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Abstract
Our purpose is to establish new gap type and characterization results concerning n-dimen-
sional spacelike submanifolds immersed with parallel mean curvature vector in the (n +
p)-dimensional de Sitter space Sn+p

q of index q (1 ≤ q ≤ p). Initially, by applying a weak
form of the Omori–Yau maximum principle, we obtain sufficient conditions which guarantee
that a stochastically complete spacelike submanifold Mn immersed in Sn+p

q is either totally
umbilical or isometric to a maximal isoparametric spacelike submanifold. Furthermore, by
assuming that either the Hilbert–Schmidt norm of the traceless second fundamental form of
Mn converges to zero at infinity or that Mn has polynomial volume growth, we provide a set
of geometric hypotheses which guarantee the umbilicity of Mn .

Keywords De Sitter space · Parallel mean curvature vector · Traceless second fundamental
form · Totally umbilical spacelike submanifolds · Isoparametric spacelike submanifolds

Mathematics Subject Classification Primary 53C42; Secondary 53A10 · 53C20 · 53C50

1 Introduction

The geometry of spacelike submanifolds of a semi-Riemannian space form is a classical but
still fruitful thematic into the theory of isometric immersions andhas gotten increasing interest
motivated by their importance in problems related to Physics, such as General Relativity
theory. Into this branch, Goddard [15] conjectured in his seminal paper 1977 that the unique
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complete spacelike hypersurfaces of the de Sitter space Sn+1
1 with constant mean curvature

H should be the totally umbilical ones. Ten years have passed until Ramanathan [25] prove
that Goddard’s conjecture is true for S31 and 0 ≤ H ≤ 1. However, for H > 1 he showed that
the conjecture is false, as can be verified from an example due to Dajczer and Nomizu [13].
Simultaneously and independently, Akutagawa [2] also proved that Goddard’s conjecture is
truewhen either n = 2 and H2 ≤ 1 or n ≥ 3 and H2 <

4(n−1)
n2

.Moreover, he also constructed

complete spacelike rotation surfaces in S31 with constant mean curvature H satisfying H > 1
and which are not totally umbilical. Next, Montiel [21] showed that Goddard’s conjecture
is true for compact (without boundary) spacelike hypersurfaces. Furthermore, he exhibited
examples of complete spacelike hypersurfaces in S

n+1
1 with constant mean curvature H2 ≥

4(n − 1)/n2 and being non totally umbilical, the so-called hyperbolic cylinders.
Related to higher codimension, Cheng [11] extended Akutagawa’s result for complete

spacelike submanifolds with parallel mean curvature vector in de Sitter space Sn+p
p of index

p. Afterwards, Aiyama [1] studied compact spacelike submanifoldsMn in Sn+p
p with parallel

mean curvature vector and proved that if the normal connection of Mn is flat, then Mn is
totally umbilical. In the samework, she showed that compact spacelike submanifolds in Sn+p

p

with parallel mean curvature vector and nonnegative sectional curvature must be also totally
umbilical. Meanwhile, Alías and Romero [6] developed some integral formulas for compact
spacelike submanifolds in S

n+p
p and, as application of them, they obtained a Bernstein type

result for complete maximal submanifolds. Next, Li [19] showed that the result of Montiel
[21] still holds for higher codimensional spacelike submanifolds in Sn+p

p . Later on, Camargo,
Chaves and Sousa [9] studied complete spacelike submanifolds with parallel normalized
mean curvature vector (that is, the normalized mean curvature vector is parallel as a section
of the normal bundle of the spacelike submanifold) and constant scalar curvature immersed
in a semi-Riemannian space form L

n+p
p (c) of constant sectional curvature c and index p.

In particular, they obtained characterization results concerning totaly umbilical spacelike
submanifolds and hyperbolic cylinders of Sn+p

p , under certain constraints on both the squared
norm of the second fundamental form and on the mean curvature.

When the index of the ambient space is possibly different of the codimension of the space-
like submanifold, Mariano [20] obtained some characterization results for n-dimensional
complete spacelike submanifolds with parallel mean curvature vector and locally timelike
second fundamental form in S

n+p
q , for 1 ≤ q ≤ p. Later on, Yang and Li [28] applied the

Omori–Yau maximum principle in order to get further characterization results concerning
complete spacelike submanifoldswith parallelmean curvature vector inSn+p

q , for 1 ≤ q ≤ p.
Afterwards, working in this same context, Chen, Liu and Shu [10] obtained Simons type inte-
gral inequalities and rigidity theorems related to compact spacelike submanifolds of Sn+p

q .
More recently, Barboza, deLima andVelásquez [7] investigated n-dimensional spacelike sub-
manifolds immersed with parallel mean curvature vector h in a pseudo-Riemannian space
form L

n+p
q (c) of index 1 ≤ q ≤ p and constant sectional curvature c ∈ {−1, 0, 1}. Con-

sidering the cases when h is either spacelike or timelike, they proved that such a spacelike
submanifold is either totally umbilical or it holds a lower estimate for the supremum of the
norm of its traceless second fundamental form, occurring equality when the spacelike sub-
manifold is pseudo-umbilical (which means that h is an umbilical direction) and its principal
curvatures are constant.

Going a step further, in this work we establish new gap type and characterization results
concerning n-dimensional spacelike submanifolds in the de Sitter space S

n+p
q of index

1 ≤ q ≤ p. Initially, in Sect. 4 we apply a weak form of the Omori–Yau maximum princi-
ple to obtain sufficient conditions which guarantee that a stochastically complete spacelike
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submanifold Mn must be either totally umbilical or isometric to a maximal isoparametric
spacelike submanifold. Afterwards, by assuming that either the Hilbert–Schmidt norm of the
traceless second fundamental form of Mn converges to zero at infinity or that Mn has poly-
nomial volume growth, in Sect. 5 we provide a set of geometric hypotheses which guarantee
the umbilicity of Mn .

2 Spacelike submanifolds in a semi-Riemannian space form

Let Mn be an n-dimensional (connected) spacelike submanifold immersed in an (n + p)-
dimensional semi-Riemannian space form L

n+p
q (c) of index q ∈ {1, . . . , p} and constant

sectional curvature c ∈ {−1, 0, 1}, where n and p are natural numbers satisfying n ≥ 2
and p ≥ 1. We choose a local field of semi-Riemannian orthonormal frame e1, . . . , en+p in
L
n+p
q (c), with dual coframe {ω1, . . . , ωn+p}, such that, at each point of Mn , e1, . . . , en are

tangent to Mn and en+1, . . . , en+p are normal to Mn .
Along this manuscript, we will use the following convention for indices:

1 ≤ A, B,C, . . . ≤ n + p; 1 ≤ i, j, k, . . . ≤ n; n + 1 ≤ α, β, γ, . . . ≤ n + p.

We have that the semi-Riemannian metric ds2 of Ln+p
q (c) can be written as

ds2 =
∑

A

εAω2
A,

where

εA = 1, 1 ≤ A ≤ n + p − q; εA = −1, n + p − q + 1 ≤ A ≤ n + p.

Denoting by {ωAB} the connection forms of Ln+p
q (c), we have that the structure equations

are given by

dωA = −
∑

B

εB ωAB ∧ ωB , ωAB + ωBA = 0, (2.1)

dωAB = −
∑

C

εC ωAC ∧ ωCB − 1

2

∑

C,D

εCεDKABCD ωC ∧ ωD, (2.2)

and

KABCD = cεAεB(δADδBC − δACδBD),

where KABCD denote the components of indefinite curvature tensor of Ln+p
q (c).

Restricting forms to Mn , we haveωα = 0, α ∈ {n+1, . . . , n+ p}, and the induced metric
ds2 of Mn is written as ds2 = ∑

i w
2
i . Since

∑
i ωαi ∧ωi = dωα , from Cartan’s Lemma we

can write
ωiα =

∑

j

hα
i jω j , where hα

i j = hα
j i . (2.3)

The quadratic form

A =
∑

i, j,α

εαh
α
i jωiω j eα,
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is the second fundamental form of Mn . Denoting

Hα = 1

n

∑

i

hα
i i , with α ∈ {n + 1, . . . , n + p},

the mean curvature vector h is expressed as

h =
∑

α

εαH
αeα.

Moreover, we denote by H the length of h and by S the square of the length of the second
fundamental form, that is,

H = ||h|| =
√∑

α

(Hα)2 and S = |A|2=
∑

i, j,α

(εαh
α
i j )

2 =
∑

α,i, j

(hα
i j )

2.

We can express the structure equations of Mn as follows

dωi = −
∑

j

ωi j ∧ ω j , ω j i + ωi j = 0,

dωi j = −
∑

k

ωik ∧ ωk j − 1

2

∑

k,l

Ri jklωk ∧ ωl ,

where Ri jkl are the components of the curvature tensor ofMn .Using these structure equations,
we obtain the Gauss equation

Ri jkl = c(δilδ jk − δikδ jl) +
∑

α

εα(hα
il h

α
jk − hα

ikh
α
jl). (2.4)

In particular, the components of the Ricci tensor R jk is given by

R jk = c(n − 1)δ jk +
∑

α

εα

(
∑

i

hα
i i h

α
jk −

∑

i

hα
ikh

α
j i

)
. (2.5)

We define the first and the second covariant derivatives of {hα
i j }, say {hα

i jk} and {hα
i jkl}, by

∑

k

hα
i jkωk = dhα

i j −
∑

k

hα
ikωk j −

∑

k

hα
jkωki −

∑

β

εβh
β
i jωβα, (2.6)

and
∑

l

hα
i jklωl = dhα

i jk −
∑

m

hα
mjkωmi −

∑

m

hα
imkωmj −

∑

m

hα
i jmωmk −

∑

β

εβh
β
i jkωβα,

(2.7)

respectively. Then, by exterior differentiation of (2.3), we obtain the Codazzi equation

hα
i jk = hα

ik j . (2.8)

Furthermore, by exterior differentiation of (2.2), we get the following Ricci identity

hα
i jkl − hα

i jlk = −
∑

m

hα
im Rmjkl −

∑

m

hα
jm Rmikl −

∑

β

εβh
β
i j Rβαkl . (2.9)
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The Ricci equation is quoted below

Rαβi j = −
∑

m

(
hα
imh

β
mj − hα

jmh
β
mi

)
. (2.10)

3 A Simons type formula and some auxiliary lemmas

In what follows, we denote respectively by ∇ and � the gradient and the Laplacian operator
in themetric of such a spacelike submanifoldMn immersed inLn+p

q (c). The traceless second
fundamental form 	 of Mn is defined as been the following symmetric tensor

	 =
∑

α,i, j

φα
i jωi ⊗ ω j ⊗ eα, (3.1)

where
φα
i j = hα

i j − Hαδi j . (3.2)

Considering
	αβ =

∑

i, j

φα
i jφ

β
i j and φαβ =

∑

i, j

hα
i j h

β
i j , (3.3)

we have that the (p × p)-matrix (	αβ) is symmetric and can be assumed to be diagonalized
for a suitable choice of en+1, . . . , en+p . Moreover, setting

	αβ = 	αδαβ, (3.4)

from a direct calculation we obtain
∑

k

φα
kk = 0, 	αβ = φαβ − nHαHβ and |	|2=

∑

α

	α = S − nH2, (3.5)

where 	α = 	αα .
The Laplacian of hα

i j is defined by �hα
i j = ∑

k h
α
i jkk . From (2.9), we obtain for any

(n + 1 ≤ α ≤ n + p),

�hα
i j =

∑

k

hα
kki j −

∑

k,m

hα
km Rmi jk −

∑

k,m

hα
im Rmkjk −

∑

k,β

εβh
β
ik Rβα jk . (3.6)

So, from (2.8) and (3.6) we obtain

�hα
i j =

∑

i, j,α,k

hα
i j h

α
kki j−

∑

α

∑

i, j,k,l

hα
i j h

α
kl Rli jk−

∑

α

∑

i, j,k,l

hα
i j h

α
li Rlk jk

−
∑

α,β

∑

i, j,k

εβh
α
i j h

β
ki Rβα jk . (3.7)

Since
1

2
�S =

∑

i, j,k,α

(hα
i jk)

2 +
∑

i, j,α

hα
i j�hα

i j , (3.8)

from (3.7) and (3.8) we have

1

2
�S =

∑

i, j,k,α

(hα
i jk)

2 +
∑

i, j,α,k

hα
i j h

α
kki j −

∑

α

∑

i, j,k,l

hα
i j h

α
kl Rli jk
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−
∑

α

∑

i, j,k,l

hα
i j h

α
li Rlk jk −

∑

α,β

∑

i, j,k

εβh
α
i j h

β
ki Rβα jk,

that is,

1

2
�S = |∇h|2+

∑

i, j,α

hα
i j (nH

α),i j −
∑

α

∑

i, j,k,l

hα
i j h

α
kl Rli jk

−
∑

α

∑

i, j,k,l

hα
i j h

α
li Rlk jk −

∑

α,β

∑

i, j,k

εβh
α
i j h

β
ki Rβα jk . (3.9)

In general, for a matrix A = (ai j ) we denote by N (A) the square of the norm of A, that is,
N (A) = tr(AAt ) = ∑

i, j (ai j )
2. Clearly, N (A) = N (T t AT ) for any orthogonal matrix T .

From (2.10), we have

−
∑

α,β

∑

i, j,k,β

εβh
α
i j h

β
ki Rβα jk = −

∑

α,β

∑

i, j,k,β

εβh
α
i j h

β
ki (h

β
klh

α
li − hβ

jl h
α
lk)

= −1

2

∑

α,β, j,k

εβ

(
∑

l

hβ
klh

α
l j −

∑

l

hα
klh

β
l j

)2

= −1

2

∑

α,β, j,k

εβ

(
∑

l

φ
β
klφ

α
l j −

∑

l

φα
klφ

β
l j

)2

= −1

2

∑

α,β

εβN (φα
i jφ

β
i j − φ

β
i jφ

α
i j )

= −1

2

∑

α,β

εβN (	α	β − 	β	α), (3.10)

where 	α := (φα
i j ) = (hα

i j − Hαδi j ).
Combining (2.4), (2.10), (3.2), (3.3), (3.5) and (3.10), we conclude that

−
∑

α

∑

i, j,k,l

hα
i j (h

α
kl Rli jk + hα

li Rlk jk ) = nc|	|2 −
∑

α,β

εβ(φαβ)2 + n
∑

α,β,i, j,k

εβ H
βhβ

k j h
α
i j h

α
ik

−
∑

α,β,i, j ,k

εβh
α
j i h

β
ik Rβα jk

= nc|	|2 −
∑

α,β

εβ(	αβ)2 − 2n
∑

α,β,i, j

εβ H
αHβφα

i jφ
β
i j

−n2
∑

α,β

εβ(Hα)2(Hβ)2 + n
∑

α,β,i, j,k

εβ H
βφ

β
k jφ

α
i jφ

α
ik

+n|	|2
∑

β

εβ(Hβ)2 + 2n
∑

α,β,i, j

εβ H
αHβφα

i jφ
β
i j

+n2
∑

α,β

εβ(Hα)2(Hβ)2− 1

2

∑

α,β

εβN (	α	β −	β	α).

(3.11)

Hence, we arrive at

−
∑

α

∑

i, j,k,l

hα
i j (h

α
kl Rli jk + hα

li Rlk jk) = nc|	|2−
∑

α,β

εβ(	αβ)2 + n|	|2
∑

β

εβ(Hβ)2
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+ n
∑

α,β,i, j,k

εβH
βφ

β
k jφ

α
i jφ

α
ik

−1

2

∑

α,β

εβN (	α	β − 	β	α).

(3.12)

Assuming that the mean curvature vector is parallel, that is, |∇⊥ 	H |2= ∑
i,α(Hα

,i )
2 = 0,

we see that Hα
,i = 0 for all i, α and Hα are constant for all α, this implies that H is constant.

Putting (3.10) and (3.12) into (3.9), we have the following Simons type formula.

Proposition 1 Let Mn be an n-dimensional spacelike submanifold immersed with parallel
mean curvature vector in an (n + p)-dimensional semi-Riemannian space form L

n+p
q (c) of

index q ∈ {1, . . . , p} and constant sectional curvature c ∈ {−1, 0, 1}. With all the notations
established above, we have that the traceless second fundamental form 	 of Mn verifies

1

2
�|	|2 = |∇h|2+nc|	|2+n|	|2

∑

β

εβ(Hβ)2 +
∑

α,β

∑

i, j,k

εβH
βφ

β
k jφ

α
i jφ

α
ik

−
∑

α,β

εβN (	α	β − 	β	α) −
∑

α,β

εβ(	αβ)2. (3.13)

In order to prove our results in the next sections, we will also need the following algebraic
lemmas, whose proofs can be found in Santos [26] and Li and Li [18], respectively.

Lemma 1 Let B1 and B2 be symmetric n × n matrices such that [B1, B2] = 0 and tr(B1) =
tr(B2) = 0. Then

|tr (B2
1 B2

) | ≤ n − 2√
n(n − 1)

tr
(
B2
1

) √
tr

(
B2
2

)
,

and the equality holds if and only if n − 1 of the eigenvalues xi of B1 and the corresponding
eigenvalues yi of B2 satisfy

|xi | =
(
tr

(
B2
1

))1/2
√
n(n − 1)

, yi =
(
tr

(
B2
2

))1/2
√
n(n − 1)

(
resp., yi = −

(
trB2

2

)1/2
√
n(n − 1)

)
.

Lemma 2 Let B1, . . . , Bp, p ≥ 2, be symmetric n × n matrices. Then

p∑

α,β=1

(
tr[Bα, Bβ ]2 − tr

(
BαBβ

)2) ≥ −3

2

( p∑

α=1

tr
(
B2

α

)
)2

.

4 Stochastically complete spacelike submanifolds in S
n+p
q

We recall that a (non necessarily complete) Riemannian manifold Mn is said to be stochasti-
cally complete when, for some (and, hence, for any) (x, t) ∈ Mn × (0,+∞), the heat kernel
p(x, y, t) of the Laplace–Beltrami operator � satisfies the conservation property

∫

M
p(x, y, t)dμ(y) = 1 (4.1)
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From the probabilistic viewpoint, stochatically completeness is the property of a stochastic
process to have infinite life time. For the Brownian motion on a manifold, the conservation
property (4.1) means that the total probability of the particle to be found in the state space is
constantly equal to one (see Émery [14], Grigoryan [16, 17] and Stroock [27]).

Pigola, Rigoli and Setti showed that stochastic completeness turns out to be equivalent
to the validity of a weak form of the Omori–Yau maximum principle, as is expressed below
(see Theorem 1.1 of Pigola, Rigoli and Setti [23] and Theorem 3.1 of Pigola, Rigoli and Setti
[24]):

Lemma 3 A Riemannian manifold Mn is stochastically complete if, and only if, for every
u ∈ C2(M) satisfying supM u < +∞ there exists a sequence of points {pk} ⊂ Mn such that

lim
k→∞ u(pk) = sup

M
u and lim sup

k→∞
�u(pk) ≤ 0.

Remark 1 We also note that stochastic completeness of Riemannian manifold Mn is equiv-
alent (among other conditions) to the fact that for every λ > 0, the only nonnegative
bounded smooth solution u of �u ≥ λu on Mn is the constant u = 0. Moreover, it is a
direct consequence of Lemma 1 jointly with the Omori [22] and Yau [29] maximum prin-
ciple that complete Riemannian manifolds having Ricci curvature bounded from below are
stochastically complete.

In our first result, we present a gap type theorem concerning stochastically complete
spacelike submanifolds with parallel mean curvature vector.

Theorem 1 Let Mn be an n-dimensional stochastically complete spacelike submanifold
immersed with parallel mean curvature vector in the (n + p)-dimensional de Sitter space
S
n+p
q of index q ∈ {1, . . . , p}, such that the mean curvature H satisfies H < 1. Then,

(a) either supM |	|= 0 and Mn is a totally umbilical submanifold,
(b) or supM |	|≥ α∗, where α∗ is the positive root of the polynomial function

PH (x) = −a|	|2− n(n − 2)√
n(n − 1

H |	|+n(1 − H2), (4.2)

with a = 1 if p − q = 1 and a = 3/2 if p − q > 1. Moreover, when supM |	|= α∗
and it is attained at some point of Mn, then Mn is isometric to a maximal isoparametric
spacelike submanifold of Sn+p

q .

Proof We have the following:

n|	|2
∑

β

εβ(Hβ)2 = n|	|2
n+p−q∑

β=n+1

(Hβ)2 − n|	|2
n+p∑

β=n+p−q+1

(Hβ)2

= n|	|2
n+p−q∑

β=n+1

(Hβ)2 + n|	|2
n+p−q∑

β=n+1

(Hβ)2

− n|	|2
n+p−q∑

β=n+1

(Hβ)2 − n|	|2
n+p∑

β=n+p−q+1

(Hβ)2

= 2n|	|2
n+p−q∑

β=n+1

(Hβ)2 − n|	|2
n+p∑

β=n+1

(Hβ)2
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≥ −n|	|2H2. (4.3)

We use that
∑

i

(φ
β
i i )

2 = 	β,
∑

i

φ
β
i i = 0,

∑

i

μα
i = 0 and

∑

i

(μα
i )2 = 	α,

from (3.13) we obtain

n
∑

α,β,i, j,k

εβH
βφ

β
k jφ

α
i jφ

α
ik = n

∑

α,i, j,k

n+p−q∑

β=n+1

Hβφ
β
k jφ

α
i jφ

α
ik − n

∑

α,i, j,k

n+p∑

β=n+p−q+1

Hβφ
β
k jφ

α
i jφ

α
ik

= n
∑

α,i

n+p−q∑

β=n+1

Hβφ
β
i i (μ

α
i )2 − n

∑

α,i

n+p∑

β=n+p−q+1

Hβφ
β
i i (μ

α
i )2. (4.4)

So, it follows from Lemma 1 that

n
∑

α,i

n+p−q∑

β=n+1

Hβφ
β
i i (μ

α
i )2 ≥ − n(n − 2)√

n(n − 1)

∑

α

n+p−q∑

β=n+1

|Hβ |	α
√

	β, (4.5)

and

n
∑

α,i

n+p∑

β=n+p−q+1

Hβφ
β
i i (μ

α
i )2 ≥ − n(n − 2)√

n(n − 1)

∑

α

n+p∑

β=n+p−q+1

|Hβ |	α
√

	β. (4.6)

Hence, from (4.4), (4.5) and (4.6) we have that

n
∑

α,β,i, j,k

εβH
βφ

β
k jφ

α
i jφ

α
ik ≥ − n(n − 2)√

n(n − 1)

∑

α

	α

⎛

⎝
n+p−q∑

β=n+1

|Hβ |
√

	β +
n+p∑

β=n+p−q+1

|Hβ |
√

	β

⎞

⎠

= − n(n − 2)√
n(n − 1)

∑

α

	α

n+p∑

β=n+1

|Hβ |
√

	β

≥ − n(n − 2)√
n(n − 1)

|	|2
⎛

⎝
√∑

β

(Hβ)2
∑

β

	β

⎞

⎠

= − n(n − 2)√
n(n − 1)

H |	|3. (4.7)

On the other hand, we have

−
∑

α,β

εβN (	α	β − 	β	α) = −
∑

α

n+p−q∑

β=n+1

N (	α	β − 	β	α)

+
∑

α

n+p∑

β=n+p−q+1

εβN (	α	β − 	β	α) (4.8)

and

−
∑

α,β

εβ(	αβ)2 = −
∑

α

n+p−q∑

β=n+1

(	αβ)2 +
∑

α

n+p∑

β=n+p−q+1

(	αβ)2. (4.9)
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844 W. F. C. Barboza et al.

Thus, from (4.8) and (4.9) we get

−
∑

α,β

εβN (	α	β − 	β	α) −
∑

α,β

εβ(	αβ)2 = −
n+p−q∑

α=n+1

n+p−q∑

β=n+1

N (	α	β − 	β	α)

−
n+p−q∑

α=n+1

n+p−q∑

β=n+1

(	αβ)2 +
n+p∑

α=n+p−q+1

n+p∑

β=n+p−q+1

N (	α	β − 	β	α)

+
n+p∑

α=n+p−q+1

n+p∑

β=n+p−q+1

(	αβ)2

≥ −
n+p−q∑

α=n+1

n+p−q∑

β=n+1

N (	α	β − 	β	α) −
n+p−q∑

α=n+1

n+p−q∑

β=n+1

(	αβ)2,

where the inequality N (	α	β − 	β	α) ≥ 0 for any α, β was used.
Now we consider two cases:

• If p − q = 1, we have from (3.5) that

−
n+p−q∑

α=n+1

n+p−q∑

β=n+1

N (	α	β − 	β	α) −
n+p−q∑

α=n+1

n+p−q∑

β=n+1

(	αβ)2 = −(	n+1n+1)2 ≥ −|	|4.

(4.10)

• If p − q > 1, from Theorem 1 of Anmin and Jimin [3] we have

−
n+p−q∑

α=n+1

n+p−q∑

β=n+1

N (	α	β − 	β	α) −
n+p−q∑

α=n+1

n+p−q∑

β=n+1

(	αβ)2 ≥ −3

2

(n+p−q∑

α=n+1

(	α)2

)

≥ −3

2
|	|4. (4.11)

Consequently, from (3.13), (4.3) - (4.11) we get

1

2
�|	|2 ≥ |∇h|2+|	|2

{
n(1 − H2) − n(n − 2)√

n(n − 1
H |	|−a|	|2

}
, (4.12)

where a = 1 if p − q = 1 and a = 3/2 if p − q > 1. Therefore, we have that (4.12) can be
rewritten as

1

2
�|	|2 ≥ |	|2PH (|	|), (4.13)

where PH (x) is the function defined by (4.2). Moreover, from the behavior of PH (x) we
have that PH (0) > 0 and lim

x→∞ PH (x) = −∞. Now, we observe that if supM |	|= +∞,

then item (i i) is trivially satisfied. So, let us suppose that supM |	| ≤ +∞. Thus, Lemma 3
guarantees that there exists a sequence of points {pk} ⊂ Mn such that

lim
k→∞ |	|2(pk) = sup

M
|	|2 and lim sup

k→∞
�|	|2(pk) ≤ 0.

Consequently, taking into account the continuity of the function PH (x), from (4.13) we get

0 ≥ 1

2
lim sup
k→∞

�|	|2(pk) ≥ lim sup
k→∞

(|	|2PH (|	|)) (pk) = lim
k→∞

(|	|2PH (|	|)) (pk)

= lim
k→∞|	|2(pk)PH ( lim

k→∞|	|(pk)) = sup
M

|	|2PH (sup
M

|	|).
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Hence, we obtain
(sup
M

|	|)2PH (sup
M

|	|) ≤ 0.

It follows from here that either supM |	|= 0, which means that |	|= 0 and Mn is totally
umbilical, or supM |	|> 0 and then

PH (sup
M

|	|) ≤ 0,

which implies that supM |	|≥ α∗, where α∗ is the positive root of (4.2).
To conclude the proof, let us assume that supM |	|= α∗ and that it is attained at some point

of Mn , then from Hopf’s maximum principle we get that |	| is constant. Hence, from (4.12)
we obtain that |∇h|2= 0, which means that Mn is an isoparametric spacelike submanifold.
On the other hand, from the fact that |	| is constant, we have that all the above inequalities
are, in fact, equalities. Thus, from the equalities in (4.3), (4.7) and (4.10) we obtain

n+p−q∑

β=n+1

(Hβ)2 = 0,
∑

β

|Hβ |
√

	β = H |	|,
n+p∑

α=n+p−q+1

n+p∑

β=n+p−q+1

(	αβ)2.

This implies that Hβ = 0 for β = n + 1, · · · , n + p − q , and 	β = 0 for β = n + p − q +
1, · · · , n + p. Therefore, we get

H |	|=
∑

β

|Hβ |
√

	β = 0.

Since we are assuming |	|�= 0, we have H = 0, that is, Mn is a maximal isoparametric
spacelike submanifold of Sn+p

q . ��
Taking into account Remark 1, from Theorem 1 we derive the following consequence.

Corollary 1 Let Mn be an n-dimensional complete spacelike submanifold immersed with
parallel mean curvature vector in the (n + p)-dimensional de Sitter space S

n+p
q of index

q ∈ {1, . . . , p}, such that the Ricci curvature is bounded from below and the mean curvature
H satisfies H < 1. Then,

(a) either supM |	|= 0 and Mn is a totally umbilical submanifold,
(b) or supM |	|≥ α∗, whereα∗ is the positive root of the polynomial function (4.2).Moreover,

when supM |	|= α∗ and it is attained at some point of Mn, then Mn is isometric to a
maximal isoparametric spacelike submanifold of Sn+p

q .

We recall that a Riemannian manifold Mn is said to be parabolic (with respect to the
Laplacian operator) if the constant functions are the only subharmonic functions on Mn

which are bounded from above; that is, for a function u ∈ C2(M),

�u ≥ 0 and sup
M

u < +∞ implies u = constant.

Since every parabolic Riemannian manifold is stochastically complete (see Pigola, Rigoli
and Setti [24]), from Theorem 1 we obtain.

Corollary 2 Let Mn be an n-dimensional spacelike submanifold immersedwith parallel mean
curvature vector in the (n + p)-dimensional de Sitter space Sn+p

q of index q ∈ {1, . . . , p},
such that the mean curvature H satisfies H < 1. If Mn is parabolic, then either |	|≡ 0 and
Mn is totally umbilical, or supM |	|≥ α∗, where α∗ is the positive root of the polynomial
function (4.2). Moreover, when supM |	|= α∗, Mn is isometric to a maximal isoparametric
spacelike submanifold of Sn+p

q .
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Proof Since the weak Omori–Yau’s maximum principle [22, 29] holds on every parabolic
Riemannian manifold, if supM |	|2 < +∞, there is nothing to prove. On the other hand, in
the case that 0 < supM |	|2 ≤ +∞, reasoning as in the first part of the proof of Theorem
1, we guarantee that supM |	|2 ≥ α∗. Moreover, if supM |	|2 = α∗, then PH (supM 	) ≤ 0
and, consequently, the function |	|2 is subharmonic on Mn . Therefore, from the parabolicity
of Mn we conclude that the function |	|2 must be constant and equal to α∗. To close the
proof, we can reason as in the last part of the proof of Theorem 1. ��

In our next result, we assume a suitable hypothesis on the infimum of the sectional
curvature of the submanifold.

Theorem 2 Let Mn be an n-dimensional stochastically complete spacelike submanifold
immersed with parallel mean curvature vector in the (n + p)-dimensional de Sitter space
S
n+p
q of index q ∈ {1, . . . , p}, such that the infimum K of the sectional curvatures of Mn

satisfies

K ≥ 1

n

(
1 − 1

p − q

)
|	|2, (4.14)

then

(a) either supM |	|= 0 and Mn is a totally umbilical submanifold,
(b) or supM |	|≥ β∗, where β∗ is the first positive root of the polynomial function

PK (|	|) = nK −
(
1 − 1

p − q

)
|	|2.

(4.15)

Moreover,when supM |	|= β∗ and it is attained at somepoint of Mn, then Mn is isometric
to an isoparametric spacelike submanifold of Sn+p

q .

Proof For a fixed α, n + 1 ≤ α ≤ n + p, we can take a local orthornormal frame field
{e1, . . . , en} such that hα

i j = λα
i δi j . Then, φα

i j = μα
i δi j with μα

i = λα
i − Hα and

∑
i μ

α
i = 0.

Consequently,

−
∑

α,i, j,k,l

hα
i j (h

α
kl Rli jk − hα

li Rlk jk) = 1

2

∑

α,i,k

(λα
i − λα

k )2Rkiik

≥ K

2

∑

α,i,k

(λα
i − λα

k )2

= nK (S − nH2) = nK |	|2. (4.16)

On the other hand, we have

− 1

2

∑

α,β

εβN (φα
i jφ

β
i j − φ

β
i jφ

α
i j ) = −1

2

∑

α

n+p−q∑

β=n+1

N (φα
i jφ

β
i j − φ

β
i jφ

α
i j )

+ 1

2

∑

α

n+p∑

β=n+p−q+1

N (φα
i jφ

β
i j − φ

β
i jφ

α
i j )

= −1

2

n+p−q∑

α=n+1

n+p−q∑

β=n+1

N (φα
i jφ

β
i j − φ

β
i jφ

α
i j )
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+ 1

2

n+p∑

α=n+p−q+1

n+p∑

β=n+p−q+1

N (φα
i jφ

β
i j − φ

β
i jφ

α
i j )

≥ −1

2

n+p−q∑

α=n+1

n+p−q∑

β=n+1

N (φα
i jφ

β
i j − φ

β
i jφ

α
i j )

≥ −
∑

α �=β

	α	β. (4.17)

From Lemma 1 of Chern, do Carmo and Kobayashi [12], we have that

− 1

2

∑

α,β

εβN (φα
i jφ

β
i j − φ

β
i jφ

α
i j ) = −

(n+p−q∑

α=n+1

	α

)2

+
n+p−q∑

α=n+1

(	α)2

≥ −
(n+p−q∑

α=n+1

	α

)2

+ 1

p − q

(n+p−q∑

α=n+1

	α

)2

= −
(
1 − 1

p − q

) (n+p−q∑

α=n+1

	α

)2

≥ −
(
1 − 1

p − q

)
|	|4. (4.18)

Hence, from (3.10), (3.11), (4.16) and (4.17) we obtain

1

2
�|	|2≥ |∇h|2+|	|2

(
nK −

(
1 − 1

p − q

)
|	|2

)
, (4.19)

where K is the infimum of the sectional curvatures of Mn . Thus, we have that (4.19) can be
rewritten as

1

2
�|	|2 ≥ |	|2PK (|	|), (4.20)

where PK (x) is the function defined by (4.15).
Moreover, from the behavior of PK (x)we get that PK (0) > 0 and lim

x→∞ PK (x) = −∞. If

supM |	| = +∞, then item (i i) is trivially satisfied. So, let us suppose that supM |	| ≤ +∞.
Thus, Lemma 3 guarantees that there exists a sequence of points {pk} ⊂ Mn such that

lim
k→∞ |	|2(pk) = sup

M
|	|2 and lim sup

k→∞
�|	|2(pk) ≤ 0.

Consequently, taking into account the continuity of the function PK (x), from (4.13) we get

0 ≥ 1

2
lim sup
k→∞

�|	|2(pk) ≥ lim sup
k→∞

(|	|2PK (|	|)) (pk) = lim
k→∞

(|	|2PK (|	|)) (pk)

= lim
k→∞|	|2(pk)PK ( lim

k→∞|	|(pk)) = sup
M

|	|2PK (sup
M

|	|).

Hence, we obtain
(sup
M

|	|)2PK (sup
M

|	|) ≤ 0. (4.21)

It follows from here that either supM |	|= 0, which means that |	|= 0 and Mn is totally
umbilical, or supM |	|> 0 and then PK (supM |	|) ≤ 0, which implies that supM |	|≥ β∗,
where β∗ is the first positive root of (4.15).
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To conclude the proof, let us assume that supM |	|= β∗ and that it is attained at some
point of Mn . Then, from Hopf’s maximum principle we get that |	| is constant. Therefore,
from (4.19) we obtain that |∇h|2= 0, which means that Mn is an isoparametric spacelike
submanifold of Sn+p

q . ��
From Theorem 2, we car reason as in the proof of Corollary 2 to get the following result.

Corollary 3 Let Mn be an n-dimensional parabolic spacelike submanifold immersed with
parallel mean curvature vector immersed in the (n + p)-dimensional de Sitter space Sn+p

q

of index q ∈ {1, . . . , p}, such that the infimum K of the sectional curvatures of Mn satisfies
(4.14). Then, either supM |	|= 0 and Mn is a totally umbilical submanifold, or supM |	|≥ β∗
where β∗ is the positive root of the polynomial function (4.15). Moreover, when sup|	|= β∗,
then Mn is isometric to an isoparametric spacelike submanifold of Sn+p

q .

We proceed with the following gap type result.

Theorem 3 Let Mn be an n-dimensional stochastically complete spacelike submanifold
immersed with parallel mean curvature vector in the (n + p)-dimensional de Sitter space
S
n+p
q of index q ∈ {1, . . . , p}, such that the infimum Q of the Ricci curvatures of Mn satisfies

Q > −2 + n(1 + H2) + n − 2√
n(n − 1)

H |	|+1

n

(
3 − p + q

(p − q)q

)
|	|2. (4.22)

Then,

(a) either supM |	|= 0 and Mn is a totally umbilical submanifold,
(b) or supM |	|≥ γ ∗, where γ ∗ is the first positive root of the polynomial function

PQ(|	|) = Q + 2 − n(1 + H2) − n − 2√
n(n − 1)

H |	|−1

n

(
3 − p + q

(p − q)q

)
|	|2.

(4.23)

Moreover, when supM |	|= γ ∗ and it is attained at some point of Mn, then Mn is
isometric to a maximal isoparametric spacelike submanifold of Sn+p

q .

Proof From (2.5) and (3.2) we have

Rkk = (n − 1) + (n − 2)
∑

α

εαH
αφα

ik + (n − 1)
n+p−q∑

α=n+1

(Hα)2

− (n − 1)
n+p∑

α=n+p−q+1

(Hα)2 −
n+p−q∑

i,α=n+1

(φα
ik)

2 +
n+p∑

i,α=n+p−q+1

(φα
ik)

2

≤ (n − 1) + (n − 2)
∑

α

εαH
αφα

ik + (n − 1)H2 −
n+p−q∑

i,α=n+1

(φα
ik)

2 +
n+p∑

i,α=n+p−q+1

(φα
ik)

2.

(4.24)

Thus,

nQ ≤
∑

k

Rkk = n(n − 1)(1 + H2) −
n+p−q∑

i,α=n+1

(φα
ik)

2 +
n+p∑

i,α=n+p−q+1

(φα
ik)

2.
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From (3.3) and (3.4) we obtain

−
n+p−q∑

α=n+1

	α +
n+p∑

α=n+p−q+1

	α ≥ nQ − n(n − 1)(1 + H2). (4.25)

Hence, from (4.25) we see that

∑

α,β

εβ(	αβ)2 = −
∑

α

εβ(	α)2 = −
n+p−q∑

α=n+1

(	α)2 +
n+p∑

α=n+p−q+1

(	α)2

≥ −
(n+p−q∑

α=n+1

	α

)2

+ 1

q

⎛

⎝
n+p∑

α=n+p−q+1

	α

⎞

⎠
2

= −
(n+p−q∑

α=n+1

	α

)2

+
⎛

⎝
n+p∑

α=n+p−q+1

	α

⎞

⎠
2

+
(
1

q
− 1

)⎛

⎝
n+p∑

α=n+p−q+1

	α

⎞

⎠
2

≥
⎛

⎝−
n+p−q∑

α=n+1

	α +
n+p∑

α=n+p−q+1

	α

⎞

⎠

⎛

⎝
n+p−q∑

α=n+1

	α +
n+p∑

α=n+p−q+1

	α

⎞

⎠ −
(
1 − 1

q

)
|	|4

≥ (nQ − n(n − 1)(1 + H2))|	|2−
(
1 − 1

q

)
|	|4. (4.26)

From (4.18) we have

n+p−q∑

α=n+1

n+p−q∑

β=n+1

N (	α	β − 	β	α) ≥ −2

(
1 − 1

p − q

)
|	|4. (4.27)

Thus, from (3.13), (4.3), (4.7), (4.26) and (4.27) we get

1

2
�|	|2 ≥ |∇h|2+n|	|2−n|	|2H2 − n(n − 2)√

n(n − 1)
H |	|3−2

(
1 − 1

p − q

)
|	|4

+ (nQ − n(n − 1)(1 + H2))|	|2−
(
1 − 1

q

)
|	|4

= |∇h|2+n|	|2
{
Q + 2 − n(1 + H2) − n − 2√

n(n − 1)
H |	|− 1

n

(
3 − p + q

(p − q)q

)
|	|2

}
,

(4.28)

where Q is the infimum of the Ricci curvatures of Mn . Hence, we have that (4.28) can be
rewritten as

1

2
�|	|2 ≥ |∇h|2+n|	|2PQ(|	|) ≥ n|	|2PQ(|	|), (4.29)

where PQ(x) is the function defined by (4.23).
Moreover, from the behavior of PQ(x)we get that PQ(0) > 0 and lim

x→∞ PQ(x) = −∞. If

supM |	| = +∞, then item (i i) is trivially satisfied. So, let us suppose that supM |	| ≤ +∞.
Thus, Lemma 3 guarantees that there exists a sequence of points {pk} ⊂ Mn such that

lim
k→∞ |	|2(pk) = sup

M
|	|2 and lim sup

k→∞
�|	|2(pk) ≤ 0.

Consequently, taking into account the continuity of the function PQ(x), from (4.13) we get

0 ≥ 1

2
lim sup
k→∞

�|	|2(pk) ≥ lim sup
k→∞

(|	|2PQ(|	|)) (pk) = lim
k→∞

(|	|2PQ(|	|)) (pk)
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= lim
k→∞|	|2(pk)PQ( lim

k→∞|	|(pk)) = sup
M

|	|2PQ(sup
M

|	|).

Hence, we obtain
(sup
M

|	|)2PQ(sup
M

|	|) ≤ 0. (4.30)

It follows from here that either sup|	|= 0, which means that |	|= 0 and Mn is totally
umbilical, or supM |	|> 0 and then

PQ(sup
M

|	|) ≤ 0,

which implies that supM |	|≥ γ ∗, where γ ∗ is the first positive root of (4.23).
To conclude the proof, let us assume that supM |	|= γ ∗ and that it is attained at some

point ofMn . FromHopf’s maximum principle we get that |	| is constant. Hence, from (4.28)
we obtain that |∇h|2= 0, which means that Mn is an isoparametric spacelike submanifold.
On the order hand, in the latter case, we see that the equalities in (4.3) and (4.24) hold. Thus,
we have

n+p−q∑

α=n+1

(Hα)2 = 0,
n+p∑

α=n+p−q+1

(Hα)2 = 0, (4.31)

which imply that Hα = 0 for α = n + 1, · · · , n + p and H = 0, that is, Mn must be a
maximal isoparametric spacelike submanifold of Sn+p

q . ��
From Theorem 4, we obtain the following consequence.

Corollary 4 Let Mn be an n-dimensional parabolic spacelike submanifold immersed with
parallel mean curvature vector in the (n + p)-dimensional de Sitter space S

n+p
q of index

q ∈ {1, . . . , p}, such that the infimum Q of the Ricci curvatures of Mn satisfies (4.22). Then,
either supM |	|= 0 and Mn is a totally umbilical submanifold, or supM |	|≥ γ ∗ where γ ∗
is the positive root of the polynomial function (4.23). Moreover, when supM |	|= γ ∗, then
Mn is isometric to a maximal isoparametric spacelike submanifold of Sn+p

q .

5 Umbilicity of complete spacelike submanifolds in S
n+p
q

This section is devoted to study the umbilicity of a complete spacelike submanifold Mn

immersed with parallel mean curvature vector in Sn+p
q , by assuming that either the Hilbert–

Schmidt norm of the traceless second fundamental form of Mn converges to zero at infinity
or that Mn has polynomial volume growth.

5.1 Umbilicity via amaximum principle at infinity

In this subsection, our approach will be based on a suitable maximum principle at infinity
for complete noncompact Riemannian manifolds due to Alías, Caminha and Nascimento [4].
To quote it, we need to recall the following concept established in the beginning of Section
2 of Alías, Caminha and Nascimento [4]: Let Mn be a complete noncompact Riemannian
manifold and let d( ·, o) : Mn → [0,+∞) denote the Riemannian distance of Mn , measured
from a fixed point o ∈ Mn . We say that a smooth function f ∈ C∞(M) converges to zero at
infinity, when it satisfies the following condition

lim
d(x,o)→+∞ f (x) = 0. (5.1)
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Keeping in mind this concept, the following maximum principle at infinity corresponds to
item (a) of Theorem 2.2 of Alías, Caminha and Nascimento [4].

Lemma 4 Let Mn be a complete noncompact Riemannian manifold and let X ∈ X(M) be a
vector field on Mn. Assume that there exists a nonnegative, non-identically vanishing function
f ∈ C∞(M) which converges to zero at infinity and such that 〈∇ f , X〉 ≥ 0. If divX ≥ 0 on
Mn, then 〈∇ f , X〉 ≡ 0 on Mn.

So, our purpose is to apply Lemma 4 jointly with Proposition 1 in order to obtain our next
three characterization results of totally umbilical spacelike submanifolds of Sn+p

q .

Theorem 4 Let Mn be an n-dimensional complete noncompact spacelike submanifold
immersed with parallel mean curvature vector in the (n + p)-dimensional de Sitter space
S
n+p
q of index q ∈ {1, . . . , p}, such that the mean curvature H satisfies H < 1. If |	| con-

verges to zero at infinity and supM |	| ≤ α∗, where α∗ is the positive root of the polynomial
function (4.2), then Mn is a totally umbilical submanifold of Sn+p

q .

Proof Following the same steps of the proof of Theorem 1, we deduce inequality (4.13).
Let us suppose by the contradiction that Mn is not totally umbilical or, equivalently, that
f = |	|2 is a non-identically vanishing smooth function on Mn . Thus, considering on Mn

the tangent vector field X = ∇|	|2, we have that
〈∇ f , X〉 = |∇|	|2|2 ≥ 0.

Moreover, since supM |	| ≤ α∗, from (4.13) we obtain

divX = �|	|2 ≥ 0.

Hence, since we are assuming that |	| converges to zero at infinity, we can apply Lemma 4
to conclude that |∇|	|2|2 ≡ 0, that is, |	| is constant on Mn . But, taking into account once
more that |	| converges to zero at infinity, we have that |	| must be identically zero on Mn

and we arrived at a contradiction. ��
Theorem 5 Let Mn be an n-dimensional complete noncompact spacelike submanifold
immersed with parallel mean curvature vector in the (n + p)-dimensional de Sitter space
S
n+p
q of index q ∈ {1, . . . , p}, such that the infimum K of the sectional curvatures of Mn

satisfies (4.14). If |	| converges to zero at infinity and supM |	| ≤ β∗, where β∗ is the
positive root of the polynomial function (4.15), then Mn is a totally umbilical submanifold
of Sn+p

q .

Proof Reasoning as in the proof of Theorem 2, we obtain inequality (4.20). Let us suppose
by the contradiction that Mn is not totally umbilical or, equivalently, that f = |	|2 is a
non-identically vanishing smooth function on Mn . So, considering on Mn the tangent vector
field X = ∇|	|2, we have that

〈∇ f , X〉 = |∇|	|2|2 ≥ 0.

Moreover, since supM |	| ≤ α∗, from (4.20) we obtain

divX = �|	|2 ≥ 0.

Hence, since we are assuming that |	| converges to zero at infinity, we can apply Lemma 4
to conclude that |∇|	|2|2 ≡ 0, that is, |	| is constant on Mn . But, using once more that |	|
converges to zero at infinity, we have that |	| must be identically zero on Mn and we arrived
at a contradiction. ��
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Theorem 6 Let Mn be an n-dimensional complete noncompact spacelike submanifold
immersed with parallel mean curvature vector in the (n + p)-dimensional de Sitter space
S
n+p
q of index q ∈ {1, . . . , p}, such that the infimum Q of the Ricci curvature satisfies (4.22).

If |	| converges to zero at infinity and supM |	| ≤ γ ∗, where γ ∗ is the positive root of the
polynomial function (4.23), then Mn is a totally umbilical submanifold of Sn+p

q .

Proof Proceeding as in the proof of Theorem 3, we get inequality (4.29). Let us suppose
by the contradiction that Mn is not totally umbilical or, equivalently, that f = |	|2 is a
non-identically vanishing smooth function on Mn . Considering on Mn the tangent vector
field X = ∇|	|2, we have that

〈∇ f , X〉 = |∇|	|2|2 ≥ 0.

Moreover, since supM |	| ≤ γ ∗, from (4.29) we obtain

divX = �|	|2 ≥ 0.

Hence, since we are assuming that |	| converges to zero at infinity, we can apply Lemma 4 to
conclude that |∇|	|2|2 ≡ 0, that is, |	| is constant on Mn . But, since |	| converges to zero
at infinity, we have that |	|must be identically zero on Mn and we arrived at a contradiction.

��

5.2 Umbilicity via polynomial volume growth

We start quoting the maximum principle that will be used to prove our results in this last
subsection. For this, let Mn be a connected, oriented, complete noncompact Riemannian
manifold. We denote by B(p, t) the geodesic ball centered at p and with radius t . Given a
polynomial function σ : (0,+∞) −→ (0,+∞), we say that Mn has polynomial volume
growth like σ(t) if there exists p ∈ Mn such that

vol(B(p, t)) = O(σ (t)),

as t −→ +∞, where vol denotes the Riemannian volume.
If p, q ∈ Mn are at distance d from each other, it is straightforward to check that

vol(B(p, t))

σ (t)
≥ vol(B(q, t − d))

σ (t − d)
.
σ (t − d)

σ (t)
.

Hence, the choice of p in the notion of volume growth is immaterial, so that, henceforth, we
will simply say that Mn has polynomial volume growth.

In this context, we have the followingmaximum principle, which is derived fromTheorem
2.1 of Alías, Caminha and Nascimento [5].

Lemma 5 Let Mn be a connected, oriented, complete noncompact Riemannian manifold,
and let f ∈ C∞(M) be a nonnegative smooth function such that � f ≥ a f on Mn, for some
positive constant a ∈ R. If Mn has polynomial volume growth and |∇ f | is bounded on Mn,
then f vanishes identically on Mn.

We will also need of Lemma 1 of Barros, Brasil and Sousa [8], which is stated below in
our context.

123



Spacelike submanifolds with parallel mean curvature vector… 853

Lemma 6 Let Mn be a spacelike submanifold immersed in the (n+ p)-dimensional de Sitter
space Sn+p

q of index q ∈ {1, . . . , p}. Then, the traceless second fundamental form 	 of Mn

defined in (3.1) verifies the following inequality

|∇|	|2|2≤ 4n

n + 2
|	|2|∇	|2.

In this setting, we obtain our the following result.

Theorem 7 Let Mn be an n-dimensional complete noncompact spacelike submanifold
immersed with parallel mean curvature vector immersed in the (n + p)-dimensional de
Sitter space Sn+p

q of index q ∈ {1, . . . , p}, such that the mean curvature H satisfies H < 1
and the traceless second fundamental form 	 verifies |∇	|< +∞ and supM |	| ≤ α∗,
where α∗ is the first positive root of the polynomial function (4.2). If Mn has polynomial
volume growth, then Mn is a totally umbilical submanifold of Sn+p

q .

Proof From the proof of Theorem 1, we get inequality (4.13). Thus, since supM |	|≤ α∗,
from the behavior of PH (x) we obtain

�|	|2≥ a|	|2,
where a = PH (α) > 0. Moreover, taking into account that supM |	|≤ α < α∗ and |∇	|
is bounded, Lemma 6 guarantees that |∇|	|2| is also bounded. Therefore, we can apply
Lemma 5 to conclude that supM |	|= 0 and, hence, Mn is a totally umbilical submanifold
of Sn+p

q . ��
Using inequalities (4.20) and (4.29), respectively, we can reason as in the proof of Theorem

7 to establish our last two characterization results of totally umbilical spacelike submanifolds
of Sn+p

q .

Theorem 8 Let Mn be an n-dimensional complete noncompact spacelike submanifold
immersed with parallel mean curvature vector immersed in the (n + p)-dimensional de
Sitter space Sn+p

q of index q ∈ {1, . . . , p}, such that the infimum K of the sectional curva-
ture of Mn satisfies (4.14) and the traceless second fundamental form	 verifies |∇	|< +∞
and supM |	| ≤ β∗, where β∗ is the positive root of the polynomial function (4.15). If Mn

has polynomial volume growth, then Mn is a totally umbilical submanifold of Sn+p
q .

Theorem 9 Let Mn be an n-dimensional complete noncompact spacelike submanifold
immersed with parallel mean curvature vector immersed in the (n + p)-dimensional de
Sitter space Sn+p

q of index q ∈ {1, . . . , p}, such that the infimum Q of the Ricci curvatures of
Mn satisfies (4.22) and the traceless second fundamental form	 of Mn verifies |∇	|< +∞
and supM |	| ≤ γ ∗, where γ ∗ is the positive root of the polynomial function (4.23). If Mn

has polynomial volume growth, then Mn is a totally umbilical submanifold of Sn+p
q .
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