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Abstract

This paper is an exposition of some estimates which have a number of applications to inter-
polation theory. In particular some recent problems in image processing and singular integral
operators require the computation of suitable estimates. In Abilov et al. (Comput Math Math
Phys 48:2146, 2008) , Abilov et al. proved two useful estimates for the Fourier transform in
the space of square integral multivariable functions on certain classes of functions charac-
terized by the generalized continuity modulus, and these estimates are proved by Abilov for
only two variables, using a translation operator. The purpose of this paper is to study these
estimates for measurable sets from complex domain to hyper complex domain by using
quaternion algebras, associated with the quaternion linear canonical transform, constructed
by the generalized Steklov function.

Keywords Quaternion linear canonical transform - Lipschitz class - Dini—Lipschitz class -
Titchmarsh theorem - Estimates
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1 Introduction

The integral Fourier transform, as well as Fourier series, are widely used in various fields
of calculus, computational mathematics, mathematical physics, etc. Certain applications of
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this transform are described in a number of fundamental monographs (for example, see [25,
26]). Numerical estimates of the Fourier transform are presented in [30].

The classical linear canonical transform (LCT) is considered as a generalization of the
Fourier transform (FT), and was first proposed in the 1970 s by Collins [9] and Moshinsky and
Quesne [21]. It is an effective processing tool for chirp signal analysis, such as the parameter
estimation, sampling progress for non bandlimited signals with nonlinear Fourier atoms [20],
and the LCT filtering [27].

In this paper we will give our results in a more general context, that of quaternion linear
canonical transform (QLCT). There are many studies in the literature that are concerned with
the QLCT (see, for example, [5, 7, 16—18, 29]). They established some important properties of
the QLCT, such as the uncertainty principle, the inversion formula and the study of generalized
swept-frequency filters.

Recently several results of estimation have been proved in several different versions and
for several different types of transforms (for example for the Fourier transform [3, 13], for the
Bessel transform, [10], for the Dunkl transform [11], for the Laguerre Hypergroup transform
[22]). In [1] the authors estimated the integral f |F{f }(x)|2dx in certain classes of

|x|=R
functions in LZ(R") where F {f} is the Fourier transform (FT) of f. Since the QLCT is a
generalization of the FT, so for this reason we want in this paper, to estimate the integral

/ |La,.4,{f}(@)|*d*w, where L4, a,{f} stands for the QLCT transform of f and
w]=N?
N> 1.

In order to describe our results, we first need to introduce some facts about harmonic
analysis related to the QLCT. We cite here, as briefly as possible, some properties. For more
details we refer to [2, 6, 8, 12, 14, 16-18, 28, 29].

The quaternion algebra H was first invented by W. R. Hamilton in 1843 for extending
complex numbers to a 4D algebra [24]. A quaternion ¢ € H can be written in this form

q=4qo0+q=q0o+iq+ jg+kq3
where i, j, k satisfy Hamilton’s multiplication rules
i?=j?=k=ijk=—1, ij =—ji =k.
jk=—kj =i, ki=—ik=j.
Using Hamilton’s multiplication rules, the multiplication of two quaternions p = po + p
and g = qo + g can be expressed as
Pq = poqo + pogq +qop + pq.

We define the conjugation of g € Hby ¢ = qo —iq1 — jg2 — kq3. Clearly, qq = qg + ql2 +
q22 + q32. So the modulus of a quaternion ¢ is defined by

lgl = vaqq = \/qé +4i + 43 + 3.
In this paper, we study the quaternion-valued signal f : R* — H that can be expressed as
J @) = folx) +ifi(x) + jfa(x) +kf3(x)

where x = xje; + x2¢7 € R? and fo, f1, f> and f3 are real-valued functions. For 1 < r <
00, the quaternion modulus L” (Rz, ‘H) is defined as

L' =L R\ H) = {f/f R = H, Mgy = fR If@)["dx < o0 }.
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Let f € L"(R?, H). The quaternion Fourier transform (QFT) of f is defined by
1 . .
F(fHHw) = —/ e Ol f(x)e T2 x.
2 R2
The inner product of f, g € Lz(Rz, 'H) is defined by
(.9) = [ | oozt
RZ

Clearly, ||f||% = (f, f). Forall 9 € R we have
€] =1/ = 1. M
Now, we define a norm of F(f) as

1/2

IF(F)@)o = (IFfo) @) + IF(f)@) + IF () (@)* + |F(f3)(@)]?)
Furthermore, we obtain the L" (Rz, ‘H)-norm
1/r
i7Dor = ([ 1FD @)

For f € L'(R?, 'H), we have

IF(Hlg.00 < I fll1- ()
(QFT Plancherel) If f € L'(R?, H) N L?>(R?, H), then

/ (o Pdx = / ) (@) do. 3)
R2 R2
Moreover,

[ irwrar = [ iFn@iydo.

R2 R2

then we can rewrite the QFT Plancherel as follows

IF(Hllg.2 = 1112 “

Indeed, we have

L rn@iydo= [ (710 @F +17 1) @F
+HIF (L @ +1F (f3) (@) do

=</ |fQ{f0}(w)|2dw+/ |fQ{f1}(w)}2dw
R2 R2

+ [t @ do+ [ @Pdo)

Applying 3 into the right-hand side of the above identity gives
/ |F{fH)|g do = / | fo(x)|* dx + / |10 dx
R2 R2 RrR2

+/ Ifz(x)lzdx—i—/ |f3(x)|2dx
R2 R2
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Since fij(x),i =0, 1, 2, 3, is real-valued, the above equation can be written in the form

[ rn@iydo= [ (Fw+ 7w+ fw+ f)d

Suppose that F(f) € L'(R2, H) and F(2f) € L' (R?, H). Then
1

an
F( ax{i_n)(w) = w?]-'(f)(w), Vn € N. 5)
1
Moreover, if F(f) € L'(R?, H) and .7-"(3]:,2{) € LY (R?, H), then
amf Cm
f(ﬁ)(w) =F(H(w)(jwz)", Ym e N. (6)
2

Let A, = (as ZJ) € R?*2 be a real matrix parameter such that det(Ay) = 1, for s = 1, 2.

Cs dg

The two-sided (sandwich) QLCT of f € L'(R?, H) is defined by

Lay ol f)@) = /R Ky (x1, 00 (0K, (12, o),

where the kernel functions of the QLCT above are given by

__L_ (/D a1 /b)xi—Q2/b)xiw1+(d1 /b1)wi—(1/2))
K}l‘q (x1, w1) = me . I 1 for by #0, -
1 Jdyel /e for b = 0.

. L (/2 ((@2/b)x3 =2 /br)xawn+(da /by)ws —(1/2))
K (6. m) — 5 2 2 for by #0, @®)
A2, @2 j(c2d2 /)03
[dyel (©2d2/Dw; for by = 0.

Let the kernel function K 4 be defined by (7) or (8). Then

o Ku(—x,w) = Kus(x, —w).
o Ku(—x,—w) = Kus(x,w).
o Kalx,w) = KXl(a),x).

From the definition of the QLCT, we can easily see that when b1by = 0 and by = by = 0,

the QLCT of a signal is essentially a quaternion chirp multiplication. Therefore, in this work,
we always assume b1by # 0.

(Inversion formula) The (Two-sided) inverse quaternion linear canonical transform of g €
L'(R?, H)

Ly 4 lg)@) = fRz Kzrl(xl,wl)g(x)Kigl(xz,wz)dx. ©

(Hausdorff-Young inequality) If 1 < r < 2 and letting r’ be such that 1/r +1/r" = 1 then
forall f € L"(R?, H) it holds that

|b1b2|7l/2+1/r'
2w
(Plancherel theorem of QLCTs) Let f € L*(R?, H). Then

I1£a1.4:{f g2 = lfl2-

1414 {F o = £l (10)
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(Shift property) For a quaternion function f € LY(R2, H), we denote by 7 f (x) the shifted
(translated) function defined by i f(x) = f(x — k), where k = kje| +kie; € R2. Then we
obtain

R ) P
‘C'AI,AQ{rkf}(a)) — e—la|L|kl/2+lc|k|w]

XLay a{ N1 —arky, wy — arky)e Iweka ik (1)
(Modulation property). We define a modulation operator M, f by

Mwof(x) — eiX1M0f(x)e.ix2v0

with wy = uge; + voer. So

Ly 4 (Mg fH@) = La, 4, (€10 f(x)e/ 290} (w)
— e*ib]d]u(z)/2+id]u0w1 ﬁAl,Az{f}(wl _ MOblv Wy — vobz)e*ijdZU(z)/z‘i’deUOwZ.
(12)

(Time-frequency shift). Let a quaternion function f € L'(R?, H). Then we obtain that

Ly, A My f 1 (w)
= L4, A, f(x — k)e! "} (w)
_ e—i(alclklz+b1dlu%)/2+i(c1k1+d1uo)w1—iblclkluo

La, a{fH w1 —arky —uobt, wr — acka — vobo)
e—j(u202k§+b2d2v8)/2+j(02k2+dzvo)w2—jbzczk2v0 ) (13)

For a function f on L'(R?, 1) and for any /1, hy € R, we define the operator Ay, 4, by
imxl jmxz 1
Apymy f(x) =€ 207 fxr +hy,xo 4+ ho)e’ 277 — i M f 4R x)  (14)
jﬂxz
—fx1, x2+ho)e’ 2277+ f(xg, x2).

Definition 1.1 Let f(x) = f(x1, x2) belongs to L2(R2, H). We say that f is in the Lipschitz
space LipAl,A2 (aq, ap) if

1Ay 1o f (D)2 = O] h5?), (15)

as hy, hy tend to zero, 0 < o, ap < 1.

In Lz(Rz, ‘H), consider the operator
AL As Lo jas e
Fy f(xl’x2)=m/ / g Pf(xp +E, x4+ 1)

el Bt sz dedn, h > 0. (16)

Observe that if a; = ap = 0, then

Fi 2 fx, x0) = 4h2/ / S+ &+ mdedy.

This is analogous to the Steklov operator.
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Let the function f € L?(R?, H). The finite differences of the order m (m € 1,2,3,...) are
defined as follows:

A f(x1,x0) = (I — FA22)" f(xy, x2),

here 7 is the unit operator, and the mth order generalized continuity modulus of the function
f is defined by the formula

wy(f,8)2 = sup A} fll2
0<h<$

where § > 0.
For a function f on L2(R?, H), we define the function gr by

gr(x) = ei @/} g (xypmi(ar/2b)n3
From the definition of gy, we easily obtain

Flgr)2w) = y/brbye WAPOUTHIAL 4 LY brwy, bywp)e T e/ uzkin/A,

(17
Consider in L%2(R2, H) the operator
Dy an f () = e/ @2P0N Dg eI @2/ (18)
2 82 |
where D = —— + . DY 4, f = f> Dy 4y f = Dayas (Dl 4, ) =1,2,...
1 2
In view of formulas (5), (6) and (18), we have
2 2
2 wi w3 2
Lay,a{Daya, [} (W) = — bil + E Laya{f} (w),
and hence
2 wi g w2 2\’ 2
La,. 4Dy, p, 1P w) = (=1) (E) + (E) LaalfPw). (19

Denote by Wi ; (R) the class of functions f € L*(R?, H) having the generalized deriva-
af % f

tives —,
0x1 0x10xp

,...in the sense of Levi (see [19, 23]) in L2(R?, H) are estimated by

we (D" f38) = O($(8)).

where ¢ (¢) is a continuous steadily increasing function on [0, +00) and ¢ (0) = 0.

2 Some new estimates for quaternion linear canonical transform

In order to prove the main result, we shall need some preliminary results.
Lemma 2.1 If f belongs to L*>(R?, H), then

IAR fll2 <211 f 2. (20)
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Proof Using the inequality (16), we have ||FhAl’A2 (N2 < I fll2- Then ||A}1lf||2 <2\ fll2.
Thus the result follows easily by using the recurrence for m. O

Lemma 2.2 If quaternion function f € L*(R2, H), then

sin(wyh/by) sin(wah/by)

AlLA
Layar{Fy 2 fP(w) = Y —yT

LayalfY w). 1)

Proof Let f e L*(R?, H). Taking into account the formula (1), we have

J = La, m(FM 12 (w)

a éz
4h2/ / B gy e T f ey 48 x el B R wye! B dédn

wrh)  .ap 2
4h2/ / ¢ 2h1 el ;1;, ‘21;1 La,. Ag{f}(w)ej hz A 2h2 e] 2}72 dédn

i o1E oo
m/h/he B Lay a{fHw)e’ B2 dEdn

1 h i“’%d r 1 [h jwbznd
<Eﬁhe ! %') A1,A2{f}(w)(ﬂf 2 7/)

It is easily seen that

1 [h ,-m*d _ sin(wih/by)

- e by =
m ), wih/b;
and
1 e, sintush/by
), wah /by

So that the transform of F hA 142 f(x) is given as

sin(wih/by) sin(wah/br)
wih/by wah /by

LayalfPw).
This completes the proof. O

Corollary 2.3 For any function f in L*(R?, H), we have

sin(wyh/by) sin(wah/by)
wih/by wah /by

z:A,,Az{A',:’f}2<w>=<1— ) LaymlfPw). (22

In the next, in order to describe our results we will use the following notation:

G = {(wr, wy) : (%)2 + (%)2 > N2,
wi u}21 , 2
lw| = (—)2+(b—) .

2
wo sin(wyh/by) sin(wah/by)
o ‘Ph(* —) = .
b2 wlh/bl W2h/b2

Io = ( /G |LA1,A2{f}(w)|2d2w>
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In the following result, we estimate the integral
[ esmtn@rdo
lw|=N?

in certain classes of functions in L2(R2, H).

Theorem 2.4 For functions f € L*(R*, H) in the class W;f;

1
22 \7 _ —2r 420 Tk
sup </w>N2|£AI,A2{f}(w)|dw) =0 (N (M)

2.k
feW27¢

wherer = 1,...;k=1,2,...; and ¢(t) is any nonnegative function defined on the interval
[0, o0).

Proof Let f € W22£ Thanks to Holder’s inequality, we obtain

- <1 o (ﬂ, B)) RGO
. by by

=/(1 wh(“” 2))|LA1,A2{f}<w)|%wAl,Az{‘f}(w)lz—%dzw
G by’ by

2k * 1-4
f (‘1—% (ﬂﬂ)) La, Y @) Pd?w ( / |LA1,A2{f}<w>|2d2w)
G by by G

1
2
L—on (3 5 1-3%
[ |w|2’ |wb|‘2,b>) Lyl @) PP (/G |cA,,A2{f}<w>|2d2w) )

_2 wy w
v (L (e (5 52)
(c @n b1’ by

where I = </ |La, a0 (f @) P d*w
G

In view of Holder inequality, we have that

2r wy wa
=g (22
/G|w| (‘ <ph(bl b2>

Using the inequalities (23) and (24),

IA

IA
2

2k 1
) |£A,,A2{f}<w)|2d2w> I * (23)

2k
) ILa, alfH @) Pd*0 < |AKD" FOOI3. (24

L

w|; w 2r 1
/ L—gn (==, =2 ) ) 140 fH @) PdP0 < N“F|AKD" Foo |k 1, *
G by b

Now, let us estimate the integral

f o (ﬂ, ﬂ) L,y U} @) Pl
G by b

It is easy to see that, for this purpose, it is sufficient to consider the domain of integration

w
E = {(wl,wz) :

1 w2 2
— >0,— >0, >N
by — by — v }
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Divide the domain E into the two subdomains

Er =i w): > jw > N2} and By = {(wy, wy) 2 < 22 jw| > N2
bl bz bl b2

Then,

1= / o (%%) Lo ()@ PP
E 1

=/ on (w‘ ’”)wm AQ{f}<w)|2d2w+/ </’h<wl 02 )wm ) @)d%0
E; bl Ey bl

Since [sinx| < [xl. 2L > X e Epand 22 > N ) € Ey) it is clear
x_x’bl_ﬁ wi, W2 1 bz_ﬁ wi, W2 2
that
sin(wih/by) 20 / sin(wah /b>) 2 5
I| = > mEY d STAVTRRT2)
1] /E i e G I M e e [T TR
V2
< —( / 1Lay.a,(f} )P d*0 + / |£A1,A2{f}<w>|2d2w>
Nh 2
< Nh/ LAy o V(@) PP
< Nh/ 1Laya{ FH@)Pd %0
Consequently,
wp wp _x ’ -4 42
/wh (b—l )wm el @Pdo < NI FoIi1E T + S 6.
G 1 Nh

2
Setting h = n—.
N

1

42 : ;
(1 - N{> /G Lar (N @) Pd?0 < NTE|AND f)l5 15 *

Hence,
| 1£a st ni@Pdo = o (N 1akor o)
and we have
72\*
IALD" ()3 = 0 (N% [(N) D :
which yields the desired result. O

Theorem 2.5 Let ¢ (t) = t* (e > 0). Then the next conditions are equivalent:
fewyh (25)

and
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/ ILay o {fH@Pd* 0w = O(NT2 %) (26)
lo|>N? ’
wherem=1,2...;r=1,..;k=1,2,..;and0 < a < m.

Proof 1t follows from Theorem 2.4 that (25) entails (26).
Suppose now that

</ =N? |£A1,A2{f}(a))|2d2a)>2 _ O(N_Zr—ka).

Thus, by Parseval’s identity, we have

AkDr 2: 2r 1_ ﬂ%
AR D" f ()3 /Rzlwl <‘ <ﬂh<bl,b2

Divide this integral into two, / = / + / , where N = [h‘l], and estimate
R2 |w|<N2 |w|>N2

—— N —
1 I
each of them. Firstly, we estimate /5, since

2k
) L4, a0 ([} @) d*w.

it follows that

w] wy
b =/ || > (’1 — ¢ (—, —)
|o]> N2 by by

< / 0l % 1L, 0, ()@ P20,
|w|>N?
=0 ( / |w|2’|cA1,A2{f}<w>|2d2w)
|w|>N2
0 2r £ 2d2
(Ig(;/(NH)ZSIw<(N+l+1)2 o™ Al’Az{f}(w” w)
0 N+I1+1 4’/
(l;( ) .

- (Z(N +14+ DY |£A,,A2{f}<w>|2d2w>

2k
) ILa,, 4, (f} (@) P d*w

<|w|

IEAI,Az{f}(wnzdzw)

|| =(N+I+1)2

=0
~0 (N“" / |£A1,A2{f}<w)|d2w>
N2<|o|
+ (ZKN +14+ DY = (N+DY] |£A,,A2{f}<w>|2d2w>
1=0 |w|=(N+I41)2

=0 (N4r /NZ ‘ lIEAl,Az{f}(w)|d2w)

+ (Z(N + 0! / | |£A1,A2{f}<w>|2d2w)

=0 (N+D)?<|w
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o0
— 0 (N4VN—4V—2/<01 + Z(N + l)4r—1(N + l)—4r—2koz)

1=0
= O(N~2k) 4 o(N 2k
= O(N~2e)
— o(h*e),
ie.,
L = O(h*).
Secondly, we estimate /1, since
0=1-2D 2 gy <yl yem

and

- wp wy _ 1_sin(w1h) sin(wzh)+ 1_sin(w2h)
"\ by by wih wah wh )’

w)p w2
I :/ lw|? (’1 — on (—, —)
|| <N? by by

= [ [T Q0P L ol Fl@)Pd e

2k
) 1L, 4, L} @) P d*w

=00 [ ol HLa m () @)Pde
|w|<N
N
—ouy [ 0 L4, 1,1 ) @) P
,,Xz(:) n?<|o|<(n+1)2 v
N
= 0% Y (n+ 1P / Lara(fH@)Pd*e
e n?<|o|<(n+1)2
N
= 0(*) Y+ ¥ [ f i |£A,,A2{f}<w>|2d2w}
n=0 lolzn

- [ / |cA.,A2{f}(w>|2d2w}
|w|>(n+1)2

N
— 0(h4k) |:Z(n + 1)4r+4k/

n=0 |w|=n

2 |£A],A2{f}(a))|2d2w:|

N
_ [Z(” + 1)4r+4k/
n=0

|w|>(n+1)

2 |£A1,A2{f}(w)|2d2a):|

N
= 0™ [1 + D L+ DT gy |£A.,A2{f}(w)|2d2w}

n=0 lw|=n

N

n=0 lw|>n

. |EA1,A2{f}(w)I2d2w}
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1712 A. Achak et al.

N N

n=1 n=1

I} = O(h%*).
Finally, combining the estimates for /; and I gives
IARD” f ()2 = O (W',

which means that f € Wi ’t]f,. Hence the conditions (25) and (26) are equivalent. This proves
the Theorem 2.5. ]

Remark As in the article [15], the previous definition can be generalized as follows: For any
two pure quaternions « and 8 such that «> = 8% = —1 used for re placing i and j in (7) and
(8), and f in L'(R2, H)

258w = [ K o0 fKY, (s,

From linearity of l:i’f A, WE obtain the QLCT for the OPS split f = fy 4+ f_ where
fr=5( £afp)

%P ) = /R K, (00 0K, (62, wn)dx
= / K&, (1, o1) f+ (0K, (xa, wn)dx
RZ

+ / K&, (1, 1) f-(0)KS, (62, wn)dx
R2

so what was done above for the integral / L4y, 2,1 f N w) |2d2a) can be done again for
lw]>N2

the two integrals / |£Z‘1’3,A2{f+}(w)|2d2w and / A1 Az{f }(a))|2d2w so that
|ow|=N? lw|=N
we can find a generalization of our results.

3 Conclusion

In this paper after having given two estimates for the quaternion linear canonical transform
which generalize those of Abilov [1] we note so far the difficulty lies only in the fact that
for quaternion fields we have no commutativity, whereas for the Fourier transform this does
not pose a problem, but even for quaternion fields there is a question which arises, if we can
have the same approximation for the right-sided Quaternion linear canonical transform [4],
the answer is positive although there will be a slight difference concerning the calculations
of certain steps.
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