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Abstract

Our purpose is to establish new gap type and characterization results concerning n-dimen-
sional spacelike submanifolds immersed with parallel mean curvature vector in the (n +
p)-dimensional de Sitter space Sg+p of index ¢ (1 < ¢ < p). Initially, by applying a weak
form of the Omori—Yau maximum principle, we obtain sufficient conditions which guarantee
that a stochastically complete spacelike submanifold M" immersed in SZ” is either totally
umbilical or isometric to a maximal isoparametric spacelike submanifold. Furthermore, by
assuming that either the Hilbert—Schmidt norm of the traceless second fundamental form of
M" converges to zero at infinity or that M" has polynomial volume growth, we provide a set
of geometric hypotheses which guarantee the umbilicity of M".

Keywords De Sitter space - Parallel mean curvature vector - Traceless second fundamental
form - Totally umbilical spacelike submanifolds - Isoparametric spacelike submanifolds
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1 Introduction

The geometry of spacelike submanifolds of a semi-Riemannian space form is a classical but
still fruitful thematic into the theory of isometric immersions and has gotten increasing interest
motivated by their importance in problems related to Physics, such as General Relativity
theory. Into this branch, Goddard [15] conjectured in his seminal paper 1977 that the unique
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complete spacelike hypersurfaces of the de Sitter space S'I’J’l with constant mean curvature
H should be the totally umbilical ones. Ten years have passed until Ramanathan [25] prove
that Goddard’s conjecture is true for S% and 0 < H < 1. However, for H > 1 he showed that
the conjecture is false, as can be verified from an example due to Dajczer and Nomizu [13].
Simultaneously and independently, Akutagawa [2] also proved that Goddard’s conjecture is
true when eithern = 2and H? < lorn > 3and H2 < %. Moreover, he also constructed

complete spacelike rotation surfaces in S? with constant mean curvature H satisfying H > 1
and which are not totally umbilical. Next, Montiel [21] showed that Goddard’s conjecture
is true for compact (without boundary) spacelike hypersurfaces. Furthermore, he exhibited
examples of complete spacelike hypersurfaces in S'I’J” with constant mean curvature H> >
4(n — 1)/n? and being non totally umbilical, the so-called hyperbolic cylinders.

Related to higher codimension, Cheng [11] extended Akutagawa’s result for complete
spacelike submanifolds with parallel mean curvature vector in de Sitter space S';,ﬂ’ of index
p. Afterwards, Aiyama [1] studied compact spacelike submanifolds M" in S;’,ﬂ’ with parallel
mean curvature vector and proved that if the normal connection of M" is flat, then M" is
totally umbilical. In the same work, she showed that compact spacelike submanifolds in S, "
with parallel mean curvature vector and nonnegative sectional curvature must be also totally
umbilical. Meanwhile, Alias and Romero [6] developed some integral formulas for compact
spacelike submanifolds in S';,+p and, as application of them, they obtained a Bernstein type
result for complete maximal submanifolds. Next, Li [19] showed that the result of Montiel
[21] still holds for higher codimensional spacelike submanifolds in S 7. Later on, Camargo,
Chaves and Sousa [9] studied complete spacelike submanifolds with parallel normalized
mean curvature vector (that is, the normalized mean curvature vector is parallel as a section
of the normal bundle of the spacelike submanifold) and constant scalar curvature immersed
in a semi-Riemannian space form ]L';,+p (c) of constant sectional curvature ¢ and index p.
In particular, they obtained characterization results concerning totaly umbilical spacelike
submanifolds and hyperbolic cylinders of S';,+p , under certain constraints on both the squared
norm of the second fundamental form and on the mean curvature.

When the index of the ambient space is possibly different of the codimension of the space-
like submanifold, Mariano [20] obtained some characterization results for n-dimensional
complete spacelike submanifolds with parallel mean curvature vector and locally timelike
second fundamental form in ST” ,for 1 < g < p. Later on, Yang and Li [28] applied the
Omori—Yau maximum principle in order to get further characterization results concerning
complete spacelike submanifolds with parallel mean curvature vector in SZ'H’ ,forl < g < p.
Afterwards, working in this same context, Chen, Liu and Shu [10] obtained Simons type inte-
gral inequalities and rigidity theorems related to compact spacelike submanifolds of SZ“’ .
More recently, Barboza, de Lima and Velasquez [7] investigated n-dimensional spacelike sub-
manifolds immersed with parallel mean curvature vector % in a pseudo-Riemannian space
form ]L'fp (c) of index 1 < g < p and constant sectional curvature ¢ € {—1, 0, 1}. Con-
sidering the cases when # is either spacelike or timelike, they proved that such a spacelike
submanifold is either totally umbilical or it holds a lower estimate for the supremum of the
norm of its traceless second fundamental form, occurring equality when the spacelike sub-
manifold is pseudo-umbilical (which means that £ is an umbilical direction) and its principal
curvatures are constant.

Going a step further, in this work we establish new gap type and characterization results
concerning n-dimensional spacelike submanifolds in the de Sitter space SZ'H) of index
1 < g < p. Initially, in Sect.4 we apply a weak form of the Omori—Yau maximum princi-
ple to obtain sufficient conditions which guarantee that a stochastically complete spacelike

@ Springer



Spacelike submanifolds with parallel mean curvature vector... 837

submanifold M" must be either totally umbilical or isometric to a maximal isoparametric
spacelike submanifold. Afterwards, by assuming that either the Hilbert—Schmidt norm of the
traceless second fundamental form of M" converges to zero at infinity or that M" has poly-
nomial volume growth, in Sect. 5 we provide a set of geometric hypotheses which guarantee
the umbilicity of M".

2 Spacelike submanifolds in a semi-Riemannian space form

Let M" be an n-dimensional (connected) spacelike submanifold immersed in an (n + p)-
dimensional semi-Riemannian space form Lyfp (c) of index ¢ € {1, ..., p} and constant
sectional curvature ¢ € {—1,0, 1}, where n and p are natural numbers satisfying n > 2
and p > 1. We choose a local field of semi-Riemannian orthonormal frame ey, ..., e,4p in

L’;"7 (¢), with dual coframe {1, ..., @, p}, such that, at each point of M”, ey, ..., e, are
tangent to M" and e, 11, ..., ey4p are normal to M".
Along this manuscript, we will use the following convention for indices:

1<A,B,C,...<n+ p; 1<i,j,k,...<m n+l<apB,y,...<n+p.

We have that the semi-Riemannian metric ds? of ]LZ+p (¢) can be written as
-2 2
ds® = Z €AWy,
A
where

ea=1, 1<A<n+p—q, ea=-1, n+p—q+1<A=<n+p.

Denoting by {w4p} the connection forms of LTP(C), we have that the structure equations

are given by

doy=—) epwap Awp, wap+wpa =0, 2.0
B
1
dwsp =—)_€c wac Awcp — 3 > ecepKapep oc A wp, 2.2)
c c.D

and

Kapcp = ceaep(8apdpc — 84cdBD),

where K 4pcp denote the components of indefinite curvature tensor of L’ffp (c).
Restricting forms to M", we have wy, = 0, € {n+1, ..., n+ p}, and the induced metric
ds? of M" is written as ds? = > wiz. Since ) ; wyi A w; = dwy, from Cartan’s Lemma we
can write
o o o
Wi = Zhijwj, where hj; = hj;. (2.3)
J

The quadratic form

o
A= E eahija),-a)i,‘ea,

i,j.e
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is the second fundamental form of M". Denoting

1
Ha:;th‘i, with ae{n+1,....,n+p},
i

the mean curvature vector # is expressed as
o
h = E eaH%ey.
o

Moreover, we denote by H the length of 4 and by S the square of the length of the second
fundamental form, that is,

H=|lhl= [} (H? and  S=|AP= ) (ehip)® =) (1)
a i,j,a a,i,j

We can express the structure equations of M" as follows
dwi:—Zwijij, a)j,-+wi.,-:O,
J

1
dwjj = _Zwik Nowj =5 ZRijklwk A,
k k.l

where R; ji; are the components of the curvature tensor of M" . Using these structure equations,
we obtain the Gauss equation

Riji = c(8i1djk — 8ixdj1) + Zéa (hiphSy — hiihS). (2.4)
o

In particular, the components of the Ricci tensor R ji is given by

Rjx=cn—1D8j+ Y € (Z hehS, — Zh?‘khf;-‘i) : 2.5)
o i i
We define the first and the second covariant derivatives of {h?‘j}, say {h:.’} ) and {h?‘j «): by
Y hon = dh =Y hon — > h%oni — Y eghliwpa, 2.6)
k k k 8
and
B
D hor = dhy = b omi = Y hiygomi = Y huome = Y ephiyopa.
i m m m B
2.7
respectively. Then, by exterior differentiation of (2.3), we obtain the Codazzi equation
i?;k = f‘kj, (2.8)

Furthermore, by exterior differentiation of (2.2), we get the following Ricci identity

O — h ==Y h% Rujit — ¥ h%, Rkt — Y €ghl’ Rpar. 2.9)
m m B
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The Ricci equation is quoted below

Ropij=—) (h?mhfnj - h?mhii) : 2.10)

m

3 A Simons type formula and some auxiliary lemmas

In what follows, we denote respectively by V and A the gradient and the Laplacian operator
in the metric of such a spacelike submanifold M" immersed in ]LV,LIJ”’ (c¢). The traceless second
fundamental form ® of M" is defined as been the following symmetric tensor

O =) P ®w; e (3.
a,i,j
where
¢lij = h?; — H"‘Sij. (3.2)
Considering
o =3 gl and ¢*f = n¢nl, (3.3)
ij ij

we have that the (p x p)-matrix (®*P) is symmetric and can be assumed to be diagonalized
for a suitable choice of e, 11, ..., ey p. Moreover, setting

D = %8y, (3.4)
from a direct calculation we obtain

Y g =0, @ =¢* —nH*HP and |®P=) 0" =S-nH®, (3.5
k o

where % = %,
The Laplacian of hf; is defined by Ah;"j = h;?‘jkk. From (2.9), we obtain for any
n+1=<a=<n+p),

p
AR = " hGi = > h Rmijk — Y b, Rukjk — Y €ghlyRpaji.  (3.6)
k km k,m k.p

So, from (2.8) and (3.6) we obtain

Ahfy = ) WihG= D D WighiaRu— D ) hijhii Rucge

i j.ok a ijkl o ijkl
=22 ephh Rpaji. 37
a,Bi,j.k
Since .
Las= X it X o, e
i,j.k,a i,j,a

from (3.7) and (3.8) we have

A8 = X Gt + X mhL, — Y 3 G R

i)k i,j.ak o QL j.k,l
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- Z Z h?jh%R]kjk - Z Z Gﬁh?}hfl-Rﬁajk,

a i jkl a,pi,j.k

that is,

EAs_ IVAP+ Y " hEGmH) i — Y Y B Riji

i,j,a o i,j.kl
—Z Z h%h%lejk — Z Z eﬁh?}hfiRﬁajk. 3.9)
o i,jkl o,Bi,j.k

In general, for a matrix A = (a;;) we denote by N(A) the square of the norm of A, that is,
N(A) = tr(AA!) = Zi,j(aij)2~ Clearly, N(A) = N(T'AT) for any orthogonal matrix 7.

From (2.10), we have
B 1B B
- E E ephiihy; (highi; _hjlh%c)

=35 ephliniRpaji

a,B i, j.k.B a,Bi,j.k.B
2
=5 Z € (Z hklhlj thﬂ@)
0( B.Jj.k
= —5 Z € (Zd’kl% Z@d%)
o, B,k

-3 YN @l — o)
o.p

1
—Ezeﬁzv(obacbﬁ — Dpd,), (3.10)
p

where @, = (¢l.°‘j) = (h?;. — H%G;)).
Combining (2.4), (2.10), (3.2), (3.3), (3.5) and (3.10), we conclude that

=3 R Ry + b Ruji) = nel®P =Y eg@* P 40 Y e,gHﬂhﬂ he

o qij.k,l o, B o, B.i,j.k
- Z eﬂhjl 1kRﬂOka
a,Bi,j.k
= nel®> =Y eg@P)? —2n Y eﬂHaHﬂzﬁf‘ian}
o.B a.Bij '
2y eg(HO2HP? +n Y 65Hﬂ¢,’fj¢f‘j¢f§€
a,B o, B,k
@Y epHP? +2n Y EﬂH“Hﬁ¢g‘i¢f;
B apui

1
+n? geﬁ(HW)Z(Hﬁ)Z_E %eﬂzv(%%—cbﬂ%).
(3.11)

Hence, we arrive at

=D D W Rk + hii Rugr) = nel®P =Y " ep(@F)? +n|®*Y " ep(HP)?

o i jkl a.p B
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30 o0
o, B,i,j.k
1
= D €N (g Dp — Dpdy).
o.p
(3.12)

Assuming that the mean curvature vector is parallel, that is, IVJ-I;V 2= > (H "‘)2 =0,
we see that HY = 0 forall i, @ and H are constant for all «, this implies that H is constant.
Putting (3. 10) and (3.12) into (3.9), we have the following Simons type formula.

Proposition 1 Let M" be an n-dimensional spacelike submanifold immersed with parallel
mean curvature vector in an (n + p)-dimensional semi-Riemannian space form ]Lr;rp (c) of
index q € {1, ..., p} and constant sectional curvature c € {—1, 0, 1}. With all the notations
established above, we have that the traceless second fundamental form ® of M™ verifies

A|<I>|2 |Vh| +nc|<I>|2+n|d>|ZZe,g(Hﬁ)2+ZZeﬁH A
a,Bi,j.k

— Y egN(@o®p — Dpdy) — »_ ep(d*)%, (3.13)
op B

In order to prove our results in the next sections, we will also need the following algebraic
lemmas, whose proofs can be found in Santos [26] and Li and Li [18], respectively.

Lemma 1 Let By and By be symmetric n x n matrices such that [By, Bo] = 0 and tr(B1) =
tr(Bz) = 0. Then
n—2 2

-~ 2
m tr (Bl) tr (B2)’

and the equality holds if and only if n — 1 of the eigenvalues x; of B and the corresponding
eigenvalues y; of By satisfy

o 1/2 w (B2))/2 B2)"2
@) () <p e )

lr (B{B2) | <

N N ICE=2) NGRS,
Lemma2 Let By, ..., By, p > 2, be symmetric n X n matrices. Then
P
> (tr[Ba,B,s] — tr (BoBp) )> -= (Ztr B2 )
o, =1

4 Stochastically complete spacelike submanifolds in SZ"‘"
We recall that a (non necessarily complete) Riemannian manifold M" is said to be stochasti-
cally complete when, for some (and, hence, for any) (x, t) € M" x (0, +00), the heat kernel

p(x, y,t) of the Laplace—Beltrami operator A satisfies the conservation property

/ px,y,DHdu(y) =1 4.1)
M
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From the probabilistic viewpoint, stochatically completeness is the property of a stochastic
process to have infinite life time. For the Brownian motion on a manifold, the conservation
property (4.1) means that the total probability of the particle to be found in the state space is
constantly equal to one (see Emery [14], Grigoryan [16, 17] and Stroock [27]).

Pigola, Rigoli and Setti showed that stochastic completeness turns out to be equivalent
to the validity of a weak form of the Omori—Yau maximum principle, as is expressed below
(see Theorem 1.1 of Pigola, Rigoli and Setti [23] and Theorem 3.1 of Pigola, Rigoli and Setti
[24]):

Lemma 3 A Riemannian manifold M" is stochastically complete if, and only if, for every
u € C2(M) satisfying supy, u < +00 there exists a sequence of points { px} C M" such that

lim u(py) = supu and lim sup Au(py) < 0.
k—o00 M k— 00

Remark 1 We also note that stochastic completeness of Riemannian manifold M" is equiv-
alent (among other conditions) to the fact that for every A > 0, the only nonnegative
bounded smooth solution # of Au > Au on M" is the constant u = 0. Moreover, it is a
direct consequence of Lemma 1 jointly with the Omori [22] and Yau [29] maximum prin-
ciple that complete Riemannian manifolds having Ricci curvature bounded from below are
stochastically complete.

In our first result, we present a gap type theorem concerning stochastically complete
spacelike submanifolds with parallel mean curvature vector.

Theorem 1 Let M" be an n-dimensional stochastically complete spacelike submanifold
immersed with parallel mean curvature vector in the (n + p)-dimensional de Sitter space
SZ-H’ of index q € {1, ..., p}, such that the mean curvature H satisfies H < 1. Then,

(a) either supy,|®|= 0 and M" is a totally umbilical submanifold,

(b) orsup |®|> o, where a* is the positive root of the polynomial function

2022 @) — B 4.2)
n(l — , .

Jnn —1

witha =1ifp—q =1anda = 3/2if p — g > 1. Moreover, when sup,,|P|= o*

and it is attained at some point of M", then M" is isometric to a maximal isoparametric

spacelike submanifold of Sg+p .

Py (x) = —a|®[*~

Proof We have the following:

n+p—q n+p
n|®PY eg(HP)? =n|®> Y (HPY —nj@* )  (HF)
B B=n+1 B=n+p—q+1
n+p—q n+p—q
=nl®f Y (HP)Y +nl@] ) (HP)
B=n+1 B=n+1
n+p—q n+p
—n|® Y (H)? —njo > (HP)
B=n+1 B=n+p—q+1
n+p—q n+p
=@ Y (H)? —nj@]* Y (HF)
B=n+1 B=n+1
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> —n|®*H>. 4.3)

‘We use that
Z(cbﬁ)z = 9F, Zd’ﬁ =0, Z/Lf‘ =0 and Z(,u;.")2 = o,

from (3.13) we obtain

n+p—q n+p
B
no Y eHleeen =0 30 30 HPeGee—n 3 30 HP9eN
a,Bii,j.k a,i,j.k p=n+1 a,i,j.k p=n+p—q+1
n+p—q n+p
= nZ Z Hﬁ¢£(/¢?‘)2—nz Z Hﬂ¢£(/1«?)2- 4.4)
i B=n+1 a,i B=n+p—q+1
So, it follows from Lemma 1 that
n+p—q n+p—q
nY D L) = Z > HPetVar,  (45)
a,i B=n+1 o fB=n+1
and
n+p n+p

ny Y HPLu? = - mz 3 HAeVOR.  (46)

a,i B=n+p—qg+1 a B=n+p—q+1

Hence, from (4.4), (4.5) and (4.6) we have that

o n(n—2) 3 n+p—q n+p
noy eﬁHﬂ¢£j¢ij¢ik2_ WAt Z@ Yo HWeE+ Y |HP VP
a,Bi,j.k B=n+1 B=n+p—q+1
n+p
= Zd>°‘ > |HP |V ob
”("_1 f=ntl
n(n 2
> |0 HPYZ2N @b
> W' |(/Z< >Z )
nn—2) 3
— 72 iep, 4.7
NZICE=))
On the other hand, we have
n+p—q
=) EpN(uDp — PpDy) ==Y Y N(Dup — Dpdy)
o, B o B=n+l1
n+p

£ ) gN(@uDp— Dpdy)  (48)

a B=n+p—q+1

and
n+p—q n+p
=Y (@) == Y @)+ > (@)% (4.9)
a,B o fB=n+l1 o B=n+p—q+l
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844 W.F.C.Barboza et al.

Thus, from (4.8) and (4.9) we get

n+p—q n+p—q

=Y egN(@o®p — Dpdo) — Y ep(@P) == 3" " N(@yPp — Dpda)

B o,pB a=n+1 f=n+1
n+p—qn+p—q n+p n+p
-3 S @+ Y > N(@y®p — Ppdy)
a=n+1 f=n+1 a=n+p—q+1 p=n+p—q+1
n+p n+p

D S DI

a=n+p—q+1 p=n+p—q+1

n+p—q n+p—q n+p—qn+p—q
2= ) 2 N@e®p— @)= 3 ) (@)Y
a=n+1 f=n+1 a=n+1 f=n+1

where the inequality N (P, Pg — Pgdy) > 0 for any «, B was used.
Now we consider two cases:

e If p — g =1, we have from (3.5) that

n+p—qntp—q n+p—qntp—q
= Y ) N@u®p—p®a) — Y Y (@)= —(@m T > —joft,
a=n+1 f=n+1 a=n+1 B=n+1
(4.10)
e If p —g > 1, from Theorem 1 of Anmin and Jimin [3] we have
n+p—qntp—q n+p—qn+p—q 3 n+p—q
_ _ _ B2 o 2 2
Do D N@a®p—dpde) = 3o D (@) >3 ( > (@9 )
a=n+1 f=n+1 a=n+1 f=n+1 a=n+1
> 2ot @an
z -3 . .
Consequently, from (3.13), (4.3) - (4.11) we get
1 nin—2)
—AlO]* > Vh2+d>2{nl—H2—7Hd>—a<D2}, 4.12
5 |7 = [VA["+[P]7n( ) NoCEa |P|—al|P| (4.12)

wherea =1if p—g =1anda =3/2if p — g > 1. Therefore, we have that (4.12) can be
rewritten as

1
EAICDI2 > |®* Py (@), (4.13)
where Pp(x) is the function defined by (4.2). Moreover, from the behavior of Py (x) we
have that Py (0) > 0 and lim Py (x) = —oo. Now, we observe that if sup,,|®|= oo,
X—> 00
then item (i7) is trivially satisfied. So, let us suppose that sup,, |®| < 4-oc. Thus, Lemma 3

guarantees that there exists a sequence of points {pr} C M" such that

lim |®(pr) =sup|®> and  limsup A|®>(pr) <O.
k—o0 M

k— 00
Consequently, taking into account the continuity of the function Py (x), from (4.13) we get
1. 2 : 2 _ 1 2
0> > limsup A|®[*(pr) > limsup (|®1*Pr(|®]) (pr) = lim (D Py (1)) (px)
2 k—00 k— 00 k—00

= lim |®*(px) P ( lim |®|(px)) = sup|®|* Py (sup| D|).
k—o0 k— o0 M M
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Hence, we obtain
(sup|®|)? Py (sup| ®|) < 0.
M M

It follows from here that either sup,,|®|= 0, which means that |®|= 0 and M" is totally
umbilical, or sup,,|®|> 0 and then

Py (sup|®|) <0,
M

which implies that sup,,|®|> «*, where o* is the positive root of (4.2).

To conclude the proof, let us assume that sup,,|®|= o™ and that it is attained at some point
of M", then from Hopf’s maximum principle we get that |®| is constant. Hence, from (4.12)
we obtain that |[VA|?>= 0, which means that M" is an isoparametric spacelike submanifold.
On the other hand, from the fact that |®| is constant, we have that all the above inequalities
are, in fact, equalities. Thus, from the equalities in (4.3), (4.7) and (4.10) we obtain

n+p—q n+p n+p
Yo =0, Y |HAVOP = H|o|, 3 Yo @)
p=n+l1 B a=n+p—q+1 p=n+p—q+1

This implies that Hf =0forf =n+1,--- ,n+p—q,and & =0forf=n+p—q +
1,---,n 4+ p. Therefore, we get

H|o|= ) |HF|VoF = 0.
p

Since we are assuming |®|# 0, we have H = 0, that is, M" is a maximal isoparametric
spacelike submanifold of SZ'H’ . O

Taking into account Remark 1, from Theorem 1 we derive the following consequence.

Corollary 1 Let M" be an n-dimensional complete spacelike submanifold immersed with
parallel mean curvature vector in the (n 4+ p)-dimensional de Sitter space SZ-H’ of index
g € {1, ..., p}, such that the Ricci curvature is bounded from below and the mean curvature
H satisfies H < 1. Then,

(a) either supy,|®|= 0 and M" is a totally umbilical submanifold,

(b) orsup,|®|> a*, where a* is the positive root of the polynomial function (4.2). Moreover,
when sup | ®|= o* and it is attained at some point of M", then M" is isometric to a
maximal isoparametric spacelike submanifold of SZJFP .

We recall that a Riemannian manifold M" is said to be parabolic (with respect to the
Laplacian operator) if the constant functions are the only subharmonic functions on M"
which are bounded from above; that is, for a function u € C 2(M ),

Au >0 and supu < +oo implies u = constant.
M
Since every parabolic Riemannian manifold is stochastically complete (see Pigola, Rigoli
and Setti [24]), from Theorem 1 we obtain.

Corollary 2 Let M" be an n-dimensional spacelike submanifold immersed with parallel mean
curvature vector in the (n + p)-dimensional de Sitter space SZH’ of index g € {1, ..., p},
such that the mean curvature H satisfies H < 1. If M" is parabolic, then either |®|= 0 and
M" is totally umbilical, or sup,,|®|> o*, where o™ is the positive root of the polynomial
function (4.2). Moreover, when sup,,|®|= o*, M" is isometric to a maximal isoparametric

spacelike submanifold of SZ+F .
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Proof Since the weak Omori—Yau’s maximum principle [22, 29] holds on every parabolic
Riemannian manifold, if sup,, |<I>|2 < 400, there is nothing to prove. On the other hand, in
the case that 0 < sup,, |®|% < +o0, reasoning as in the first part of the proof of Theorem
1, we guarantee that sup,, |®|2 > a*. Moreover, if Sup |2 = a*, then Py (supy @) <0
and, consequently, the function |®|? is subharmonic on M" . Therefore, from the parabolicity
of M" we conclude that the function |®|? must be constant and equal to o*. To close the
proof, we can reason as in the last part of the proof of Theorem 1. O

In our next result, we assume a suitable hypothesis on the infimum of the sectional
curvature of the submanifold.

Theorem 2 Let M" be an n-dimensional stochastically complete spacelike submanifold
immersed with parallel mean curvature vector in the (n + p)-dimensional de Sitter space

SZ'H’ of index q € {1, ..., p}, such that the infimum K of the sectional curvatures of M"
satisfies
1 1
K>- <1 - 7) P2, (4.14)
n pP—9q
then

(a) either supy,|®|= 0 and M" is a totally umbilical submanifold,
(b) orsup,,|®|> B*, where B* is the first positive root of the polynomial function

1 2
Pg(|®)) =nK — (1 — |®[~.
P—q
(4.15)

Moreover, when sup | ®|= B* and it is attained at some point of M", then M" is isometric

to an isoparametric spacelike submanifold of SZ-H) .

Proof For a fixed o, n + 1 < @ < n + p, we can take a local orthornormal frame field

{e1, ..., ey} such that h?‘j = A%8;;. Then, qﬁf‘j = ud8;; with uf =A% —H%and )", uf = 0.
Consequently,

1
- Z hi; (hig Ruijk — hi; Rigjr) = 3 Z(Af’ — 2% Ruii

a,i,j,k,l o,ik
K
> D 6F =4
w,ik
=nK(S —nH?) =nK|®|>. (4.16)

On the other hand, we have
1 B 8 1 n+p—q 5 5
) ZeﬁN(‘p?f(pij B ¢ij¢gf) =73 Z Z N(¢?/¢ij - ¢ij¢lqj)
o, f a B=n+l
1 R
B B
+EZ Z N(¢:‘xj¢ij _¢,’j¢?j)
o B=n+p—q+1
| THpTantra

—5 2 D N@el - e

a=n+1 f=n+1
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1 n+p n+p
B B
+3 2 Y N@igy — e
a=n+p—q+1 f=n+p—q+1
| hpantr—q

=5 2 D N@el - eheh)

a=n+1 f=n+1
> - %o 4.17)
a#p
From Lemma 1 of Chern, do Carmo and Kobayashi [12], we have that
1 p p n+p—q 2 n+p—q 5
2 ZEﬂN(d’?jd’i,i — %) =~ ( > (Da) + ) (@9
B a=n+1 a=n+1
n+p—q l n+p—q 2
a=n+1 a=n+1
n+p—q 2
e
a=n+1
1
> (1= — |<I>| (4.18)
pP—q
Hence, from (3.10), (3.11), (4.16) and (4.17) we obtain
1 1
SA|Q> VAP +| D (nK - (1 — —) |<1>|2) , (4.19)
2 P—q

where K is the infimum of the sectional curvatures of M™. Thus, we have that (4.19) can be
rewritten as

1
SAIRP = [@F Pk (D)), (4.20)
where Pk (x) is the function defined by (4.15).
Moreover, from the behavior of Pk (x) we get that Pk (0) > Oand lim Pk (x) = —oo.If
X—>00
supy|®| = 400, then item (i7) is trivially satisfied. So, let us suppose that sup,, |®| < +oo.
Thus, Lemma 3 guarantees that there exists a sequence of points {px} C M" such that
lim |®(pr) =sup|®> and  limsup A|®*(pr) <O.
k—o0 M k— o0
Consequently, taking into account the continuity of the function Pk (x), from (4.13) we get
0= 5 lim sup A[®[*(py) > llm SUP (1212 Pk (12D) (pr) = liHolo (12> Pk (12)) (px)

k— 00

= lim |®[*(p) Pg ( lim [®|(py)) = sup|®|* P (sup|®|).
k—00 k—o00 M M

Hence, we obtain
(sup|®|)* Pk (sup| ®|) < 0. “21)
M M

It follows from here that either sup,,|®|= 0, which means that |®|= 0 and M" is totally

umbilical, or sup,,|®|> 0 and then Pk (sup,,|®|) < 0, which implies that sup,,|®|> B*,
where B* is the first positive root of (4.15).
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To conclude the proof, let us assume that sup,,|®|= B* and that it is attained at some
point of M". Then, from Hopf’s maximum principle we get that |®| is constant. Therefore,
from (4.19) we Obtaln that [Vh|2= 0, which means that M" is an isoparametric spacelike
submanifold of Sq . m}

From Theorem 2, we car reason as in the proof of Corollary 2 to get the following result.

Corollary 3 Let M" be an n-dimensional parabolic spacelike submanifold immersed with
parallel mean curvature vector immersed in the (n + p)-dimensional de Sitter space SZﬂ)
ofindex q € {1, ..., p}, such that the infimum K of the sectional curvatures of M" satisfies
(4.14). Then, either sup ;| P|= 0 and M" is a totally umbilical submanifold, or sup ;| ®|> B*
where B* is the positive root of the polynomial function (4.15). Moreover, when sup|®|= 8%,
then M" is isometric to an isoparametric spacelike submanifold of S’Hp

We proceed with the following gap type result.

Theorem 3 Let M" be an n-dimensional stochastically complete spacelike submanifold
immersed with parallel mean curvature vector in the (n + p)-dimensional de Sitter space

Szﬂj ofindexq € {1, ..., p}, such that the infimum Q of the Ricci curvatures of M" satisfies
-2
Q> 2+ n(l + HY) + ————H|®|+- ( —u>|®|2. (4.22)
n(n —1) P =q)q
Then,

(a) either supy,|®|= 0 and M" is a totally umbilical submanifold,
(b) orsup,,|®|> y*, where y* is the first positive root of the polynomial function

) 1
Po(|®]) = Q +2 —n(1 + H?) — hmqn—; (3 - ﬁ) .

(4.23)

Moreover, when sup,,|®|= y* and it is attained at some point of M", then M" is
isometric to a maximal isoparametric spacelike submanifold of S:]H'p

Proof From (2.5) and (3.2) we have

n+p—q
Rkk—<n—1)+<n—2>ZeaH“ o+ (n—1) Y (H)?
a=n+1
n+p n+p—q n+p
—(n=1) Y HD— Y @+ Y, @)
a=n+p—q+1 i,a=n+1 i,a=n+p—q+1
n+p—q n+p
S-D+0-2)) eH%+m—DH = > @0+ > (@
o i,a=n+1 i,a=n+p—q+1
(4.24)
Thus,
n+p—q n+p
nQ < ZRkk =nn—-DA+HY = Y @2+ > @
i,a=n+1 i,a=n+p—q+1
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From (3.3) and (3.4) we obtain

n+p—q n+p
- Y e+ Y 9% =nQ-n(m—- 1+ H). (4.25)
a=n+1 a=n+p—q+1

Hence, from (4.25) we see that

n+p—q n+p

D ep(@F) = =D (@) == > (@) Y (@)
o,pB o

a=n+1 a=n+p—q+1

_(n%qq)a)Z;( 5t @a)z

a=n+1 a=n+p—q+1

_("%"QQ)Z( i’ q,a):(;_l)( i’ q)a)z

a=n+1 a=n+p—q+1 a=n+p—q+1

n+p—q n+p n+p—q n+p 1
DK S D D Yooy Y " —(1—;)|c1>|4

a=n+1 a=n+p—q+1 a=n+1 a=n+p—q+1

v

%

\%

(nQ —nn — 1)1 + H*)|®*— (1 - ;) ||+ (4.26)

From (4.18) we have

n+p—qn+p—q 1
YD N(@uDp— Dpda) = 2 (1 — 7> |®)*. 4.27)
a=n+1 B=n+1 pP—q

Thus, from (3.13), (4.3), (4.7), (4.26) and (4.27) we get
1 n(n —2) 3 1 4
—A|DP? > |VA +n|®)P—n|®PH? - ———Z_H|®PP-2 (1 - 7> |D|
2 Jnn=1) P—q
2 2 1 4
+nQ—nn— DA+ H))|P|"— (1 - ;) [P

-2 1 +4q
= |Vh|? <1>2{ 2 —n(l HZ—”7H©—7(3—”7>¢2},
VAP HRIOP] Q42 = (1 + HY) = Lol (3 - T ) ol
(4.28)

where Q is the infimum of the Ricci curvatures of M". Hence, we have that (4.28) can be
rewritten as :
FAIPP = [VAP+|1° Po (@) = n|PI* Po (D), (4.29)
where Pg(x) is the function defined by (4.23).
Moreover, from the behavior of Pp (x) we get that Pp(0) > Oand lim Pgp(x) = —oo. If
X—> 00
sup | ®| = 400, then item (i7) is trivially satisfied. So, let us suppose that sup,, |®| < +oo.

Thus, Lemma 3 guarantees that there exists a sequence of points {px} C M" such that

lim |®%(pr) =sup|®> and  limsup A|®*(pr) <O.
k—o00 M

k—00

Consequently, taking into account the continuity of the function Pg(x), from (4.13) we get

1. . .
0 > 5 lim sup A|®[*(px) > limsup (|®I*Po(|®)) (px) = kgn;o(|¢|2PQ(|¢|)) (Px)

k—00 k—o00
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= lim |®|*(pr) Po( lim |®[(pr)) = sup|®|* Po(sup|®D|).
k— 00 k— 00 M M

Hence, we obtain
(sup|®|)* Pg (sup|®|) < 0. (4.30)
M M

It follows from here that either sup|®|= 0, which means that |®|= 0 and M” is totally
umbilical, or sup,,|®|> 0 and then

Pg(sup|®|) <0,
M

which implies that sup,,|®|> y*, where y* is the first positive root of (4.23).

To conclude the proof, let us assume that sup,,|®|= y* and that it is attained at some
point of M". From Hopf’s maximum principle we get that |®| is constant. Hence, from (4.28)
we obtain that |V/|>= 0, which means that M” is an isoparametric spacelike submanifold.
On the order hand, in the latter case, we see that the equalities in (4.3) and (4.24) hold. Thus,
we have

n+p—q n+p
> (HY =0, > @HY) =0, (4.31)
a=n+1 a=n+p—q+l

which imply that H* = O fora = n+1,--- ,n+ p and H = 0, that is, M" must be a

maximal isoparametric spacelike submanifold of Sj 7. O

From Theorem 4, we obtain the following consequence.

Corollary 4 Let M"™ be an n-dimensional parabolic spacelike submanifold immersed with
parallel mean curvature vector in the (n + p)-dimensional de Sitter space SZ+F of index
q €{1,..., p}, such that the infimum Q of the Ricci curvatures of M" satisfies (4.22). Then,
either sup,,|®|= 0 and M" is a totally umbilical submanifold, or sup ;| ®|> y* where y*
is the positive root of the polynomial function (4.23). Moreover, when supy,|®|= y*, then

M™" is isometric to a maximal isoparametric spacelike submanifold of Sg+p .

5 Umbilicity of complete spacelike submanifolds in S *?

This section is devoted to study the umbilicity of a complete spacelike submanifold M"
immersed with parallel mean curvature vector in SZ”’ , by assuming that either the Hilbert—
Schmidt norm of the traceless second fundamental form of M”" converges to zero at infinity
or that M" has polynomial volume growth.

5.1 Umbilicity via a maximum principle at infinity

In this subsection, our approach will be based on a suitable maximum principle at infinity
for complete noncompact Riemannian manifolds due to Alias, Caminha and Nascimento [4].
To quote it, we need to recall the following concept established in the beginning of Section
2 of Alias, Caminha and Nascimento [4]: Let M" be a complete noncompact Riemannian
manifold and letd( -, 0) : M" — [0, +00) denote the Riemannian distance of M", measured
from a fixed point 0 € M". We say that a smooth function f € C° (M) converges to zero at
infinity, when it satisfies the following condition

lim  f(x)=0. 6.1

d(x,0)—>—+00
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Keeping in mind this concept, the following maximum principle at infinity corresponds to
item (a) of Theorem 2.2 of Alias, Caminha and Nascimento [4].

Lemma4 Let M" be a complete noncompact Riemannian manifold and let X € X(M) be a
vector field on M". Assume that there exists a nonnegative, non-identically vanishing function
f € C*®(M) which converges to zero at infinity and such that (V f, X) > 0. If divX > 0 on
M", then (V f, X) =0on M".

So, our purpose is to apply Lemma 4 jointly with Proposition 1 in order to obtain our next
n+p

three characterization results of totally umbilical spacelike submanifolds of S
Theorem4 Let M" be an n-dimensional complete noncompact spacelike submanifold
immersed with parallel mean curvature vector in the (n + p)-dimensional de Sitter space
Sg+p of index q € {1, ..., p}, such that the mean curvature H satisfies H < 1. If |®| con-
verges to zero at infinity and sup,, |®| < a*, where a* is the positive root of the polynomial
function (4.2), then M" is a totally umbilical submanifold of Sg+p .

Proof Following the same steps of the proof of Theorem 1, we deduce inequality (4.13).
Let us suppose by the contradiction that M" is not totally umbilical or, equivalently, that
f = |®|? is a non-identically vanishing smooth function on M". Thus, considering on M"
the tangent vector field X = V|®|2, we have that

(V. X)=|VI®*]> > 0.
Moreover, since sup,, || < o™, from (4.13) we obtain
divX = A|®|* > 0.

Hence, since we are assuming that |®| converges to zero at infinity, we can apply Lemma 4
to conclude that |V|®|?|?> = 0, that is, |®| is constant on M". But, taking into account once
more that |®| converges to zero at infinity, we have that |®| must be identically zero on M"
and we arrived at a contradiction. O

Theorem5 Let M" be an n-dimensional complete noncompact spacelike submanifold
immersed with parallel mean curvature vector in the (n + p)-dimensional de Sitter space
SZ-H’ of index q € {1, ..., p}, such that the infimum K of the sectional curvatures of M"
satisfies (4.14). If |®| converges to zero at infinity and sup,, |®| < B* where 8* is the
positl}_/e root of the polynomial function (4.15), then M" is a totally umbilical submanifold
of SZ P,

Proof Reasoning as in the proof of Theorem 2, we obtain inequality (4.20). Let us suppose
by the contradiction that M" is not totally umbilical or, equivalently, that f = |®|? is a
non-identically vanishing smooth function on M". So, considering on M" the tangent vector
field X = V|®|?, we have that

(Vf.X)=|V|®P]> > 0.
Moreover, since sup,, |®| < o, from (4.20) we obtain
divX = Al|®)* > 0.

Hence, since we are assuming that |®| converges to zero at infinity, we can apply Lemma 4
to conclude that |V|®|%|? = 0, that is, |®| is constant on M". But, using once more that |®|
converges to zero at infinity, we have that |®| must be identically zero on M" and we arrived
at a contradiction. O
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Theorem 6 Let M" be an n-dimensional complete noncompact spacelike submanifold
immersed with parallel mean curvature vector in the (n + p)-dimensional de Sitter space
SZ'H] ofindex q € {1, ..., p}, such that the infimum Q of the Ricci curvature satisfies (4.22).
If |®| converges to zero at infinity and sup,, |P| < y*, where y* is the positive root of the
polynomial function (4.23), then M" is a totally umbilical submanifold of SZ'H) .

Proof Proceeding as in the proof of Theorem 3, we get inequality (4.29). Let us suppose
by the contradiction that M" is not totally umbilical or, equivalently, that f = |®|? is a
non-identically vanishing smooth function on M". Considering on M" the tangent vector
field X = V|®|?, we have that

(VS X)=IVI®P]® = 0.
Moreover, since sup,, |®| < y*, from (4.29) we obtain
divX = Al|®)* > 0.

Hence, since we are assuming that |®| converges to zero at infinity, we can apply Lemma 4 to
conclude that |V|®|%|> = 0, that is, |®| is constant on M". But, since | ®| converges to zero
at infinity, we have that |®| must be identically zero on M" and we arrived at a contradiction.

O

5.2 Umbilicity via polynomial volume growth

We start quoting the maximum principle that will be used to prove our results in this last
subsection. For this, let M" be a connected, oriented, complete noncompact Riemannian
manifold. We denote by B(p, t) the geodesic ball centered at p and with radius ¢. Given a
polynomial function o : (0, +00) —> (0, 400), we say that M”" has polynomial volume
growth like o (1) if there exists p € M" such that

vol(B(p, 1)) = O(c (1)),

as t —> 400, where vol denotes the Riemannian volume.
If p,q € M"™ are at distance d from each other, it is straightforward to check that
Vvol(B(p, 1)) _ vol(B(g,t —d)) ot —d)
o(t) - o(t—d) o)

Hence, the choice of p in the notion of volume growth is immaterial, so that, henceforth, we
will simply say that M" has polynomial volume growth.

In this context, we have the following maximum principle, which is derived from Theorem
2.1 of Alias, Caminha and Nascimento [5].

Lemma5 Let M" be a connected, oriented, complete noncompact Riemannian manifold,
and let f € C°°(M) be a nonnegative smooth function such that Af > af on M", for some
positive constant a € R. If M™ has polynomial volume growth and |V f| is bounded on M",
then f vanishes identically on M".

We will also need of Lemma 1 of Barros, Brasil and Sousa [8], which is stated below in
our context.
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Lemma 6 Let M" be a spacelike submanifold immersed in the (n + p)-dimensional de Sitter
space Sg+p of index q € {1, ..., p}. Then, the traceless second fundamental form ® of M"
defined in (3.1) verifies the following inequality

4
VoL —— |0 Vol
n+2
In this setting, we obtain our the following result.

Theorem7 Let M" be an n-dimensional complete noncompact spacelike submanifold
immersed with parallel mean curvature vector immersed in the (n + p)-dimensional de
Sitter space SZ” of index q € {1, ..., p}, such that the mean curvature H satisfies H < 1
and the traceless second fundamental form ® verifies |[V®|< 400 and sup,, || < o,
where o* is the first positive root of the polynomial function (4.2). If M" has polynomial
volume growth, then M" is a totally umbilical submanifold of S;H) .

Proof From the proof of Theorem 1, we get inequality (4.13). Thus, since sup,,|®|< o,
from the behavior of Py (x) we obtain

AlD*> a|®|?,

where a = Py (o) > 0. Moreover, taking into account that sup,,|®|< « < o™ and |[VP|
is bounded, Lemma 6 guarantees that |V|®|?| is also bounded. Therefore, we can apply
Lemma 5 to conclude that sup,,|®|= 0 and, hence, M" is a totally umbilical submanifold
of SptP. o

Using inequalities (4.20) and (4.29), respectively, we can reason as in the proof of Theorem
7 to establish our last two characterization results of totally umbilical spacelike submanifolds
of SpFP.

Theorem 8 Let M" be an n-dimensional complete noncompact spacelike submanifold
immersed with parallel mean curvature vector immersed in the (n + p)-dimensional de
Sitter space SZ-H’ of index q € {1, ..., p}, such that the infimum K of the sectional curva-
ture of M" satisfies (4.14) and the traceless second fundamental form ® verifies |V®|< +00
and supy, |®| < B*, where B* is the positive root of the polynomial function (4.15). If M"
has polynomial volume growth, then M" is a totally umbilical submanifold of SZ'H) .

Theorem 9 Let M" be an n-dimensional complete noncompact spacelike submanifold
immersed with parallel mean curvature vector immersed in the (n + p)-dimensional de
Sitter space SZ” ofindexq € {1, ..., p}, such that the infimum Q of the Ricci curvatures of
M" satisfies (4.22) and the traceless second fundamental form ® of M" verifies |V®|< +o00
and sup,, |®| < y*, where y* is the positive root of the polynomial function (4.23). If M"

. . e . n+p
has polynomial volume growth, then M" is a totally umbilical submanifold of S;"".
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