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Abstract
The aim of this paper is to exhibit a novel two-step iterative algorithm named PV algorithm to
determine the fixed points of weak contractions in Banach spaces. Data dependence result is
also obtained. It is proved that this PV iterative algorithm converges strongly to the fixed point
of weak contractions. This iteration is almost stable for weak contraction. Furthermore, it is
proved that rate of convergence of the PV iterative algorithm is faster than Picard, Ishikawa,
Mann, S,normal-S, Varat, and F* algorithms. Examples are also given to support the main
result. The results of this paper are original and will further enrich the existing literature.

Keywords PV iteration · Weak contraction · Fixed point · Numerically stable · Data
dependence · Non-linear matrix equation

Mathematics Subject Classification 47H09 · 47H10

1 Introduction

Throughout this article, we assume that Z+ represents the set of all nonnegative integers,
and we consider the mapping H : V ∗ → V ∗, where V ∗ is a nonempty, convex, and closed
subset of a Banach space B∗. We denote by Fix(H) the set of all fixed points of H .

Several nonlinear problems can be mathematically formulated using self-mappings of the
form A(x) = x . These mappings exhibit various properties such as contraction, continuity
etc. Banach’s work on contraction mappings is a well-celebrated result in the literature on
fixed points. However, a question arises regarding the verification of the contraction condition
for self-mappings when it is relaxed.
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In response to this question, Berinde [1] introduced a new concept known asweak contrac-
tion, also referred to as almost contractions. He established that the class of weak contractions
is more general than the classes of contraction mappings, Kannan mappings [2], Chatterjee
mappings [3], Zamfirescu mappings [4], etc. He developed the existence and uniqueness
theorem for fixed points of these weaker contractions. Due to its wide range of applications,
numerous researchers have examined and proposed iterative algorithms for various classes of
mappings (e.g., see [5–9]). Additionally, many researchers [10–12] have expanded the scope
of this theory by obtaining several extensions of fixed point theory. The iterative algorithms
listed below are known as the Picard [13], Mann [14], Ishikawa [15], S [16], normal-S [17],
Varat [18], and F∗ [19] algorithms, respectively, for the self- mapping H defined on V ∗.
Here {rm}, {sm}, and {tm} are sequences in the interval (0, 1).{

p0 ∈ V *

pm+1 = Hpm,m ∈ Z+
(1.1)

{
p0 ∈ V *,

pm+1 = (1 − rm)pm + rmHpm,m ∈ Z+
(1.2)

⎧⎪⎨
⎪⎩
p0 ∈ V *,

pm+1 = (1 − rm)pm + rmHqm,

qm = (1 − sm)pm + smHpm, m ∈ Z+
(1.3)

⎧⎪⎨
⎪⎩
p0 ∈ V *,

pm+1 = (1 − rm)Hpm + smHpm,

qm = (1 − sm)pm + smHpm, m ∈ Z+
(1.4)

{
p0 ∈ V *,

pm+1 = H((1 − rm)pm + rmHpm), m ∈ Z+
(1.5)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
p0 ∈ V *,

pm+1 = (1 − rm)Hzm + rmHqm,

zm = (1 − tm)pm + tmqm,

qm = (1 − sm)pm + smHpm, m ∈ Z+

(1.6)

⎧⎪⎨
⎪⎩
p0 ∈ V *,

pm+1 = Hqm
qm = (1 − rm)pm + rmHpm,m ∈ Z+

(1.7)

A natural question arises from the above discussion whether it is feasible to discover a two-
step iterative algorithmwith the rate of convergence that is more accelerated than F∗ iterative
algorithm (1.7 ) and from some other iterative algorithms?

In this paper, a novel two-step iterative algorithm, PV algorithm, is introduced which is
given for a mapping H : V * → V * where V * is a nonempty, closed and convex subset of a
Banach space B*, the sequence {pm} is defined by:⎧⎪⎨

⎪⎩
p0 ∈ V *,

pm+1 = Hqm,

qm = H((1 − rm)H2 pm + rmHpm), m ∈ Z+,

(1.8)

where rm is a sequence in (0, 1).
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Now, the main results are proved using PV iterative algorithm for weak contractions
which satisfy (1.10) on an arbitrary Banach space. We begin with the subsequent result on
strong convergence.

Now, we recall the definition of weak contraction.

Definition 1.1 [1](Weak contraction): A map H : B* → B* where B* is a Banach space is
termed as a weak contraction if for some constants δ ∈ (0, 1) and L ≥ 0, we have:

‖H(x) − H(y)‖ ≤ δ‖x − y‖+L‖y − H(x)‖, ∀x, y ∈ B*. (1.9)

Berinde [1] proved the subsequent theorem for the uniqueness and the existence of a fixed
point in these mappings.

Theorem 1.1 [1] Let H : B* → B* where B* is a Banach space be a weak contraction with
δ ∈ (0, 1), L ≥ 0 and it also satisfies

‖H(x) − H(y)‖ ≤ δ‖x − y‖+L‖x − H(x)‖, ∀x, y ∈ B* (1.10)

Then, the mapping H has a unique fixed point in B*.

Ostrowski [20] defined the notion of stability as

Definition 1.2 Let H : B∗ → B∗, where B∗ is a Banach space with some p ∈ Fix(H).
Assume that p0 ∈ B∗ and pm+1 = g(H , pm) is an iterative algorithm for some function
g. For a sequence {pm} in B∗, let {ym} be an approximate sequence, and define αm =
‖ym+1 − g(H , ym)‖. Then, the iterative algorithm pm+1 = g(H , pm) is called H-stable if

lim
m→∞ αm = 0 ⇐⇒ lim

m→∞ ym = p.

Using Definition 1.2, Harder and Marie [21], Harder [22] proved the stability of several
iterative algorithms for various types of contractive-type operators. Moreover, Osilike [23,
24] proved the stability of Ishikawa and Mann iterative schemes for operators of contractive
type. Ostrowski [20] provides the subsequent definition.

Definition 1.3 Let H : B∗ → B∗, where B∗ is a Banach space, be a weak contraction, and
p ∈ Fix(H). Assume that p0 ∈ B∗ and pm+1 = g(H , pm),m ∈ Z+, is an iterative algorithm
for some function g. For a sequence {pm} in B∗, let {ym} be an approximate sequence and
define αm = ‖ym+1 − g(H , ym)‖. Then, the iterative algorithm pm+1 = g(H , pm) is said
to be almost H-stable if:

∞∑
m=0

αm < ∞ �⇒ lim
m→∞ ym = p.

To correlate the rate of convergence of two iterative algorithms, Berinde [25] provides the
subsequent definitions.

Definition 1.4 Let {ηm} and {θm} be two sequences in the set of positive real numbers that
converge to η and θ , respectively. Suppose that:

l = lim
m→∞

‖θm − θ‖
‖ηm − η‖ .

(i) If l = 0, then {θm} converges to θ faster than {ηm} to η.
(ii) If 0 < l < ∞, then {θm} and {ηm} converge at the same rate of convergence.
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1540 P. Gautam, Vineet

Definition 1.5 Let {pm }and {qm} be two iterative algorithms, both converging to the exact
same point p with the following error estimates θm and ηm(best ones available) where θm ,
ηm → 0 and satisfies

‖pm − p‖ ≤ θm and ‖qm − p‖ ≤ ηm .

If limm→∞ θm
ηm

= 0, then {pm} converges faster than {qm}.
In the context ofBanach spaces,we aim todefine andquantify the speed atwhich sequences

or iterative algorithms converge to a common limit point. To achieve this, we introduce a
new definition and establish its consistency with the definition 1.5.

Given p ∈ X (Banach Space), we denote an ’ε’ neighborhood of p as Vε(p) = {x ∈ X |
‖x − p‖ ≤ ε}.

Let {pm} and {qm} be two sequences in a Banach space X that converge to the same fixed
point p. Our new definition states that the sequence {pm} is faster than {qm} if, after a certain
number of steps, {pm} approaches p more closely than {qm} does. In other words, after a
certain number of steps, {pm} always lies inside a smaller neighborhood of p compared to
{qm}.
Definition 1.6 Let {pm} and {qm} be two sequences in a Banach Space X such that both {pm}
and {qm} converge to the same point p. We say that {pm} converges to p faster than {qm}
if, for any positive real number ε2 > 0, there exists ε1 > 0 and a ∈ N such that ε1 < ε2,
‖pm − p‖ < ε1, and ‖qm − p‖ < ε2 for all m ≥ a.

Now, we will demonstrate that the definition 1.6 is consistent with the definition 1.5.
Consider {pm}, {qm}, θm , and ηm as in definition 1.5.

As limm→∞ θm
ηm

= 0, for some 0 < ε0 < 1, there exists m0 ∈ N such that for all m ≥ m0,

we have θm
ηm

< ε0 �⇒ θm < ε0ηm
Now since ηm → 0, for any ε2 > 0, there exists m2 ∈ N such that 0 < ηm < ε2 for all

m ≥ m2.
Consequently, as θm < ε0ηm < ε0ε2 = ε1 (say) for allm ≥ K (where K = sup{m0,m2}),

we have ε0ε2 = ε1 < ε2 (as,0 < ε0 < 1).
Hence, ‖pm − p‖ ≤ θm < ε1 and ‖qm − p‖ ≤ ηm < ε2, where ε1 < ε2. Therefore, {pm}

converges faster than {qm} as per definition 1.6.

Definition 1.7 Consider two self-operators K and H on a nonempty subset V ∗ of a Banach
space B∗. If, for all x ∈ V ∗ and for a fixed ε > 0, we have ‖Hx − Kx‖ ≤ ε, then the
operator K is said to be an approximate operator for H .

The subsequent lemma has an essential role in proving the major result of this paper.

Lemma 1.2 [26] Let {am} and {bm} be two sequences from the set of all nonnegative real
numbers and t ∈ [0, 1), such that am+1 ≤ tam + bm, for all m ≥ 0. Then,

lim
m→∞ bm = 0 implies lim

m→∞ am = 0.

Another useful lemma stated by [19]

Lemma 1.3 [19] Let {αm} be a sequence in R+ and there exists N ∈ Z+, such that for all
m ≥ N, {αm} satisfies the following inequality:

αm+1 ≤ (1 − μm)αm + μmηm,
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where μm ∈ (0, 1) for all m ∈ Z+, such that
∑∞

m=0 μm = ∞ and ηm ≥ 0 is a bounded
sequence. Then:

0 ≤ lim
m→∞ supαm ≤ lim

m→∞ sup ηm .

2 Main results

We exhibit a novel two-step iterativealgorithm, named as PV algorithm, which is given
below

For a mapping H : V * → V *,where V * is a nonempty, closed and convex subset of a
Banach space B*, the sequence pm is defined by:⎧⎪⎨

⎪⎩
p0 ∈ V *,

pm+1 = Hqm,

qm = H((1 − rm)H2 pm + rmHpm), m ∈ Z+,

(2.1)

where rm is a sequence in (0, 1).
Now, we will prove the main results using PV iterative algorithm for weak contractions

which satisfy (1.10) on an arbitrary Banach space. We begin with the subsequent result on
strong convergence.

Theorem 2.1 Let V * be a nonempty, closed and convex, subset of a Banach space B* and H
be a self map on V* which is a weak contraction also satisfying (1.10). Then, the sequence
{pm} defined by PV iterative algorithm (2.1) converges to the unique fixed point of H.

Proof Let p ∈ Fix(H). By condition (1.10), we have:

‖Hpm − p‖ = ‖Hpm − Hp‖
≤ δ‖pm − p‖ + L‖Hp − p‖
≤ δ‖pm − p‖ , ∀m ∈ Z+

Now, by PV iterative algorithm (2.1), we have

‖qm − p‖ = ‖H((1 − rm)H2 pm + rm .Hpm) − p‖
‖qm − p‖ = ‖H((1 − rm)H2 pm + rm .Hpm) − Hp‖

≤ δ‖(1 − rm)H2 pm + rmHpm − p‖
≤ δ‖(1 − rm)H2 pm + rmHpm − (1 − rm + rm)p‖
Now as p ∈ Fix(H) thus H2(p) = p

≤ δ(1 − rm)‖H2 pm − H2 p‖ + δrm‖Hpm − Hp‖
≤ δ[(1 − rm)δ2 ‖pm − p‖ + rmδ ‖pm − p‖]

Thus, we have

‖qm − p‖ ≤ δ2‖pm − p‖
‖pm+1 − p‖ = ‖Hqm − p‖ ≤ δ‖qm − p‖ ≤ δ3‖pm − p‖

Inductively, we get
‖pm+1 − p‖ ≤ δ3(m+1)‖p0 − p‖ (2.2)

Now, as 0 < δ < 1 hence {pm} converges strongly to p. 
�
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The Subsequent theorem shows the almost H-stability of the PV iterative algorithm (2.1).

Theorem 2.2 Let H be a weak contraction from V ∗ to V ∗, which also satisfies (1.10), where
V ∗ is a nonempty, closed and convex subset in a Banach space B∗. Then, the PV iterative
algorithm (2.1) turns out to be almost H-stable.

Proof Let ym be an arbitrary sequence in V *,and the sequence constructed by PV algorithm
is pm+1 = g(H , pm) and σm = ‖ym+1 − g(H , zm)‖,where m is in Z+. Now, we will show:

∞∑
m=0

σm < ∞ �⇒ lim
m→∞ ym = p.

Let
∑∞

m=0 σm < ∞.Then,by the PV algorithm, we have

‖ym+1 − p‖ ≤ ‖ym+1 − g(H , ym)‖ + ‖g(H , ym) − p‖
≤ σm + ‖H(H(1 − rm)H2ym + rmHym) − p‖
≤ σm + δ‖H((1 − rm)H2ym + rmHym) − p‖
≤ σm + δ2‖(1 − rm)H2ym + rmHym − p‖
≤ σm + δ2‖(1 − rm)(H2ym − H2 p) + rm(Hym − Hp)‖
≤ σm + δ2(1 − rm)‖H2ym − H2 p‖ + rm‖Hym − Hp‖
≤ σm + δ2(1 − rm)‖H2ym − H2 p‖ + rm‖Hym − Hp‖
≤ σm + δ2((1 − rm)δ2 + rmδ)‖ym − p‖

Thus , we have,

‖ym+1 − p‖ ≤ σm + δ3‖ym − p‖
um = ‖ym − p‖ and q = δ3 Then, we have um+1 ≤ σm + q.um as q = δ3, δ ∈ (0, 1) thus
0 < q < 1 and

∑∞
m=0 σm < ∞ �⇒ σm → 0. Therefore, um → 0 using lemma 1.2. 
�

In this theorem, we will demonstrate that the PV algorithm is faster than other iterative
algorithms.

Theorem 2.3 Let H : V* → V* be a weak contraction also satisfying (1.10), where
V* is a nonempty, closed and convex subset in a Banach space B*. Let the sequences
{p1,m}, {p2,m}, {p3,m}, {p4,m}, {p5,m}, {p6,m}, {p7,m} and {pm} be defined by Picard,
Mann, Ishikawa, S, normal-S, Varat, F∗ iterative algorithms, and PV, respectively, and con-
verge to the same point p ∈ Fix(H). Then, the PV algorithm converges more rapidly than
all the algorithms mentioned above.

Proof Because of inequality (2.2) in Theorem 2.1, we have:

‖pm+1 − p‖ ≤ δ3(m+1)‖p0 − p‖ = αm, m ∈ Z+.

As proved by [27]:

‖p1,m − p‖ ≤ δm+1‖p1,0 − p‖ = α1,m, m ∈ Z+.

Then:

αm

α1,m
= δ3(m+1)‖p0 − p‖

δm+1‖p1,0 − p‖
αm

α1,m
= δ2(m+1).

‖p0 − p‖
‖p1,0 − p‖
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Now, as 0 < δ < 1 Thereforewehave

αm

α1,m
→ 0 as m → ∞

Hence, the sequence pm converges to p faster than p1,m Now, by normal-S algorithm as
proved by ALI [19], we get:

‖p5,m − p‖ ≤ δm+1‖p5,0 − p‖ = α5,m .

αm

α5,m
= δ3(m+1)‖p0 − p‖

δm+1‖p5,0 − p‖
αm

α5,m
= δ2(m+1).

‖p0 − p‖
‖p5,0 − p‖

Now, as 0 < δ < 1 Therefore,wehave

αm

α5,m
→ 0 as m → ∞

Hence, the sequence pm converges to p faster than p5,m .
As proved by the Sintunavarat W, Pitea A [18] that

‖p6,m − p‖ ≤ δm+1‖p6,0 − p‖ = α6,m .

αm

α6,m
= δ3(m+1)‖p0 − p‖

δm+1‖p6,0 − p‖
αm

α6,m
= δ2(m+1).

‖p0 − p‖
‖p6,0 − p‖

Now,as 0 < δ < 1 thereforewehave

αm

α6,m
→ 0 as m → ∞

Hence, the sequence pm converges to p faster than p6,m .
Now,for p7,m by F.Ali [19] we have that

‖p7,m − p‖ ≤ δ2(m+1)‖p7,0 − p‖ = α7,m .

αm

α7,m
= δ3(m+1)‖p0 − p‖

δ2(m+1)‖p7,0 − p‖
αm

α7,m
= δm+1.

‖p0 − p‖
‖p7,0 − p‖

Now,as 0 < δ < 1 Thereforewehave

αm

α7,m
→ 0 as m → ∞

Hence, the sequence pm converges to p faster than p7,m . 
�

Also, F.Ali [19] showed that the F* algorithm converges quicker than Varat, Mann,
Ishikawa, and normal-S algorithms for the case of weak contractions. Thus, PV iterative
algorithm converges more rapidly than every iterative algorithm from (1.1) to (1.7).
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Table 1 A comparison of the different iterative algorithms for Example 2.1

Iteration PV F* Picard Normal-s Mann Varat

1 0.4493323 0.4493323 0.4493323 0.4493323 0.4493323 0.4493323

2 0.8723104 0.8291996 1.0130704 0.9320542 0.7193926 0.9579940

3 0.8647160 0.8623066 0.7825257 0.8557003 0.8212688 0.8422444

4 0.8649333 0.8647381 0.9047664 0.8662340 0.8525708 0.8703917

5 0.8649271 0.8649136 0.8440609 0.8647430 0.8614915 0.8636068

6 0.8649273 0.8649263 0.8754487 0.8649533 0.8639767 0.8652461

7 0.8649273 0.8649272 0.8595146 0.8649236 0.8646647 0.8648503

8 0.8649273 0.8649273 0.8676839 0.8649278 0.8648548 0.8649459

9 0.8649273 0.8649273 0.8635161 0.8649272 0.8649073 0.8649228

10 0.8649273 0.8649273 0.8656478 0.8649273 0.8649218 0.8649284

11 0.8649273 0.8649273 0.8645589 0.8649273 0.8649258 0.8649270

12 0.8649273 0.8649273 0.8651155 0.8649273 0.8649269 0.8649273

13 0.8649273 0.8649273 0.8648311 0.8649273 0.8649272 0.8649273

14 0.8649273 0.8649273 0.8649764 0.8649273 0.8649272 0.8649273

15 0.8649273 0.8649273 0.8649022 0.8649273 0.8649273 0.8649273

Example 2.1 Let B*=R Banach space with the usual norm and V * = [0, π
2 ] . Let f : V * →

V * be defined as f (x) = x
4 + cos(x).Then, as f is a contraction mapping and hence a

weak contraction satisfying (1.10) and has only one fixed point which is 0.865(approx). Here
control sequences are taken as

rm = 0.4790527832595, sm = 0.4790527832595, and tm = 0.4790527832595

taking an initial guess of 0.44933229232998 and using python language we can see that PV
iteration converges to the fixed point 0.865(approx) faster then Picard [13], Ishikawa [15],
Mann [14], S [16], normal-S [17], Varat [18] and F* [19] iterative algorithms, as we can see
in Table 1 and Fig. 1.

Example 2.2 Weak contraction which is not a contraction

f (x) =
{ sin x

4 x ∈ [0, 0.5)
x
4 x ∈ [0.5, 1]

Then, as f is not continous at x=0.5 we can say that f cannot be a contraction but it
can be easily verified that f is a weak contraction with δ = 1

2 and L = 1 and fixed point is at
0. Now, all the conditions of the Theorems 2.1 and 2.3 are satisfied.Taking control sequence
rm = 0.4790527832595, sm =0.4790527832595, and tm= 0.4790527832595 using python
language we can show that the sequence defined by PV iterative algorithm (2.1) converges
to a unique fixed point p = 0 of the mapping f faster than the algorithms (1.1) to (1.7) which
is shown in Table 2 and Fig. 3.

Now, we prove a result which will be used in Application section
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Fig. 1 Behaviour of convergence for the sequences defined by various iterative algorithms for Example 2.1

Fig. 2 Behaviour of convergence with error for the sequences defined by various iterative algorithms for
Example 2.1

3 Result on data dependence

Recently, data dependence research for fixed points is a key area of fixed point theory.
Noteworthy researchers who have made contributions to the data dependence field of fixed
points are Markin [28], MURSEAN [29],Berinde [1, 30, 31], Soltuz [32], Soltuz and Grosan
[33] and Oltainwo [34]. Now, a theorem on the data dependence of fixed points is proved.
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Table 2 A comparison of the various iterative algorithms for Example 2.2

Iteration PV F* Picard Normal-S Mann Varat

1 0.4493323 0.4493323 0.4493323 0.4493323 0.4493323 0.4493323

2 0.0041303 0.0176236 0.1085911 0.0705530 0.2860993 0.0810321

3 0.0000393 0.0007057 0.0270944 0.0112954 0.1828412 0.0149435

4 0.0000004 0.0000283 0.0067728 0.0018093 0.1170265 0.0027578

5 0.0000000 0.0000011 0.0016932 0.0002898 0.0749481 0.0005090

6 0.0000000 0.0000000 0.0004233 0.0000464 0.0480116 0.0000939

7 0.0000000 0.0000000 0.0001058 0.0000074 0.0307593 0.0000173

8 0.0000000 0.0000000 0.0000265 0.0000012 0.0197073 0.0000032

9 0.0000000 0.0000000 0.0000066 0.0000002 0.0126265 0.0000006

10 0.0000000 0.0000000 0.0000017 0.0000000 0.0080899 0.0000001

Fig. 3 Behaviour of convergence for the sequences defined by various iterative algorithms for Example 2.2

Theorem 3.1 Let H be a weakcontraction also satisfying(1.10) and let an approximate
operator of H be K , pm be a sequencegenerated by PV iterative algorithm (2.1) for H.
Now,generate a sequenceum for K as follows:⎧⎨

⎩
u0 = u ∈ V∗,

um+1 = Kvm,

vm = K
(
(1 − rm)K 2um + rmKum

)
, m ∈ Z+,

(3.1)

where rm is a sequence in (0, 1)satisfying 0.5 ≤ rm for all m in Z+ and
∑∞

m=0 rm < ∞.If
Hp = p and Kq = q such that um → q and Kum → q as m → ∞, then we have:

‖p − q‖ ≤ (7 + (L + 1)L)ε

1 − δ3

whereε > 0 is a fixed number.
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Fig. 4 Behaviour of convergence with error for the sequences defined by various iterative algorithms for
Example 2.2

Proof Using (3.1),(1.10) and (2.1) we get

‖qm − vm‖ ≤ ‖H((1 − rm)H2 pm + rnHpm) − K ((1 − rm)K 2um + rmKum)‖
≤ ‖H((1 − rm)H2 pm + rmHpm) − H((1 − rm)K 2um + rmKum)‖

+ ‖H((1 − rm)K 2um + rmKum) − K ((1 − rm)K 2um + rmKum)‖
≤ δ{‖(1 − rm)H2 pm + rmHpm − ((1 − rm)K 2um + rmKum)‖

+ L‖(1 − rm)H2 pm + rmHpm − H((1 − rm)H2 pm + rmHpm)‖ + ε

≤ δ (1 − rm)‖H2 pm − K 2um‖ + rm‖Hpm − Kum‖
+ L‖(1 − rm)H2 pm + rmHpm − H((1 − rm)H2 pm + rmHpm)‖ + ε

(3.2)
One can show that

‖(1 − rm)H2 pm + rmHpm − H((1 − rm)H2 pm + rmHpm)‖
≤ (1 − rm)δ(1 − rm)(δ + L)

+L(δ+L)‖Hpm− pm‖+rm‖Hpm− pm‖(δ(1−rm)2(δ+L)+rmδ+L) (3.3)

‖H2 pm − K 2um‖ ≤ δ2‖pm − um‖ + Lδ‖Hpm − pm‖ + δ.ε + ε

+(L + δ)L(‖Hpm − pm‖ + ‖Hum − um‖) (3.4)

‖Hpm − Kum‖ ≤ δ‖pm − um‖ + L‖Hpm − pm‖ + ε (3.5)

Now, putting (3.3),(3.4) and (3.5) in (3.2) we get

‖qm − vm‖ ≤ δ(1 − rm)(δ2‖pm − um‖ + Lδ‖Hpm − pm‖ + δ.ε + ε

+(L + δ)L(‖Hpm − pm‖ + ‖Hum − um‖)
+δ rm(δ‖pm − um‖ + L‖Hpm − pm‖ + ε)
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L

(
(1 − rm)

{
δ(1 − rm)(δ + L) + L(δ + L)

}
‖Hpm − pm‖

+rm‖Hpm − pm‖
{
(δ(1 − rm)2(δ + L) + rmδ

}
+ L

)

Now, we consider

‖pm+1 − um+1‖ = ‖Hqm − Kvm‖ = ‖Hqm − Hvm + Hvm − Kvm‖
≤ ‖Hqm − Hvm‖ + ‖Hvm − Kvm‖
≤ δ‖qm − vm‖ + L‖qm − Hqm‖ + ε

Now, using the fact that 0.5 ≤ rm Thus 1 − rm ≤ rm and δ ∈ (0, 1)

‖pm+1 − um+1‖ ≤ (1 − rm (1 − δ3))‖pm − um‖ + rm (1 − δ3)

×

{
7ε + (L + 1)L

[
‖pm − Hpm‖ + ‖um − Hum‖

]
+‖Hpm − pm‖

(
2 + 3L(5δ + 2L)(δ + L)

)
+2L‖qm − Hqm‖ + 4ε

}
1 − δ3

let,

θm = ‖pm − um‖
μm = rm(1 − δ3)

ηm =

{
7ε + (L + 1)L

[
‖pm−Hpm‖+‖um−Hum‖

]
+‖Hpm−pm‖

(
2+3L+(5δ+2L)(δ + L)

)
+‖qm−Hqm‖

}
1−δ3

Now,as rm ∈ (0, 1),
∑∞

m=0 rm < ∞ and δ ∈ (0, 1) therefore μm ∈ (0, 1) too also∑∞
m=0 μm < ∞ with θm ,μm and ηm as defined above all the condition of the Lemma

1.3are satisfied hence we have

0 ≤ lim sup
m→∞

θm ≤ lim sup
m→∞

ηm

�⇒ 0 ≤ lim sup
m→∞

‖pm − um‖ ≤ lim sup
m→∞

ηm (3.6)

Putting the value of ηm in (3.6) above and using the fact that
‖Hpm − pm‖ → 0 and ‖Hum − um‖ ≤ ε we get

lim sup
m→∞

‖pm − um‖ ≤ (7 + (L + 1)L)ε

1 − δ3
.


�
The following example supports the above Theorem

Example 3.1 Consider

L(t) =
⎧⎨
⎩

4 sin 4t
5

5 t ∈ [−1, 0]
−4 sin 4t

5
5 t ∈ (0, 1]

One can easily shown that L is a weak contraction with δ = 16
25 .

Now,consider

H(t) =
{
0.127 + 0.631(t − 0.2) − 0.04(t − 0.2)2 t ∈ [−1, 0]
−0.127 − 0.631(t − 0.2) + 0.04(t − 0.2)2 t ∈ (0, 1]
max

t∈[−1,1] |H(t) − L(t)| = 0.032
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Table 3 Approximated fixed
point of operator K by using the
Iterative algorithm 3.7

It no Iter. algorithm (3.7)

1 0.320537

2 0.066663

3 0.012948

4 001116

5 −0.00151

6 −0.0021

7 −0.00223

8 −0.00226

9 −0.00227

10 −0.00227

11 −0.00227

thus here ε = 0.032.
Fixed point of the function H is q=−0.002 and um → q also at−0.002. H is continuous

thus um → H(q) = q .
Let us take K (t) = 0.127+0.0631(t−0.2)−0.04(t−0.2)2 and rm = 0.49 , u0 = u ∈ Y{

um+1 = K (vm) = 0.127 + 0.0631(vm − 0.2) − 0.04(vm − 0.2)2

vm = K
(
(1 − 0.49)K 2um + 0.49Kum

) (3.7)

From the Table 3 we can see that um converges to the fixed point q = −0.0022 of K
Now, using theTheorem 3.1 we have

‖p − q‖ ≤ ((7 + (L + 1)L)ε

1 − δ3

for this example we have L = 0 and δ = 16
25 thus we get

‖p − q‖ ≤ 7ε

1 − δ3

Putting the value of ε=0.0032 ,δ = 16
25 wehave

‖p − q‖ ≤ 0.30356

Thus from the theorem we have ‖p − q‖ ≤ 0.30356 and we have actually ‖p − q‖ =
0.0022.

4 Application

In this section, we will show an application of our results to solve nonlinearMatrix equations,
these kinds of applications can be seen in papers such as [35] and [36]. Therefore,we introduce
the following terminology.

‖.‖tr represents the trace norm.‖A‖tr also written as tr(A) is obtained by adding singular
values of A where singular values of A are the square roots of the eigenvalues of A∗A.

‖.‖ is representation of spectral norm.
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‖A‖ = √
λ+A∗A whereλ+(A∗A) is the largest eigenvalue of A*A.

Mk represents set of k × k matrices.
Hk represents set ofk × k hermitian matrices.
Pk represents set ofk × k positive semi definite matrices.
X1 ≥ 0 means X1 ∈ Pk .
X1 > X2 means X1 − X2 > 0.
X1 ≥ X2 means X1 − X2 ≥ 0.

Remark [37]Pk ⊆ Hk ⊆ Mk and (Hk,≤) is a partially ordered set then Hk with trace
norm is a complete metric spaceand hence a BanachSpace.

Lemma 4.1 [38] If X2 ≥ 0 and X1 ≥ 0 then0 ≤ tr(X2X1) ≤ ‖X1‖tr(X2).

Consider the following non-linear matrix equation

X = Q1 +
m∑
i=1

A∗
i F(X)Ai (4.1)

where each Ai is an arbitrary k× kmatrix for each i = 1, 2, .,m. Q1 is a positive definite
hermitian matrix. F is an order-preserving continuous map from Pk into Pk such that Hk ,
endowed with trace norm is a normed Banach Space. Hence, it is a complete metric space.
LetG : Pk → Pk be a continuous order preserving self map such that

G(X) = Q1 +
m∑
i=1

A∗
i F(X)Ai

for all X ∈ Pk . Clearly, a fixed point of G is a solution of the above equation.
Define C = {t Q1 + (1 − t)X0 ∀ t ∈ [0, 1]}.

Lemma 4.2 If we have G as defined above such that G(Q1) and G(X0) ∈ C for some X0;
and F satisfies F(t X + (1 − t)Y ) = t F(X) + (1 − t)F(Y ) for all X , Y ∈ C.

Then G is a mapping from C to C.

Proof Let A ∈ C Then A = t Q1 + (1 − t)X0 for some t ∈ [0, 1]
Now,

G(A) = Q1 +
m∑
i=1

A∗
i F(A)Ai

Putting value of A in above we get

G(A) = Q1 +
m∑
i=1

A∗
i F(t Q1 + (1 − t)X0)Ai

G(A) = Q1 +
m∑
i=1

A∗
i (t F(Q1) + (1 − t)F(X0)Ai

G(A) = Q1 +
m∑
i=1

A∗
i (t F(Q1) + (1 − t)F(X0))Ai

G(A) = t Q1 + (1 − t)Q1 +
m∑
i=1

A∗
i (t F(Q1) + (1 − t)F(X0))Ai
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G(A) = t(Q1 +
m∑
i=1

A∗
i F(Q1)Ai ) + (1 − t)(Q1 +

m∑
i=1

A∗
i F(X0)Ai )

G(A) = tG(Q1) + (1 − t)G(X0)

Now, as G(Q1)andG(X0) ∈ C then so is G(A) = tG(Q1) + (1− t)G(X0) ∈ C as C is
a convex set. 
�

Theorem 4.3 Let (4.1) be the nonlinear matrix equation given above. Now consider

G(X) = Q1 +
m∑
i=1

A∗
i F(X)Ai

assume ∃ X0 such that G(X0) ≤ X0. Let C = {t Q1+(1−t)X0 | t ∈ [0, 1]}. F is a nonlinear
function F : Pk −→ Pk, and F(t X0 + (1 − t)Q1) = t F(X0) + (1 − t)F(Q1)∀ t ∈ [0, 1]
and G(X0),G(Q1) ∈ C. Using Lemma 4.2, we have G : C → C, where C is a closed and
convex set of Hk under trace norm, which is a Banach space. Further, let us also have the
following conditions.

(i) ‖F(X1) − F(Y1)‖tr ≤ β(‖X1 − G(X1)‖tr + ‖Y1 − G(Y1)‖tr ). Where, β ∈ [1, 3
2 ].

(ii) ‖ ∑m
i=1 A

∗
i Ai‖ ≤ α. Where, α ∈ [0, 1

4 ].

Proof Let X1, Y1 ∈ C assume without loss of generality assume that X1 ≥ Y1 as all
elements in C are comparable.

Now,

‖G(X1) − G(Y1)‖tr = ‖
m∑
i=1

A∗
i F(X1)Ai −

m∑
i=1

A∗
i F(Y1)Ai‖tr

‖G(X1) − G(Y1)‖tr = ‖
m∑
i=1

A∗
i (F(X1) − F(Y1))Ai‖tr

Now,since F is an order-preserving map then X1 ≥ Y1 �⇒ F(X1) ≥ F(Y1) thus
A∗
i (F(X1) − F(Y1))Ai ≥ 0; and hence

∑m
i=1 A

∗
i (F(X1) − F(Y1))Ai ≥ 0

‖G(X1) − G(Y1)‖tr = tr
m∑
i=1

A∗
i (F(X1) − F(Y1))Ai

‖G(X1) − G(Y1)‖tr =
m∑
i=1

tr A∗
i (F(X1) − F(Y1)Ai

‖G(X1) − G(Y1)‖tr = tr
m∑
i=1

A∗
i Ai (F(X1) − F(Y1))

‖G(X1) − G(Y1)‖tr = tr
( m∑
i=1

A∗
i Ai

)
(F(X1) − F(Y1))
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Now applying the Lemma 4.1 we get

‖G(X1) − G(Y1)‖tr = ‖
m∑
i=1

A∗
i Ai‖‖(F(X1) − F(Y1))‖tr

‖G(X1) − G(Y1)‖tr ≤ αβ(‖X1 − G(X1)‖tr + ‖Y1 − G(Y1)‖tr )
‖G(X1) − G(Y1)‖tr ≤ 1

2
(‖X1 − G(X1)‖tr + ‖Y1 − G(Y1)‖tr )

Thus, G is a Kannan map from C to C. Now, as a Kannan mapping implies weak contrac-
tion, we can apply Theorem 2.1 to obtain the fixed point of G, which will be the solution of
the equation (4.1). 
�

Now, an example to support above result

Example 4.1 Consider the matrix difference equation

G(X) = Q1 +
m∑
i=1

A∗
i F(X)Ai

Let m=2,C = {t Q1+(1− t)X0 ∀t ∈ [0, 1]}, Q1 =
(
5 0
0 5

)
,F(X) = X+Q, A1 =

(√
3
4 0

0
√
3
4

)

and A2 =
( 1

4 0
0 1

4

)
.Then one can easily show that F : C → C satisfy

F(t X + (1 − t)X) = t F(X) + (1 − t)F(Y )∀ X , Y ∈ C

. Also, we have ‖A∗
1A1 + A∗

2A2‖ = 1
4 and G(X) = Q1 + 1

4 (X + Q1).
Now, consider

‖F(X) − F(Y )‖tr =‖X + Q − (Y + Q)‖tr = ‖X − Y‖tr
≤‖X − G(X)‖tr + ‖Y − G(Y )‖tr + ‖G(Y ) − G(X)‖tr

Using the formula for G(X) and G(Y)

≤ ‖X − G(X)‖tr + ‖Y − G(Y )‖tr + 1

4
‖X − Y‖tr

≤ ‖X − G(X)‖tr + ‖Y − G(Y )‖tr + 1

4
‖X − Q − (Y − Q)‖tr

‖F(X) − F(Y )‖tr ≤ ‖X − G(X)‖tr + ‖Y − G(Y )‖tr + 1

4
‖F(X) − F(Y )‖tr

3

4
‖F(X) − F(Y )‖tr ≤ ‖X − G(X)‖tr + ‖Y − G(Y )‖tr

‖F(X) − F(Y )‖tr ≤ 4

3
(‖X − G(X)‖tr + ‖Y − G(Y )‖tr )

Thus, all the conditions of the Theorem 4.3 are satisfied hence we can apply the Theorem
2.1 and 4.3 to obtain the solution of the matrix difference equation.

5 Conclusion

In this research paper, we have presented a novel and advanced two-step iterative algorithm
for determining fixed points of weak contractions in Banach spaces. This algorithm is more

123



Convergence and stability of a novel iterative algorithm... 1553

effective and converges faster than some major iterative algorithms, as demonstrated by
Theorem 2.3. Additionally, in Theorem 2.2, we have proved that the PV iterative algorithm
is almost H-stable. Our claims are validated by Examples 2.1 and 2.2. Furthermore, we
have obtained a result regarding data dependence, and an example illustrates the validity of
this result. Lastly, we approximate the solution of a nonlinear matrix difference equation.
However, a few natural questions arise in this field which can be further proved in the coming
years:

(Q1) Is it possible to define an iterative technique whose convergence rate is faster than that
of the PV iterative procedure for the class of weak contractions in a Banach space?

(Q2) Does the PV iteration strongly converge to the fixed point of weak contractions in
spaces with weaker conditions than a Banach space, such as a metric space or quasi-
Banach space?

(Q3) Does the PV iterative algorithm converge for other classes of mappings, such as
enriched contractions or quasi-nonexpansive mappings?
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