) dx = 1.

Lemma 3.2 Under Assumption A, if E (X | X ≥ x) = h (x) r (x) , where h (x) is a contin-
uous differentiable function of x with the condition that

∫ x
ζ

u−h′(u)
h(u)

du is finite for all x > ζ,
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and r (x) = f (x)
1−F(x)

, then

f (x) = c exp

[
−
∫

x + h′ (x)

h (x)
dx

]
,

where c is a constant determined by the condition
∫ η

ζ
f (x) dx = 1.

See Ahsanullah [1] for the details of proofs of Lemmas 3.1 and 3.2.

3.1.1 Characterization theorems

We shall now state and prove two characterization theorems based on the truncated first
moment.

Theorem 3.3 Suppose that the random variable X satisfies Assumption A with ζ = 0 and
η = 1. Then, E (X | X ≤ x) = g (x) τ (x) , where τ(x) = f (x)

F(x)
and

g (x) = α1/β

αβ
exp
( α

xβ

)
x1+β�

({
1 − 1

β

}
; α

xβ

)
, (4)

where � (s; x) is defined in (3), if and only if

f (x | α, β) = αβ exp
[−α

(
1/xβ − 1

)]

x1+β
; α > 0, β > 0, x ∈ (0, 1).

Proof Suppose

f (x | α, β) = αβ exp
[−α

(
1/xβ − 1

)]

x1+β
; α > 0, β > 0, x ∈ (0, 1).

We have

g (x) τ (x) = E (X | X ≤ x) = 1

F (x)

∫ x

0
t f (t) dt .

Since τ(x) = f (x)
F(x)

, it follows that

g (x) f (x) =
∫ x

0
t f (t) dt

=
∫ x

0
t
αβ exp

[−α
(
1/tβ − 1

)]

t1+β
dt

= eαα1/β�

({
1 − 1

β

}
; α

xβ

)
,

where � (s; x) is the upper incomplete gamma function defined in (3). Hence, after simpli-
fying, we obtain

g (x) = α1/β

αβ
exp
( α

xβ

)
x1+β�

({
1 − 1

β

}
; α

xβ

)
.

Conversely, suppose that g (x) is given by (4). Differentiating g (x) with respect to x, and
simplifying, we obtain

g′ (x) = x − g (x)

[
αβ

xβ+1 − β + 1

x

]
.
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Hence,

x − g′ (x)

g (x)
= αβ

xβ+1 − β + 1

x
.

By Lemma 3.1, we have
f ′ (x)

f (x)
= αβ

xβ+1 − β + 1

x
. (5)

Integrating both sides of (5) with respect to x, we obtain

f (x) = k
exp
(−αx−β

)

xβ+1 ,

where k is a constant. Using the condition
∫ 1
0 f (x) dx = 1, we get

f (x) = αβ exp
[−α

(
1/xβ − 1

)]

x1+β
.

This completes the proof. 	

Theorem 3.4 Suppose that the random variable X satisfies Assumption A with ζ = 0 and
η = 1. Then, E (X | X ≥ x) = h (x) r (x) , where r(x) = f (x)

1−F(x)
and

h (x) = α1/β

αβ
exp
( α

xβ

)
x1+β

[
�

({
1 − 1

β

}
;α

)
− �

({
1 − 1

β

}
; α

xβ

)]
, (6)

where � (s; x) is the upper incomplete gamma function defined in (3), if and only if

f (x | α, β) = αβ exp
[−α

(
1/xβ − 1

)]

x1+β
; α > 0, β > 0, x ∈ (0, 1).

Proof Suppose

f (x | α, β) = αβ exp
[−α

(
1/xβ − 1

)]

x1+β
; α > 0, β > 0, x ∈ (0, 1).

We have

h (x) r (x) = E (X | X ≥ x) = 1

1 − F (x)

∫ 1

x
t f (t) dt .

Since r(x) = f (x)
1−F(x)

, it follows that

h (x) f (x) =
∫ 1

x
t f (t) dt

= E (X) −
∫ x

0
t f (t) dt

= E (X) −
∫ x

0
t
αβ exp

[−α
(
1/tβ − 1

)]

t1+β
dt

= eαα1/β
[
�

({
1 − 1

β

}
;α

)
− �

({
1 − 1

β

}
; α

xβ

)]
,

where � (s; x) is the upper incomplete gamma function defined in (3). Hence,

h (x) = α1/β

αβ
exp
( α

xβ

)
x1+β

[
�

({
1 − 1

β

}
;α

)
− �

({
1 − 1

β

}
; α

xβ

)]
.
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Conversely, suppose that h (x) is given by (6). Differentiating h (x) with respect to x, and
simplifying, we obtain

h′ (x) = −x − h (x)

[
αβ

xβ+1 − β + 1

x

]
.

Hence,

− x + h′ (x)

h (x)
= αβ

xβ+1 − β + 1

x
.

By Lemma 3.2, we have
f ′ (x)

f (x)
= αβ

xβ+1 − β + 1

x
. (7)

Integrating both sides of (7) with respect to x, we obtain

f (x) = k
e−αx−β

xβ+1 ,

where k is a constant. Using the condition
∫ 1
0 f (x) dx = 1, we get

f (x) = αβ exp
[−α

(
1/xβ − 1

)]

x1+β
.

This completes the proof. 	


3.2 Characterization based on the hazard function

Mazucheli et al. [25] obtained the hazard rate function of the UG distribution. Specifically,
it is given by

hF (x) = αβ exp
[−α

(
1/xβ − 1

)]

x1+β
{
1 − exp

[−α
(
1/xβ − 1

)]} .

Anis and De [3] discussed the shape of the hazard function.
We shall now use it to provide a characterization result for this distribution. It is well

known that the hazard function uniquely determines the distribution. More specifically, the
hazard function, hF , of a twice differentiable distribution function, F, satisfies the first order
differential equation

d

dx
[ln f (x)] = h′

F (x)

hF (x)
− hF (x) ,

where f (x) = d F(x)
dx . The next theorem establishes a characterization of the UG distribution

based on the hazard rate function.

Theorem 3.5 The pdf of X is given by (1) if and only if its hazard function, hF , satisfies the
first order differential equation

h′
F (x)

{
1 − exp

[
−α

(
1

xβ
− 1

)]}
− hF (x)

αβ exp
[
−α
(

1
xβ − 1

)]

x1+β

= αβ

x2(1+β)
exp

[
−α

(
1

xβ
− 1

)] [
αβ − (1 + β) xβ

]
. (8)
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Proof If the random variable X has the pdf (1), then it is easy to check that the differential
equation (8) holds.

Conversely, suppose the differential equation in (8) is true. Then, it is easy to see that the

left hand side of (8) can be rewritten as d
dx

[
hF (x)

{
1 − exp

[
−α
(

1
xβ − 1

)]}]
; while the

right hand side is just d
dx

[
αβ exp

[
−α
(

1
xβ −1

)]

x1+β

]

. Hence, we have

d

dx

[
hF (x)

{
1 − exp

[
−α

(
1

xβ
− 1

)]}]
= d

dx

⎡

⎣
αβ exp

[
−α
(

1
xβ − 1

)]

x1+β

⎤

⎦ .

Thus, we have

hF (x) = αβ exp
[−α

(
1/xβ − 1

)]

x1+β
{
1 − exp

[−α
(
1/xβ − 1

)]} ,

which is the hazard function of the UG distribution. 	


3.3 Characterization based on theMills ratio

The Mills ratio M (x) was introduced into the statistical literature by Mills [26]. Essentially,
it is the reciprocal of the hazard function. The convexity of the Mills ratio of continu-
ous distributions has important applications in monopoly theory, especially in static pricing
problems. Xu and Hopp [42] used the convexity of Mills ratio to establish that the price is
a sub-martingale. Like the hazard function, the Mills ratio M (x) , of a twice differentiable
distribution function, F, satisfies the first order differential equation

f ′ (x)

f (x)
+ 1

M (x)
+ M ′ (x)

M (x)
= 0,

where f (x) = d F(x)
dx . The next theorem establishes a characterization of the UG distribution

based on the Mills ratio.

Theorem 3.6 The pdf of X is given by (1) if and only if its Mills ratio M (x) satisfies the first
order differential equation

M ′ (x)
αβ exp

[
−α
(

1
xβ − 1

)]

x1+β
+ M (x)

αβ exp
[
−α
(

1
xβ − 1

)]

x2(1+β)

[
αβ − (1 + β) xβ

]

+
αβ exp

[
−α
(

1
xβ − 1

)]

x1+β
= 0. (9)

Proof If the random variable X has the pdf (1), then routine but elaborate calculations show
that the differential equation (9) holds.

Conversely, suppose the differential equation in (9) is true. Then, the above differential
equation can be rewritten as

d

dx

⎡

⎣M (x)
αβ exp

[
−α
(

1
xβ − 1

)]

x1+β

⎤

⎦+ d

dx
[F (x) − 1] = 0;
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or equivalently,

d

dx

⎡

⎣M (x)
αβ exp

[
−α
(

1
xβ − 1

)]

x1+β

⎤

⎦ = d

dx
[1 − F (x)] ;

and hence

M (x) =
⎛

⎝ 1 − F (x)

exp
[
−α
(

1
xβ − 1

)]

⎞

⎠ x1+β

αβ
=
⎛

⎝
1 − exp

[
−α
(

1
xβ − 1

)]

exp
[
−α
(

1
xβ − 1

)]

⎞

⎠ x1+β

αβ
,

which represents the Mills ratio for the UG distribution. 	


3.4 Characterization based on the reversed hazard rate function

The reversed hazard rate function rF (x) is an important characteristic of a random variable
and has found many applications. Lagakos et al. [21] used the reversed hazard rate function
to analyze right-truncated data. Cheng and Zhu [7] used the reverse hazard rate function to
characterize the best strategy for allocating servers in a tandem system. Kijima [19] used
the reversed hazard rate function to study continuous time Markov Chains. Gupta et al. [11]
used the reversed hazard rate function to calculate the Fisher information. Townsend and
Wenger [35] used the reversed hazard rate function tomodel information processing capacity.
Razmkhah et al. [30] used the reversed hazard rate function to calculate the Shannon entropy.

Anis and De [3] showed that for the UG distribution, rF (x) = αβ

x1+β .

The reversed hazard rate function can be used to characterize a random variable. More
precisely, the reversed hazard rate function, rF , of a twice differentiable distribution function,
F, satisfies the first order differential equation

d

dx
[ln f (x)] = r ′

F (x)

rF (x)
+ rF (x) ,

where f (x) = d F(x)
dx . The next theorem establishes a characterization of the UG distribution

based on the reversed hazard rate function.

Theorem 3.7 The pdf of X is given by (1) if and only if its reversed hazard function, rF ,

satisfies the first order differential equation

r ′
F (x)

{
exp

[
−α

(
1

xβ
− 1

)]}
+ rF (x)

αβ exp
[
−α
(

1
xβ − 1

)]

x1+β

= αβ

x2(1+β)

{
exp

[
−α

(
1

xβ
− 1

)]} [
αβ − (1 + β) xβ

]
. (10)

Proof If the random variable X has the pdf (1), then it is easy to check that the differential
equation (10) holds.

Conversely, suppose the differential equation in (10) is true. Then, the above differential
equation can be rewritten as

d

dx

[
rF (x)

{
exp

[
−α

(
1

xβ
− 1

)]}]
= d

dx

⎡

⎣
αβ exp

[
−α
(

1
xβ − 1

)]

x1+β

⎤

⎦ .

123



1934 M. Z. Anis, K. Bera

This implies rF (x) = αβ

x1+β , which is essentially the reversed hazard rate function of the UG
distribution. 	


3.5 Characterization based on the elasticity function

The elasticity function of a randomvariable is a relatively newconcept.Veres-Ferrer andPavía
[39–41] studied this function and its relationship with other stochastic functions. Essentially,
the elasticity function e (x) of a random variable is defined by e (x) = x f (x)

F(x)
. As an example

of its application, mention may be made of Pavía et al. [28] who used these concepts to study
risk management in business. Szymkowiak [33] used it to characterize a parent distribution
uniquely. Lariviere and Porteus [22] adopted this concept and applied it to the supply chain
management. For the UG distribution, the elastic function is given by e (x) = αβ

xβ . The
elasticity function satisfies the first order equation

d

dx
[ln f (x)] = e′ (x)

e (x)
+ e (x)

x
− 1

x
.

The following theorem establishes a characterization of the UG distribution based on the
elasticity function.

Theorem 3.8 The pdf of X is given by (1) if and only if its elasticity function e (x) satisfies
the first order differential equation

e′ (x)

{
αβ

xβ
exp

[
−α

(
1

xβ
− 1

)]}
+ e (x)

αβ
(
αβ − βxβ

)
exp
[
−α
(

1
xβ − 1

)]

x1+2β

= (αβ)2

x1+3β

{
exp

[
−α

(
1

xβ
− 1

)]} (
αβ − 2βxβ

)
. (11)

Proof If the random variable X has the pdf (1), then routine, but elaborate calculation shows
that the differential equation (11) holds.

Conversely, suppose the differential equation in (11) holds. Then, the above differential
equation can be simplified as

d

dx

⎡

⎣e (x)
αβ exp

[
−α
(

1
xβ − 1

)]

xβ

⎤

⎦ = d

dx

[
(αβ)2

x2β
exp

[
−α

(
1

xβ
− 1

)]]

,

and hence e (x) = αβ

xβ , which is the elastic function of the UG distribution. 	


4 Conclusion

In this work, we have presented five characterizations of the recently-introduced unit-
Gompertz distribution. To the best of our knowledge, this is the only work on the
characterizations of this distribution available in the literature till date. We hope this will
enable researchers to understand whether the given data at hand can be modeled by this
distribution. We also looked at the L-moments, four measures of entropy, aging intensity
and reversed aging intensity functions.
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