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Abstract
This paper is an exposition of some estimates which have a number of applications to inter-
polation theory. In particular some recent problems in image processing and singular integral
operators require the computation of suitable estimates. In Abilov et al. (Comput Math Math
Phys 48:2146, 2008) , Abilov et al. proved two useful estimates for the Fourier transform in
the space of square integral multivariable functions on certain classes of functions charac-
terized by the generalized continuity modulus, and these estimates are proved by Abilov for
only two variables, using a translation operator. The purpose of this paper is to study these
estimates for measurable sets from complex domain to hyper complex domain by using
quaternion algebras, associated with the quaternion linear canonical transform, constructed
by the generalized Steklov function.

Keywords Quaternion linear canonical transform · Lipschitz class · Dini–Lipschitz class ·
Titchmarsh theorem · Estimates

Mathematics Subject Classification 43A62 · 42B10 · 42B37

1 Introduction

The integral Fourier transform, as well as Fourier series, are widely used in various fields
of calculus, computational mathematics, mathematical physics, etc. Certain applications of
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this transform are described in a number of fundamental monographs (for example, see [25,
26]). Numerical estimates of the Fourier transform are presented in [30].

The classical linear canonical transform (LCT) is considered as a generalization of the
Fourier transform (FT), andwas first proposed in the 1970s byCollins [9] andMoshinsky and
Quesne [21]. It is an effective processing tool for chirp signal analysis, such as the parameter
estimation, sampling progress for non bandlimited signals with nonlinear Fourier atoms [20],
and the LCT filtering [27].

In this paper we will give our results in a more general context, that of quaternion linear
canonical transform (QLCT). There are many studies in the literature that are concerned with
theQLCT (see, for example, [5, 7, 16–18, 29]). They established some important properties of
theQLCT, such as the uncertainty principle, the inversion formula and the studyof generalized
swept-frequency filters.

Recently several results of estimation have been proved in several different versions and
for several different types of transforms (for example for the Fourier transform [3, 13], for the
Bessel transform, [10], for the Dunkl transform [11], for the Laguerre Hypergroup transform

[22]). In [1] the authors estimated the integral
∫

|x |≥R
|F{ f }(x)|2dx in certain classes of

functions in L2(Rn) where F{ f } is the Fourier transform (FT) of f . Since the QLCT is a
generalization of the FT, so for this reason we want in this paper, to estimate the integral∫

|ω|≥N2
|LA1,A2{ f }(ω)|2d2ω, where LA1,A2{ f } stands for the QLCT transform of f and

N ≥ 1.
In order to describe our results, we first need to introduce some facts about harmonic

analysis related to the QLCT. We cite here, as briefly as possible, some properties. For more
details we refer to [2, 6, 8, 12, 14, 16–18, 28, 29].

The quaternion algebra H was first invented by W. R. Hamilton in 1843 for extending
complex numbers to a 4D algebra [24]. A quaternion q ∈ H can be written in this form

q = q0 + q = q0 + iq1 + jq2 + kq3

where i , j , k satisfy Hamilton’s multiplication rules

i2 = j2 = k2 = i jk = −1, i j = − j i = k.

jk = −k j = i, ki = −ik = j .

Using Hamilton’s multiplication rules, the multiplication of two quaternions p = p0 + p
and q = q0 + q can be expressed as

pq = p0q0 + p0q + q0 p + pq.

We define the conjugation of q ∈ H by q = q0 − iq1 − jq2 − kq3. Clearly, qq = q20 + q21 +
q22 + q23 . So the modulus of a quaternion q is defined by

|q| = √
qq =

√
q20 + q21 + q22 + q23 .

In this paper, we study the quaternion-valued signal f : R2 → H that can be expressed as

f (x) = f0(x) + i f1(x) + j f2(x) + k f3(x)

where x = x1e1 + x2e2 ∈ R
2 and f0, f1, f2 and f3 are real-valued functions. For 1 ≤ r <

∞, the quaternion modulus Lr (R2,H) is defined as

Lr = Lr (R2,H) = { f / f : R2 → H, ‖ f ‖rLr (R2,H)
=

∫
R2

| f (x)|r dx < ∞ }.
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Let f ∈ Lr (R2,H). The quaternion Fourier transform (QFT) of f is defined by

F( f )(ω) = 1

2π

∫
R2

e−i x1ω1 f (x)e− j x2ω2dx .

The inner product of f , g ∈ L2(R2,H) is defined by

〈 f , g〉 =
∫
R2

f (x)g(x)dx .

Clearly, ‖ f ‖22 = 〈 f , f 〉. For all θ ∈ R we have

|eiθ | = |e jθ | = 1. (1)

Now, we define a norm of F( f ) as

|F( f )(ω)|Q = (|F( f0)(ω)|2 + |F( f1)(ω)|2 + |F( f2)(ω)|2 + |F( f3)(ω)|2)1/2 .

Furthermore, we obtain the Lr (R2,H)-norm

‖F( f )‖Q,r =
(∫

R2
|F( f )(ω)|rQd2ω

)1/r

.

For f ∈ L1(R2,H), we have

‖F( f )‖Q,∞ ≤ ‖ f ‖1. (2)

(QFT Plancherel) If f ∈ L1(R2,H) ∩ L2(R2,H), then∫
R2

| f (x)|2dx =
∫
R2

|F( f )(ω)|2dω. (3)

Moreover, ∫
R2

| f (x)|2dx =
∫
R2

|F( f )(ω)|2Qdω,

then we can rewrite the QFT Plancherel as follows

‖F( f )‖Q,2 = ‖ f ‖2. (4)

Indeed, we have∫
R2

|F{ f }(ω)|2Q dω =
∫
R2

(|F { f0} (ω)|2 + |F { f1} (ω)|2

+ |F { f2} (ω)|2 + |F { f3} (ω)|2) dω

=
(∫

R2

∣∣FQ { f0} (ω)
∣∣2 dω +

∫
R2

∣∣FQ { f1} (ω)
∣∣2 dω

+
∫
R2

∣∣FQ { f2} (ω)
∣∣2 dω +

∫
R2

|F { f3} (ω)|2 dω

)

Applying 3 into the right-hand side of the above identity gives∫
R2

|F{ f }(ω)|2Q dω =
∫
R2

| f0(x)|2 dx +
∫
R2

| f1(x)|2 dx

+
∫
R2

| f2(x)|2 dx +
∫
R2

| f3(x)|2 dx
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Since fi (x), i = 0, 1, 2, 3, is real-valued, the above equation can be written in the form∫
R2

|F{ f }(ω)|2Q dω =
∫
R2

(
f 20 (x) + f 21 (x) + f 22 (x) + f 23 (x)

)
dx .

Suppose that F( f ) ∈ L1(R2,H) and F(
∂n f
∂xn1

) ∈ L1(R2,H). Then

F(
∂n f

∂xn1
i−n)(w) = wn

1F( f )(w), ∀n ∈ N. (5)

Moreover, if F( f ) ∈ L1(R2,H) and F(
∂m f
∂xm2

) ∈ L1(R2,H), then

F(
∂m f

∂xm2
)(w) = F( f )(w)( jw2)

m, ∀m ∈ N. (6)

Let As =
(
as bs
cs ds

)
∈ R

2×2 be a real matrix parameter such that det(As) = 1, for s = 1, 2.

The two-sided (sandwich) QLCT of f ∈ L1(R2,H) is defined by

LA1,A2{ f }(ω) =
∫
R2

K i
A1

(x1, ω1) f (x)K
j
A2

(x2, ω2)dx,

where the kernel functions of the QLCT above are given by

Ki
A1

(x1, ω1) =
{

1√
2πb1

e(i/2)((a1/b1)x21−(2/b1)x1ω1+(d1/b1)ω2
1−(π/2)) for b1 = 0,√

d1ei(c1d1/2)ω
2
1 for b1 = 0.

(7)

K j
A2

(x2, ω2) =
{

1√
2πb1

e( j/2)((a2/b2)x22−(2/b2)x2ω2+(d2/b2)ω2
2−(π/2)) for b2 = 0,√

d2e j(c2d2/2)ω
2
2 for b2 = 0.

(8)

Let the kernel function KA be defined by (7) or (8). Then

• KA(−x, ω) = KA(x,−ω).

• KA(−x,−ω) = KA(x, ω).

• KA(x, ω) = K−1
A (ω, x).

From the definition of the QLCT, we can easily see that when b1b2 = 0 and b1 = b2 = 0,
the QLCT of a signal is essentially a quaternion chirp multiplication. Therefore, in this work,
we always assume b1b2 = 0.
(Inversion formula) The (Two-sided) inverse quaternion linear canonical transform of g ∈
L1(R2,H)

L−1
A1,A2

{g}(ω) =
∫
R2

K i
A−1
1

(x1, ω1)g(x)K
j

A−1
2

(x2, ω2)dx . (9)

(Hausdorff–Young inequality) If 1 ≤ r < 2 and letting r ′ be such that 1/r + 1/r ′ = 1 then
for all f ∈ Lr (R2,H) it holds that

‖LA1,A2{ f }‖Q,r ′ ≤ |b1b2|−1/2+1/r ′

2π
‖ f ‖r . (10)

(Plancherel theorem of QLCTs) Let f ∈ L2(R2,H). Then

‖LA1,A2{ f }‖Q,2 = ‖ f ‖2.
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(Shift property) For a quaternion function f ∈ L1(R2,H), we denote by τk f (x) the shifted
(translated) function defined by τk f (x) = f (x − k), where k = k1e1 + k1e1 ∈ R

2. Then we
obtain

LA1,A2{τk f }(ω) = e−ia1c1k21/2+ic1k1ω1

×LA1,A2{ f }(ω1 − a1k1, ω2 − a2k2)e
− ja2c2k22/2+ jc2k2ω2 . (11)

(Modulation property). We define a modulation operator Mω0 f by

Mω0 f (x) = eix1u0 f (x)e jx2v0

with ω0 = u0e1 + v0e1. So

LA1,A2 {Mω0 f }(ω) = LA1,A2 {eix1u0 f (x)e jx2v0 }(ω)

= e−ib1d1u20/2+id1u0ω1LA1,A2 { f }(ω1 − u0b1, ω2 − v0b2)e
− jb2d2v20/2+ jd2v0ω2 .

(12)

(Time-frequency shift). Let a quaternion function f ∈ L1(R2,H). Then we obtain that

LA1,A2{Mω0τk f }(ω)

= LA1,A2{eix1u0 f (x − k)e jx2v0}(ω)

= e−i(a1c1k21+b1d1u20)/2+i(c1k1+d1u0)ω1−ib1c1k1u0

LA1,A2{ f }(ω1 − a1k1 − u0b1, ω2 − a2k2 − v0b2)

e− j(a2c2k22+b2d2v20 )/2+ j(c2k2+d2v0)ω2− jb2c2k2v0 . (13)

For a function f on L1(R2,H) and for any h1, h2 ∈ R, we define the operator �h1,h2 by

�h1,h2 f (x) = e
i
a1h1
b1

x1 f (x1 + h1, x2 + h2)e
j
a2h2
b2

x2 − e
i
a1h1
b1

x1 f (x1 + h1, x2) (14)

− f (x1, x2 + h2)e
j
a2h2
b2

x2 + f (x1, x2).

Definition 1.1 Let f (x) = f (x1, x2) belongs to L2(R2,H). We say that f is in the Lipschitz
space LipA1,A2

(α1, α2) if

‖�h1,h2 f (x)‖2 = O(hα1
1 hα2

2 ), (15)

as h1, h2 tend to zero, 0 < α1, α2 ≤ 1.

In L2(R2,H), consider the operator

F A1,A2
h f (x1, x2) = 1

4h2

∫ h

−h

∫ h

−h
e
i
a1ξ

b1
x1+i

a1ξ2

2b1 f (x1 + ξ, x2 + η)

×e
j
a2η

b2
x2+ j

a2η2

2b2 dξdη, h > 0. (16)

Observe that if a1 = a2 = 0, then

F A1,A2
h f (x1, x2) = 1

4h2

∫ h

−h

∫ h

−h
f (x1 + ξ, x2 + η)dξdη.

This is analogous to the Steklov operator.
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Let the function f ∈ L2(R2,H). The finite differences of the order m (m ∈ 1, 2, 3, . . .) are
defined as follows:

�m
h f (x1, x2) = (I − F A1,A2

h )m f (x1, x2),

here I is the unit operator, and the mth order generalized continuity modulus of the function
f is defined by the formula

wm( f , δ)2 = sup
0<h≤δ

‖�m
h f ‖2,

where δ > 0.
For a function f on L2(R2,H), we define the function g f by

g f (x) = e−i(a1/2b1)x21 f (x)e− j(a2/2b2)x22 .

From the definition of g f , we easily obtain

F{g f }2(w) = √
b1b2e

−i(d1/2b1)w2
1+iπ/4LA1,A2{ f }(b1w1, b2w2)e

− j(d2/2b2)w2
2+ jπ/4.

(17)

Consider in L2(R2,H) the operator

DA1,A2 f (x) = e−i(a1/2b1)x21 Dg f (x)e
− j(a2/2b2)x22 , (18)

where D = ∂2

∂x21
+ ∂2

∂x22
, D0

A1,A2
f = f , Dr

A1,A2
f = DA1,A2(D

r−1
A1,A2

f ), r = 1, 2, . . ..

In view of formulas (5), (6) and (18), we have

LA1,A2{DA1,A2 f }2(w) = −
((

w1

b1

)2

+
(

w2

b2

)2
)
LA1,A2{ f }2(w),

and hence

LA1,A2{Dr
A1,A2

f }2(w) = (−1)r
((

w1

b1

)2

+
(

w2

b2

)2
)r

LA1,A2{ f }2(w). (19)

Denote by W 2,k
2,φ (R) the class of functions f ∈ L2(R2,H) having the generalized deriva-

tives
∂ f

∂x1
,

∂2 f

∂x1∂x2
,…in the sense of Levi (see [19, 23]) in L2(R2,H) are estimated by

ωk(D
r f ; δ) = O(φ(δk)).

where φ(t) is a continuous steadily increasing function on [0,+∞) and φ(0) = 0.

2 Some new estimates for quaternion linear canonical transform

In order to prove the main result, we shall need some preliminary results.

Lemma 2.1 If f belongs to L2(R2,H), then

‖�m
h f ‖2 ≤ 2m‖ f ‖2. (20)
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Proof Using the inequality (16), we have ‖F A1,A2
h ( f )‖2 ≤ ‖ f ‖2. Then ‖�1

h f ‖2 ≤ 2‖ f ‖2.
Thus the result follows easily by using the recurrence for m. ��
Lemma 2.2 If quaternion function f ∈ L2(R2,H), then

LA1,A2{F A1,A2
h f }2(w) = sin(w1h/b1)

w1h/b1

sin(w2h/b2)

w2h/b2
LA1,A2{ f }2(w). (21)

Proof Let f ∈ L2(R2,H). Taking into account the formula (1), we have

J = LA1,A2{F A1,A2
h f }2(w)

= 1

4h2

∫ h

−h

∫ h

−h
e
i
a1ξ2

2b1 LA1,A2{ei
a1ξ

b1
x1 f (x1 + ξ, x2 + η)e

j
a2η

b2
x2}2(w)e

j
a2η2

2b2 dξdη

= 1

4h2

∫ h

−h

∫ h

−h
e
i
a1ξ2

2b1 e
i

ω1h1
b1

−i
a1ξ2

2b1 LA1,A2{ f }(ω)e
j

ω2h2
b2

− j
a2η2

2b2 e
j
a2η2

2b2 dξdη

= 1

4h2

∫ h

−h

∫ h

−h
e
i

ω1ξ

b1 LA1,A2{ f }(ω)e
j

ω2η

b2 dξdη

=
(

1

2h

∫ h

−h
e
i

ω1ξ

b1 dξ

)
LA1,A2{ f }(ω)

(
1

2h

∫ h

−h
e
j

ω2η

b2 dη

)
.

It is easily seen that

1

2h

∫ h

−h
e
i

ω1ξ

b1 dξ = sin(w1h/b1)

w1h/b1

and

1

2h

∫ h

−h
e
j

ω2η

b2 dη = sin(w2h/b2)

w2h/b2
.

So that the transform of F A1,A2
h f (x) is given as

sin(w1h/b1)

w1h/b1

sin(w2h/b2)

w2h/b2
LA1,A2{ f }2(w).

This completes the proof. ��
Corollary 2.3 For any function f in L2(R2,H), we have

LA1,A2{�m
h f }2(w) =

(
1 − sin(w1h/b1)

w1h/b1

sin(w2h/b2)

w2h/b2

)m

LA1,A2{ f }2(w). (22)

In the next, in order to describe our results we will use the following notation:

• G = {(w1, w2) : (
w1

b1
)2 + (

w2

b2
)2 ≥ N 2}.

• |w| = (
w1

b1
)2 + (

w2

b2
)2.

• ϕh(
w1

b1
,
w2

b2
) = sin(w1h/b1)

w1h/b1

sin(w2h/b2)

w2h/b2
.

• IG =
(∫

G
|LA1,A2{ f }(ω)|2d2ω

)
.
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In the following result, we estimate the integral
∫

|ω|≥N2
|LA1,A2{ f }(ω)|2d2ω

in certain classes of functions in L2(R2,H).

Theorem 2.4 For functions f ∈ L2(R2,H) in the class W 2,k
2,φ ,

sup
f ∈W 2,k

2,φ

(∫
|ω|≥N2

|LA1,A2{ f }(ω)|2d2ω
) 1

2 = O
(
N−2rφ2((

π

4N
)k)

)

where r = 1, . . .; k = 1, 2, . . .; and φ(t) is any nonnegative function defined on the interval
[0,∞).

Proof Let f ∈ W 2,k
2,φ . Thanks to Hölder’s inequality, we obtain

J
′ =

∫
G

(
1 − ϕh

(
w1

b1
,
w2

b2

))
|LA1,A2 { f }(ω)|2d2ω

=
∫
G

(
1 − ϕh

(
w1

b1
,
w2

b2

))
|LA1,A2 { f }(ω)| 1k |LA1,A2 { f }(ω)|2− 1

k d2ω

≤
(∫

G

(∣∣∣∣1 − ϕh

(
w1

b1
,
w2

b2

)∣∣∣∣
)2k

|LA1,A2 { f }(ω)|2d2ω
) 1

2k (∫
G

|LA1,A2 { f }(ω)|2d2ω
)1− 1

2k

=
⎛
⎜⎝

∫
G

|w|2r
(∣∣∣1 − ϕh

(
w1
b1

, w2
b2

)∣∣∣
)2k

|w|2r |LA1,A2 { f }(ω)|2d2ω
⎞
⎟⎠

1
2k (∫

G
|LA1,A2 { f }(ω)|2d2ω

)1− 1
2k

≤ N− 2r
k

(∫
G

|w|2r
(∣∣∣∣1 − ϕh

(
w1

b1
,
w2

b2

)∣∣∣∣
)2k

|LA1,A2 { f }(ω)|2d2ω
) 1

2k

I
1− 1

2k
G (23)

where IG =
(∫

G
|LA1,A2{ f }(ω)|2d2ω

)
.

In view of Holder inequality, we have that

∫
G

|w|2r
(∣∣∣∣1 − ϕh

(
w1

b1
,
w2

b2

)∣∣∣∣
)2k

|LA1,A2{ f }(ω)|2d2ω ≤ ‖�k
h D

r f (x)‖22. (24)

Using the inequalities (23) and (24),
∫
G

(
1 − ϕh

(
w1

b1
,
w2

b2

))
|LA1,A2{ f }(ω)|2d2ω ≤ N− 2r

k ‖�k
h D

r f (x)‖
1
k
2 I

1− 1
2k

G

Now, let us estimate the integral
∫
G

ϕh

(
w1

b1
,
w2

b2

)
|LA1,A2{ f }(ω))|2d2ω.

It is easy to see that, for this purpose, it is sufficient to consider the domain of integration

E =
{
(w1, w2) : w1

b1
≥ 0,

w2

b2
≥ 0, |w| ≥ N 2

}

123
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Divide the domain E into the two subdomains

E1 =
{
(w1, w2) : w1

b1
≥ w2

b2
, |w| ≥ N 2

}
and E2 =

{
(w1, w2) : w1

b1
<

w2

b2
, |w| ≥ N 2

}
.

Then,

I =
∫
E

ϕh

(
w1

b1
,
w2

b2

)
|LA1,A2{ f }(ω)|2d2ω

=
∫
E1

ϕh

(
w1

b1
,
w2

b2

)
|LA1,A2{ f }(ω)|2d2ω +

∫
E2

ϕh

(
w1

b1
,
w2

b2

)
|LA1,A2{ f }(ω)|2d2ω

Since | sin x | ≤ |x |, w1

b1
≥ N√

2
((w1, w2) ∈ E1) and

w2

b2
≥ N√

2
((w1, w2) ∈ E2) it is clear

that

|I | =
∫
E1

∣∣∣∣ sin(w1h/b1)

w1h/b1

∣∣∣∣ |LA1,A2{ f }(ω)|2d2ω +
∫
E2

∣∣∣∣ sin(w2h/b2)

w2h/b2

∣∣∣∣ |LA1,A2{ f }(ω)|2d2ω

≤
√
2

Nh

(∫
E1

|LA1,A2{ f }(ω)|2d2ω +
∫
E2

|LA1,A2{ f }(ω)|2d2ω
)

≤
√
2

Nh

∫
E

|LA1,A2{ f }(ω)|2d2ω

≤
√
2

Nh

∫
G

|LA1,A2{ f }(ω)|2d2ω

Consequently,
∫
G

ϕh

(
w1

b1
,
w2

b2

)
|LA1,A2{ f }(ω)|2d2ω ≤ N− 2r

k ‖�k
h D

r f (x)‖
1
k
2 I

1− 1
2k

G + 4
√
2

Nh
IG .

Setting h = π2

N
.

(
1 − 4

√
2

Nh

) ∫
G

|LA1,A2{ f }(ω)|2d2ω ≤ N− 2r
k ‖�k

h D
r f (x)‖

1
k
2 I

1− 1
2k

G .

Hence, ∫
G

|LA1,A2{ f }(ω)|2d2ω = O
(
N−4r‖�k

h D
r f (x)‖22

)

and we have

‖�k
h D

r f (x)‖22 = O

(
N−2rφ

[(
π2

N

)k
])

,

which yields the desired result. ��
Theorem 2.5 Let φ(t) = tα (α > 0). Then the next conditions are equivalent:

f ∈ W 2,k
2,tα (25)

and
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∫
|ω|≥N2

|LA1,A2{ f }(ω)|2d2ω = O(N−2r−2kα) (26)

where m = 1, 2 . . . .; r = 1, . . .; k = 1, 2, . . .; and 0 < α < m.

Proof It follows from Theorem 2.4 that (25) entails (26).
Suppose now that

(∫
|ω|≥N2

|LA1,A2{ f }(ω)|2d2ω
) 1

2 = O(N−2r−kα).

Thus, by Parseval’s identity, we have

‖�k
h D

r f (x)‖22 =
∫
R2

|ω|2r
(∣∣∣∣1 − ϕh

(
w1

b1
,
w2

b2

)∣∣∣∣
)2k

|LA1,A2{ f }(ω)|2d2ω.

Divide this integral into two,
∫
R2︸︷︷︸

=
∫

|ω|<N2︸ ︷︷ ︸
I1

+
∫

|ω|>N2︸ ︷︷ ︸
I2

, where N = [h−1], and estimate

each of them. Firstly, we estimate I2, since∣∣∣∣1 − ϕh

(
w1

b1
,
w2

b2

)∣∣∣∣ ≤ 2,

it follows that

I2 =
∫

|ω|>N2
|ω|2r

(∣∣∣∣1 − ϕh

(
w1

b1
,
w2

b2

)∣∣∣∣
)2k

|LA1,A2{ f }(ω)|2d2ω

≤
∫

|ω|>N2
|ω|2r (2)2k |LA1,A2{ f }(ω)|2d2ω.

= O

(∫
|ω|>N2

|ω|2r |LA1,A2{ f }(ω)|2d2ω
)

= O

( ∞∑
l=0

∫
(N+l)2≤|ω|<(N+l+1)2

|ω|2r |LA1,A2{ f }(ω)|2d2ω
)

= O

( ∞∑
l=0

(N + l + 1)4r
∫
N2≤|ω|

|LA1,A2{ f }(ω)|2d2ω
)

−
( ∞∑

l=0

(N + l + 1)4r
∫

|ω|≥(N+l+1)2
|LA1,A2{ f }(ω)|2d2ω

)

= O

(
N 4r

∫
N2≤|ω|

|LA1,A2{ f }(ω)|d2ω
)

+
( ∞∑

l=0

[(N + l + 1)4r − (N + l)4r ]
∫

|ω|≥(N+l+1)2
|LA1,A2{ f }(ω)|2d2ω

)

= O

(
N 4r

∫
N2≤|w|

|LA1,A2{ f }(ω)|d2ω
)

+
( ∞∑

l=0

(N + l)4r−1
∫

(N+l)2≤|ω|
|LA1,A2{ f }(ω)|2d2ω

)
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= O

(
N 4r N−4r−2kα +

∞∑
l=0

(N + l)4r−1(N + l)−4r−2kα

)

= O(N−2kα) + O(N−2kα)

= O(N−2kα)

= O(h2kα),

i.e.,

I2 = O(h2kα).

Secondly, we estimate I1, since

0 ≤ 1 − sin(y)

y
≤ y2

6
, | sin(y) |≤| y |, y ∈ R,

and

1 − ϕh

(
w1

b1
,
w2

b2

)
=

(
1 − sin(w1h)

w1h

)
sin(w2h)

w2h
+

(
1 − sin(w2h)

w2h

)
,

I1 =
∫

|ω|<N2
|ω|2r

(∣∣∣∣1 − ϕh

(
w1

b1
,
w2

b2

)∣∣∣∣
)2k

|LA1,A2{ f }(ω)|2d2ω

≤
∫

|ω|<N2
|ω|2r (|ω|)2k |LA1,A2{ f }(ω)|2d2ω

= O(h4k)
∫

|ω|<N2
|ω|2r+2k |LA1,A2{ f }(ω)|2d2ω

= O(h4k)
N∑

n=0

∫
n2≤|ω|≤(n+1)2

|ω|2r+2k |LA1,A2{ f }(ω)|2d2ω

= O(h4k)
N∑

n=0

(n + 1)4r+4k
∫
n2≤|ω|≤(n+1)2

|LA1,A2{ f }(ω)|2d2ω

= O(h4k)
N∑

n=0

(n + 1)4r+4k
[∫

|ω|≥n2
|LA1,A2{ f }(ω)|2d2ω

]

−
[∫

|ω|≥(n+1)2
|LA1,A2{ f }(ω)|2d2ω

]

= O(h4k)

[
N∑

n=0

(n + 1)4r+4k
∫

|ω|≥n2
|LA1,A2{ f }(ω)|2d2ω

]

−
[

N∑
n=0

(n + 1)4r+4k
∫

|ω|≥(n+1)2
|LA1,A2{ f }(ω)|2d2ω

]

= O(h4k)

[
1 +

N∑
n=0

[(n + 1)4r+4k − n4r+4k]
∫

|ω|≥n2
|LA1,A2{ f }(ω)|2d2ω

]

= O(h4k)

[
1 +

N∑
n=0

(n + 1)4r+4k−1
∫

|ω|≥n2
|LA1,A2{ f }(ω)|2d2ω

]
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= O(h4k)

[
1 +

N∑
n=1

n4r+4k−1n−4r−2kα

]
= O(h4k)

[
1 +

N∑
n=1

n4k−2kα−1

]

= O(h4k)O(N 4k−2kα) = O(h2kα);
i.e.,

I1 = O(h2kα).

Finally, combining the estimates for I1 and I2 gives

‖�k
h D

r f (x)‖2 = O(hkα),

which means that f ∈ W 2,k
2,tα . Hence the conditions (25) and (26) are equivalent. This proves

the Theorem 2.5. ��

Remark As in the article [15], the previous definition can be generalized as follows: For any
two pure quaternions α and β such that α2 = β2 = −1 used for re placing i and j in (7) and
(8), and f in L1(R2,H)

Lα,β
A1,A2

{ f }(ω) =
∫
R2

K α
A1

(x1, ω1) f (x)K
β
A2

(x2, ω2)dx .

From linearity of Lα,β
A1,A2

we obtain the QLCT for the OPS split f = f+ + f− where

f± = 1
2 ( f ± α f β)

Lα,β
A1,A2

{ f }(ω) =
∫
R2

K α
A1

(x1, ω1) f (x)K
β
A2

(x2, ω2)dx

=
∫
R2

K α
A1

(x1, ω1) f+(x)K β
A2

(x2, ω2)dx

+
∫
R2

K α
A1

(x1, ω1) f−(x)K β
A2

(x2, ω2)dx

so what was done above for the integral
∫

|ω|≥N2
|LA1,A2{ f }(ω)|2d2ω can be done again for

the two integrals
∫

|ω|≥N2
|Lα,β

A1,A2
{ f+}(ω)|2d2ω and

∫
|ω|≥N2

|Lα,β
A1,A2

{ f−}(ω)|2d2ω so that

we can find a generalization of our results.

3 Conclusion

In this paper after having given two estimates for the quaternion linear canonical transform
which generalize those of Abilov [1] we note so far the difficulty lies only in the fact that
for quaternion fields we have no commutativity, whereas for the Fourier transform this does
not pose a problem, but even for quaternion fields there is a question which arises, if we can
have the same approximation for the right-sided Quaternion linear canonical transform [4],
the answer is positive although there will be a slight difference concerning the calculations
of certain steps.
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