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Abstract
In this research paper, we propose a new iterative algorithm for finding a common solution
to fixed point problems of demicontractive mapping and variational inequality problems
which involves monotone and Lipschitz continuous operators in the framework of real
Hilbert spaces. We incorporate a viscosity iterative technique, using subgradient extragradi-
ent method, we prove under standard assumptions that the iterative sequence generated from
our algorithm strongly converges to the solution set, assuming the solution set is consis-
tent. Furthermore, we adopt a self-adaptive stepsize that is being generated at each iteration,
which is independent of the Lipschitz constant of the singled-valued operator. Our result is
an improvement and an extension of many results in this direction.

Keywords Extragradient · Subgradient-extragradient · Variational inequality · Lipschitz
constant · Viscosity iteration · Hilbert spaces

Mathematics Subject Classification 47H09 · 47J20 · 47J25 · 65k15

1 Introduction

Our purpose in this paper is to study an interesting combination of problems of finding a fixed
point of a given nonlinear operator which turns out to solve variational inequalities in real
Hilbert spaces. LetC be a nonempty closed convex subset of a real Hilbert spaceH, with inner
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product 〈·, ·〉 and an induced norm ‖.‖. Let T : C → C be nonlinear. The map T has a fixed
point if T x = x and the set of fixed point of T is denoted by F(T ) := {x ∈ C : T x = x} �= ∅.

The variational inequality problem (VIP) and fixed point problem (FPP)is formulated as:

find x ∈ C such that x ∈ F(T ) and 〈 f (x), y − x〉 ≥ 0, ∀y ∈ C, (1.1)

where f is a single-valued mapping defined on C .
Let the solution set of (1.1) be denoted by � := V I (C, f ) ∩ F(T ) �= ∅. Problem (1.1) is

a generalization of many optimization problems and has been studied by many researchers
in different capacities (see, [1, 4, 37, 38] and contained references). Basically, (1.1) includes
two remarkable and striking problems:

1. The FPP, which can be defined as follows:

find x ∈ C such that T (x) = x, (1.2)

provided the F(T ) �= ∅.
2. Another important problem embeded in problem (1.1) is the well known VIP which has

following structure:

find x ∈ C such that 〈 f (x), y − x〉 ≥ 0, ∀y ∈ C . (1.3)

Let V I P(C, f ) and SOL V I P(C, f ) denote problem (1.3) and its solution set, respec-
tively. It is important to note that problem (1.3) is a unifying and an essential modelling
tool in many field such as economics, programming, engineering mechanics and many
more, for examples see [2, 5, 16] and references contained therein. This concept was
introduced and studied by Stampacchia [34], for the purpose of modelling problems in
mechanics.
There are methods for solving (1.3) which include: regularization method and projec-
tion method. In what follows, our focus for solving (1.3) is the projection method. This
method involves construction of an iterative algorithm of the form:

xn+1 = PC (xn − λ f xn), n ≥ 1, (1.4)

where λ is positive and PC is a projection onto closed convex subsetC . With this method,
it is well known that the problem (1.3) is equivalent to the following fixed point problem:

find x ∈ C such that x = PC (x − λ f (x)), (1.5)

for an arbitrary positive constant, λ.The basic projectionmethod for solvingVIP involves
the gradient method, which performs only one iteration onto the feasible set. This method
requires that the operators are inverse strongly monotone or strongly monotone (see [12])
for the iterative sequence to converge to the solution set. These conditions are very strong
and quite restrictive. To circumvent this challenge, Korpelevich [18] while studying sadle
point problems introduced a concept called extragradient method. It was further extended
toVIPs for bothEuclidean andHilbert spaces. Tobe precise,Korpelevich [18] constructed
the following algorithm:

⎧
⎪⎨

⎪⎩

x0 ∈ C,

yn = PC (xn − μAxn),

xn+1 = PC (xn − μAyn),

(1.6)

whereμ ∈ (0, 1
L ), the singled-valued operatorA : H → H is monotone and L-Lipschitz

continuous and PC is a projection onto C . He proved that the recursive sequence {xn}
generated by (1.6) converged weakly to the solution set SOL V I P(C, A).
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Since the the introduction of (1.6), many authors have modified it in various forms (see,
[8, 17, 20] and the cited references therein).

In 2006, Nadezhkina and Takahashi [26] used the concept of hybrid and shrinking projec-
tion techniques to construct an extragradient basedmethod andobtained a strong convergence.
In short, in [31], the following algorithm is presented:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

x0 ∈ C,

yn = PC (xn − μAxn),

zn = PC (xn − μAyn),

Cn = {w ∈ C : ‖zn − w‖ ≤ ‖xn − w‖},
Qn = {w ∈ C : 〈xn − w, x0 − xn〉 ≤ 0},
xn+1 = PCn∩Qn x0.

(1.7)

Observe that the computation of the algorithm (1.6) requires computing two projections
per iteration. It is known that projections onto closed convex set PC has no closed form of
expression. To drop the second PC from the algorithm (1.6), Censor et al. [5] introduced a
subgradient extragradient method and constructed the following iterative scheme:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x0 ∈ H ,

yn = PC (xn − μAxn),

Tn = {x ∈ H : 〈xn − μAxn − yn, x − yn〉 ≤ 0},
xn+1 = PTn (xn − μAyn).

(1.8)

The authors of [5] considered a projection onto a half space PTn which has a closed form
of expression. They proved under some mild conditions that the sequence {xn} generated
by (1.8) converged weakly to the solution. They further modified (1.8), using a hybrid and
shrinking projection method as contained in (1.7) and obtained a strong convergence(see,
[6]). It is pertinent to mention that Censor et al. [40] extended [5] to Euclidean spaces. Based
on this improvement in [6, 26], many researchers have used other techniques to obtain a
strong convergence (see [14, 19, 23, 37]).

In recent years, there has been a tremendous interest in developing fast convergence of
algorithms, especially for the inertial type extrapolation method which was first proposed
by Polyak in [31]. This inertial technique is based on a discrete analogue of a second order
dissipative methods. This method was not known until the Nesterov’s acceleration gradient
methods was published in 1983 (see, [27]) and by 2009, Beck and Teboulle [3] made it very
popular. Recently, some researchers have constructed different fast iterative algorithms by
means of inertial extrapolation techniques, for example, inertialMann algorithm [25], inertial
forward-backward splitting algorithm [21], inertial extragradient algorithm [22, 36], inertial
projection algorithm [35], and fast iterative shrinkage-thresholding algorithm (FISTA) [3].
Recent results on the use of inertial method can be found in [8, 10, 11, 41–43] and contained
references

Remark 1.1 We note that the algorithms (1.6)–(1.8) have a major drawback on the stepsize
μ in the sense that, they heavily rely on the Lipschitz constant of the given operator. This
dependence on the Lipschitz constant affects the efficiency of the algorithms. In many prac-
tical importance, the Lipschitz constants are not known and in several occasions, difficult to
estimate.

Based on Remark 1.1, many researchers have worked and improved the already exist-
ing results in various forms. In a recent work published by Gibali [9], he introduced an
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Armijo-like search rule and remarked that, it is for local approximation of the Lipschitz con-
stant. Although, it does not require the knowledge of Lipschitz constant but might involve
additional computation of projection operator. Thong and Hieu [37] presented two parallel
iterative algorithms for solving a variational inequality problem and fixed point problem for
demicontractive mapping using subgradient extragradient technique. They obtained a strong
convergence in both schemes under the assumption that the single-valued operator is mono-
tone and Lipschitz continuous. But, their stepsize was dependent on the Lipschitz constant
which was a heavy drawback. To improve on this result, in [36] the authors proposed another
two inertial self-adaptive stepsizes for solving variational inequailties and obtained strong
convergence results under the assumption that the operator is strongly pseudomonotone,
which is also a stronger assumption than being monotone and Lipschitz continuous. Shehu
et al. [33] studied an inertial typed subgradient extragradient method with self-adaptive step-
size. Under some mild conditions, the authors obtained a weak convergence. Furthermore,
they later considered the operator A to be strongly monotone and Lipschitz continuous and
obtanied a strong convergence. More so, Ogwo et al. [29] studied relaxed inertial subgradient
extragradient methods for solving variational inequality problems involving quasi-monotone
operator and obtained weak convergence. For more results in this direction, see for instance
[1, 28–30, 38] and cited references. Motivated and inspired by the work of [9, 18, 29, 33, 37],
we construct a new inertial algorithm that is simple and efficient for approximating solutions
of variational inequlity problems and fixed point problems using subgradient extragradient
type method.

Our contributions in this research include the following:

(a) A new inertial self-adaptive subgradient extragradient algorithm which does not require
the prior knowledge of Lipschitz constant is constructed. The variable stepsize λn does
not need the limn→∞ λn = 0, or

∑∞
n=1 λn = 0 as in the case of [36]. It ismore applicable

than fixed stepsizes.
(b) The inertial term we use improves the rate of convergence greatly. It is quite different

from the one considered by [10, 11, 19, 23, 24]. It does not also require computing norm
difference between xn and xn−1 before choosing the inertial factor, θn .

(c) We obtain that the iterative sequence {xn} converges strongly to the solution set. Unlike
theweak convergences obtained by [5, 29, 38].We assume that the single-valued operator
A is not required to be stronglymonotone as in the case of [33] or strong pseudomonotone
used by [36]. These two assumptions are stronger than being monotone and Lipschitz
continuous that we consider.

(d) The general class of operator called the demicontractive mapping is considered. Many
important operators like nonexpansive mapping, pesudocontractivs, k-strictly pseudo-
contractive, quasi-nonexpansive operators among many others are all embedded in
demicontractive mapping (see Remark 2.2 below). It is a more general class of oper-
ators than the ones used by [1, 4, 33, 38].

(e) Numerical examples are provided which show the general performance of our algorithm.

The rest of the paper is organized as follows: the preliminaries in Sect. 2 deal with basic
definitions of the terms and related lemmas, whichwe statewithout their proofs. In Sect. 3, we
state our algorithmand assumptions for our operators and control sequences. The convergence
analysis is given in Sect. 4 while in Sects. 5 and 6 are devoted for numerical illustartions and
conclusion, respectively.
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2 Preliminaries

We list some basic concepts and lemmas which are useful for constructing and analysing the
convergence of our algorithm.

Definition 2.1 Let H be a real Hilbert space and ∀x, y ∈ H , p ∈ F(T ). A map T : H → H
is called:

(1) monotone on H if, 〈T (x) − T (y), x − y〉 ≥ 0;
(2) η-strongly monotone on H if there exists η > 0 such that 〈T (x) − T (x), x − y〉 ≥

η‖x − y‖2;
(3) Lipschitz continuous on H if, there exists a constant L > 0 such that ‖T (x) − T (y)‖ ≤

L‖x − y‖;
(4) a nonexpansive mapping if ‖T x − T x‖ ≤ ‖x − y‖;
(5) a quasi-nonexpansive on H if, ‖T (x) − p‖ ≤ ‖x − p‖;
(6) κ-strictly pseudo-contractive on H if, ‖T x−T y‖2 ≤ ‖x−y‖2+κ‖x−y−(T x−T y)‖2,

for some κ ∈ [0, 1);
(7) σ -demi-contractive if, there exists σ ∈ [0, 1) such that ‖T x − p‖2 ≤ ‖x − p‖2 +

σ‖(I − T )x‖2; or equivalently 〈T x − x, x − p〉 ≤ σ−1
2 ‖x − T x‖2; or equivalently

〈T x − p, x − p〉 ≤ ‖x − p‖2 + σ−1
2 ‖x − T x‖2.

Remark 2.2 We observe that:

(i) (7) contains as a special case, nonexpansive mapping, quasi-nonexpansive mapping, κ-
strictly pseudo-contractive mapping with a nonempty fixed point.

(ii) All nonexpansive operators are κ-strictly pseudo-contractive mapping with a nonempty
fixed point.

(iii) Also, all quasi-nonexpansive mappings are a subclass of 0-demi-contractive mapping.
(iv) Nonexpansive mappings are contained in quasi-nonexpansive mapping.

But the converse of all of these definitions are not necessarily true. To understand this,
consider the following examples below.

Example 2.3 [13] We consider a demicontractive mapping which is not neccessarily pseu-
docontractive or κ-strictly pseudo-contractive. Let H = R,C = [−1, 1], let T : C → C
be defined by T x = 2

3 xsin( 1x ) if x �= 0 and T 0 = 0 otherwise. Observe that the only fixed
point of T is zero (0). However, for x ∈ C,

|T x − 0|2 = |T x |2 = |2
3
xsin(1/x)|2 ≤ |2x/3|2 ≤ |x |2 ≤ |x − 0|2 + σ |T x − x |2,

for any σ ∈ [0, 1), this shows that T is a demi-contractive.
Let us now show that T is not pseudo-contractive mapping. Let x = 2/π, y = 2/3π .

Then,

|T x − T y|2 = 256/81π2.

‘It follows that

|x − y|2 + |(I − T )x − (I − T )y|2 = 160/81π2.

Example 2.4 [38]We consider a casewhere T is quasi-nonexpansive but fails to be nonexpan-
sive. Let T x = x

2 sinx, if x �= 0 and T x = x, then we have that x = x
2 sinx, which implies

that sinx = 2, impossible. Thus, we obtain that x = 0, which means that F(T ) = {0}.
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1260 F. O. Nwawuru et al.

Now, for all x ∈ H ,

‖T x − 0‖ = ‖ x
2
sinx‖ ≤ ‖ x

2
‖ < ‖x‖ = ‖x − 0‖,

this shows that T is quasi-nonexpansive. However, setting x = 2π and y = 3π
2 , we get

‖T x − T y‖ = ‖2π
2
sin2π − 3π

4
sin

3π

2
‖ = 3π

4
> ‖2π − 3π

2
‖ = π

2
,

which further means that the operator T is not a nonexpansive mapping.

Example 2.5 [7] We give an example of demi-contractive mapping that is not quasi-
nonexpansive and not pseudo-contractive mapping. Let f : [−2, 1] → [−2, 1] be a
real-valued function defined by f (x) = −x2− x . Then, it is demi-contractive on [−2, 1] and
conitnuous. It is neither quasi-nonexpansive nor pseudo-contractive mapping on [−2, 1].
Definition 2.6 The mapping PC : H → C which assigns to each v ∈ H , the unique point
PC (v) such that ‖PC (v)−v‖ = inf{‖w−v‖ : w ∈ C}. This is called the projection operator.

The operator PC satisfies the following condition:

〈x − y, PCx − PC y〉 ≥ ‖PCx − PC y‖2, ∀x, y ∈ H .

Also, for

PCx ∈ H , 〈x − PCx, PCx − y〉 ≥ 0, ∀y ∈ C .

Further implication is that

‖x − y‖2 ≥ ‖x − PCx‖2 + ‖y − PC y‖2, ∀x ∈ H ,∀y ∈ C .

For details on themetric projections, an interested reader is encouraged to consult [44, section
3].

Lemma 2.7 [39] Let H be a Hilbert space and S : H → H be a nonexpansive mapping
with a nonempty fixed point. If {xn} is a sequence in H that converges weakly to a point x∗
and {(I − S)xn} converges strongly to y, then (I − S)x∗ = y.

Lemma 2.8 Let H be a Hilbert space. Then, the following results hold for all x, y ∈ H , λ ∈
R:

(a) 2〈x, y〉 = ‖x‖2 + ‖y‖2 − ‖x − y‖2 = ‖x + y‖2 − ‖x‖2 − ‖y‖2,
(b) ‖x − y‖2 ≤ ‖x‖2 + 2〈y, x − y〉
(c) ‖λx + (1 − λ)y‖2 = λ‖x‖2 + (1 − λ)‖y‖2 − λ(1 − λ)‖x − y‖2.
Lemma 2.9 [32] Let {an} be a sequence of non-negative real numbers, {βn} be a sequence of
real numbers in (0, 1) with condition

∑∞
n=1 βn = 0, and {dn} be a sequence of real numbers.

Assume that

an+1 ≤ (1 − βn)an + βndn, n ≥ 0.

and

(a)
∑∞

n=0 αn = ∞
(b) lim supn→ dn ≤ 0.

Then, limn→∞ an = 0.
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Lemma 2.10 [24] Let {an} be sequence of non-negative real numbers satisfying the following
inequality:

an+1 ≤ (1 − βn)an + δn + γn, n ≥ 1,

where {βn} is a sequence in (0, 1) and {δn} is a sequence of real numbers. suppose that
∑∞

n=1 γn < ∞, and δn ≤ βnM for some M > 0. Then, {an} is a bounded sequence.

Lemma 2.11 [19] Let A : H → H be a monotone and L-Lipschtiz continuous mapping on
H. Let S = PC (I − μA), where μ > 0. If {xn} is a sequence in H satisfying xn⇀q and
xn − Sxn → 0 then q ∈ V I (C, A) = F(S).

Lemma 2.12 [23] Let {an} be a sequence of nonnegative real numbers such that there exists
a subsequence {an j } of {an} such that an j ≤ an j+1 for all j ∈ N. Then, there exists a
nondecreasing sequence {mk} of N such that limk→∞ mk = ∞ and the following properties
are satisfied by all (sufficiently large) number k ∈ N :

amk ≤ amk+1 and ak ≤ amk+1.

That is, mk is the largest number n in the set {1, 2, ..., k} such that an ≤ an+1.

3 The proposed algorithm

We present the proposed algorithm in this section and state the standard assumptions for the
control sequences and the operators.

Assumption 3.1 The conditions on the set, and operators are stated below

(1) The feasible set C is nonempty, closed and convex and H is a real Hilbert space.
(2) The operator A : H → H is monotone and Lipschitz continuous.
(3) The operator T : H → H is an σ−demi-contractive with nonempty fixed point and

with demicloseness property.
(4) The mapping f : H → H is a contraction map with contraction ρ ∈ (0, 1).
(5) The solution set � := V I (C, A) ∩ F(T ) �= ∅.

Assumption 3.2 The following assumptions are considered for the control sequences and the
stepsize.

(a) αn ∈ (a, τ 2n (1 − ρ)), for some a > 0, ρ ∈ (0, 1).
(b) limn→∞ θn

τ 2n
‖xn − xn−1‖ = 0.

(c) τn ∈ (0, 1
2(1−ρ)

), limn→∞ τn = 0,
∑∞

n=1 τn = ∞.

(d) βn ∈ (a, b) ⊂ (0, (1 − λ)(1 − τn)) for some a, b > 0.
(e) 0 ≤ θn ≤ θ < 1.

Algorithm 3.3 Self-adaptive algorithm for variational inequality and fixed point problem.

Step 0: Choose sequences {αn}, {βn}, {τn} and {θn} such that Assumption 3.2 hold. Let
μ > 0, α1 > 0, and x0, x1 ∈ H be arbitrarily chosen.
Iterative steps: Step 1. Given the iterates xn, xn−1, n ≥ 1, compute

{
wn = αnx0 + (1 − αn)xn + θn(xn − xn−1),

yn = PC (wn − λn Awn),
(3.1)
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where

λn+1 :=
{
min{ μ‖wn−yn‖2

‖Awn−Ayn‖2 , λn} i f Awn �= Ayn

λn, otherwise.
(3.2)

If wn = yn = xn, then xn ∈ V I (C, A) ∩ F(T ). Otherwise, construct a half-space

Tn := {w ∈ H : 〈wn − λn Awn − yn, w − yn〉 ≤ 0},
and compute

{
zn = PTn (wn − λn Ayn),

xn+1 = τn f (wn) + (1 − τn)qn,
(3.3)

where qn = βnzn + (1 − βn)T zn .
Set n:=n+1 and go back to Step 1.

Remark 3.4:

i) See that Assumption 3.1 (2) requires the operator A to be monotone and Lipschitz con-
tinuous.

ii) The stepsize λn in (3.2) is self-adaptive. It is being generated at each iteration which
makes our algorithm easily implemeneted without the prior knowledge of the Lipschitz
constant of operator A.

iii) The inertial term θn(xn − xn−1) contains an extra-term like Halpern iterative scheme,
this greatly improves the rate of convergence of our proposed Alogrithm.

4 Convergence analysis

To establish the main theorem of this paper, the following lemmas should be stated and
proved.

Lemma 4.1 Let {xn} be the recursive sequence generated by Algorithm 3.3 such that Assump-
tions 3.1 and 3.2 are satisfied, then {xn} is bounded.
Proof Let x∗ ∈ �. Then by the definition of variational inequality, we obtain that

〈Ax∗, yn − x∗〉 ≥ 0.

Since A is monotone, we get that

〈Ayn, yn − x∗〉 ≥ 0.

Thus,

〈Ayn, yn − x∗ + zn − zn〉 ≥ 0.

Hence,

〈Ayn, x∗ − zn〉 ≤ 〈Ayn, yn − zn〉. (4.1)

We therefore obtain from the difinition of Tn that

〈wn − λn Ayn − yn, zn − yn〉 ≤ 0.
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It follows that

〈wn − λn Ayn, zn − yn〉 = 〈wn − λn Awn − yn, zn − yn〉 + λn〈Awn − Ayn, zn − yn〉
≤ λn〈Awn − Ayn, zn − yn〉. (4.2)

Now, using the definition of projection, its characterization and (4.2), we get

‖zn − x∗‖2 ≤ ‖wn − x∗‖2 − ‖wn − yn‖2 − ‖yn − zn‖2 + 2〈wn − λn Ayn − yn, zn − yn〉
≤ ‖wn − x∗‖2 − ‖wn − yn‖2 − ‖yn − zn‖2 + 2λn〈Awn − Ayn, zn − yn〉
≤ ‖wn − x∗‖2 − ‖wn − yn‖2 − ‖yn − zn‖2 + 2λn‖Awn − Ayn‖.‖zn − yn‖
≤ ‖wn − x∗‖2 − ‖wn − yn‖2 − ‖yn − zn‖2 + 2μλn

λn+1
‖wn − yn‖.‖zn − yn‖

≤ ‖wn − x∗‖2 − ‖wn − yn‖2 − ‖yn − zn‖2

+ λn

λn+1
μ(‖wn − yn‖2 + ‖zn − yn‖2)

= ‖wn − x∗‖2 − ‖wn − yn‖2 + λn

λn+1
μ‖wn − yn‖2 − ‖yn − zn‖2

+ λn

λn+1
μ‖zn − yn‖2

= ‖wn − x∗‖2 −
(

1 − λn

λn+1
μ

)

‖wn − yn‖2 −
(

1 − λn

λn+1
μ

)

‖zn − yn‖2.
(4.3)

Observe from (3.2) that λn is a monotone nonincreasing sequence.Without loss of generality,
we may assume that the limn→∞ λn = λ. Therefore,

lim
n→∞(1 − λn

λn+1
μ) = 1 − μ > ε > 0. (4.4)

It follows from (4.3) and (4.4) that

‖zn − x∗‖2 ≤ ‖wn − x∗‖2. (4.5)

From the Algorithm 3.3, step 2, using the definition of qn , condition (d) of Assumption 3.2
and for all x∗ ∈ �, we obtain

‖qn − x∗‖2 = ‖(1 − βn)(zn − x∗) + βn(T zn − x∗)‖2
= (1 − βn)

2‖zn − x∗‖2 + β2
n‖T zn − x∗‖2 + 2βn(1 − βn)〈T zn − x∗, zn − x∗〉

≤ (1 − βn)
2‖zn − x∗‖2 + β2

n‖zn − x∗‖2 + β2
nσ‖T zn − x∗‖2

+2βn(1 − βn)

[

‖zn − x∗‖2 − 1 − σ

2
‖T zn − x∗‖2

]

= ‖zn − x∗‖2 + βn[σβn − (1 − βn)(1 − σ)‖T zn − zn‖2]
= ‖zn − x∗‖2 + βn[βn − (1 − σ)]‖T zn − zn‖2
≤ ‖zn − x∗‖2. (4.6)

Now,

‖wn − x∗‖ = ‖αnx0 + (1 − αn)xn + θn(xn − xn−1) − x∗‖
= ‖αn(x0 − x∗) + (1 − αn)(xn − x∗) + θn(xn − xn−1)‖
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≤ αn‖x0 − x∗‖ + (1 − αn)‖xn − x∗‖ + θn‖xn − xn−1‖
≤ ‖xn − x∗‖ + αn‖x0 − x∗‖ + θn‖xn − xn−1‖. (4.7)

Furthermore

‖xn+1 − x∗‖ = ‖τn f (wn) + (1 − τn)qn − x∗‖
= ‖τn( f (wn) − x∗) + (1 − τn)(qn − x∗)‖
≤ τn‖ f (wn) − f (x∗)‖ + τn‖ f (x∗) − x∗‖ + (1 − τn)‖qn − x∗‖
≤ τnρ‖wn − x∗‖ + τn‖ f (x∗) − x∗‖ + (1 − τn)‖zn − x∗‖
≤ τnρ‖wn − x∗‖ + (1 − τn)‖wn − x∗‖ + τn‖ f (x∗) − x∗‖
= (τnρ + 1 − τn)‖wn − x∗‖ + τn‖ f (x∗) − x∗‖
≤ (τnρ + 1 − τn)

[

‖xn − x∗‖ + αn‖x0 − x∗‖

+θn‖xn − xn−1‖
]

+ τn‖ f (x∗) − x∗‖

=
[

(τnρ + (1 − τn))

]

‖xn − x∗‖ +
[

τnρ + (1 − τn)

]

αn‖x0 − x∗‖

+
[

τnρ + (1 − τn)

]

θn‖xn − xn−1‖ + τn‖ f (x∗) − x∗‖
≤ [1 − τn(1 − ρ)]‖xn − x∗‖ + [1 − τn(1 − ρ)]αn‖x0 − x∗‖

+(1 − τn(1 − ρ))θn‖xn − xn−1‖ + τn‖ f (x∗) − x∗‖
= [1 − τn(1 − ρ)]‖xn − x∗‖ + αn‖x0 − x∗‖

+θn‖xn − xn−1‖ + τn‖ f (x∗) − x∗‖
≤ [1 − τn(1 − ρ)]‖xn − x∗‖ + τn(1 − ρ)‖x0 − x∗‖

+θn‖xn − xn−1‖ + τn‖ f (x∗) − x∗‖
< [1 − τn(1 − ρ)]‖xn − x∗‖ + τn(1 − ρ)‖x0 − x∗‖

+θn‖xn − xn−1‖ + τn‖ f (x∗) − x∗‖
= [1 − τn(1 − ρ)]‖xn − x∗‖ + τn(1 − ρ)

[

‖x0 − x∗‖

+τnθn
‖xn − xn−1‖
τ 2n (1 − ρ)

+ ‖ f (x∗) − x∗‖
1 − ρ

]

. (4.8)

Let γn = τn(1 − ρ) in (4.8). Since, limn→∞ θn
τ 2n

‖xn − xn−1‖ = 0, set

M = Sup

{

‖x0 − x∗‖, τn θn‖xn − xn−1‖
τ 2n (1 − ρ)

,
‖ f (x∗) − x∗‖

1 − ρ

}

and apply Lemma 2.10 in (4.8) to obtain

‖xn+1 − x∗‖ ≤ (1 − γn)‖xn − x∗‖ + γnM
...

≤ max{‖x1 − x∗‖, M}. (4.9)
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Thus, we conclude from (4.9) and Lemma 2.10 that the sequence, {xn} is bounded. Conse-
quently, we obtain that {wn}, {yn}, {zn} and {qn} are all bounded sequences and this completes
the proof of Lemma 4.1. ��
Lemma 4.2 For all x∗ ∈ �, we have

‖xn+1 − x∗‖2 ≤ (1 − ζn)‖xn − x∗‖2 + ζn

(
τnM0 + 〈

f (x∗) − x∗, xn+1 − x∗〉

1 − ρ

)

,

where ζn = 2τn(1−ρ)
1−τnρ

.

Proof Let x∗ ∈ �. Then,

‖wn − x∗‖2 = ‖αn(x0 − x∗) + (1 − αn)(xn − x∗) + θn(xn − xn−1)‖2
= ‖αn(x0 − x∗) + (1 − αn)(xn − x∗)‖2 + θ2n ‖xn − xn−1‖2

+2θnαn(1 − αn)〈x0 − x∗ + xn − x∗, xn − xn−1〉
= αn‖x0 − x∗‖2 + (1 − αn)‖(xn − x∗)‖2 − αn(1 − αn)‖xn − x0‖2

+θ2n ‖xn − xn−1‖2
+2θnαn(1 − αn)〈x0 − x∗ + xn − x∗, xn − xn−1〉

≤ αn‖x0 − x∗‖2 + (1 − αn)‖xn − x∗‖2 + θ2n ‖xn − xn−1‖2
+2θnαn(1 − αn)

[〈x0 − x∗, xn − xn−1〉 + 〈xn − x∗, xn − xn−1〉
]

≤ αn‖x0 − x∗‖2 + (1 − αn)‖xn − x∗‖2 + θ2n ‖xn − xn−1‖2

+2θnαn(1 − αn)

[

‖x0 − x∗‖‖xn − xn−1‖ + ‖xn − x∗‖‖xn − xn−1‖
]

≤ (1 − αn)‖xn − x∗‖2 + αn‖x0 − x∗‖2 + θ2n ‖xn − xn−1‖2
+θnαn(1 − αn)

[‖x0 − x∗‖2 + ‖xn − xn−1‖2]
+θnαn(1 − αn)[‖xn − x∗‖2 + ‖xn − xn−1‖2

]

≤ (1 − αn)‖xn − x∗‖2 + αn‖x0 − x∗‖2 + θ2n ‖xn − xn−1‖2
+θnαn‖x0 − x∗‖2 + θnαn‖xn − xn−1‖2
+θnαn‖xn − x∗‖2 + θnαn‖xn − xn−1‖2

≤ (1 − αn)‖xn − x∗‖2 + αn‖x0 − x∗‖2 + θn‖xn − xn−1‖2
+αn‖x0 − x∗‖2 + αn‖xn − x∗‖2 + 2αnθ‖xn − xn−1‖2

≤ ‖xn − x∗‖2 + 2τ 2n (1 − ρ)‖x0 − x∗‖2 + θn‖xn − xn−1‖2
+2τ 2n (1 − δ)θn‖xn − xn−1‖2

≤ ‖xn − x∗‖2 + 2τ 2n ‖x0 − x∗‖2 + θn‖xn − xn−1‖2 + 2τ 2n θn‖xn − xn−1‖2

= ‖xn − x∗‖2 + 2τ 2n ‖x0 − x∗‖2 + τ 2n
θn

τ 2n
‖xn − xn−1‖2

+2τ 4n
θn

τ 2n
‖xn − xn−1‖2. (4.10)

It follows from (4.10), (3.3) and Lemma 2.8 (b) that

‖xn+1 − x∗‖2 ≤ (1 − τn)
2‖qn − x∗‖2 + 2τnρ‖wn − x∗‖‖xn+1 − x∗‖

+2τn〈 f (x∗) − x∗, xn+1 − x∗〉
≤ (1 − τn)

2‖qn − x∗‖2 + τnρ‖wn − x∗‖2 + τnρ‖xn+1 − x∗‖2
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+2τnρ〈 f (x∗) − x∗, xn+1 − x∗〉
≤ (1 − τn)

2‖zn − x∗‖2 + τnρ‖wn − x∗‖2 + τnρ‖xn+1 − x∗‖2
+2τn〈 f (x∗) − x∗, xn+1 − x∗〉

≤ (1 − τn)
2‖wn − x∗‖2 + τnρ‖wn − x∗‖2 + τnρ‖xn+1 − x∗‖2

+2τn〈 f (x∗) − x∗, xn+1 − x∗〉
= [(1 − τn)

2 + τnρ]‖wn − x∗‖2 + τnρ‖xn+1 − x∗‖2
+2τn〈 f (x∗) − x∗, xn+1 − x∗〉

≤ 1

1 − τnρ
[(1 − τn)

2 + τnρ][‖xn − x∗‖2 + 2τ 2n ‖x0 − x∗‖2

+τ 2n
θn

τ 2n
‖xn − xn−1‖2 + 2τ 4n

θn

τ 2n
‖xn − xn−1‖2]

+2τn〈 f (x∗) − x∗, xn+1 − x∗〉
= 1

1 − τnρ
[1 − 2τn + τnρ]‖xn − x∗‖2

+ τ 2n

1 − τnρ
‖xn − x∗‖2 + 2τ 2

1 − τnρ
[(1 + τnρ)‖x0 − x∗‖2

+ θn

τ 2n
‖xn − xn−1‖2 + 2τ 2n

θn

τ 2n
‖xn − xn−1‖2 + ‖xn − x∗‖2

2
]

+ 2τn
1 − τnρ

〈 f (x∗) − x∗, xn+1 − x∗〉

= (1 − 2τn(1 − ρ)

1 − τnρ
)‖xn − x∗‖2

+2τn(1 − ρ)

1 − τnρ

[τn

[

(1 + τnρ)‖x0 − x∗‖2 + θn
τ 2n

‖xn − xn−1‖2
]

1 − ρ

]

+2τn(1 − ρ)

1 − τnρ

[

τn

[ ‖xn−x∗‖2
2τn

+ 2τ 2n
θn
τ 2n

‖xn − xn−1‖2 + 〈 f (x∗) − x∗, xn+1 − x∗〉
1 − ρ

]]

.

(4.11)

LettingM0 = Sup

{

(1+τnρ)‖x0−x∗‖2, θn
τ 2n

‖xn−xn−1‖2, ‖xn−x∗‖2
2τn

, 2τ 2n
θn
τ 2n

‖xn−xn−1‖2; n ∈

N

}

and in (4.11), we conclude that

‖xn+1 − x∗‖2 ≤
(

1 − 2τn(1 − ρ)

1 − τnρ

)

‖xn − x∗‖2

+2τn(1 − ρ)

1 − τnρ

(
τnM0 + 〈 f (x∗) − x∗, xn+1 − x∗〉

1 − ρ

)

. (4.12)

123



Finding a common solution of variational inequality... 1267

Putting ζn = 2τn(1−ρ)
1−τnρ

we can re-write (4.12) as follows:

‖xn+1 − x∗‖2 ≤ (1 − ζn)‖xn − x∗‖2 + ζn

(
τnM0 + 〈 f (x∗) − x∗, xn+1 − x∗〉

1 − ρ

)

.

(4.13)

This completes the proof of Lemma 4.2. ��
Next, we establish the following important lemma.

Lemma 4.3 We prove that

(1 − τn)[(1 − λnμ

λn+1
)‖wn − yn‖2 + (1 − λnμ

λn+1
)‖zn − yn‖2]

≤ ‖xn − p‖2 − ‖xn+1 − p‖2 + τnK0.

Proof From the algorithm and for all x∗ ∈ �, we get

‖qn − x∗‖2 = ‖(1 − βn)(zn − x∗) + βn(T zn − x∗)‖2
≤ (1 − βn)‖zn − x∗‖2 + βn[‖zn − x∗‖2 + σ‖(I − T )zn‖2]

−βn(1 − βn)‖(I − T )zn‖2
≤ (1 − βn)‖zn − x∗‖2 + βn‖zn − x∗‖2 + βnσ‖(I − T )zn‖2
= ‖zn − x∗‖2 + βnσ‖(I − T )zn‖2

≤ ‖wn − x∗‖2 − (1 − λnμ

λn+1
)‖wn − yn‖2 − (1 − λnμ

λn+1
)‖zn − yn‖2

+βnσ‖(I − T )zn‖2

≤ ‖wn − x∗‖2 − (1 − λnμ

λn+1
)‖wn − yn‖2 − (1 − λnμ

λn+1
)‖zn − yn‖2

−σ(λ − 1)(1 − τn)‖(I − T )zn‖2.
(4.14)

Furthermore from the Algorithm and for all x∗ ∈ �,

‖xn+1 − x∗‖2 ≤ τn‖ f (wn) − x∗‖2 + (1 − τn)‖qn − x∗‖2
≤ τn‖ f (wn) − x∗‖2 + (1 − τn)

{

‖wn − x∗‖2 − (1 − λnμ

λn+1
)‖wn − yn‖2 − (1 − λnμ

λn+1
)‖zn − yn‖2

}

≤ τn‖ f (wn) − x∗‖2 + (1 − τn)
{

‖xn − x∗‖2 + αn‖x0 − x∗‖2 + θn‖xn − xn−1‖2 − (1 − λnμ

λn+1
)‖wn − yn‖2

−(1 − λnμ

λn+1
)‖zn − yn‖2

}

= τn‖ f (wn) − x∗‖2 + (1 − τn)
[

‖xn − x∗‖2 + αn‖x0 − x∗‖2 + θn‖xn − xn−1‖2
]

−(1 − τn)

[

(1 − λnμ

λn+1
)‖wn − yn‖2 − (1 − λnμ

λn+1
)‖zn − yn‖2

]
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≤ τn‖ f (wn) − x∗‖2 + (1 − τn)[‖xn − x∗‖2 + τ 2n (1 − δ)‖x0
−x∗‖2 + θn‖xn − xn−1‖2]
−(1 − τn)

[

(1 − λnμ

λn+1
)‖wn − yn‖2 + (1 − λnμ

λn+1
)‖zn − yn‖2

]

≤ τn‖ f (wn) − x∗‖2 + (1 − τn)
[‖xn − x∗‖2 + τ 2n ‖x0 − x∗‖2 + θn‖xn − xn−1‖2

]

−(1 − τn)

[

(1 − λnμ

λn+1
)‖wn − yn‖2 + (1 − λnμ

λn+1
)‖zn − yn‖2

]

.

(4.15)

Thus, it follows from (4.15) that

(1 − τn)

[

(1 − λnμ

λn+1
)‖wn − yn‖2 + (1 − λnμ

λn+1
)‖zn − yn‖2

]

≤ ‖xn − x∗‖2 − ‖xn+1 − x∗‖2 + τnK0. (4.16)

where K0 = sup

{

‖ f (wn)− x∗‖2, ‖xn − x∗‖2, τn θn
τ 2n

‖xn − xn−1‖2, τn‖x0 − x∗‖2 : n ∈ N

}

,

completing lemma 4.3. ��
Lemma 4.4 For any x∗ ∈ �, we obtain

σ(λ − 1)(1 − τn)‖zn − T zn‖2 ≤ ‖wn − x∗‖2 − ‖qn − x∗‖2.
Proof The result follows immediately from Lemma 4.3. ��

We are now ready to establish the main theorem of this paper.

Theorem 4.5 Let C be a nonempty closed convex subset of a real Hilbert space, H. Let A be a
monotone and Lipschitz continuous defined on H and T : H → H, be a σ -demi-contractive
mapping. Let f be a contraction map defined on H. Assume the solution set � �= ∅. If
the Assumptions 3.1 and 3.2 are satisfied, then the sequence {xn} converges strongly to the
solution set.

Proof Since P� f is a contraction on H , there exists q ∈ � such that q = P� f (q). Thus,
we prove that the iterative sequence {xn} converges strongly to q = P� f (q). In order to
establish this result, we consider the following two cases.
Case 1: Suppose there is n0 ∈ N such that {‖xn − q‖}∞n=n0 is nonincreasing. Then,
limn→∞{‖xn − q‖} exists. It follows from this fact that

lim
n→∞(‖xn − q‖ − ‖xn+1 − q‖) = 0.

From the Algorithm 3.3, we get

‖wn − xn‖ ≤ ‖αn(x0 − xn)‖ + ‖θn(xn − xn−1)‖
= αn‖x0 − xn‖ + θn‖xn − xn−1‖
≤ τ 2n (1 − ρ)‖x0 − xn‖ + τ 2n

θn

τ 2n
‖xn − xn−1‖. (4.17)

It follows from (4.17) and the Assumption 3.2(b–c) that

lim
n→∞ ‖wn − xn‖ = 0. (4.18)
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From Lemma 4.3, we obtain that

lim
n→∞ ‖wn − yn‖ = 0 = ‖zn − yn‖. (4.19)

It follows from (4.19) that

‖wn − zn‖ ≤ ‖wn − yn‖ + ‖yn − zn‖.
Subsequently,

lim
n→∞ ‖wn − zn‖ = 0. (4.20)

Since the limn→∞{‖xn − q‖} exists,it follows that
lim
n→∞(‖wn − p‖2 − ‖qn − p‖2) = 0.

That is,

lim
n→∞ ‖wn − p‖ = lim

n→∞ ‖qn − p‖. (4.21)

And consequently from the Lemma 4.4, we get

lim
n→∞ ‖zn − T zn‖ = 0. (4.22)

Using the condition on τn and definition of qn , we estimate that

‖qn − yn‖ ≤ (1 − βn)‖zn − yn‖ + βn‖T zn − yn‖
≤ ‖zn − yn‖ + βn‖T zn − yn‖
= ‖zn − yn‖ + τn

βn

τn
‖T zn − yn‖ → 0. (4.23)

It follows from (4.23) and (4.19) that

lim
n→∞ ‖qn − yn‖ = 0. (4.24)

Now, using the definition of qn once again, (4.18), (4.19) and (4.24), we get

‖qn − xn‖ ≤ ‖qn − yn‖ + ‖yn − wn‖ + ‖wn − xn‖. (4.25)

And consequently from (4.25), we conclude that

lim
n→∞ ‖qn − xn‖ = 0. (4.26)

Applying the condition on αn , the Assumption 3.2(b) and the estimate (4.26), we obtain

‖wn − qn‖ ≤ αn‖x0 − qn‖ + (1 − αn)‖xn − qn‖ + θn‖xn − xn−1‖
≤ τ 2n (1 − ρ)‖x0 − qn‖ + ‖xn − qn‖ + θn‖xn − xn−1‖
≤ τ 2n ‖x0 − qn‖ + ‖xn − qn‖ + θn‖xn − xn−1‖
= τ 2n ‖x0 − x∗‖ + ‖xn − qn‖ + τ 2θn

τ 2n
‖xn − xn−1‖ → 0. (4.27)

Thus, we obtain from (4.27) that

lim
n→∞ ‖wn − qn‖ = 0. (4.28)
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Finally, applying the condition of τn in the inequality below, using (4.26), we get that

‖xn+1 − xn‖ ≤ τn‖ f (wn) − xn‖ + (1 − τn)‖qn − xn‖ → 0. (4.29)

Therefore,

lim
n→∞ ‖xn+1 − xn‖ = 0. (4.30)

Because {xn} is bounded (see Lemma 4.1), there exists a subsequence {xnk } of {xn} such that
{xnk } weakly converges to some q as k → ∞ and

lim sup
n→∞

〈xn − x∗, f (x∗) − x∗〉 = lim
k→∞〈xnk − x∗, f (x∗) − x∗〉 = 〈q − x∗, f (x∗) − x∗〉.

(4.31)

Since xnk⇀q and ‖wn − yn‖ = ‖wn − PC (wn − λn Awn)‖ → 0 by Lemma 2.11, we obtain
q ∈ V I (C, A). Furthermore, since ‖zn − xn‖ → 0, znk⇀q and limn→∞ ‖zn − T zn‖ = 0,
we get from these facts that q ∈ F(T ). Therefore, q ∈ V I (C, A) ∩ F(T ), that is, q ∈ �.

Also, by p = PV I (C,A)∩F(T )(0), we get

lim sup
n→∞

〈xn − x∗, f (x∗) − x∗〉 = 〈q − x∗, f (x∗) − x∗〉 ≤ 0.

By our estimate that ‖xn+1 − xn‖ → 0, we obtain

lim sup
n→∞

〈xn+1 − x∗, f (x∗) − x∗〉 ≤ 0.

Therefore, using (4.12), (4.13), (4.31) and Lemma 2.9, we find that the sequence {xn} con-
verges strongly to q.

Case 2: There exists a subsequence {‖xnk − p‖2} of {‖xn − p‖2} such that ‖xnk − p‖2 <

‖xnk+1 − p‖2 for all k ∈ N. It follows from Lemma 2.12 that there exists a nondecreasing
sequence {mk} of N such that limk→∞ and the following inequalities hold for all k ∈ N :

‖xmk − p‖2 ≤ ‖xmk+1 − p‖2 and ‖xk − p‖2 ≤ ‖xmk+1 − p‖2. (4.32)

From Lemma 4.3, we get that

(1 − τmk )[(1 − λmkμ

λmk+1
)‖wmk − ymk‖2 + (1 − λmkμ

λmk+1
)‖zmk − ymk ]

≤ ‖xmk − p‖2 − ‖xmk+1 − p‖2 + τmk K0

≤ τmk K0. (4.33)

Using (4.33) together with assumptions in {λn} and {τn}, it follows that
lim
k→∞ ‖wmk − ymk‖ = 0, lim

k→∞ ‖zmk − ymk‖ = 0 and lim
k→∞ ‖wmk − zmk‖ = 0. (4.34)

However, from Lemma 4.4, we obtain

σ(λ − 1)(1 − τmk )‖zmk − T zmk‖ ≤ ‖wmk − p‖2 − ‖qmk − p‖2. (4.35)

Using Lemma 4.1, it follows from (4.35) that

lim
k→∞ ‖zmk − T zmk‖ = 0.

Furthermore, by the same argument in case 1, we have

lim sup
k→∞

〈xmk+1 − x∗, f (x∗) − x∗〉 ≤ 0.
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It follows from (4.12) and (4.32) that

‖xmk+1 − x∗‖2 ≤ (1 − ζmk )‖xmk − x∗‖2 + ζmk

(
τmk+1M0 + 〈 f (x∗) − x∗, xmk+1 − x∗〉

1 − ρ

)

and hence

ζmk‖xmk+1 − x∗‖2 ≤ ζmk

(
τmk+1M0 + 〈 f (x∗) − x∗, xmk+1 − x∗〉

1 − ρ

)

.

Since ζmk > 0 and using (4.32) we get

‖xk − x∗‖2 ≤ ‖xmk+1 − x∗‖2 ≤
(

τmk+1M0 + 〈 f (x∗) − x∗, xmk+1 − x∗〉
1 − ρ

)

.

Taking the limit in the above inequality as k → ∞, we conclude that xk converges strongly
to q = P� f (q). This completes the proof of Theorem 4.5. ��

5 Numerical illustrations

Let H = (
l2(R), ||.||l2

)
, where l2(R) := {x = (x1, x2, x3, . . . ), xi ∈ R : ∑∞

i=1 |xi |2 < ∞}
and ||x ||l2 := (∑∞

i=1 |xi |2
) 1
2 , ∀x ∈ l2(R). Let C = {x ∈ l2(R) : ||x − a||l2 ≤ r}, where

a = (1, 1
2 ,

1
3 , · · · ), r = 3. Then C is a nonempty closed and convex subset of l2(R). Thus,

PC (x) =
{
x, if x ∈ ||x − a||l2 ≤ r ,

x−a
||x−a||l2 r + a, otherwise.

Now, define the operators A, f , T : l2(R) → l2(R) by

Aa :=
(
a1 + |a1|

2
,
a2 + |a2|

2
, ...,

ai + |ai |
2

, ...

)

, f (a) = 1

3
a, T (a) = −11

2
a ∀a ∈ l2.

Then A is Lipschitz continuous and monotone with Lipschitz constant L = 1, f is a con-
traction with ρ = 1

3 and T is a demi-contractive mapping with σ = 117
169 .

Furthermore, we choose λ1 = 1, μ = 0.5, τn = 1
n+1 , αn = 2n+3

50n+100 , βn = n+1
100n+2 and

θn :=
{
min

{
θ, en‖xn−xn−1‖

}
, if xn �= xn−1

θ, otherwise,

where en = 1
n2

and θ = 0.3. Then, we consider the following cases for the numerical
experiments.
Case 1: Take x1 = (1, 1

2 ,
1
3 , · · · ) and x0 = ( 12 ,

1
5 ,

1
10 , · · · ).

Case 2: Take x1 = ( 12 ,
1
5 ,

1
10 , · · · ) and x0 = (1, 1

2 ,
1
3 , · · · ).

Case 3: Take x1 = (1, 1
4 ,

1
9 , · · · ) and x0 = ( 12 ,

1
4 ,

1
8 , · · · ).

The stopping criterion is TOLn < 10−5, where TOLn = 0.5‖xn − T (PC(xn − xn))‖2. Note
that TOLn = 0 implies that xn is a solution.

Remark 5.1 The numerical illustration 5 is provided to check the general performance of our
Algorithm 3.3. The Table 1 and Fig. 1 show the time it takes and number of iterations it takes
for the recursive sequence to converge in the cases 1 to 3 stated above.
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Table 1 Numerical results
summarizing the performance of
our Algorithm

Algorithm 3.3

case 1 CPU time (s) No. of iteration 0.2331 1251

case 2 CPU time (s) No. of iteration 0.1947 1250

case 3 CPU time (s) No. of iteration 2.1289 8072

Iteration number (n)
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Fig. 1 The behavior of TOLn with ε = 10−5: Top Left: Case 1; Top Right: Case 2; Bottom Right: Case 3

6 Conclusion

In the real Hilbert space setting, we have proposed subgradient extragradient methods for
approximating a common solution for variational inequality problems and fixed point prob-
lems. We obtained a strong convergence under some mild assumptions, that is, the associated
single-valued operator A is monotone and Lipschitz continuous. Furthermore, we have
adopted self-adaptive stepsize which is generated at each iteration. An appropriate com-
putational experiment is provided to support our theoritical argument. Our algorithm is an
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improvement to the recent work of [33, 37, 38] among other already announced results in
this direction.
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