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Abstract
In this paper, we consider the energy decay of a damped hyperbolic system of two degenerate
wave equations coupled by velocities when only one equation is directly damped by a linear
boundary feedback. To this aim, we first prove that the proposed system is well-posed using
the semigroup theory. Then, under the hypothesis that the coupling coefficient is positive and
small, we show that the total energy of the whole system decays exponentially. The explicit
energy decay rate is established by using the energy multiplier method.

Keywords Coupled degenerate wave equations · Stabilization · Exponential decay ·
Multiplier techniques
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1 Introduction

The stabilization problems for scalar wave equations have received considerable attention in
the literature, with numerous contributions achieved over the past several years. We refer, for
example, to [1–16] and the articles citing them.

Recently, the subject of indirect stabilization of coupled wave equations has received a lot
of attention of many authors. This notion introduced by Russell [17] concerns stabilization
questions for coupled equations with a reduced number of feedbacks. This means that some
equations of the coupled system are not directly damped, but one then hopes that the coupling
effects will be sufficient so that the full system is stabilized. This kind of damped systems
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is very important from the applications in control theory point of view, since it may be
impossible or too expensive to damp each equation because of engineering or biological
constraints.

For this reason, the theory of indirect stabilization for coupled wave equations has been
investigated extensively. See, in particular [18–34] and the rich references therein. We also
refer to the two monographs [35] and [36] for a comprehensive review.

However, all the previous results concern nondegenerate problems. On the other hand,
from [37, Theorem 4.5], we know that the linearly damped scalar degenerate wave equation
is exponentially stable.

In this paper, the question we are interested in is to determine if it is still possible to
achieve the exponential stability of a system of two degenerate waves by means of only one
damping.

More precisely, for given β > 0, we investigate the stabilization of the following model
of coupled degenerate wave equations with only one boundary damping:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vt t − (a(x)vx )x + but = 0, in (0,+∞) × (0, 1),

utt − (a(x)ux )x − bvt = 0, in (0,+∞) × (0, 1),

Bv(0) = Bu(0) = 0, on (0,+∞),

v(1) = 0, on (0,+∞),

ut (1) + ux (1) + βu(1) = 0, on (0,+∞),

v(0, x) = v0(x), vt (0, x) = v1(x), in (0, 1),

u(0, x) = u0(x), ut (0, x) = u1(x), in (0, 1),

(1)

where a ∈ C([0, 1]) ∩ C1((0, 1]) is positive on ]0, 1] but vanishes at zero, b > 0 is the
coupling parameter and

Bz(t, x) :=
{
z(t, x), in the case, 0 < μa < 1,
(a(x)zx ) (t, x), in the case, 1 ≤ μa < 2.

In view of the results in [38], since the coupling acts here in a stronger way (through
velocities), we are interested in finding conditions on the parameters of the system such
that the energy of this linearly damped system decays exponentially. Indeed, different from
the case of couplings through displacements [18–20], it is shown in [38] that the damping
properties are fully transferred from thedamped equation to the undampedoneby the coupling
in velocities.

Here, in agreement with [38], ourmain result (see theorem 9) asserts that a single feedback
is sufficient to guarantee that the energy of the full system (1) decays exponentially to 0 at
infinity. This extends the energy decay result in [37] for the single degenerate wave equation
to the system of two degenerate wave equations which are coupled through the velocities.

To the best of our knowledge, this is the first paper where the asymptotic behavior of
solutions to strongly coupled degenerate wave equations is studiedwith themain particularity
that only one equation is effectively damped by a boundary feedback acting on one end only.

In order to study the damped system (1), we will assume that the coupling parameter b is
sufficiently small and the function a satisfies the following assumptions:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(i) a(x) > 0 ∀x ∈]0, 1], a(0) = 0,

(ii) μa := sup
0<x≤1

x
∣
∣a′(x)

∣
∣

a(x)
< 2, and

( iii ) a ∈ C[μa ]([0, 1]),
(2)
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where [·] stands for the integer part.
The rest of the paper is organized as follows. In Sect. 2, we introduce the appropriate

functional spaces that are naturally associated with degenerate problems and preliminary
results used throughout the paper. Section3 is devoted to the proof of the well posedness of
the considered system. In Sect. 4, we study the boundary stabilization problem proving its
exponential stability.

2 Preliminary results

Let a ∈ C([0, 1]) ∩ C1(]0, 1]) be a function satisfying assumptions (2). At first, as in [37],
we introduce some weighted Sobolev spaces that are naturally associated with degenerate
operators. We denote by H1

a (0, 1) the space of all functions u ∈ L2(0, 1) such that
{

(i) u is locally absolutely continuous in ]0, 1], and
(ii)

√
aux ∈ L2(0, 1).

It is easy to see that H1
a (0, 1) is a Hilbert space with the scalar product

〈u, v〉H1
a (0,1) =

∫ 1

0

(
a(x)u′(x)v′(x) + u(x)v(x)

)
dx ∀u, v ∈ H1

a (0, 1)

and associated norm

‖u‖H1
a (0,1) =

{∫ 1

0

(
a(x)

∣
∣u′(x)

∣
∣2 + |u(x)|2

)
dx

} 1
2

∀u ∈ H1
a (0, 1).

Next, we define

H2
a (0, 1) := {

u ∈ H1
a (0, 1) | au′ ∈ H1(0, 1)

}
.

Note that if u ∈ H2
a (0, 1), then au′ is continuous on [0, 1].

In the following proposition, we collect useful properties of the above functional spaces
which will play an important role in order to evaluate several boundary terms, see [37,
Proposition 2.5].

Proposition 1 Assume that a is a function satisfying (2). Then the following assertions hold
true:

1. For every u ∈ H1
a (0, 1)

lim
x↓0 x |u(x)|2 = 0. (3)

Moreover, if μa ∈ [0, 1[, then u is absolutely continuous in [0, 1].
2. For every u ∈ H2

a (0, 1)
lim
x↓0 xa(x)|u′(x)|2 = 0. (4)

3. For all u ∈ H2
a (0, 1) and for all v ∈ H1

a (0, 1)

lim
x↓0 a(x)u′(x)v(x) = 0, (5)

assuming, in addition, v(0) = 0 if μa ∈ [0, 1[.
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4. If μa ∈ [1, 2[, for every u ∈ H2
a (0, 1)

lim
x↓0 a(x)u′(x) = 0. (6)

In view of Proposition 1, we see that the boundary conditions imposed at x = 0 make
sense for any classical solution of (1). Such conditions are of Dirichlet type if μa ∈ [0, 1[,
whereas they are of Neumann/Dirichlet type at x = 0 and x = 1, respectively, if μa ∈ [1, 2[.

In order to express the boundary conditions of the first component of the solution of (1)
in the functional setting, we define the space H1

a,0(0, 1) depending on the value of μa , as
follows:

(i) For 0 ≤ μa < 1, we define

H1
a,0(0, 1) := {

u ∈ H1
a (0, 1) | u(0) = u(1) = 0

}
.

(ii) For 1 ≤ μa < 2, we define

H1
a,0(0, 1) := {

u ∈ H1
a (0, 1) | u(1) = 0

}
.

Let us recall the following version of Poincaré’s inequality,which is proved in [37, Proposition
2.2].

Lemma 2 Assume (2) holds. Then
∫ 1

0
|u(x)|2 dx ≤ Ca

∫ 1

0
a(x)

∣
∣u′(x)

∣
∣2 dx, ∀u ∈ H1

a,0(0, 1), (7)

where

Ca = 1

a(1)
min

{

4,
1

2 − μa

}

. (8)

Then set

‖u‖H1
a,0(0,1)

:=
{∫ 1

0
a(x)

∣
∣u′(x)

∣
∣2 dx

} 1
2

∀u ∈ H1
a,0(0, 1).

which, thanks to Lemma 2, defines a norm on H1
a,0(0, 1) that is equivalent to ‖ · ‖H1

a (0,1).
Finally, we define

H2
a,0(0, 1) := H2

a (0, 1) ∩ H1
a,0(0, 1).

Observe that all functionsu ∈ H2
a,0(0, 1) satisfy the abovehomogeneous boundary conditions

at both x = 0 and x = 1.

3 Well-posedness

In this section, we first provide existence and uniqueness results of solutions for the damped
hyperbolic system (1). Let us denote byW 1

a (0, 1) the space H1
a (0, 1) itself ifμa ∈ [1, 2) and,

if μa ∈ [0, 1) , the closed subspace of H1
a (0, 1) consisting of all the functions u ∈ H1

a (0, 1)
such that u(0) = 0. Moreover, we set

W 2
a (0, 1) = H2

a (0, 1) ∩ W 1
a (0, 1).

Note that W 2
a (0, 1) = H2

a (0, 1) when μa ∈ [1, 2).
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In the Hilbert space W 1
a (0, 1), we consider the following inner product

〈u, v〉W 1
a

=
(∫ 1

0

(
u(x)v(x) + a(x)ux (x)vx (x)

)
dx + βa(1)u(1)v(1)

)

,

∀u, v ∈ W 1
a (0, 1),

and the associated norm

‖u‖W 1
a (0,1) =

(∫ 1

0

(|u(x)|2 + a(x)|ux (x)|2
)
dx + βa(1)|u(1)|2

) 1
2

,∀u ∈ W 1
a (0, 1).

First of all, recall the following preliminary results (see [37, Proposition 2.5 and Proposition
4.3]).

Proposition 3 Assume (2) holds. Then

u2(1) ≤ max

{

2,
1

a(1)

}

‖u‖2H1
a (0,1) ∀u ∈ H1

a (0, 1). (9)

We also have
∫ 1

0
|u(x)|2 dx ≤ 2|u(1)|2 + C ′

a

∫ 1

0
a(x) |ux (x)|2 dx ∀u ∈ W 1

a (0, 1), (10)

where

C ′
a = 1

a(1)
min

{

4,
2

2 − μa

}

. (11)

In view of (10), observe that

|u|W 1
a (0,1) :=

(∫ 1

0

(
a(x)|ux (x)|2

)
dx + βa(1)|u(1)|2

) 1
2

, ∀u ∈ W 1
a (0, 1), (12)

defines a norm on W 1
a (0, 1) that is equivalent to ‖ · ‖W 1

a (0,1).
In order to prove the well-posedness of the system (1) and establish an exponential decay

result, we will need the following (see [37, Proposition 4.3]).

Proposition 4 Assume (2) holds and β > 0. Then, we have

|u|2W 1
a (0,1) ≥ ca,β‖u‖2L2(0,1) ∀u ∈ W 1

a (0, 1), (13)

where

ca,β = min

(
1

C ′
a
,
βa(1)

2

)

.

Moreover, we also have

ca,β

ca,β + 1

(
‖u‖2H1

a (0,1) + βa(1)u2(1)
)

≤ |u|2W 1
a (0,1) ≤ γa,β‖u‖2H1

a (0,1) ∀u ∈ W 1
a (0, 1),

(14)
where

γa,β = max

(

2βa(1), 1 + 2β

2 − μa

)

.
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Now, let us define the energy space Hβ
a by

Hβ
a = H1

a,0(0, 1) × L2(0, 1) × W 1
a (0, 1) × L2(0, 1).

It is easy to see that Hβ
a is a Hilbert space, equipped with the scalar product defined by

〈U , Ũ 〉Hβ
a

=
∫ 1

0

(
a(x)u1,x (x )̃u1,x (x) + u2(x )̃u2(x) + a(x)u3,x (x )̃u3,x (x)

+ u4(x )̃u4(x)
)
dx + βa(1)u3(1)̃u3(1),

for allU = (u1, u2, u3, u4), Ũ = (̃u1, ũ2, ũ3, ũ4) ∈ Hβ
a . The expression ‖ · ‖Hβ

a
will denote

the corresponding norm.
We are now ready to study the well posedness of system (1) by using semigroup theory.

For this, we define the unbounded linear operator Aβ
a : D(Aβ

a ) ⊂ Hβ
a → Hβ

a by

D(Aβ
a ) =

{
(u1, u2, u3, u4) ∈ H2

a,0(0, 1) × H1
a,0(0, 1) × W 2

a (0, 1) × W 1
a (0, 1)

| u3,x (1) + u4(1) + βu3(1) = 0

}

and

Aβ
aU = (

u2,
(
au1,x

)

x − bu4, u4,
(
au3,x

)

x + bu2
)
, ∀U = (u1, u2, u3, u4) ∈ D(Aβ

a ).

Setting U (t) = (v(t), vt (t), u(t), ut (t)), then system (1) can be transformed into the first
order evolution equation on the Hilbert space Hβ

a as follows
{
U ′(t) = Aβ

aU (t) t ≥ 0,

U (0) = U0,
(15)

where U (0) = (v0, v1, u0, u1).

In view of Proposition 1, if U = (v, vt , u, ut ) ∈ D
(
Aβ

a

)
, then U satisfies the boundary

conditions Bv(0) = Bu(0) = 0 at x = 0 and the Dirichlet boundary condition v(1) = 0 at
x = 1. Notice also that ux (1), ut (1) and βu(1) are well defined for all U = (v, vt , u, ut ) ∈
D
(
Aβ

a

)
because of the classical Sobolev embedding theorem.

The next result holds.

Proposition 5 Assume (2) holds and consider β > 0. Then Aβ
a is a maximal dissipative

operator on Hβ
a .

Proof For all U = (u1, u2, u3, u4) ∈ D(Aβ
a ), we have

〈Aβ
aU ,U 〉Hβ

a
=
∫ 1

0
a(x)u1,x (x)u2,x (x) dx +

∫ 1

0

(
(a(x)u1,x (x))x − bu4(x)

)
u2(x) dx

+
∫ 1

0
a(x)u3,x (x)u4,x (x) dx +

∫ 1

0

(
(a(x)u3,x (x))x + bu2(x)

)
u4(x) dx

+ βa(1)u3(1)u4(1).

Integrating by parts and using (5), we get

〈Aβ
aU ,U 〉Hβ

a
= [a(x)u1,x (x)u2(x)]10 + [a(x)u3,x (x)u4(x)]10 + βa(1)u3(1)u4(1)

= a(1)u4(1)
(
u3,x (1) + βu3(1)

)

= −a(1)u24(1) ≤ 0,
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which implies that Aβ
a is dissipative. In order to show that Aβ

a is maximal dissipative, it
remains to prove that R(I − Aβ

a ) = Hβ
a . Let F = ( f1, f2, f3, f4) ∈ Hβ

a . We look for an
element U = (u1, u2, u3, u4) ∈ D(Aβ

a ) such that

U − Aβ
aU = F ⇔

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u1 − u2 = f1,

u2 − (
au1,x

)

x + bu4 = f2,

u3 − u4 = f3,

u4 − (
au3,x

)

x − bu2 = f4.

(16)

Suppose that we have found u1 and u3 with the appropriate regularity. Therefore, the first
and the third equations in (16) give

{
u2 = u1 − f1,

u4 = u3 − f3.
(17)

Then, it is clear that u2 ∈ H1
a,0(0, 1) and u4 ∈ W 1

a (0, 1). By using (16) and (17) the functions
u1 and u3 satisfy the following system:

{
u1 − (

a(x)u1,x
)

x + bu3 = f1 + f2 + b f3,

u3 − (
a(x)u3,x

)

x − bu1 = −b f1 + f3 + f4.
(18)

Solving system (18) is equivalent to finding (u1, u3) ∈ H2
a,0(0, 1) × W 2

a (0, 1) such that
{∫ 1

0

(
u1φ1 + a(x)u1,xφ1,x + bu3φ1

)
dx = ∫ 1

0 ( f1 + f2 + b f3) φ1 dx,
∫ 1
0

(
u3φ2 + a(x)u3,xφ2,x − bu1φ2

)
dx = ∫ 1

0 (−b f1 + f3 + f4) φ2 dx,
(19)

for all (φ1, φ2) ∈ C∞
c (0, 1) × C∞

c (0, 1).

To this aim, introduce the bilinear form � :
(
H1
a,0(0, 1) × W 1

a (0, 1)
)2 → R given by

�((u1, u3) , (φ1, φ2)) =
∫ 1

0
(u1φ1 + a(x)u1,xφ1,x + u3φ2 + a(x)u3,xφ2,x ) dx

+
∫ 1

0
b (u3φ1 − u1φ2) dx + (β + 1)a(1)u3(1)φ2(1)

and the linear form L : H1
a,0(0, 1) × W 1

a (0, 1) → R given by

L (φ1, φ2) =
∫ 1

0

(
( f1 + f2 + b f3) φ1 + (−b f1 + f3 + f4) φ2

)
dx + a(1)φ2(1) f3(1).

From (7), (13) and the definition of | · |W 1
a (0,1), one can show that � is a continuous bilinear

form on H1
a,0(0, 1) × W 1

a (0, 1) and L is a continuous linear functional on H1
a,0(0, 1) ×

W 1
a (0, 1). Furthermore, it is easy to see that � is also coercive on H1

a,0(0, 1) ×W 1
a (0, 1). As

a consequence, by the Lax-Milgram Theorem, there exists a unique (u1, u3) ∈ H1
a,0(0, 1) ×

W 1
a (0, 1) such that

�((u1, u3) , (φ1, φ2)) = L (φ1, φ2) , ∀ (φ1, φ2) ∈ H1
a,0(0, 1) × W 1

a (0, 1). (20)

Now, we will prove that (u1, u2, u3, u4) ∈ D(Aβ
a ) and solves (16). Since C∞

c (0, 1) ×
C∞
c (0, 1) ⊂ H1

a,0(0, 1) × W 1
a (0, 1), (20) holds for every (φ1, φ2) ∈ C∞

c (0, 1) × C∞
c (0, 1).
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Hence, we have (19) which is equivalent to (18). This yields (u1, u3) ∈ H2
a (0, 1)× H2

a (0, 1)
and thus (u1, u3) ∈ H2

a,0(0, 1) × W 2
a (0, 1).

Coming back to (18), we deduce after an integration by parts, together with (5), that

∫ 1

0
(u1 + bu3) φ1 dx +

∫ 1

0
a(x)u1,xφ1,x dx +

∫ 1

0
(u3 − bu1) φ2 dx

+
∫ 1

0
a(x)u3,xφ2,x dx − a(1)u3,x (1)φ2(1)

=
∫ 1

0
( f1 + f2 + b f3) φ1 dx +

∫ 1

0
(−b f1 + f3 + f4) φ2 dx,

∀(φ1, φ2) ∈ H1
a,0(0, 1) × W 1

a (0, 1).

This combined with (20) leads to:

a(1)φ2(1)
(
u3,x (1) + (β + 1)u3(1) − f3(1)

)
= 0, ∀φ2 ∈ W 1

a (0, 1).

Using the fact that a(1) > 0 and the function φ2 defined by φ2(x) = x for all x ∈ (0, 1) is
in W 1

a (0, 1), we infer that

u3,x (1) + (β + 1)u3(1) − f3(1) = 0.

Finally, recalling (17), we deduce that (u1, u2, u3, u4) ∈ D(Aβ
a ) and solves (16). The proof

is thus complete. ��

By using the Hille-Yosida theorem (see [39, Theorem 4.5.1] or [40, Theorem A.7]),

we deduce that the operator Aβ
a generates a C0-semigroup of contractions

(
etA

β
a

)

t≥0
. The

solution of the Cauchy problem (15) admits the following representation

U (t) = etA
β
a U0, t ≥ 0,

which leads to the well-posedness of (15). Hence, we have the following result.

Corollary 6 Assume (2) holds and consider β > 0. For any U0 ∈ Hβ
a , there exists a unique

solution U ∈ C0([0,+∞);Hβ
a ) of problem (15). Moreover, if U0 ∈ D(Aβ

a ), then

U ∈ C0([0,+∞); D(Aβ
a )) ∩ C1([0,+∞);Hβ

a ).

4 Exponential stability

In this section, we study the exponential stability of system (1). To this aim we first define
its energy as

Ev,u(t) = 1

2

[∫ 1

0

{
v2t (t, x) + a(x)v2x (t, x) + u2t (t, x) + a(x)u2x (t, x)

}
dx

+βa(1)u2(t, 1)
]
, ∀t ≥ 0. (21)

In particular, it is possible to prove that the energy is a non increasing function.
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Lemma 7 Assume (2) holds. Let U = (v, vt , u, ut ) be a regular solution of system (1). Then,
the energy Ev,u associated to (v, u) satisfies

dEv,u

dt
(t) = −a(1)u2t (t, 1), ∀t ≥ 0. (22)

Proof Multiplying the first and the second equation of (1) by vt and ut respectively, integrat-
ing by parts over (0, 1), we get

0 =
∫ 1

0
vt (t, x)

{
vt t (t, x) − (a(x)vx )x (t, x) + but (t, x)

}
dx

=
∫ 1

0
{vt (t, x)vt t (t, x) + a(x)vx (t, x)vt x (t, x) + bvt (t, x)ut (t, x)} dx

− [a(x)vt (t, x)vx (t, x)]
x=1
x=0 (23)

and

0 =
∫ 1

0
ut (t, x)

{
utt (t, x) − (a(x)ux )x (t, x) − bvt (t, x)

}
dx

=
∫ 1

0
{ut (t, x)utt (t, x) + a(x)ux (t, x)utx (t, x) − but (t, x)vt (t, x)} dx

− [a(x)ut (t, x)ux (t, x)]
x=1
x=0 . (24)

Adding (23) and (24), by using the boundary conditions, we obtain

0 =
∫ 1

0

[
vt (t, x)vt t (t, x) + a(x)vx (t, x)vt x (t, x)

+ ut (t, x)utt (t, x) + a(x)ux (t, x)utx (t, x)
]
dx − a(1)ut (t, 1)ux (t, 1).

Using the fact that ux (t, 1) = −ut (t, 1) − βu(t, 1), we get the desired equation (22). ��
From (22), it follows that system (1) is dissipative. Now we address the question how fast

this energy decays. Precisely, we give an exponential stabilization estimate based on a direct
application of the multiplier method.

Prior to the precise statement of our main result, we first recall the following result (See
[37, Proposition 4.4]).

Proposition 8 Assume (2) holds and consider β > 0. Then, for every λ ∈ R, the variational
problem

∫ 1

0
a(x)zxϕx dx + βa(1)z(1)ϕ(1) = λa(1)ϕ(1) ∀ϕ ∈ W 1

a (0, 1) (25)

admits a unique solution z ∈ W 1
a (0, 1) which satisfies the elliptic estimates

|z|2W 1
a (0,1) ≤ a(1)

β
λ2 and ‖z‖2L2(0,1) ≤ a(1)

βca,β

λ2. (26)

Moreover, z ∈ W 2
a (0, 1) and solves

{− (a(x)zx )x = 0,
zx (1) + βz(1) = λ.

(27)
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Let us also introduce the following notations:

Ma,b = min

{

1 − bCa

2
,
1

2

(

1 − 6 − μa

2 − μa
b

)

, 2

(

1 − 4

(2 − μa)a(1)
b

)}

(28)

and

ba = min

{
2

Ca
,
2 − μa

6 − μa
,
(2 − μa)a(1)

4

}

.

Observe that, by condition (2) (ii) and assuming that 0 < b < ba , we have that Ma,b > 0.
Now, we are in position to state our main stability result.

Theorem 9 Assume (2) holds and that β > 0 is given. Suppose 0 < b < ba. Then for any
U0 = (v0, v1, u0, u1) ∈ Hβ

a , the solution U = (v, vt , u, ut ) of (1) satisfies the uniform
exponential decay

Ev,u(t) ≤ Ev,u(0)e
1− t

Ma,b,β ∀t ∈ [
Ma,b,β ,+∞)

, (29)

where Ma,b,β > 0 is given in (72) and is independent of U0.

Remark 1 As far as we know, this result on exponential stabilization seems to be new even
for strongly coupled hyperbolic systems with nondegenerate variable coefficients.

The next lemmas are technical results to be used in the proof of Theorem 9 given below.

Lemma 10 Assume (2) holds and that β > 0 is given. Let U0 = (v0, v1, u0, u1) ∈ D(Aβ
a )

and U = (v, vt , u, ut ) be the solution of (1). Then for every 0 ≤ S ≤ T and ε > 0 the
following inequality holds:

b
∫ T

S

∫ 1

0
v2t dx dt ≤ b

∫ T

S

∫ 1

0
u2t dx dt + εa(1)

2

∫ T

S
v2x (t, 1) dt +

(

2 + 1

2ε

)

Ev,u(S). (30)

Proof Multiplying the second equation of (1) by vt , integrating by parts over (S, T )× (0, 1),
we get

0 =
∫ T

S

∫ 1

0
vt (t, x)

(
utt (t, x) − (a(x)ux (t, x))x − bvt (t, x)

)
dx dt

=
∫ T

S

∫ 1

0
vt (t, x)utt (t, x) dx dt −

∫ T

S
[a(x)ux (t, x)vt (t, x)]

x=1
x=0 dt

+
∫ T

S

∫ 1

0
a(x)ux (t, x)vt x (t, x) dx dt − b

∫ T

S

∫ 1

0
v2t (t, x) dx dt

=
∫ T

S

∫ 1

0
vt (t, x)utt (t, x) dx dt +

∫ T

S

∫ 1

0
a(x)ux (t, x)vt x (t, x) dx dt

− b
∫ T

S

∫ 1

0
v2t (t, x) dx dt,

because a(x)ux (t, x)vt (t, x) vanishes at x = 1 and, owing to (5), also at x = 0.
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After integrating by parts on time, this gives

0 =
[∫ 1

0
vt (t, x)ut (t, x) dx

]T

S
−
∫ T

S

∫ 1

0
vt t (t, x)ut (t, x)dx dt

+
[∫ 1

0
a(x)ux (t, x)vx (t, x) dx

]T

S

−
∫ T

S

∫ 1

0
a(x)vx (t, x)utx (t, x) dx dt − b

∫ T

S

∫ 1

0
v2t (t, x) dx dt . (31)

Next, we multiply the first equation of (1) by ut and integrate the resulting equation over
(S, T ) × (0, 1). This gives, after a suitable integration by parts,

0 =
∫ T

S

∫ 1

0
ut (t, x)vt t (t, x)dx dt −

[∫ T

S
a(x)vx ut dt

]1

0

+
∫ T

S

∫ 1

0
a(x)vx (t, x)utx (t, x) dx dt

+b
∫ T

S

∫ 1

0
u2t (t, x) dx dt

=
∫ T

S

∫ 1

0
ut (t, x)vt t (t, x)dx dt − a(1)

∫ T

S
vx (t, 1)ut (t, 1) dt

+
∫ T

S

∫ 1

0
a(x)vx (t, x)utx (t, x) dx dt + b

∫ T

S

∫ 1

0
u2t (t, x) dx dt, (32)

because a(x)vx (t, x)ut (t, x) vanishes at x = 0 owing to (5).
Combining (31) and (32), we obtain

b
∫ T

S

∫ 1

0
v2t (t, x) dx dt − b

∫ T

S

∫ 1

0
u2t (t, x) dx dt

=
[∫ 1

0
vt (t, x)ut (t, x) dx

]T

S
+
[∫ 1

0
a(x)ux (t, x)vx (t, x) dx

]T

S

−a(1)
∫ T

S
vx (t, 1)ut (t, 1) dt . (33)

By the Young inequality, we have

∣
∣
∣
∣

∫ 1

0
vt (t, x)ut (t, x) dx

∣
∣
∣
∣+

∣
∣
∣
∣

∫ 1

0
a(x)ux (t, x)vx (t, x) dx

∣
∣
∣
∣

≤ 1

2

∫ 1

0

{
v2t (t, x) + a(x)v2x (t, x) + u2t (t, x) + a(x)u2x (t, x)

}
dx

≤ Ev,u(t), ∀t ∈ (S, T ).

From the fact that the energy is non-increasing, it follows that

[∫ 1

0
ut (t, x)vt (t, x) dx

]T

S
+
[∫ 1

0
a(x)ux (t, x)vx (t, x) dx

]T

S
≤ 2Ev,u(S). (34)
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On the other hand, for ε > 0, using Young’s inequality, we have
∣
∣
∣
∣

∫ T

S
vx (t, 1)ut (t, 1) dt

∣
∣
∣
∣ ≤ ε

2

∫ T

S
v2x (t, 1) dt + 1

2ε

∫ T

S
u2t (t, 1) dt .

By the dissipation relation (22), we obtain
∣
∣
∣
∣

∫ T

S
vx (t, 1)ut (t, 1) dt

∣
∣
∣
∣ ≤ ε

2

∫ T

S
v2x (t, 1) dt + 1

2a(1)ε
Ev,u(S). (35)

Thus, inserting (34) and (35) into (33), we get the required inequality (30). ��

Lemma 11 Assume (2) holds and that β > 0 is given. Let U0 = (v0, v1, u0, u1) ∈ D(Aβ
a )

and U = (v, vt , u, ut ) be the solution of (1). Then for all 0 ≤ S ≤ T and all ε > 0 the
following inequality holds:

(
2 − μa

2
− b

2

)∫ T

S

∫ 1

0
u2t (t, x) dx dt +

(
2 − μa

2
− 2b

a(1)

)∫ T

S

∫ 1

0
a(x)u2x (t, x) dx dt

+2 − μa

2
βa(1)

∫ T

S
u2(t, 1) dt

≤ C1
εEv,u(S) + εa(1)

4

∫ T

S
v2x (t, 1) dt +

∫ T

S
h(t) dt, (36)

where

C1
ε = 2d1a,β + 1 + 1

4ε
with d1a,β = 2max(2, μa

2β )

min{1, a(1)} (37)

and

h(t) = (1 + a(1))u2t (t, 1) +
[

a(1)β(1 + β − μa) + μab

2

]

u2(t, 1)

+(2β − μa

2
)a(1)ut (t, 1)u(t, 1), t ∈ (S, T ). (38)

Proof Wemultiply the second equation of (1) by 2xux andwe integrate by parts over (S, T )×
(0, 1) as follows:

0 =
∫ T

S

∫ 1

0
2xux (t, x)

(
utt (t, x) − (a(x)ux (t, x))x − bvt (t, x)

)
dx dt

= 2

[∫ 1

0
xux (t, x)ut (t, x) dx

]t=T

t=S
− 2

∫ T

S

∫ 1

0
xutx (t, x)ut (t, x) dx dt

−b
∫ T

S

∫ 1

0
2xux (t, x)vt (t, x) dx dt

−2
∫ T

S

∫ 1

0

(
xa′(x)u2x (t, x) + xa(x)ux (t, x)uxx (t, x)

)
dx dt

= 2

[∫ 1

0
xux (t, x)ut (t, x) dx

]t=T

t=S
− b

∫ T

S

∫ 1

0
2xux (t, x)vt (t, x) dx dt

−2
∫ T

S

∫ 1

0
xa′(x)u2x (t, x) dx dt −

∫ T

S

∫ 1

0

(
x
(
u2t (t, x)

)

x + xa(x)
(
u2x (t, x)

)

x

)
dx dt .

(39)
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On the other hand, by integrating by parts and owing to (3)–(4), we have
∫ T

S

∫ 1

0
x
(
u2t (t, x)

)

x dx dt = −
∫ T

S

∫ 1

0
u2t (t, x) dx dt +

∫ T

S
u2t (t, 1) dt

and
∫ T

S

∫ 1

0
xa(x)

(
u2x (t, x)

)

x dx dt = a(1)
∫ T

S
u2x (t, 1) dt −

∫ T

S

∫ 1

0
(xa(x))′u2x (t, x) dx dt .

(40)

Inserting (40) into (39), we get

∫ T

S

∫ 1

0

(
u2t (t, x) + (a(x) − xa′(x))u2x (t, x)

)
dx dt = −2

[∫ 1

0
xux (t, x)ut (t, x) dx

]t=T

t=S

+b
∫ T

S

∫ 1

0
2xux (t, x)vt (t, x) dx dt +

∫ T

S

(
u2t (t, 1) + a(1)u2x (t, 1)

)
dt . (41)

Now, we proceed by multiplying the second equation of (1) by u and integrating by parts
over (S, T ) × (0, 1), to get

0 =
∫ T

S

∫ 1

0
u(t, x)

(
utt (t, x) − (a(x)ux (t, x))x − bvt (t, x)

)
dx dt

=
[∫ 1

0
u(t, x)ut (t, x) dx

]t=T

t=S
−
∫ T

S

∫ 1

0
u2t (t, x) dx dt

−
∫ T

S
[a(x)ux (t, x)u(t, x)]x=1

x=0 dt +
∫ T

S

∫ 1

0
a(x)u2x (t, x) dx dt

− b
∫ T

S

∫ 1

0
u(t, x)vt (t, x) dx dt .

Using the boundary conditions together with (5), this gives

−
∫ T

S

∫ 1

0
u2t (t, x) dx dt +

∫ T

S

∫ 1

0
a(x)u2x (t, x) dx dt = −

[∫ 1

0
u(t, x)ut (t, x) dx

]T

S

+a(1)
∫ T

S
ux (t, 1)u(t, 1) dt + b

∫ T

S

∫ 1

0
u(t, x)vt (t, x) dx dt . (42)

By adding to (41) the identity (42) multiplied by μa
2 , we obtain

2 − μa

2

∫ T

S

∫ 1

0
u2t (t, x) dx dt +

∫ T

S

∫ 1

0

(
2 + μa

2
a(x) − xa′(x)

)

u2x (t, x) dx dt

+2 − μa

2
βa(1)

∫ T

S
u2(t, 1) dt

= −
[∫ 1

0
ut (t, x)

(
2xux (t, x) + μa

2
u(t, x)

)
dx

]T

S
+
∫ T

S
h0(t) dt

+b
∫ T

0

∫ 1

0
vt (t, x)

(
2xux (t, x) + μa

2
u(t, x)

)
dx dt, (43)

where the function h0 is given by
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h0(t) = (1 + a(1))u2t (t, 1) + a(1)β(1 + β − μa)u
2(t, 1) +

(
2β − μa

2

)
a(1)ut (t, 1)u(t, 1),

t ∈ (S, T ).

Observe that, by the definition of μa , we have

2 − μa

2
a(x) ≤ 2 + μa

2
a(x) − xa′(x).

This, combined with (43), gives

2 − μa

2

[∫ T

S

∫ 1

0

(
u2t (t, x) + a(x)u2x (t, x)

)
dx dt + βa(1)

∫ T

S
u2(t, 1) dt

]

≤ −
[∫ 1

0
ut (t, x)

(
2xux (t, x) + μa

2
u(t, x)

)
dx

]T

S
+
∫ T

S
h0(t) dt

+b
∫ T

0

∫ 1

0
vt (t, x)

(
2xux (t, x) + μa

2
u(t, x)

)
dx dt . (44)

On the other hand, using Young’s inequality, we have
∣
∣
∣
∣

∫ 1

0
ut
(
2xux + μa

2
u
)
dx

∣
∣
∣
∣ ≤ 1

2
‖ut‖2L2(0,1) + 2‖xux + μa

4
u‖2L2(0,1). (45)

Next, we compute:

‖xux + μa

4
u‖2L2(0,1) =

∫ 1

0
x2u2x dx + μa

4

∫ 1

0
x(u2)x dx + μ2

a

16

∫ 1

0
u2 dx

=
∫ 1

0
x2u2x dx + μa

4

[
xu2

]x=1
x=0 + μa

4

(μa

4
− 1

) ∫ 1

0
u2 dx

≤
∫ 1

0
x2u2x dx + μa

4

[
xu2

]x=1
x=0 .

By using the boundary conditions, (3) and (57), we obtain that

‖xux + μa

4
u‖2L2(0,1) ≤

∫ 1

0
x2u2x dx + μa

4
u2(1) ≤ 1

a(1)

∫ 1

0
a(x)u2x dx + μa

4
u2(1). (46)

Combining (45) and (46), we get

∣
∣
∣
∣

∫ 1

0
ut
(
2xux + μa

2
u
)
dx

∣
∣
∣
∣ ≤ 1

2
‖ut‖2L2(0,1) + max(2, μa

2β )

a(1)
|u|2W 1

a

≤ d1a,βEv,u(t), (47)

where d1a,β is given in (37).
Moreover, we have

∣
∣
∣
∣b
∫ T

S

∫ 1

0
vt

(
2xux + μa

2
u
)
dx dt

∣
∣
∣
∣ ≤b

2

∫ T

S
‖vt‖2L2(0,1) dt

+ 2b
∫ T

S
‖xux + μa

4
u‖2L2(0,1) dt .
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From (30) and (46), we get
∣
∣
∣
∣b
∫ T

S

∫ 1

0
vt

(
2xux + μa

2
u
)
dx dt

∣
∣
∣
∣ ≤ b

2

∫ T

S
‖ut‖2L2(0,1) dt + εa(1)

4

∫ T

S
v2x (t, 1) dt

+
(

1 + 1

4ε

)

Ev,u(S) + 2b

a(1)

∫ T

S

∫ 1

0
a(x)u2x dx dt

+μab

2

∫ T

S
u2(t, 1) dt . (48)

Finally, inserting (47) and (48) into (44), one obtains the desired estimate (36). ��

Lemma 12 Assume (2) holds and that β > 0 is given. Let U0 = (v0, v1, u0, u1) ∈ D(Aβ
a )

andU = (v, vt , u, ut ) be the solution of (1). Then for all 0 ≤ S ≤ T the following inequality
holds:

−
∫ T

S

∫ 1

0
v2t (t, x) dx dt +

(

1 − bCa

2

)∫ T

S

∫ 1

0
a(x)v2x (t, x) dx dt

−b

2

∫ T

S

∫ 1

0
u2t (t, x) dx dt

≤ 2
√
CaEv,u(S), (49)

where Ca = 1
a(1) min

{
4, 1

2−μa

}
.

Proof We multiply the first equation of (1) by v and integrate the resulting equation over
(S, T ) × (0, 1). After suitable integrations by parts, this gives

0 =
∫ T

S

∫ 1

0
v(t, x) (vt t (t, x) − (a(x)vx (t, x))x + but (t, x)) dx dt

=
[∫ 1

0
v(t, x)vt (t, x) dx

]T

S
−
∫ T

S

∫ 1

0
v2t (t, x) dx dt −

∫ T

S
[a(x)vx (t, x)v(t, x)]x=1

x=0 dt

+
∫ T

S

∫ 1

0
a(x)v2x (t, x) dx dt + b

∫ T

S

∫ 1

0
v(t, x)ut (t, x) dx dt .

Using the fact that a(x)vx (t, x)v(t, x) vanishes at x = 1 and, owing to (5) also at x = 0, we
get

−
∫ T

S

∫ 1

0
v2t (t, x) dx dt +

∫ T

S

∫ 1

0
a(x)v2x (t, x) dx dt

= −
[∫ 1

0
v(t, x)vt (t, x) dx

]T

S
− b

∫ T

S

∫ 1

0
v(t, x)ut (t, x) dx dt . (50)

On the other hand, using Young’s inequality and the Poincaré inequality (7), we have
∣
∣
∣
∣

∫ 1

0
v(t, x)vt (t, x) dx

∣
∣
∣
∣ ≤ 1

2

∫ 1

0

( 1√
Ca

v2(t, x) +√
Cav

2
t (t, x)

)
dx

≤
√
Ca

2

∫ 1

0

(
a(x)v2x (t, x) + v2t (t, x)

)
dx

≤ √
CaEv,u(t).
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Thus ∣
∣
∣
∣
∣

[∫ 1

0
v(t, x)vt (t, x) dx

]T

S

∣
∣
∣
∣
∣
≤ 2

√
CaEv,u(S), (51)

One can show similarly that

∣
∣
∣
∣b
∫ T

S

∫ 1

0
v(t, x)ut (t, x) dx dt

∣
∣
∣
∣ ≤ b

2

∫ T

S

∫ 1

0
u2t (t, x) dx dt+

bCa

2

∫ T

S

∫ 1

0
a(x)v2x (t, x) dx dt .

(52)
Then, inserting (51) and (52) into (50), we arrive at the desired inequality (49). ��

Lemma 13 Assume (2) holds and that β > 0 is given. Let U0 = (v0, v1, u0, u1) ∈ D(Aβ
a )

andU = (v, vt , u, ut ) be the solution of (1). Then for all 0 ≤ S ≤ T the following inequality
holds:

a(1)
∫ T

S
v2x (t, 1) dt ≤ 4

min{1, a(1)}Ev,u(S) +
(

6 + 2b

min{1, a(1)}
)∫ T

S
Ev,u(t) dt . (53)

Proof Wemultiply the second equation of (1) by 2xvx andwe integrate by parts over (S, T )×
(0, 1) as follows:

0 =
∫ T

S

∫ 1

0
2xvx (t, x)

(
vt t (t, x) − (a(x)vx (t, x))x + but (t, x)

)
dx dt

= 2

[∫ 1

0
xvx (t, x)vt (t, x) dx

]t=T

t=S
− 2

∫ T

S

∫ 1

0
xvt x (t, x)vt (t, x) dx dt

−2
∫ T

S

∫ 1

0

(
xa′(x)v2x (t, x) + xa(x)vx (t, x)vxx (t, x)

)
dx dt

+b
∫ T

S

∫ 1

0
2xvx (t, x)ut (t, x) dx dt

= 2

[∫ 1

0
xvx (t, x)vt (t, x) dx

]t=T

t=S
− 2

∫ T

S

∫ 1

0
xa′v2x (t, x) dx dt

−
∫ T

S

∫ 1

0

(
x
(
v2t (t, x)

)

x + xa(x)
(
v2x (t, x)

)

x

)
dx dt + b

∫ T

S

∫ 1

0
2xvx (t, x)ut dx dt .

(54)

On the other hand, by integrating by parts and owing to (3)–(4), we have

∫ T

S

∫ 1

0
x
(
v2t (t, x)

)

x dx dt = −
∫ T

S

∫ 1

0
v2t (t, x) dx dt

and
∫ T

S

∫ 1

0
xa(x)

(
v2x (t, x)

)

x dx dt = a(1)
∫ T

S
v2x (t, 1) dt −

∫ T

S

∫ 1

0
(xa(x))′v2x (t, x) dx dt .

(55)
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Inserting (55) into (54), we get

a(1)
∫ T

S
v2x (t, 1) dt =

∫ T

S

∫ 1

0

{
v2t (t, x) + (

a(x) − xa′(x)
)
v2x (t, x)

}
dx dt

+2

[∫ 1

0
xvx (t, x)vt (t, x) dx

]t=T

t=S
+ 2b

∫ T

S

∫ 1

0
xvx (t, x)ut (t, x) dx dt .

(56)

Now, observe that condition (2) (ii) yields:

a(x) ≥ a(1)xμa ∀x ∈ [0, 1]. (57)

From Young inequality and (57), it follows that:

∣
∣
∣
∣

∫ 1

0
xvx (t, x)vt (t, x) dx

∣
∣
∣
∣ ≤ 1

2

∫ 1

0

{
v2t (t, x) + x2v2x (t, x)

}
dx

≤ 1

2min{1, a(1)}
∫ 1

0

{
v2t (t, x) + a(x)v2x (t, x)

}
dx

≤ 1

min{1, a(1)}Ev,u(t) ∀t ≥ 0, (58)

∣
∣
∣
∣2b

∫ T

S

∫ 1

0
xvx (t, x)ut (t, x) dx dt

∣
∣
∣
∣ ≤ b

∫ T

S

∫ 1

0

{
u2t (t, x) + x2v2x (t, x)

}
dx dt

≤ b

min{1, a(1)}
∫ T

S

∫ 1

0

{
u2t (t, x) + a(x)v2x (t, x)

}
dx dt

≤ 2b

min{1, a(1)}
∫ T

S
Ev,u(t) dt . (59)

Finally, combining (56), (58), (59) and the inequality x |a′(x)| < 2a(x), one obtains (53). ��

Lemma 14 Assume (2) holds and that β > 0 is given. Let U0 = (v0, v1, u0, u1) ∈ D(Aβ
a )

and U = (v, vt , u, ut ) be the solution of (1). Then for all 0 ≤ S ≤ T and all δ > 0 the
following inequality holds:

a(1)
∫ T

S
u2(t, 1) dt ≤ δ

(

1 + bCa + 1

β3

)∫ T

S
Ev,u(t) dt + 2 + 2b

√
Ca

β
√
ca,β

Ev,u(S)

+ 1

2δ

(

1 + 1 + b

βca,β

)

Ev,u(S). (60)

Proof Set λ = u(t, 1) and let z be the solution of the degenerate elliptic problem (27). We
multiply the second equation of (1) by z and integrate by parts the resulting equation over
(S, T ) × (0, 1), to obtain
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0 =
∫ T

S

∫ 1

0
z(t, x)

(
utt (t, x) − (a(x)ux (t, x))x − bvt (t, x)

)
dx dt

=
[∫ 1

0
z(t, x)ut (t, x) dx

]t=T

t=S

−
∫ T

S

∫ 1

0
zt (t, x)ut (t, x) dx dt −

[∫ T

S
a(x)ux (t, x)z(t, x) dt

]x=1

x=0

+
[∫ T

S
a(x)zx (t, x)u(t, x) dt

]x=1

x=0

−
∫ T

S

∫ 1

0
(a(x)zx (t, x))x u(t, x)dx dt − b

[∫ 1

0
z(t, x)v(t, x) dx

]t=T

t=S

+ b
∫ T

S

∫ 1

0
zt (t, x)v(t, x) dx dt .

By using the boundary conditions at x = 0 together with (5), this gives

0 =
[∫ 1

0
z(t, x)ut (t, x) dx

]t=T

t=S
− b

[∫ 1

0
z(t, x)v(t, x) dx

]t=T

t=S

−
∫ T

S

∫ 1

0
zt (t, x)ut (t, x) dx dt

+ b
∫ T

S

∫ 1

0
zt (t, x)v(t, x) dx dt − a(1)

∫ T

S
z(t, 1)ux (t, 1) dt + a(1)

∫ T

S
zx (t, 1)u(t, 1) dt .

Then, from the boundary conditions at x = 1 in both systems (1) and (27), we get

0 =
[∫ 1

0
z(t, x)ut (t, x) dx

]t=T

t=S
− b

[∫ 1

0
z(t, x)v(t, x) dx

]t=T

t=S

−
∫ T

S

∫ 1

0
zt (t, x)ut (t, x) dx dt

+ b
∫ T

S

∫ 1

0
zt (t, x)v(t, x) dx dt + a(1)

∫ T

S
z(t, 1)ut (t, 1) dt + a(1)

∫ T

S
u2(t, 1) dt .

Hence

a(1)
∫ T

S
u2(t, 1) dt =

∫ T

S

∫ 1

0
zt (t, x)ut (t, x) dx dt − b

∫ T

S

∫ 1

0
zt (t, x)v(t, x) dx dt

−
[∫ 1

0
z(t, x)ut (t, x) dx

]t=T

t=S
+ b

[∫ 1

0
z(t, x)v(t, x) dx

]t=T

t=S

−a(1)
∫ T

S
z(t, 1)ut (t, 1) dt . (61)

It only remains to estimate in a suitable way the terms on the right-hand side of the previous
inequality as follows. First, using Young’s inequality and thanks to the second inequality in
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(26), we have

∣
∣
∣
∣

∫ 1

0
z(t, x)ut (t, x) dx

∣
∣
∣
∣ ≤ 1

2β
√
ca,β

∫ 1

0
u2t (t, x) dx + β

√
ca,β

2

∫ 1

0
z2(t, x) dx

≤ 1

β
√
ca,β

(
1

2

∫ 1

0
u2t (t, x) dx + βa(1)

2
u2(t, 1)

)

≤ 1

β
√
ca,β

Ev,u(t) ∀t ∈ [S, T ]. (62)

Similarly, by Young’s inequality and the Poincaré inequality (7), we have

∣
∣
∣
∣

∫ 1

0
bz(t, x)v(t, x) dx

∣
∣
∣
∣ ≤ b

(
1

2β
√
ca,βCa

∫ 1

0
v2(t, x) dx + β

√
ca,βCa

2

∫ 1

0
z2(t, x) dx

)

≤ b
√
Ca

β
√
ca,β

(
1

2

∫ 1

0
a(x)v2x (t, x) dx + βa(1)

2
u2(t, 1)

)

≤ b
√
Ca

β
√
ca,β

Ev,u(t) ∀t ∈ [S, T ]. (63)

On the other hand, keeping in mind the second inequality in (26), we have

‖zt‖2L2(0,1) ≤ a(1)

βca,β

u2t (t, 1). (64)

Furthermore, thanks to the first inequality in (26) and the definition of | · |W 1
a (0,1), we have

βa(1)z2(t, 1) ≤ |z|2W 1
a (0,1) ≤ a(1)

β
u2(t, 1),

so that

z2(t, 1) ≤ 1

β2 u
2(t, 1) ≤ 2

β3a(1)
Ev,u(t). (65)

Hence, by using the Young’s inequality

ab ≤ δa2

2
+ b2

2δ
∀δ > 0,∀a, b ∈ R

and taking into account the estimates (62)–(65) in (61), we deduce that

a(1)
∫ T

S
u2(t, 1) dt ≤ δ

(

1 + bCa + 1

β3

)∫ T

S
Ev,u(t) dt + 2 + 2b

√
Ca

β
√
ca,β

Ev,u(S)

+ 1

2δ

(

1 + 1 + b

βca,β

)∫ T

S
a(1)u2t (t, 1) dt . (66)

Finally, using (22) in the above estimate, one obtains (60). ��

Proof of Theorem 9 As usual, let us assume thatU = (v, vt , u, ut ) is a regular solution of (1)
(the general case can be recovered by an approximation argument). We start by combining
(49) multiplied by 2−μa

2 and (36) multiplied by 2, to obtain that, for all 0 ≤ S ≤ T and all
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ε > 0,

− 2 − μa

2

∫ T

0

∫ 1

0
v2t (t, x) dx dt + 2 − μa

2

(

1 − bCa

2

)∫ T

0

∫ 1

0
a(x)v2x (t, x) dx dt

− 2 − μa

2

b

2

∫ T

0

∫ 1

0
u2t (t, x) dx dt + 2

(
2 − μa

2
− b

2

)∫ T

0

∫ 1

0
u2t (t, x) dx dt

+ 2

(
2 − μa

2
− 2b

a(1)

)∫ T

0

∫ 1

0
a(x)u2x (t, x) dx dt + (2 − μa)βa(1)

∫ T

S
u2(t, 1) dt

≤
(
2C1

ε + (2 − μa)
√
Ca

)
Ev,u(S) + ε

2
a(1)

∫ T

S
v2x (t, 1) dt + 2

∫ T

S
h(t) dt,

which can be rewritten as

2 − μa

4

∫ T

0

∫ 1

0
v2t dx dt + 2 − μa

2

(

1 − bCa

2

)∫ T

0

∫ 1

0
a(x)v2x dx dt

+2 − μa

4

(

1 − 6 − μa

2 − μa
b

)∫ T

0

∫ 1

0
u2t dx dt

+2

(
2 − μa

2
− 2b

a(1)

)∫ T

S

∫ 1

0
a(x)u2x dx dt

+(2 − μa)βa(1)
∫ T

S
u2(t, 1) dt + 3(2 − μa)

4

∫ T

S

∫ 1

0

(
u2t − v2t

)
dx dt

≤
(
2C1

ε + (2 − μa)
√
Ca

)
Ev,u(S) + ε

2
a(1)

∫ T

S
v2x (t, 1) dt + 2

∫ T

S
h(t) dt . (67)

Moreover, from (30), we can see that

3(2 − μa)

4

∫ T

S

∫ 1

0

(
u2t − v2t

)
dx dt ≥ −3(2 − μa)

8b
εa(1)

∫ T

S
v2x (t, 1) dt

− 3(2 − μa)

4b

(

2 + 1

2ε

)

Ev,u(S).

Inserting this last inequality into (67) and using the definition of Ma,b (see (28)), then we
have

(2 − μa)Ma,b

∫ T

S
Ev,u(t) dt ≤

(

2C1
ε + (2 − μa)

√
Ca + 3(2 − μa)

4b

(

2 + 1

2ε

))

Ev,u(S)

+
(
1

2
+ 3(2 − μa)

8b

)

εa(1)
∫ T

S
v2x (t, 1) dt + 2

∫ T

S
h(t) dt .

(68)
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We now choose ε = εa,b := (2−μa)Ma,b

4
(
1
2+ 3(2−μa )

8b

)
(6+ 2b

min{1,a(1)} )
and use (53), then (68) becomes

3(2 − μa)

4
Ma,b

∫ T

S
Ev,u(t) dt ≤

(
2C1

εa,b
+ (2 − μa)

√
Ca

+3(2 − μa)

4b

(

2 + 1

2εa,b

))

Ev,u(S)

+ 4εa,b

min{1, a(1)}
(
1

2
+ 3(2 − μa)

8b

)

Ev,u(S)

+2
∫ T

S
h(t) dt . (69)

We now estimate the last term on the right-hand side of this inequality where we recall that
the function h is given in (38). We have that

h(t) ≤ η1u
2
t (t, 1) + η2a(1)u2(t, 1), ∀t ∈ (S, T ),

where

η1 =
(

1 + 3

2
a(1)

)

and η2 = β2 + β − μaβ + μa

2a(1)
b + 1

2

(
2β − μa

2

)2
.

Therefore, by using (60) with δ = δa,b,β := (2−μa)Ma,b

8η2
(
1+bCa+ 1

β3

) and keeping in mind the dissi-

pation relation (22), we get

2
∫ T

S
h(t) dt ≤ 2η1

∫ T

S
u2t (t, 1) dt + 2η2

∫ T

S
a(1)u2(t, 1) dt

≤ 2η1
a(1)

Ev,u(S) + (2 − μa) Ma,b

4

∫ T

S
Ev,u(t) dt + 2η2

(
2 + 2b

√
Ca
)

β
√
ca,β

Ev,u(S)

+ η2

δa,b,β

(

1 + 1 + b

βca,β

)

Ev,u(S). (70)

Using (70) in (69), it results that

∫ T

S
Ev,u(t) dt ≤ Ma,b,βEv,u(S), (71)

where

Ma,b,β = 2

(2 − μa) Ma,b

[

2C1
εa,b

+ (2 − μa)
√
Ca + 3(2 − μa)

4b

(

2 + 1

2εa,b

)

+ 4εa,b

min{1, a(1)}
(
1

2
+ 3(2 − μa)

8b

)

+ 2η1
a(1)

+ 2η2
(
2 + 2b

√
Ca
)

β
√
ca,β

+ η2

δa,b,β

(

1 + 1 + b

βca,β

)]

. (72)

Finally, by [9, Theorem 8.1] (that has also been used before in [41]), we conclude that the
energy of the system (1) satisfies the exponential decay estimate (29). The proof is thus
complete. ��
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Remark 2 We observe that the constant Ma,b,β , which is the reciprocal of the exponential
decay rate, satisfies

lim
b−→0+ Ma,b,β = +∞.

In this case, the decay estimate will be weaker: there is no exponential energy decay. In our
opinion, this is quite natural due to the lack of coupling effects.

Moreover, concerning the influence of the parameter β on the decay rate, we also have

lim
β−→0+ Ma,b,β = +∞,

as for the case of a single degenerate wave equation (see [37]). Consequently, if β = 0, then
exponential stability of the system (1) is still an open problem.
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