
Rendiconti del Circolo Matematico di Palermo Series 2 (2024) 73:1555–1565
https://doi.org/10.1007/s12215-024-00999-4

Ramified covering maps of singular curves and stability
of pulled back bundles

Indranil Biswas1 ·Manish Kumar2 · A. J. Parameswaran3

Received: 1 October 2023 / Accepted: 3 January 2024 / Published online: 10 February 2024
© The Author(s), under exclusive licence to Springer-Verlag Italia S.r.l., part of Springer Nature 2024

Abstract
Let f : X −→ Y be a generically smooth nonconstant morphism between irreducible
projective curves, defined over an algebraically closed field, which is étale on an open subset
of Y that contains both the singular locus of Y and the image, in Y , of the singular locus of
X . We prove that the following statements are equivalent:

(1) The homomorphism of étale fundamental groups

f∗ : πet
1 (X) −→ πet

1 (Y )

induced by f is surjective.
(2) There is no nontrivial étale covering φ : Y ′ −→ Y admitting a morphism q : X −→

Y ′ such that φ ◦ q = f .
(3) The fiber product X ×Y X is connected.
(4) dim H0(X , f ∗ f∗OX ) = 1.
(5) OY ⊂ f∗OX is the maximal semistable subsheaf.
(6) The pullback f ∗E of every stable sheaf E on Y is also stable.
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1556 I. Biswas et al.

1 Introduction

Let k be an algebraically closed field. Let X and Y be irreducible smooth projective curves
and f : X −→ Y a generically smooth nonconstant map. In [1] it was proved that the
following six statements are equivalent:

(1) The homomorphism between étale fundamental groups

f∗ : πet
1 (X) −→ πet

1 (Y )

induced by f is surjective.
(2) The map f does not factor through some nontrivial étale cover of Y (in particular, f is

not nontrivial étale).
(3) The fiber product X ×Y X is connected.
(4) dim H0(X , f ∗ f∗OX ) = 1.
(5) The maximal semistable subbundle of the direct image f∗OX is OY .
(6) For every stable vector bundle E on Y , the pullback f ∗E is also stable.

Our aim here is to extend this to the context of generically smooth morphisms between
singular curves. Examples show that some conditions are needed in order to be able extend
the above result to the context of generically smooth morphisms between singular curves;
see Sect. 4. To address this, we consider maps that are étale over singular locus (EOSL for
short).

Let X and Y be reduced irreducible projective curves over k, and let

f : X −→ Y

be a generically smooth nonconstant morphism. The singular loci of X and Y are denoted
by SX and SY respectively. The map f is called EOSL if f is étale over a neighborhood of
SY ∪ f (SX ).

Let ̂X and ̂Y be the normalizations of X and Y respectively. A map f : X −→ Y
produces a map f ′ : ̂X −→ ̂Y .

Let f : X −→ Y be an EOSL map. We prove that the following seven statements are
equivalent (see Theorem 3.2 and Theorem 3.4):

(1) f is genuinely ramified.
(2) The map f ′ : ̂X −→ ̂Y is genuinely ramified.
(3) The homomorphism of étale fundamental groups

f∗ : πet
1 (X) −→ πet

1 (Y )

induced by f is surjective.
(4) There is no nontrivial étale covering φ : Y ′ −→ Y admitting a morphism q : X −→

Y ′ such that φ ◦ q = f .
(5) The fiber product X ×Y X is connected.
(6) dim H0(X , f ∗ f∗OX ) = 1.
(7) The pullback f ∗E of every stable sheaf E on Y is also stable.

2 EOSLmaps and semistability

The base field k is assumed to be algebraically closed. There is no assumption on its charac-
teristic.
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Ramified covering maps of singular curves... 1557

Let X and Y be reduced irreducible projective curves over k, and let

f : X −→ Y

be a generically smooth nonconstant morphism. Let B f ⊂ Y be the branch locus of f , i.e.,
the finite subset of Y over which f fails to be étale. So the restriction

f
∣

∣

f −1(Y\B f )
: f −1(Y \ B f ) −→ Y \ B f

is étale. The singular locus of X (respectively, Y ) will be denoted by SX (respectively, SY ).
The map f will be called étale over singular locus (EOSL for short) if

B f ∩ (SY ∪ f (SX )) = ∅. (2.1)

Therefore, f is EOSL if f is étale at every point of SX ∪ f −1(SY ). Moreover, when f is
EOSL, then SX = f −1(SY ).

Lemma 2.1 Let f : X −→ Y be an EOSL map. Then the following two hold:

(1) The direct image f∗OX is locally free on Y .
(2) For any torsionfree sheaf E on Y , the pullback f ∗E is torsionfree.

Proof The map f is flat and hence f∗OX is locally free. To see this another way, note that
f∗OX is torsionfree and hence it is locally free on Y \ SY , where SY is the singular locus
of Y . Now since f is étale over neighborhoods of points of SY it follows immediately that
f∗OX is locally free on a neighborhood of SY . Hence f∗OX is locally free on entire Y .
The second statement is evident. 
�
Take an EOSL map f : X −→ Y . From Lemma 2.1 we know that f∗OX is locally free.

Let

F1 ⊂ F2 ⊂ · · · ⊂ Fm = f∗OX (2.2)

be the Harder–Narasimhan filtration of f∗OX (see [4]). Note that m = 1 if f∗OX is
semistable. The subsheaf F1 ⊂ f∗OX in (2.2) is called the maximal semistable subsheaf
of f∗OX , and

degree(F1)
rank(F1)

∈ Q is denoted by μmax( f∗OX ) [4]. In general, degree(V )
rank(V )

∈ Q is
denoted by μ(V ).

Since f∗OX is locally free, the pullback f ∗ f∗OX is locally free. In view of this, the proof
of the following lemma is identical to the proof in the special case where both X and Y are
smooth [1].

Lemma 2.2 For the subsheaf F1 in (2.2),

degree(F1) = 0.

Proof This is proved in [1, p. 12825, (2.7)] assuming that X and Y are smooth. Since this
lemma turns out to be crucial here, we give the details of its proof.

Since f ∗OY = OX , it follows from the adjunction formula (see [2, p. 110]) that

OY ⊂ f∗OX .

This implies that

μ(F1) = μmax( f∗OX ) ≥ μmax(OY ) = 0. (2.3)
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1558 I. Biswas et al.

On the other hand, a result on general vector bundles on X says the following: Since f ∗V
is torsionfree for any torsionfree sheaf V on Y For any vector bundle V on X ,

μmax( f∗V) ≤ μmax(V)

degree( f )

(see [1, p. 12824, Lemma 2.2]). Substituting OX in place of V we conclude that

μmax( f∗V) ≤ 0.

This and (2.3) together completes the proof. 
�
Proposition 2.3 The subsheaf F1 ⊂ f∗OX in (2.2) is a subbundle, or in other words, the
quotient ( f∗OX )/F1 is locally free.

Proof Let β : ̂Y −→ Y be the normalization of Y ; so ̂Y is an irreducible smooth projective
curve. Consider the fiber product

̂X := X ×Y ̂Y
β ′

−→ X
⏐

⏐

� f ′
⏐

⏐

� f

̂Y
β−→ Y

(2.4)

The given condition that f is EOSL implies that ̂X in (2.4) is smooth. Indeed, since f is
étale at SX ∪ f −1(SY ), we have f (SX ) = SY . By base change f ′ is étale over β−1(SY ).
Hence all points in (β ′)−1(SX ) = ( f ′)−1(β−1(SY )) are smooth points of ̂X .

Since f∗OX is locally free, the pullback β∗ f∗OX is also locally free. We have

β∗ f∗OX = f ′∗ÔX , (2.5)

where f ′ is the map in (2.4). Let ̂F ⊂ f ′∗ÔX be the maximal semistable subsheaf (so
it is the first nonzero term of the Harder–Narasimhan filtration of f ′∗ÔX ). We know that
degree(̂F) = 0 [1, p. 12825, (2.7)]. Therefore, from Lemma 2.2 it follows that for the
isomorphism in (2.5),

β∗ f∗OX ⊃ β∗F1 ⊂ ̂F ⊂ f ′∗ÔX . (2.6)

Note that the algebra structure of the sheaf O
̂X makes f ′∗ÔX , where f ′ is as in (2.4), a

sheaf of algebras over ̂Y , and the corresponding spectrum is the (ramified) covering f ′. The
subsheaf ̂F ⊂ f ′∗ÔX in (2.6) turns out to be a sheaf of subalgebras (see [1, p. 12826, Lemma
2.4]). Let

φ′ : ̂Y ′ −→ ̂Y

be the (possibly ramified) covering map given by the spectrum of the sheaf of algebras ̂F .
Therefore, we have

̂F = φ′∗ÔY ′ . (2.7)

The fact that ̂F is a sheaf of subalgebras of f ′∗ÔX implies that we have a morphism

q : ̂X −→ ̂Y ′ (2.8)

such that φ′ ◦ q = f ′ (see [1, p. 12828, (2.11)] and the line following it). Note that this
implies that φ′∗ÔY ′ ⊂ f ′∗ÔX , and (2.7) implies that the two subsheaves φ′∗ÔY ′ and ̂F of
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f ′∗ÔX coincide. Since degree(̂F) = 0, using [1, p. 12825, Lemma 2.3] it follows that φ′ is
actually étale (see the lines following [1, p. 12829, (2.12)]).

The above étale covering φ′ of ̂Y produces an étale covering

φ : Y ′ −→ Y . (2.9)

To see this, first note that the restriction of φ′ to the complement ̂Y ′ \(β ◦φ′)−1(SY ) produces
an étale covering

φ0 : Y ′
0 −→ Y \ SY (2.10)

because the restriction

β
∣

∣

̂Y\β−1(SY )
: ̂Y \ β−1(SY ) −→ Y \ SY

is an isomorphism. The map q in (2.8) produces a map

q0 : X \ f −1(SY ) −→ Y ′
0

(see (2.10)). Indeed, q0 is simply the restriction of q to ̂X \ (β ◦ f ′)−1(SY ) (note that
X\ f −1(SY ) = ̂X\(β ◦ f ′)−1(SY )). Since φ′ ◦ q = f ′, it follows that

φ0 ◦ q0 = f
∣

∣

X\ f −1(SY )
, (2.11)

where φ0 is the map in (2.10). Now from (2.1) and (2.11) it follows that φ0 extends to an
étale covering φ as in (2.9).

The identification of ̂Y ′\(β ◦ φ′)−1(SY ) with Y ′
0 extends to a map

β1 : ̂Y ′ −→ Y ′

because ̂Y ′ is smooth. Since the diagram

̂Y ′ β1−→ Y ′
⏐

⏐

�φ′
⏐

⏐

�φ

̂Y
β−→ Y

is Cartesian, we conclude that

φ′∗ÔY ′ = β∗(φ∗OY ′). (2.12)

We have degree(φ∗OY ′) = 0 because φ is étale (see [1, p. 13825, Lemma 2.3]). Hence
from Lemma 2.2 it follows that

φ∗OY ′ ⊂ F1.

Consequently, (2.12) implies that φ′∗ÔY ′ ⊂ β∗F1. This and (2.7) together give that ̂F ⊂
β∗F1. From this and (2.6) we conclude that

β∗F1 = ̂F (2.13)

as subsheaves of β∗ f∗OX = f ′∗ÔX (see (2.5)). On the other hand, from (2.7) and (2.12)
we have ̂F = β∗(φ∗OY ′). Combining this with (2.13) it is deduced that F1 = φ∗OY ′ .
Now observe that φ∗OY ′ is subbundle of f∗OX because φ is étale and f is étale over a
neighborhood of SY ∪ f (SX ). This completes the proof. 
�
Corollary 2.4 The notation of the proof of Proposition 2.3 is used.
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(1) rank(F1) = rank(̂F).
(2) F1 = OY if and only if ̂F = O

̂Y .

Proof The first statement follows immediately from (2.13).
Since OY ⊂ f∗OX and O

̂Y ⊂ f ′∗ÔX , from Lemma 2.2 it follows that OY ⊂ F1 and
O

̂Y ⊂ ̂F . Therefore, F1 = OY (respectively, ̂F = O
̂Y ) if and only if rank(F1) = 1

(respectively, rank(̂F) = 1). Now the second statement follows from the first statement. 
�
Proposition 2.5 Let f : X −→ Y be an EOSL map. For any semistable vector bundle E
on Y the pullback f ∗E is also semistable.

Proof As before, B f ⊂ Y is the finite subset overwhich f fails to be étale. Let Y o = Y \B f .
Consider the étale cover

f ′ := f
∣

∣

Xo : Xo −→ Y o

obtained by restricting f to the complement Xo := X\ f −1(B f ). Let

f ′′ : Zo −→ Y o

be the Galois closure of f ′ with the Galois group Gal( f ′′) being denoted by G. Since the
map f is EOSL, it can be shown that the above map f ′′ extends to a ramified G–Galois
cover

˜f : Z −→ Y ,

where Z is a projective curve containing Zo. To prove this, let y1, · · · , yr be the singular
points of Y . Let̂Yi be the formal neighborhood of yi in Y and̂Y o

i = Y o×Y Yi for 1 ≤ i ≤ r .
Note that for each i ∈ {1, · · · , r}, the map f is étale over yi and f ′′ is the Galois closure
of f ′ which is the restriction of f . Hence the pullback of f ′′ along ̂Y o

i −→ Y o gives an
isomorphism of G–Galois covers

Zo ×Y o ̂Y o
i −→ ̂Y o

i

with the G–Galois cover IndG{e} ̂Y o
i −→ ̂Y o

i induced from the trivial cover defined by the

identity map on ̂Y o
i . These isomorphisms allow us to patch G-Galois covers

r
⋃

i=1

IndG{e}̂Yi −→
r

⋃

i=1

̂Yi

and Zo −→ Y o along
⋃r

i=1 Ind
G{e} ̂Y o

i −→ ⋃r
i=1

̂Y o
i to obtain the G-cover ˜f : Z −→ Y

(using [3, Theorem 3.1.9] with the category of modules replaced by category of G-covers as
in [3, Theorem 3.2.4]).

Note that ˜f is étale on a neighborhood of SY . So ˜f is flat. Let

φ : Z −→ X

be the map such that ˜f = f ◦ φ.
Take any semistable vector bundle E on Y . Assume that f ∗E is not semistable. Let

V ⊂ f ∗E be a subsheaf that destabilizes f ∗E . Then φ∗V destabilizes φ∗ f ∗E = ˜f ∗E .
Let W ⊂ ˜f ∗E be the maximal semistable subsheaf of ˜f ∗E (in other words, it is the

first nonzero term in the Harder–Narasimhan filtration of ˜f ∗E). Note that the natural action
of the Galois group Gal( ˜f ) on ˜f ∗E preserves the above subsheaf W . Indeed, this follows
immediately from the uniqueness of the Harder–Narasimhan filtration.
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The restriction of W to Z \ ˜f −1(SY ) descends Y \ SY . On the other hand, the map
f is étale over a neighborhood U of SY , so the restriction of W to f −1(U ) descends to
U . Consequently, W descends to a subsheaf of E . Since W destabilizes ˜f ∗E , it follows
immediately that this descend of W to a subsheaf of E destabilizes E . But E is semistable.
In view of this contradiction we conclude that f ∗E is semistable. 
�

3 Genuinely ramifiedmaps

Let f : X −→ Y be an EOSL map. Consider the maximal semistable subsheaf F1 ⊂
f∗OX . From Proposition 2.3 we know that F1 is a subbundle of f∗OX .

Definition 3.1 An EOSL map f : X −→ Y will be called genuinely ramified if F1 = OY .

From Corollary 2.4(2) we know that f is genuinely ramified if and only if the map
f ′ : ̂X −→ ̂Y in (2.4) is genuinely ramified. From the proof the Proposition 2.3 it follows
that the homomorphism of étale fundamental groups

f∗ : πet
1 (X) −→ πet

1 (Y )

induced by f is surjective if and only if the homomorphism of étale fundamental groups

f ′∗ : πet
1 (̂X) −→ πet

1 (̂Y )

induced by f ′ in (2.4) is surjective.

Theorem 3.2 Let f : X −→ Y be an EOSL map between projective curves. Then the
following six statements are equivalent:

(1) f is genuinely ramified.
(2) The map f ′ : ̂X −→ ̂Y in (2.4) is genuinely ramified.
(3) The homomorphism of étale fundamental groups

f∗ : πet
1 (X) −→ πet

1 (Y )

induced by f is surjective.
(4) There is no nontrivial étale covering φ : Y ′ −→ Y admitting a morphism q : X −→

Y ′ such that φ ◦ q = f .
(5) The fiber product X ×Y X is connected.
(6) dim H0(X , f ∗ f∗OX ) = 1.

Proof Itwas shown that thefirst two statements are equivalent. The third and fourth statements
are clearly equivalent.

To show that the fifth and sixth statements are equivalent, consider the fiber product

X ×Y X
ϕ−→ X

⏐

⏐

�β

⏐

⏐

� f

X
f−→ Y

We have β∗OX×Y X = f ∗ f∗OX . Since the above diagram is Cartesian, we have

f ∗ f∗OX = β∗ϕ∗OX = β∗OX×Y X ,
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and hence

H0(X , f ∗ f∗OX ) = H0(X , β∗OX×Y X ) = H0(X ×Y X , OX×Y X ). (3.1)

Since X ×Y X is connected if and only if dim H0(X ×Y X , OX×Y X ) = 1, from (3.1) it
follows that the fifth and sixth statements are equivalent.

To show that the second and third statements are equivalent, recall that the third statement
holds if and only if the homomorphism of étale fundamental groups

f ′∗ : πet
1 (̂X) −→ πet

1 (̂Y )

induced by f ′ in (2.4) is surjective. But this homomorphism f ′∗ is surjective if and only if f ′
is genuinely ramified [1, p. 12828, Proposition 2.6]. So the second and third statements are
equivalent.

We will now show that the first statement implies the sixth statement. From Proposition
2.5 we conclude that for any vector bundle V on Y , the Harder–Narasimhan filtration of f ∗V
is simply the pullback, by f , of the Harder–Narasimhan filtration of V .

Assume that f is genuinely ramified. This implies that the Harder–Narasimhan filtration
of f∗OX in (2.2) is of the form

OY = F1 ⊂ F2 ⊂ · · · ⊂ Fm = f∗OX ,

where degree(Fj/Fj−1) < 0 for all 2 ≤ j ≤ m. Consequently, the Harder–Narasimhan
filtration of f ∗ f∗OX is the following:

OX = f ∗F1 ⊂ f ∗F2 ⊂ · · · ⊂ f ∗Fm = f ∗ f∗OX , (3.2)

Since degree( f ∗Fj/ f ∗Fj−1) = degree( f ) · degree(Fj/Fj−1) < 0, we have

H0(X , ( f ∗Fj )/( f ∗Fj−1)) = 0

for all 2 ≤ j ≤ m. In view of this, from (3.2) it follows that

H0(X , f ∗ f∗OX ) = H0(X , f ∗F1) = H0(X , OX ).

Hence the sixth statement holds.
Finally, we will show that the sixth statement implies the fourth statement. To prove this

by contradiction, let φ : Y ′ −→ Y be a nontrivial étale covering, and q : X −→ Y ′ a
morphism, such that φ ◦ q = f . Then we have

φ∗OY ′ ⊂ f∗OX ,

and hence

q∗φ∗φ∗OY ′ = f ∗φ∗OY ′ ⊂ f ∗ f∗OX .

This implies that

dim H0(X , f ∗ f∗OX ) ≥ dim H0(Y ′, φ∗φ∗OY ′). (3.3)

Since φ is étale, Y ′ is a connected component of Y ′ ×Y Y ′ using the diagonal map. So
Y ′ ×Y Y ′ is not connected. Hence setting f = φ in (3.1) we conclude that

dim H0(Y ′, φ∗φ∗OY ′) ≥ 2.

Therefore, (3.3) contradicts the sixth statement. So the sixth statement implies the fourth
statement. This completes the proof. 
�
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Lemma 3.3 Let f : X −→ Y be an EOSL map of degree d between projective curves.
Assume that there is a finite group � acting faithfully on X such that Y = X/�. If f is
genuinely ramified, then

f ∗(( f∗OX )/OY ) = ( f ∗ f∗OX )/OX ↪→
d−1
⊕

i=1

Li ,

where each Li is a line bundle on X of negative degree.

Lemma 3.3 was proved in [1] under the assumption that X is smooth (see [1, p. 12837,
Proposition 3.5]). The same proof works here.

Theorem 3.4 Let f : X −→ Y be an EOSL map of degree d between projective curves.
Then the following two statements are equivalent:

(1) f is genuinely ramified;
(2) f ∗E is stable for every stable vector sheaf E on Y .

Theorem 3.4 is proved exactly as Theorem 5.3 of [1, p. 12850] is proved.

4 Some examples

4.1 Example 1

LetY an irreducible nodal projective curve of arithmetic genus at least two.Let f : X −→ Y
be the normalization. Then f satisfies (4) and (5) of Theorem 3.2 but does not satisfy (1) and
(3) of Theorem 3.2. Note that f is not an EOSL map.

4.2 Example 2

Consider the map

φ : CP1 −→ CP1, z −→ z2.

Let ψ1 : CP1 −→ X be the rational nodal curve of arithmetic genus one obtained by
identifying 1 and

√
2. Let ψ2 : CP1 −→ Y be the rational nodal curve of arithmetic genus

one obtained by identifying 1 and 2. The map ψ2 ◦ φ factors ψ1. In other words, there is a
unique map

f : X −→ Y

such that ψ2 ◦ φ = f ◦ ψ1. This map f is clearly not EOSL. Note that the homomorphism
of étale fundamental groups

f∗ : πet
1 (X) −→ πet

1 (Y )

induced by f is surjective. So statement (3) of Theorem 3.2 holds. We will show that there
is a stable vector bundle on Y whose pullback to X is not stable.

Let β : Z −→ Y be the unique étale covering of degree two (note that π1(Y ) = Z).
Let L be a holomorphic line bundle on Z of degree one. Then the direct image β∗L is a
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vector bundle of rank two and degree one. To prove that β∗L is semistable, take any rank one
subsheaf F ⊂ β∗L . Then we have a nonzero homomorphism β∗F −→ L because

H0(Y , Hom(F, β∗L)) ∼= H0(Z , Hom(β∗F, L))

(see [2, p. 110]). Since there is a nonzero homomorphism β∗F −→ L , we conclude that

2 · degree(F) = degree(β∗F) ≤ degree(L) = 1.

Therefore, it follows that β∗L is semistable. Since degree(β∗L) = 1, this implies that β∗L
is stable. So f ∗β∗L is a vector bundle on X of rank two and degree two.

It can be shown that there is no stable vector bundle of rank two and degree two on X .
Indeed, if W is a vector bundle on X of rank two and degree two, then

dim H0(X , W ) ≥ dim H0(X , W ) − dim H1(X , W ) = 2.

Take two linearly independent sections s and t on W , and consider the evaluation homomor-
phism

η : OX ⊕ OX −→ W

that sends any (c1, c2) ∈ Ox ⊕Ox = C2, x ∈ X , to c1 ·s(x)+c2 · t(x) ∈ Wx . This η is not
an isomorphism over X , because degree(W ) = 2 > degree(OX ⊕ OX ). Therefore, there
is (a, b) �= (0, 0) such that as + bt vanishes at some point of X . The degree of the rank
one subsheaf of W generated by as + bt is at least one. Hence W is not stable. In particular,
f ∗β∗L is not stable.

4.3 Example 3

Let

γ : CP1 −→ CP1 (4.1)

be the morphism defined by z −→ zd , with d ≥ 5. Denote by X the nodal curve of
arithmetic genus 1 obtained by identifying 1 ∈ CP1 with −1 ∈ CP1. Let Y be the nodal
curve of arithmetic genus 1 obtained by identifying 1 ∈ CP1 with exp(π

√−1/d) ∈ CP1.
The map γ in (4.1) produces a map

f : Y −→ X . (4.2)

Note that π1(Y , y0) = Z = π1(X , f (y0)), and the induced homomorphism

f∗ : π1(Y , y0) −→ π1(X , f (y0)) (4.3)

is an isomorphism.
Consider the vector bundle OCP1 ⊕ OCP1(1) on CP1 of rank two and degree one. Take

any isomorphism of fibers over 1 and −1

I := (OCP1 ⊕ OCP1(1))1 −→ (OCP1 ⊕ OCP1(1))−1 (4.4)

such that I (OCP1(1)1) = (OCP1)−1. Identifying the fibers ofOCP1 ⊕OCP1(1) over −1 and
−1 using I we obtain a vector bundle E on X of rank two and degree 1. It is straightforward
to check that E is stable.

Now consider the vector bundle

γ ∗(OCP1 ⊕ OCP1(1)) ∼= OCP1 ⊕ OCP1(d)
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on CP1, where γ is the map in (4.1). Consider the following isomorphism of its fibers over
1 and exp(π

√−1/d):

γ ∗(OCP1 ⊕ OCP1(1))1 = (OCP1 ⊕ OCP1(1))1
I−→ (OCP1 ⊕ OCP1(1))−1

= γ ∗(OCP1 ⊕ OCP1(1))exp(π
√−1/d),

where I is the isomorphism in (4.4). Identifying the fibers of γ ∗(OCP1 ⊕OCP1(1)) over −1
and exp(π

√−1/d) using this isomorphism we obtain a vector bundle V on Y of rank two
and degree d . Note that we have

f ∗E = V , (4.5)

where f is the map in (4.2).
We will construct a subsheaf of f ∗E of rank one and degree d −2. Consider the subsheaf

OCP1(d − 2) ∼= (γ ∗(OCP1(1))) ⊗ OCP1(−1 − exp(π
√−1/d))

⊂ γ ∗(OCP1(1)) ⊂ γ ∗(OCP1 ⊕ OCP1(1)).

It produces a subsheaf of V of rank 1 and degree d − 2. Now using the isomorphism in (4.5)
this subsheaf produces a subsheaf of f ∗E of rank 1 and degree d−2. Consequently, the vector
bundle f ∗E is not stable (recall that d ≥ 5), although E is stable and the homomorphism
in (4.3) is an isomorphism.
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