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Abstract
In this essay, we outline the basic characteristics of the general one-dimensional Clifford
Fourier transform and its fundamental properties. In addition, we provide some applications
to probability theory, Rényi and Shannon entropy. And we illustrate results with examples.
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1 Introduction

The idea of Clifford algebra was first introduced by the famous mathematician of the late
19th century William Kingdon Clifford [7]. It is a mathematical stricture that extends the
principles of complex numbers and vectors to higher dimensions. This concept is based on the
notion of a geometric product between vectors into a field stricture, which provides a robust
tool for analyzing geometric objects in higher dimensions. Its application is far-reaching,
spanning fields such as physics, engineering, and computer science.

One of the significant strengths of Clifford algebra is its ability to unify and simplify many
areas ofmathematics and physics, including linear algebra, differential geometry, electromag-
netism, and quantummechanics. In [11], authors aim to connect Clifford algebras, manifolds
and harmonic analysis, and to demonstrate the fundamental role of algebra, geometry, and
differential equations in Euclidean Fourier analysis. They also combined the representation
theory of Euclidean space with the representation theory of semisimple Lie groups.

Several works have explored the applications of Clifford algebra in signal processing.
For instance, in [4] Bracx et al. introduces the new Clifford-Fourier transform, with a focus
on the 2D case. Todd ell proposes the Fourier transform over the algebra of quaternions
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(H � C�0,2) in [10], called quaternionic Fourier transform (QFT), which he explores to
analyze systems described by partial differential equations. Hitzer has also made significant
contributions to the development of this theory. In his works, he examines the different forms
of the quaternionic Fourier transform (QFT) and explores its application to quaternion fields,
providing corresponding Plancherel theorems [13]. He also derived a new directional uncer-
tainty principle for quaternion-valued functions using the quaternionic Fourier transform in
[14], and extends it to establish similar principles in Clifford geometric algebras with quater-
nion subalgebras. In [15], he explains the orthogonal planes split (OPS) of quaternions based
on the choice of one or two linearly independent pure unit quaternions and systematically
generalizes the quaternionic Fourier transform applied to quaternion fields to conform with
the OPS, establishing inverse transformations and commenting on their geometric meaning.
He generalized, in his chapters [17, 19], the aforementioned split (OPS) to a freely steer-
able orthogonal 2D-planes split of two orthonormal and collinear pure unit quaternions. This
general form of OPS allows new geometric interpretations of the action of the QFT on the
signals. In their works [5, 20], P. Lounesto and Bracx et al. provide a historical review of the
development and applications of quaternion and Clifford algebra wavelets.

In addition to the above, Bahri et al. introduced, in [2, 3], the one-dimensional quaternion
Fourier transform and have established its properties which generalizes the Fourier transform
and studied its application in probability theory. Based on the relations between the original
function and the fractional Fourier transform, Authors derived, in [12], Rényi and Shannon
entropic uncertainty principles. The works on Clifford algebra, therefore, have significant
implications in several fields, and their continued exploration promises to unlock further
insights and advancements.

2 The Clifford geometric algebra

The Clifford geometric algebra C�(Rp,q) = C�p,q over the R−linear space R
p,q , is a non-

commutative algebra generated by theR
p,q -orthonormal vector basisB = {e1, . . . , en} (with

p + q = n) obeying to the following associative non-commutative geometric multiplication
rules (see [11, 17])

e�ek + eke� = 2δ�,kε�
(1)

where δ�,k is the Kronecker symbol and

ε
�
= �[[1,p]](�) − �[[p+1,n]](�). (2)

The Clifford geometric algebra C�p,q can be split into the following direct sum [17, 20]

C�p,q =
n⊕

�=0

C��
p,q (3)

where C��
p,q denotes the space spanned by the �-vectors family

B� = {eσ1eσ2 · · · eσ�
, 1 ≤ σ1 < σ2 < · · · < σ� ≤ n}. (4)

Therefore, the set

{e� = eσ1eσ2 · · · eσ�
, � ⊆ [[1, n]], 1 ≤ σ1 < σ2 < · · · < σ� ≤ n} ∪ {e∅ = 1} (5)
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forms a graded (blade) basis of C�p,q . The grades � range from 0 for scalars, 1 for vectors,
2 for bivectors, � for �-vectors, up to n for pseudo-scalars. The the field R (resp. R-linear
space R

p,q ) is included in C�p,q as the subset of 0-vectors (resp. 1-vectors).
The Clifford product (1) generates a basis for C�p,q consisting of 2n elements. A general
element C of C�p,q (called Clifford numbers, multivectors or hypercomplex numbers) is a
real linear combination of basis blades (e� )� and can be expanded as [17]

C =
∑

�⊆[[1,n]]
C� e� =

scalar part︷︸︸︷
C∅ +

vector part︷ ︸︸ ︷∑

�∈[[1,n]]
C�e� +

bivector part︷ ︸︸ ︷∑

1≤�,k≤n

C�ke�ek + · · · +
pseudo-scalar part︷ ︸︸ ︷

C12···ne1e2 · · · en
(6)

where C� are real-valued coefficients. C can also be written as

C =
n∑

�=0

〈C〉
�
= 〈C〉0 + 〈C〉1 + · · · + 〈C〉n (7)

with 〈C〉
�

= ∑
#�=� C� e� denotes the �-vectors part of C. As examples, 〈C〉0 denotes the

scalar part, 〈C〉1 the vector part, 〈C〉2 the bi-vector part and 〈C〉n the pseudo-scalar part.
The principal reverse of a multi-vector C ∈ C�(p, q) is defined as [17, 20]

C̃ =
n∑

�=0

(−1)
�(�−1)

2 〈C〉
�

(8)

where C means to change in the basis decomposition of C the sign of every vector of
negative square e� = εσ1

eσ1εσ2
eσ2 · · · εσ�

eσ�
where 1 ≤ σ1 < σ2 < · · · < σ� ≤ n and

εσk
are given by (2).

The principal reverse is linear, involution and anti-automorphic, that is for all C,D ∈ C�p,q

C̃ + D = C̃ + D̃, ˜̃C = C, C̃D = D̃C̃. (9)

The scalar product of C,D ∈ C�p,q can be defined by [17]

C ∗ D̃ = 〈CD̃〉0 =
∑

�⊆[[1,n]]
C�D� . (10)

In particular, if C = D, then the modulus of a multi-vector C ∈ C�p,q is given by [17, 20]

|C| =
√

〈CC̃〉0 =
√ ∑

�⊆[[1,n]]
C2

�
. (11)

For C,D ∈ C�p,q (p + q = n ≥ 3), the following property holds [9]

|CD| ≤ 2n |C||D|. (12)

Inner product on the square-integrable Clifford geometric algebra valued-function space
f , g ∈ L2(R,C�p,q) is defined as follow

( f , g)L2(R,C�p,q ) =
∫

R

f (x)g̃(x)dx . (13)

For r ≥ 1, we get the Lr (R,C�p,q)-norm of f as

‖ f ‖rLr (R,C�p,q ) =
∫

R

| f (x)|r dx . (14)
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3 The general one-dimensional Clifford Fourier transform

Let’s denote Cμ the 2D sub-plane of C�p,q spanned by {1, μ}, where μ ∈ C�p,q and μ2 =
−1

Cμ = span{1, μ} = {a + bμ , a, b ∈ R.} (15)

Cμ is an algebraically closed commutative field isomorphic to the complex plane C. Each
unit hypercomplexe number q ∈ Cμ can be written, in the polar form, as [9]

q = eθμ = (cos θ + μ sin θ) , (16)

where cos θ = Sc(q), sin θ = |Vec(q)| and μ = Vec(q)
|Vec(q)| .

Definition 3.1 Let μ ∈ C�p,q with μ2 = −1. The general one-dimensional Clifford
Fourier transform (1DCFT) of f ∈ L1(R,C�p,q), with respect to μ is given by

Fμ( f )(ξ) =
∫

R

f (x)eμxξdx (17)

where x, ξ ∈ R.

If we use the C�p,q -basis expansion; f =∑�⊆[[1,n]] e� f� , 1DCFT of f becomes

Fμ( f )(ξ) =
∑

�⊆[[1,n]]
e�Fμ( f� )(ξ). (18)

The convolution of two Clifford algebra valued functions f , g ∈ L1(R,C�p,q) is defined by

f ∗ g(y) =
∫

R

f (x)g(y − x)dx . (19)

We present in the following fundamental properties of the 1DCFT, for their proofs and more
comprehensive analysis, refer to [1, 2, 16, 18],

- For all C,D ∈ C�p,q and f , g ∈ L1(R,C�p,q) we get

Fμ(C f + Dg)(ξ) = CFμ( f )(ξ) + DFμ(g)(ξ). (20)

- For all f ∈ L1(R,C�p,q), and h ∈ R we have

Fμ(τh f )(ξ) = Fμ( f )(ξ)e−μhξ (21)

where the translation operator is given by τh f (x) = f (x + h).
- For all f ,Fμ( f ) ∈ L1(R,C�p,q), f is recovered from its Fourier transform as

f (x) = 1

2π

∫

R

Fμ( f )(ξ)e−μξ xdξ. (22)

- For all f ,Fμ( f ) ∈ L2(R,C�p,q), Parseval’s identity holds

2π‖ f ‖L2(R,C�p,q ) = ‖Fμ( f )‖L2(R,C�p,q ). (23)

- For f ∈ Cm(R,C�p,q), we have

Fμ

(
dm

dxm
f

)
(ξ) = Fμ ( f ) (ξ)(−μξ)m . (24)
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- If 1 ≤ p ≤ 2 such that 1
p + 1

q = 1 and f ∈ L p(R,C�p,q), then

‖Fμ( f )‖Lq (R,C�p,q ) ≤ p
1
2p

q
1
2q

‖ f ‖L p(R,C�p,q ). (25)

- (1DCFT) Fμ maps L1(R,C�p,q) into C0(R,C�p,q) and it is one-to-one. Where
C0(R,C�p,q) is the set of continuous functions vanishing at infinity.
- Let f , g ∈ L1(R,C�p,q) such that Fμ( f ),Fμ(g) ∈ L1(R,C�p,q). We have

∫

R

Fμ( f )(ξ)g̃(ξ)dξ =
∫

R

f (ξ)F̃μ(g)(−ξ)dξ. (26)

- Let f , g ∈ L1(R,C�p,q). If we use the expansion (6) of g, we get immediately

Fμ( f ∗ g)(ξ) =
∑

�⊆[[1,n]]
Fμ( f e� )(ξ)Fμ(g� )(ξ). (27)

4 One-dimensional Clifford Fourier transform in probability theory

Definition 4.1 A Clifford algebra-valued function fX (x) =∑�⊆[[1,n]] e� ( fX )� (x) is called
the Clifford algebra probability density function of a real random variable X if ∀ � ⊆ [[1, n]]

∫

R

( fX )� (x)dx = 1 and {( fX )� < 0} = ∅. (28)

Here, ( fX )� is a real probability density function. The Clifford algebra cumulative distribu-
tion function is expressed as

fX (x) = d

dx
FX (x), (29)

where the probability P is related to FX given by

FX (x) = P(X ≤ x). (30)

Definition 4.2 Let X be a real random variable with the Clifford Algebra probability density
function fX . The �th moment of X is defined as

m� = E[X�] =
∫

R

x� fX (x)dx . (31)

If we set

fX (x) =
∑

�⊆[[1,n]]
e� ( fX )� (x) and

∫

R

x�( fX )� (x)dx := E[X�
�
] = (m�)� ,

we get

m� =
∫

R

x�
∑

�⊆[[1,n]]
e� ( fX )� (x)dx =

∑

�⊆[[1,n]]
e� (m�)� . (32)

It is easily seen that

|m�|2 = E[X ] ∗ Ẽ[X ] =
∑

�⊆[[1,n]]
(m�)

2
�
. (33)
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The variance in the Clifford Algebra setting of a real random variable X is defined by

σ 2 = m2 − m2
1 = E[X2] − (E[X ])2. (34)

Definition 4.3 Let X be a real random variable with the Clifford algebra probability density
function fX . The characteristic function of X , φX : R −→ C�p,q , is defined by the formula
(compare with (15))

φX (t) = E[eμt X ] =
∫

R

fX (x)eμt x dx = Fμ( fX )(t). (35)

Setting fX (x) = ∑
�⊆[[1,n]] e� ( fX )� (x), the characteristic function of X can be expressed

as

φX (t) =
∑

�⊆[[1,n]]
e� (φX )� (t). (36)

By inversion formula, we get

fX (x) = F−μ(φX )(t). (37)

From (35), (29) and equation (24), one gets

φX (t) = −Fμ (FX ) (t)μt .

Thus, for t �= 0

Fμ (FX ) (t) = 1

t
φX (t)μ. (38)

Definition 4.4 The Rènyi entropy of a Clifford algebra probability density function fX of a
real random variable X [8, 12].

Hr ( fX ) = 1

1 − r
log

(∫

R

f rX (t)dt

)
/ r ∈]0, 1[∪]1,+∞[ (39)

Shannon entropy is given by

H( fX ) = lim
r→1

Hr ( fX ) = E[log( fX (X))] = −
∫

R

fX (t) log( fX (t))dt . (40)

Theorem 4.5 (Rènyi and Shannon entropy uncertainty principle) Let f ∈ Lr (R,C�p,q),
1 ≤ r < 2 and 1

r + 1
s = 1, then

1

r − 2
log(r) + 1

s − 2
log(s) ≤ H r

2
(| fX |2) + H s

2
(|φX |2). (41)

And

log(4e) ≤ H (| fX |2)+ H (|φX |2) . (42)

Proof Young-Hausdorff type inequality (25) becomes

r− 1
2r s

1
2s ≤

(∫

R

| fX (x)|r dx
) 1

r
(∫

R

|φX (ξ)|sdξ

)−1
s

. (43)
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Since 2r
2−r = 2s

s−2 , then

r
1

r−2 s
1

s−2 ≤
(∫

R

| fX (x)|r dx
) 2

2−r
(∫

R

|φX (ξ)|sdξ

) 2
2−s

. (44)

Taking log on both sides, one gets

1

r − 2
log(r) + 1

s − 2
log(s) ≤ 2

2 − r
log

(∫

R

| fX (x)|r dx
)

+ 2

2 − s
log

(∫

R

|φX (ξ)|sdξ

)
.

(45)

Which means
1

r − 2
log(r) + 1

s − 2
log(s) ≤ H r

2
(| fX |2) + H s

2
(|φX |2). (46)

We have
log(r)

r − 2
+ log(s)

s − 2
= r + s − 4

(r − 2)(s − 2)
log(2) + 1

r − 2
log
( r
2

)
+ 1

s − 2
log
( s
2

)
(47)

and

lim
r→2

1

r − 2
log
( r
2

)
= 1

2
, and 2 ≤ r + s − 4

(r − 2)(s − 2)
. (48)

In the limit when (r , s) −→ (2, 2), we get

log(4e) ≤ H (| fX |2)+ H (|φX |2) (49)

��
Theorem 4.6 Let X be a real random variable with the Clifford algebra probability density
function f 2X ( fX ∈ C 1(R,C�p,q)), then

| fX (x)| ≤ 2n
∥∥∥∥
d fX
dx

∥∥∥∥
L2(R,C�p,q )

. (50)

Proof i- d fX
dx /∈ L2(R,C�p,q), the aforementioned inequality obviously holds.

ii- d fX
dx ∈ L2(R,C�p,q). By (12) and (22), one gets

| fX (x)| = 1

2π

∣∣∣∣
∫

R

Fμ( fX )(ξ)eμξ xdξ

∣∣∣∣ ≤
2n−1

π

∫

R

∣∣Fμ( fX )(ξ)
∣∣ dξ. (51)

Cauchy-Schwartz inequality, (23) and (24) give, for ρ > 0,

| fX (x)| ≤ 2n−1

π

∫

R

(ρ + ξ2)
∣∣Fμ( fX )(ξ)

∣∣2 dξ

∫

R

1

ρ + ξ2
dξ

≤ 2n−1

√
ρ

∫

R

(ρ + ξ2)
∣∣Fμ( fX )(ξ)

∣∣2 dξ

≤ 2n−1

√
ρ

[∫

R

ρ
∣∣Fμ( fX )(ξ)

∣∣2 dξ +
∫

R

ξ2
∣∣Fμ( fX )(ξ)

∣∣2 dξ

]

≤ 2n−1

√
ρ

[
2πρ + 2π

∫

R

∣∣∣∣
d fX
dx

(x)

∣∣∣∣
2

dx

]

≤ 2n−1√ρ + 2n−1

√
ρ

∥∥∥∥
d fX
dx

∥∥∥∥
2

L2(R,C�p,q )

.
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Setting ρ =
∥∥∥ d fXdx

∥∥∥
2

L2(R,C�p,q )
, we obtain

| f (x)| ≤ 2n
∥∥∥∥
d fX
dx

∥∥∥∥
L2(R,C�p,q )

. (52)

��
Theorem 4.7 Let X be a real random variable with the Clifford algebra probability density
function fX =∑�⊆[[1,n]] e� f� where { f� ≤ 0} = ∅. Then ∀ � ⊆ [[1, n]]

1 ≤
∥∥∥∥

∂

∂x
ln( f� )

∥∥∥∥
2

L2(R,C�p,q )

∥∥ξ(φX )�

∥∥2
L2(R,C�p,q )

(m2)� . (53)

Proof Let

fX =
∑

�⊆[[1,n]]
e� f� =

∑

�⊆[[1,n]]
e� g

2
�
. (54)

The Heisenberg uncertainty principle [6] gives

‖g‖4
L2(R,C�p,q )

4
≤ ‖ξFμ(g� )‖2L2(R,C�p,q )

‖xg� ‖2L2(R,C�p,q )
. (55)

We have

‖ f ‖L1(R,C�p,q ) = ‖g‖2L2(R,C�p,q )
= 1, (56)

and

‖xg� ‖2L2(R,C�p,q )
=
∫

R

x2g2
�
(x)dx =

∫

R

x2 f� (x)dx = (m2)� . (57)

By Parseval identity (23)

∥∥ξFμ
(
g�

)∥∥2
L2(R,C�p,q )

=
∥∥∥∥Fμ

(
∂

∂x
g�

)∥∥∥∥
2

L2(R,C�p,q )

= 2π

∥∥∥∥
∂

∂x
g�

∥∥∥∥
2

L2(R,C�p,q )

= π

2

∥∥∥∥∥
1√
f�

∂

∂x
f�

∥∥∥∥∥

2

L2(R,C�p,q )

= π

2

∥∥∥∥
∂

∂x
ln( f� )

∂

∂x
f�

∥∥∥∥
L1(R,C�p,q )

.

Since
∥∥∥∥

∂

∂x
ln( f� )

∂

∂x
f�

∥∥∥∥
L1(R,C�p,q )

≤
∥∥∥∥

∂

∂x
ln( f� )

∥∥∥∥
2

L2(R,C�p,q )

∥∥∥∥
∂

∂x
f�

∥∥∥∥
2

L2(R,C�p,q )

≤ 1

2π

∥∥∥∥
∂

∂x
ln( f� )

∥∥∥∥
2

L2(R,C�p,q )

∥∥∥∥Fμ

(
∂

∂x
f�

)∥∥∥∥
2

L2(R,C�p,q )

.
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Then (55) becomes

1 ≤
∥∥∥∥

∂

∂x
ln( f� )

∥∥∥∥
2

L2(R,C�p,q )

∥∥ξ(φX )�

∥∥2
L2(R,C�p,q )

(m2)� . (58)

��

Theorem 4.8 Let φX and ψX be two Clifford Algebra characteristic functions of the random
variable X, given by

φX (t) =
∫

R

fX (x)eμt x dx and ψX (x) =
∫

R

gX (t)eμt x dt, (59)

then
∫

R

gX (t)φX (t)e−μt ydt =
∑

�⊆[[1,n]]
e� fX ∗ (ψ̌X )� (y), (60)

with (ψ̌X )� (x) = (ψX )� (−x)

Proof Let’s expand gX on C�p,q -basis; gX (x) = ∑
�⊆[[1,n]] e� (gX )� (x). Forward calcu-

lations yield
∫

R

gX (t)φX (t)eμt x dt =
∫

R

gX (t)

(∫

R

fX (x)eμt x dx

)
e−μt ydt

=
∫

R

gX (t)

(∫

R

fX (x)eμt(x−y)dx

)
dt

=
∫

R

∑

�⊆[[1,n]]
e� (gX )� (t)

(∫

R

fX (x)eμt(x−y)dx

)
dt

=
∑

�⊆[[1,n]]
e�

∫

R

fX (x)
∫

R

(gX )� (t)eμt(x−y)dtdx

=
∑

�⊆[[1,n]]
e�

∫

R

fX (x)(ψX )� (x − y)dx .

=
∑

�⊆[[1,n]]
e� fX ∗ (ψ̌X )� (y).

��

Theorem 4.9 If X is a real random variable, then there exists �th derivatives for the Clifford
Algebra characteristic function φX which is given by the formula

d�

dt�
φX (t) =

∫

R

x� fX (x)eμt x dxμ�. (61)

Moreover

m� = E[X�] = d�

dt�
φX (0)(−μ)�. (62)
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Proof For � = 1, direct computations reveal that

d

dt
φX (t) = d

dt

(∫

R

fX (x)eμt x dx

)

=
∫

R

fX (x)
d

dt

(
eμt x) dx

=
∫

R

fX (x)eμt x xdxμ.

Suppose that

d�−1

dt�−1 φX (t) =
∫

R

x�−1 fX (x)eμt x dxμ�−1. (63)

We have

d�

dt�
φX (t) = d

dt

(
d�−1

dt�−1 φX (t)

)

= d

dt

(∫

R

x�−1 fX (x)eμt x dxμ�−1
)

=
∫

R

x�−1 fX (x)
d

dt

(
eμt x) dxμ�−1

=
∫

R

x� fX (x)eμt x dxμ�.

Hence

d�

dt�
φX (t)(−μ)� =

∫

R

x� fX (x)eμt x dx . (64)

Then

m� = E[X�] = d�

dt�
φX (0)(−μ)�. (65)

��

By (65), the variance σ of X in terms of the Clifford Algebra characteristic function can be
expressed as

σ 2 = d2

dt2
φX (0)(−μ)2 −

[
d

dt
φX (0)(−μ)

]2
=
[
d

dt
φX (0)

]2
− d2

dt2
φX (0). (66)

5 Examples

i- Consider a real random variable X that can occur according to a Clifford algebra uniform
law

fX (x) =
∑

�⊆[[1,n]]
e� �[α

�
,β

�

]. (67)
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We have

Fμ
(
�[α

�
,β

�

]
)

(t) =

⎧
⎪⎨

⎪⎩

β� − α� if t = 0

2

t
sin

(
(β� − α� )

t

2

)
eμ(β

�
+α

�
) t
2 if t �= 0.

It follows from (35) that

φX (t) = Fμ ( fX ) (t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑

�⊆[[1,n]]
e� β� − α� if t = 0

∑

�⊆[[1,n]]
e�

2

t
sin

(
(β� − α� )

t

2

)
eμ(β

�
+α

�
) t
2 if t �= 0.

The first and second derivatives of each real-valued coefficient of φX are given by

d

dt
(φX )� (0) = μ

β2
�

− α2
�

2
, and

d2

dt2
(φX )� (0) = α3

�
− β3

�

3
. (68)

Then

m1 = d

dt
φX (0)(−μ) =

∑

�⊆[[1,n]]
e�

β2
�

− α2
�

2
, (69)

and

m2 = d2

dt2
φX (0)(−μ)2 =

∑

�⊆[[1,n]]
e�

β3
�

− α3
�

3
. (70)

By (66), we get

σ 2 = m2 − m2
1 =

∑

�⊆[[1,n]]
e�

β3
�

− α3
�

3
−
⎛

⎝
∑

�⊆[[1,n]]
e�

β2
�

− α2
�

2

⎞

⎠
2

. (71)

ii- Let Y be a real random variable that has the probability density function

gY (x) =
∑

�⊆[[1,n]]
e�

√
λ�

π
e−λ

�
x2 , (72)

where
(
λ�

)
�⊆[[1,n]] is a finite sequence of strictly positive real numbers.

It follows from (35) that

φY (t) = Fμ (gY ) (t) =
∑

�⊆[[1,n]]
e�

√
λ�

π

∫

R

e−λ
�
x2eμt x dx =

∑

�⊆[[1,n]]
e� e

− t2
4λ� . (73)

The first and second derivatives of each real-valued coefficient of φY are given as

d

dt
(φY )� (t) = − t

2λ�

e
− t2

4λ� , (74)

and

d2

dt2
(φY )� (t) =

(
t2

4λ2
�

− 1

2λ�

)
e
− t2

2λ� . (75)
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Then

m1 = d

dt
φY (0)(−μ) = 0, (76)

and

m2 = d2

dt2
φY (0)(−μ)2 =

∑

�⊆[[1,n]]
e�

1

2λ�

. (77)

From (74,75), we conclude

σ 2 = m2 − m2
1 =

∑

�⊆[[1,n]]
e�

1

2λ�

. (78)

iii- Let Z be a real random variable that has the probability density function

hZ (x) =
∑

�⊆[[1,n]]
e� λ� e

−λ
�
x
�[0,+∞[(x), (79)

where
(
λ�

)
�⊆[[1,n]] is a finite sequence of strictly positive real numbers.

It follows from (35) that

φZ (t) = Fμ (hZ ) (t) =
∑

�⊆[[1,n]]
e�

∫

R

λ� e
−λ

�
x
�[0,+∞[(x)eμt x dx =

∑

�⊆[[1,n]]
e�

λ�

λ� − μt
.

(80)

The first and second derivatives of each real-valued coefficient of φZ are given as

d

dt
(φZ )� (t) = λ� μ

(λ� − μt)2
, (81)

and

d2

dt2
(φZ )� (t) = 2μλ� t − 2λ2

�

(λ� − μt)4
. (82)

Then

m1 = d

dt
φZ (0)(−μ) =

∑

�⊆[[1,n]]
e�

1

λ�

, (83)

and

m2 = d2

dt2
φZ (0)(−μ)2 =

∑

�⊆[[1,n]]
e�

2

λ2
�

. (84)

σ 2 = m2 − m2
1 =

∑

�⊆[[1,n]]
e�

1

λ2
�

. (85)

Conclusion

This article introduces and explores the properties of the one-dimensional Clifford Fourier
transform (1DCFT), and showcases its practical application in deriving a related inequalities.
The effectiveness of 1DCFT in probability theory is demonstrated by examining in detail
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the expected value, characteristic function, and variance within the framework of Clifford
algebra. These results represent an important step forward in the development of probabil-
ity theory using Clifford algebra. The study recommends future research into uncertainty
principles concerning the Clifford Algebra probability density function and its characteristic
function.
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