

Cofiniteness of modules and local cohomology

Hajar Sabzeh¹ · Reza Sazeedeh¹

Received: 2 April 2023 / Accepted: 5 September 2023 / Published online: 4 October 2023 © The Author(s), under exclusive licence to Springer-Verlag Italia S.r.l., part of Springer Nature 2023

Abstract

Let A be a commutative noetherian ring, let \mathfrak{a} be an ideal of A and let n be a non-negative integer. In this paper, we study $S_n(\mathfrak{a})$, a certain class of A-modules and we find some sufficient conditions so that a module belongs to $S_n(\mathfrak{a})$. Moreover, we study the cofiniteness of local cohomology modules when dim $A/\mathfrak{a} \ge 3$.

Keywords Koszul cohomology · Cofinite module · Local cohomology

Mathematics Subject Classification 13D02 · 13D45 · 13E05

Contents

1	Introduction	809
2	A criterion for cofiniteness of modules	810
3	Cofiniteness of local cohomology modules	813
Re	ferences	817

1 Introduction

Throughout this paper, assume that *A* is a commutative noetherian ring, \mathfrak{a} is an ideal of *A*, *M* is an *A*-module and *n* is a non-negative integer. Following [5], the *A*-module *M* is said to be \mathfrak{a} -cofinite if $\operatorname{Supp}_A(M) \subseteq V(\mathfrak{a})$ and $\operatorname{Ext}^i_A(A/\mathfrak{a}, M)$ are finitely generated for all integers $i \geq 0$. The authors [7] studied a criterion for cofinitenss of modules. We denote by $S_n(\mathfrak{a})$ the class of all *A*-modules *M* satisfying the following implication:

If $\operatorname{Ext}_{A}^{i}(A/\mathfrak{a}, M)$ is finitely generated for all $i \leq n$ and $\operatorname{Supp}(M) \subseteq V(\mathfrak{a})$, then M is \mathfrak{a} -cofinite.

The abelianess of the category of α -cofinite modules is of interest to many mathematicians working in commutative algebra. This subject has been studied for small dimensions by

Reza Sazeedeh rsazeedeh@ipm.ir; r.sazeedeh@urmia.ac.ir
Hajar Sabzeh h.sabzeh96@gmail.com

¹ Department of Mathematics, Urmia University, P.O. Box 165, Urmia, Iran

various authors [1, 6, 8, 9]. As the Koszul complexes are effective tools for going down the dimensions, Sazeedeh [11] studied the cofiniteness of Koszul cohomology modules.

In Sect. 2, by means of the Koszul cohomologies of a module, we want to find out when this module belongs to $S_n(\mathfrak{a})$. Let $\mathbf{x} = x_1, \ldots, x_t$ be a sequence of elements of \mathfrak{a} . We show that if $\operatorname{Ext}_A^i(A/\mathfrak{a}, M)$ is finitely generated for all $i \leq n + 1$ and $H^i(\mathbf{x}, M) \in S_1(\mathfrak{a})$ for all $i \leq n$, then $H^i(\mathbf{x}, M)$ is \mathfrak{a} -cofinite for all $i \leq n$ (see Proposition 2.2). Moreover, we prove the following theorem.

Theorem 1.1 If $H^i(\mathbf{x}, M) \in S_1(\mathfrak{a})$ for all $i \ge 0$, then $M \in S_{t+1}(\mathfrak{a})$.

As an application of this theorem, if dim $H^i(\mathbf{x}, M) \leq 1$ for all $i \geq 0$, then $M \in S_{i+1}(\mathfrak{a})$ (see Corollary 2.4). Let $\operatorname{Ext}_A^i(A/\mathfrak{a}, M)$ be finitely generated for all $i \leq n+2$ and let $H^i(\mathbf{x}, M) \in S_2(\mathfrak{a})$ for all $i \leq n$. Then we show that $H^i(\mathbf{x}, M)$ is \mathfrak{a} -cofinite for all $i \leq n$ if and only if $\operatorname{Hom}_A(A/\mathfrak{a}, H^i(\mathbf{x}, M))$ is finitely generated for all $i \leq n+1$ (see Proposition 2.5). Moreover, we have the following theorem.

Theorem 1.2 Let $H^i(\mathbf{x}, M) \in S_2(\mathfrak{a})$ such that $\operatorname{Hom}_A(A/\mathfrak{a}, H^i(\mathbf{x}, M))$ is finitely generated for all $i \ge 0$. Then $M \in S_{t+2}(\mathfrak{a})$.

Let $\operatorname{Ext}_{A}^{i}(A/\mathfrak{a}, M)$ be finitely generated for all $i \leq n + 3$ and let $H^{i}(\mathbf{x}, M) \in S_{3}(\mathfrak{a})$ for all $i \leq n$. Then we prove that if $H^{i}(\mathbf{x}, M)$ is \mathfrak{a} -cofinite for all $i \leq n$, then $\operatorname{Ext}_{A}^{j}(A/\mathfrak{a}, H^{i}(\mathbf{x}, M))$ is finitely generated for all $i \leq n + 1$; j = 0, 1; furthermore if $\operatorname{Hom}_{A}(A/\mathfrak{a}, H^{n+2}(\mathbf{x}, M))$ is finitely generated, then the converse also holds (see Proposition 2.8). Moreover, we have the following theorem.

Theorem 1.3 Let $H^i(\mathbf{x}, M) \in S_3(\mathfrak{a})$ such that $\operatorname{Hom}_A(A/\mathfrak{a}, H^i(\mathbf{x}, M))$ and $\operatorname{Ext}_A^1(A/\mathfrak{a}, H^i(\mathbf{x}, M))$ are finitely generated for all $i \ge 0$. Then $M \in S_{t+3}(\mathfrak{a})$.

As an application of this theorem, let A be a local ring such that dim $A/((\mathbf{x}) + xA) \leq 3$ for some $x \in \mathfrak{a}$. If $\operatorname{Hom}_A(A/\mathfrak{a}, H^i(\mathbf{x}, M)/xH^i(\mathbf{x}, M))$ and $\operatorname{Ext}_A^j(A/\mathfrak{a}, H^i(\mathbf{x}, M))$ for all $i \geq 0$ and j = 0, 1 are finitely generated, then $M \in S_{t+3}(\mathfrak{a})$ (see Corollary 2.10).

In Sect. 3, we study the cofiniteness of local cohomology modules. Let $\operatorname{Ext}_{A}^{i}(A/\mathfrak{a}, M)$ be finitely generated for all $i \geq 0$ and let t < s be non-negative integers such that $H_{\mathfrak{a}}^{i}(M)$ is a-cofinite for all $i \neq t, s$. Then we show that $H_{\mathfrak{a}}^{t}(M) \in S_{n+s-t+1}(\mathfrak{a})$ if and only if $H_{\mathfrak{a}}^{s}(M) \in S_{n}(\mathfrak{a})$ (see Theorem 3.1). Moreover, we have the following theorem.

Theorem 1.4 Let dim $A/\mathfrak{a} = d \ge 3$ and let depth $(\operatorname{Ann}(M), A/\mathfrak{a}) \ge d - 2$. If $\operatorname{Ext}_A^i(A/\mathfrak{a}, M)$ is finitely generated for all $i \le n + 1$, then $\operatorname{Hom}_A(A/\mathfrak{a}, H^i_\mathfrak{a}(M))$ is finitely generated for all $i \le n$ if and only if $H^i_\mathfrak{a}(M)$ is \mathfrak{a} -cofinite for all i < n.

In the end of this paper we get a similar result for those rings A which dim $A \ge 4$.

2 A criterion for cofiniteness of modules

Throughout this section, *M* is an *A*-module with $\operatorname{Supp}_A M \subseteq V(\mathfrak{a})$ and *n* is a non-negative integer and $\mathbf{x} = x_1, \ldots, x_t$ is a sequence of elements of \mathfrak{a} .

An A-module M is said to be \mathfrak{a} -cofinite if $\operatorname{Supp}_A(M) \subseteq V(\mathfrak{a})$ and $\operatorname{Ext}_A^i(A/\mathfrak{a}, M)$ are finitely generated for all integers $i \geq 0$.

For a non-negative integer *n*, we denote by $S_n(\mathfrak{a})$, the class of all *A*-modules *M* satisfying the following implication:

If $\operatorname{Ext}_{A}^{i}(A/\mathfrak{a}, M)$ is finitely generated for all $i \leq n$ and $\operatorname{Supp}(M) \subseteq V(\mathfrak{a})$, then M is \mathfrak{a} -cofinite.

- **Examples 2.1** (i) Assume that a is an arbitrary ideal of *A* and *M* is an *A*-module of dimension *d* where dim *M* means the dimension of $\operatorname{Supp}_A M$; which is the length of the longest chain of prime ideals in $\operatorname{Supp}_A M$. Then $H^d_{\mathfrak{a}}(M)$ is in $S_0(\mathfrak{a})$. To be more precise, if $\operatorname{Hom}_A(A/\mathfrak{a}, H^d_{\mathfrak{a}}(M))$ is a finitely generated *A*-module, then it follows from [10, Theorem 3.11] that $H^d_{\mathfrak{a}}(M)$ is artinian and so, since $\operatorname{Hom}_A(A/\mathfrak{a}, H^d_{\mathfrak{a}}(M))$ has finite length, according to [9, Proposition 4.1], the module $H^d_{\mathfrak{a}}(M)$ is a-cofinite.
- (ii) Given an arbitrary ideal \mathfrak{a} of A, by virtue of [1, Proposition 2.6], $M \in S_1(\mathfrak{a})$ for all modules M with dim $M \leq 1$. Especially, if dim $A/\mathfrak{a} = 1$, then it follows from [9, Theorem 2.3] that $S_1(\mathfrak{a}) = \text{Mod-}A$, the category of all A-modules. Furthermore, if dim A = 2, then it follows from [10, Corollary 2.4] that $S_1(\mathfrak{a}) = \text{Mod-}A$ for any ideal \mathfrak{a} of A.
- (iii) Let \mathfrak{a} be an ideal of a local ring A with dim $A/\mathfrak{a} = 2$. It follows from [2, Theorem 3.5] that $S_2(\mathfrak{a}) = \text{Mod-}A$. Furthermore, if A is a local ring with dim A = 3, then it follows from [10, Corollary 2.5] that $S_2(\mathfrak{a}) = \text{Mod-}A$ for any ideal \mathfrak{a} of A.

The following result shows that the Koszul cohomology modules of M are a-cofinite when they belong to $S_1(\mathfrak{a})$.

Proposition 2.2 Let $\operatorname{Ext}_{A}^{i}(A/\mathfrak{a}, M)$ be finitely generated for all $i \leq n + 1$. If $H^{i}(\mathbf{x}, M) \in S_{1}(\mathfrak{a})$ for all $i \leq n$, then $H^{i}(\mathbf{x}, M)$ is \mathfrak{a} -cofinite for all $i \leq n$.

Proof Consider the Koszul complex

$$K^*(\mathbf{x}, M): 0 \longrightarrow K^0 \xrightarrow{d^0} K^1 \xrightarrow{d^1} \cdots \xrightarrow{d^{t-1}} K^t \longrightarrow 0$$

and assume that $Z^i = \text{Ker } d^i$, $B^i = \text{Im } d^{i-1}$, $C^i = \text{Coker } d^i$ and $H^i = H^i(\mathbf{x}, M)$ for each i. Then for each $j \ge 0$, we have an exact sequence of modules

$$0 \longrightarrow H^j \longrightarrow C^j \longrightarrow K^{j+1} \longrightarrow C^{j+1} \longrightarrow o \qquad (\dagger_j).$$

We prove by induction on *i* that H^i is a-cofinite and $\operatorname{Ext}_A^j(A/\mathfrak{a}, C^{i+1})$ is finitely generated for all $i \leq n$ and all $j \leq n-i$. Assume that i < n and so the induction hypothesis implies that $\operatorname{Ext}_A^j(A/\mathfrak{a}, C^i)$ is finitely generated for all $j \leq n+1-i$. In view of (\dagger_i) , it is clear that $\operatorname{Ext}_A^j(A/\mathfrak{a}, H^i)$ is finitely generated for i = 0, 1 and so the fact that $H^i \in S_1(\mathfrak{a})$ forces H^i is a-cofinite and $\operatorname{Ext}_A^j(A/\mathfrak{a}, C^{i+1})$ is finitely generated for all $j \leq n-i$.

The following theorem provides a sufficient condition so that a module belongs to $S_{t+1}(\mathfrak{a})$.

Theorem 2.3 If $H^i(\mathbf{x}, M) \in S_1(\mathfrak{a})$ for all $i \ge 0$, then $M \in S_{t+1}(\mathfrak{a})$.

Proof Assume that $\operatorname{Ext}_{A}^{i}(A/\mathfrak{a}, M)$ is finitely generated for all $i \leq t + 1$. Then, it follows from Proposition 2.2 that $H^{i}(\mathbf{x}, M)$ is \mathfrak{a} -cofinite for all $i \geq 0$. Consequently, [11, Theorem 2.4] implies that M is \mathfrak{a} -cofinite.

Corollary 2.4 If dim $H^i(\mathbf{x}, M) \leq 1$ for all $i \geq 0$, then $M \in S_{t+1}(\mathfrak{a})$.

Proof By virtue of Examples 2.1, $H^i(\mathbf{x}, M) \in S_1(\mathfrak{a})$ for all $i \ge 0$ and so the result follows from Theorem 2.3.

Springer

When the Koszul cohomology modules of an A-module belong to $S_2(\mathfrak{a})$, we have the following result about the \mathfrak{a} -cofiniteness of these modules.

Proposition 2.5 Let $\operatorname{Ext}_{A}^{i}(A/\mathfrak{a}, M)$ be finitely generated for all $i \leq n+2$ and let $H^{i}(\mathbf{x}, M) \in S_{2}(\mathfrak{a})$ for all $i \leq n$. Then the following conditions hold.

- (i) $H^i(\mathbf{x}, M)$ is \mathfrak{a} -cofinite for all $i \leq n$.
- (ii) Hom_A(A/\mathfrak{a} , $H^i(\mathbf{x}, M)$) is finitely generated for all $i \leq n + 1$.

Proof Consider the same notation as in the proof of Proposition 2.2. (i) \Rightarrow (ii). By the assumption Hom_A(A/a, Hⁱ) is finitely generated for all $i \leq n$. Thus, it is straightforward to see that Ext^j_A(A/a, Cⁱ) is finitely generated for all $i \leq n + 1$ and all $j \leq n + 2 - i$. Since Hom_A(A/a, Cⁿ⁺¹) is finitely generated, (\dagger_{n+1}) implies that Hom_A(A/a, Hⁿ⁺¹) is finitely generated. (ii) \Rightarrow (i). We prove by induction on *i* that Hⁱ is a-cofinite and Ext^j_A(A/a, Cⁱ⁺¹) is finitely generated for all $j \leq n + 1 - i$. The induction hypothesis implies that Ext^j_A(A/a, Cⁱ) is finitely generated for all $j \leq n + 1 - i$. The induction hypothesis implies that Ext^j_A(A/a, Cⁱ) is finitely generated for all $j \leq n + 2 - i$. Since by the assumption Hom_A(A/a, Hⁱ⁺¹) is finitely generated, (\dagger_{i+1}) implies that Hom_A(A/a, Cⁱ⁺¹) is finitely generated; and hence (\dagger_i) implies that Ext^j_A(A/a, Hⁱ) is finitely generated for all $j \leq 2$. Now, since $H^i \in S_2(a)$, it is a-cofinite; furthermore (\dagger_i) implies that Ext^j_A(A/a, Cⁱ⁺¹) is finitely generated for all $j \leq n + 1 - i$.

The following theorem provides a sufficient condition so that a module belongs to $S_{t+2}(\mathfrak{a})$.

Theorem 2.6 Let $H^i(\mathbf{x}, M) \in S_2(\mathfrak{a})$ such that $\operatorname{Hom}_A(A/\mathfrak{a}, H^i(\mathbf{x}, M))$ is finitely generated for all $i \ge 0$. Then $M \in S_{t+2}(\mathfrak{a})$.

Proof Assume that $\operatorname{Ext}_{A}^{i}(A/\mathfrak{a}, M)$ is finitely generated for all $i \leq t+2$. Then it follows from Proposition 2.5 that $H^{i}(\mathbf{x}, M)$ is a-cofinite for all $i \geq 0$. Consequently, [11, Theorem 2.4] implies that M is a-cofinite.

Corollary 2.7 Let A be a local ring such that dim $A/(\mathbf{x}) \leq 3$ and let $\operatorname{Hom}_A(A/\mathfrak{a}, H^i(\mathbf{x}, M))$ be finitely generated for all $i \geq 0$. Then $M \in S_{t+2}(\mathfrak{a})$.

Proof Put $B = A/(\mathbf{x})$ and $\mathfrak{b} = \mathfrak{a}B$. We observe that $H^i(\mathbf{x}, M)$ is a *B*-module for each $i \ge 0$ and since dim $B \le 3$, it follows from Examples 2.1 (iii) that $H^i(\mathbf{x}, M) \in S_2(\mathfrak{a}B)$ for each $i \ge 0$. Now [7, Proposition 2.15] implies that $H^i(\mathbf{x}, M) \in S_2(\mathfrak{a})$; and consequently, it follows from Theorem 2.6 that $M \in S_{t+2}(\mathfrak{a})$.

When the Koszul cohomology modules of an A-module belong to $S_3(\mathfrak{a})$, we have the following result about their \mathfrak{a} -cofiniteness

Proposition 2.8 Let $\operatorname{Ext}_{A}^{i}(A/\mathfrak{a}, M)$ be finitely generated for all $i \leq n+3$ and let $H^{i}(\mathbf{x}, M) \in S_{3}(\mathfrak{a})$ for all $i \leq n$. Consider the following statements.

(i) $H^i(\mathbf{x}, M)$ is \mathfrak{a} -cofinite for all $i \leq n$.

(ii) $\operatorname{Ext}_{A}^{j}(A/\mathfrak{a}, H^{i}(\mathbf{x}, M))$ is finitely generated for j = 0, 1 and all $i \leq n + 1$.

Then (i) \Rightarrow (ii) holds. Moreover, if $\operatorname{Hom}_A(A/\mathfrak{a}, H^{n+2}(\mathbf{x}, M))$ is finitely generated, then (ii) \Rightarrow (i) holds.

Proof Consider the same notation as in the proof of Proposition 2.2. (i) \Rightarrow (ii). Clearly $\operatorname{Ext}_A^j(A/\mathfrak{a}, H^i)$ is finitely generated for all $i \leq n$ and j = 0, 1; furthermore $\operatorname{Ext}_A^j(A/\mathfrak{a}, C^i)$ is finitely generated for all $i \leq n + 1$ and all $j \leq n + 3 - i$. Since $\operatorname{Ext}_A^j(A/\mathfrak{a}, C^{n+1})$ is finitely generated for j = 0, 1, the exact sequence (\dagger_{n+1}) implies that $\operatorname{Ext}_A^j(A/\mathfrak{a}, H^{n+1})$ is finitely generated for j = 0, 1. (ii) \Rightarrow (i). We prove by induction on i that H^i is a-cofinite and $\operatorname{Ext}_A^j(A/\mathfrak{a}, C^{i+1})$ is finitely generated for j = 0, 1. (ii) \Rightarrow (i). We prove by induction on i that H^i is a-cofinite and $\operatorname{Ext}_A^j(A/\mathfrak{a}, C^{i+1})$ is finitely generated for all $i \leq n$ and all $j \leq n+2-i$. The exact sequence (\dagger_{i+2}) implies that $\operatorname{Hom}_A(A/\mathfrak{a}, C^{i+2})$ is finitely generated and so it follows from (\dagger_{i+1}) that $\operatorname{Ext}_A^j(A/\mathfrak{a}, C^i)$ is finitely generated for all $j \leq n+3-i$, the exact sequence (\dagger_i) implies that $\operatorname{Ext}_A^j(A/\mathfrak{a}, C^i)$ is finitely generated for all $j \leq n+3-i$.

The following theorem provides a sufficient condition so that a module belongs to $S_{t+3}(\mathfrak{a})$.

Theorem 2.9 Let $H^i(\mathbf{x}, M) \in S_3(\mathfrak{a})$ such that $\operatorname{Hom}_A(A/\mathfrak{a}, H^i(\mathbf{x}, M))$ and $\operatorname{Ext}_A^1(A/\mathfrak{a}, H^i(\mathbf{x}, M))$ are finitely generated for all $i \ge 0$. Then $M \in S_{t+3}(\mathfrak{a})$.

Proof Assume that $\operatorname{Ext}_{A}^{i}(A/\mathfrak{a}, M)$ is finitely generated for all $i \leq t+3$. Then it follows from Proposition 2.8 that $H^{i}(\mathbf{x}, M)$ is a-cofinite for all $i \geq 0$. Consequently, [11, Theorem 2.4] implies that M is a-cofinite.

Corollary 2.10 Let A be a local ring such that dim $A/((\mathbf{x}) + xA) \leq 3$ for some $x \in \mathfrak{a}$. If $\operatorname{Hom}_A(A/\mathfrak{a}, H^i(\mathbf{x}, M)/xH^i(\mathbf{x}, M))$ and $\operatorname{Ext}_A^j(A/\mathfrak{a}, H^i(\mathbf{x}, M))$ for all $i \geq 0$ and j = 0, 1 are finitely generated, then $M \in S_{t+3}(\mathfrak{a})$.

Proof Set B = A/xA, $\mathfrak{b} = \mathfrak{a}/xA$. In view of the exact sequence

$$H^{i}(\mathbf{x}, x, M) \longrightarrow H^{i}(\mathbf{x}, M) \xrightarrow{x} H^{i}(\mathbf{x}, M) \longrightarrow H^{i+1}(\mathbf{x}, x, M)$$

for $i \ge 0$, there is an exact sequence

$$0 \longrightarrow (0:_{H^{i}(\mathbf{x},M)} x) \longrightarrow H^{i}(\mathbf{x},M) \xrightarrow{x} H^{i}(\mathbf{x},M) \longrightarrow H^{i}(\mathbf{x},M)/xH^{i}(\mathbf{x},M) \longrightarrow 0.$$

As $(0:_{H^{i}(\mathbf{x},M)} x)$ and $H^{i}(\mathbf{x}, M)/x H^{i}(\mathbf{x}, M)$ are *B*-modules, they belong to $S_{2}(b)$ by Examples 2.1 (iii) and so by virtue of [7, Proposition 2.15], they belong to $S_{2}(\mathfrak{a})$. Thus, Theorem 2.6 implies that $H^{i}(\mathbf{x}, M) \in S_{3}(\mathfrak{a})$ for each $i \geq 0$ and consequently, $M \in S_{t+3}(\mathfrak{a})$ by using Theorem 2.9.

3 Cofiniteness of local cohomology modules

Throughout this section, M is an A-module, \mathfrak{a} is an ideal of A and n is a positive integer. We study the cofiniteness of local cohomology.For more details about local cohomology, we refer the reader to the textbook of Brodmann and Sharp [3]. Throughout this section n is a non-negative integer.

Theorem 3.1 Let $\operatorname{Ext}_{A}^{i}(A/\mathfrak{a}, M)$ be finitely generated for all $i \geq 0$ and let t < s be nonnegative integers such that $H_{\mathfrak{a}}^{i}(M)$ is \mathfrak{a} -cofinite for all $i \neq t$, s. Then $H_{\mathfrak{a}}^{t}(M) \in S_{n+s-t+1}(\mathfrak{a})$ if and only if $H_{\mathfrak{a}}^{s}(M) \in S_{n}(\mathfrak{a})$. **Proof** We first assume $H^t_{\mathfrak{a}}(M) \in S_{n+s-t+1}(\mathfrak{a})$ and that $\operatorname{Ext}_A^p(A/\mathfrak{a}, H^s_{\mathfrak{a}}(M)) \in S_n(\mathfrak{a})$ is finitely generated for all $p \leq n$. There is the Grothendieck spectral sequence

$$E_2^{p,q} := \operatorname{Ext}_A^p(A/\mathfrak{a}, H_\mathfrak{a}^q(M)) \Rightarrow \operatorname{Ext}_A^{p+q}(A/\mathfrak{a}, M).$$

For each $r \ge 3$, consider the sequence $E_{r-1}^{p-r+1,t+r-2} \xrightarrow{d_{r-1}^{p-r+1,t+r+2}} E_{r-1}^{p,t} \xrightarrow{d_{r-1}^{p,t}} E_{r-1}^{p+r-1,t-r+2}$ and so $E_r^{p,t} = \operatorname{Ker} d_{r-1}^{p,t} / \operatorname{Im} d_{r-1}^{p-r+1,t+r-2}$. Considering $p \le n + s - t + 1$, we show that $E_2^{p,t}$ is finitely generated. If r = s - t + 2, then $p - r + 1 \le n$ and so $E_{r-1}^{p-r+1,t+r-2}$ is finitely generated by the argument in the beginning of proof. If $r \ne s - t + 2$, then the assumption implies that $E_{r-1}^{p-r+1,t+r-2}$ is finitely generated for all $p \ge 0$ (we observe that $t + r - 2 \ne t$). Consequently, $\operatorname{Im} d_{r-1}^{p-r+1,t+r-2}$ is finitely generated for all $r \ge 3$ and $p \le n + s - t + 1$. But there is a finite filtration

$$0 = \Phi^{p+t+1}H^{p+t} \subset \Phi^{p+t}H^{p+t} \subset \dots \subset \Phi^1H^{p+t} \subset \Phi^0H^{p+t} \subset H^{p+t}$$

such that $\Phi^p H^{p+t} / \Phi^{p+1} H^{p+t} \cong E_{\infty}^{p,t}$ for all $p \ge 0$. In view of the assumption, $H^{p+t} = \operatorname{Ext}_A^{p+t}(A/\mathfrak{a}, M)$ is finitely generated and so $E_{\infty}^{p,t}$ is finitely generated for all $p \ge 0$. On the other hand, $E_r^{p,t} = E_{\infty}^{p,t}$ for sufficiently large r and so $E_r^{p,t}$ is finitely generated for all $p \ge 0$. The previous argument implies that $\operatorname{Ker} d_{r-1}^{p,t}$ is finitely generated for all $p \le n + s - t + 1$; moreover since $r \ge 3$, we have $t - r + 2 \le t - 1$ and so the assumption implies that $E_{r-1}^{p+r-1,t-r+2}$ is finitely generated, and hence $E_{r-1}^{p,t}$ is finitely generated for all $p \le n + s - t + 1$. Continuing this way, we deduce that $E_2^{p,t}$ is finitely generated for all $p \le n + s - t + 1$, and since $H_{\alpha}^t(M) \in S_{n+s-t+1}(\mathfrak{a})$, we deduce that $H_{\alpha}^t(M)$ is a-cofinite. Therefore, $E_2^{p,s}$ for sufficiently large r and all $p \ge 0$. By a similar argument, we have $E_{\infty}^{p,s} = E_r^{p,s}$ for sufficiently large r and all $p \ge 0$ and since $E_{\infty}^{p,r+1,s+r-2}$ is finitely generated so that $E_r^{p,s}$ is finitely generated. In view of the sequence $E_{r-1}^{p-r+1,s+r-2} \stackrel{d_{r-1}^{p-r+1,s+r+2}}{d_{r-1}^{p-r+1,s+r-2}} E_{r-1}^{p,s} \stackrel{d_{r-1}^{p,s}}{d_{r-1}^{p-r+1,s+r-2}}$, we conclude that $\operatorname{Ker} d_{r-1}^{p,s}$ is finitely generated and $E_r^{p,s} = \operatorname{Ker} d_{r-1}^{p,s}$ for all $p \ge 0$. Now the exact sequence that $E_3^{p,s}$ is finitely generated and so is $\operatorname{Ker} d_2^{p,s}$ for all $p \ge 0$. Now the exact sequence $0 \longrightarrow \operatorname{Ker} d_2^{p,s} \longrightarrow E_2^{p,s} \longrightarrow E_2^{p+2,s+1}$ implies that $E_2^{p,s}$ is finitely generated for all $p \ge 0$; and consequently $H_{\alpha}^{s}(M)$ is a-cofinite. A similar proof gets the converse.

The following lemma extends [7, Proposition 2.6].

Lemma 3.2 Let dim $A/\mathfrak{a} = 3$ and depth(Ann(M), A/\mathfrak{a}) > 0. If $\text{Ext}_A^i(A/\mathfrak{a}, M)$ is finitely generated for all $i \leq n + 1$, then the following conditions are equivalent.

- (i) $\operatorname{Hom}_A(A/\mathfrak{a}, H^i_\mathfrak{a}(M))$ is finitely generated for all $i \leq n$.
- (ii) $H^i_{\mathfrak{a}}(M)$ is \mathfrak{a} -cofinite for all i < n.

Proof Since depth (Ann(M), A/\mathfrak{a}) > 0, there exists an element $x \in Ann(M)$ such that x is a non-zerodivisor on A/\mathfrak{a} . Taking $\mathfrak{b} = \mathfrak{a} + xA$, we have dim A/b = 2 and it follows from [4, Proposition 1] that $\operatorname{Ext}_{A}^{i}(A/\mathfrak{b}, M)$ is finitely generated for all $i \leq n + 1$. Moreover, we have $\Gamma_{xA}(M) = \Gamma_{x\mathfrak{a}}(M) = M$ and $\Gamma_{\mathfrak{a}}(M) = \Gamma_{\mathfrak{b}}(M)$. Thus the ideals \mathfrak{a} and xA of A provides the following Mayer-Vietoris exact sequence

$$0 \longrightarrow \Gamma_{\mathfrak{b}}(M) \longrightarrow \Gamma_{\mathfrak{a}}(M) \oplus M \longrightarrow M \longrightarrow H^{1}_{\mathfrak{b}}(M) \longrightarrow H^{1}_{\mathfrak{a}}(M) \longrightarrow 0$$

🖄 Springer

and the isomorphism $H^i_{\mathfrak{a}}(M) \cong H^i_{\mathfrak{h}}(M)$ for each $i \geq 2$. (i) \Rightarrow (ii). The case n = 1 follows from [7, Proposition 2.6]. For $n \ge 2$, $\Gamma_{\mathfrak{a}}(M)$ is a-cofinite. Then $\Gamma_{\mathfrak{b}}(M) = \Gamma_{\mathfrak{a}}(M)$ is b-cofinite too. Moreover, it is clear that $\operatorname{Hom}_A(A/\mathfrak{b}, H^i_\mathfrak{a}(M))$ is finitely generated for all $i \leq n$. Applying the functor Hom_A(A/b, -) to the above exact sequence, we deduce that $\operatorname{Hom}_A(A/\mathfrak{b}, \Gamma_{\mathfrak{b}}(M))$ and $\operatorname{Hom}_A(A/\mathfrak{b}, H^1_{\mathfrak{b}}(M))$ are finitely generated. Furthermore $\operatorname{Hom}_A(A/\mathfrak{b}, H^i_{\mathfrak{b}}(M)) \cong \operatorname{Hom}_A(A/\mathfrak{b}, H^i_{\mathfrak{a}}(M))$ is finitely generated for each $2 \leq i \leq n$. Now, [10, Theorem 3.7] implies that $H^i_{\mathfrak{h}}(M)$ is b-cofinite and consequently $H^i_{\mathfrak{a}}(M)$ is acofinite for all i < n using [4, Proposition 2]. (ii) \Rightarrow (i) Since $H^i_{\mathfrak{a}}(M)$ is a-cofinite for all i < n, by the previous argument, $H_{\rm b}^i(M)$ is b-cofinite for all i < n; and hence it follows from [10, Theorem 3.7] that $\operatorname{Hom}_A(A/\mathfrak{b}, H^i_{\mathfrak{b}}(M))$ is finitely generated for all $i \leq n$. We observe that $\operatorname{Hom}_A(A/\mathfrak{a}, \Gamma_\mathfrak{b}(M)) = \operatorname{Hom}_A(A/\mathfrak{a}, \Gamma_\mathfrak{a}(M)) = \operatorname{Hom}_A(A/\mathfrak{a}, M)$ is finitely generated. Furthermore, $\operatorname{Hom}_A(A/\mathfrak{a}, H^1_{\mathfrak{h}}(M)) \cong \operatorname{Hom}_A(A/\mathfrak{a}, \operatorname{Hom}_A(A/xA, H^1_{\mathfrak{h}}(M))) \cong$ Hom_A($A/\mathfrak{b}, H^1_\mathfrak{b}(M)$) is finitely generated. Now, since $\Gamma_\mathfrak{a}(M)$ is a-cofinite, applying the functor Hom_A(A/\mathfrak{a} , -) to the above exact sequence, we conclude that Hom_A(A/\mathfrak{a} , $H^1_\mathfrak{a}(M)$) is finitely generated. By the argument mentioned in the beginning of the proof $\operatorname{Hom}_A(A/\mathfrak{a},$ $H^{i}_{\mathfrak{a}}(M) \cong \operatorname{Hom}_{A}(A/\mathfrak{a}, H^{i}_{\mathfrak{b}}(M)) \cong \operatorname{Hom}_{A}(A/\mathfrak{b}, H^{i}_{\mathfrak{b}}(M))$ is finitely generated for all $2 \leq i \geq n$.

It was proved in [10, Theorems 3.3, 3.7] that if dim $A/a \le 2$, then the conditions in Lemma 3.2 are equivalent. In the following theorem, we extend this result for dim $A/a \ge 3$, but by an additional assumption.

Theorem 3.3 Let dim $A/\mathfrak{a} = d \ge 3$ and let depth $(Ann(M), A/\mathfrak{a}) \ge d - 2$. If $Ext^i_A(A/\mathfrak{a}, M)$ is finitely generated for all $i \le n + 1$, then the conditions in Lemma 3.2 are equivalent.

Proof We proceed by induction on d. The case d = 3 follows from Lemma 3.2 and so we may assume that $d \ge 4$. Since depth(Ann(M), $A/\mathfrak{a}) > 0$, there exists an element $x \in Ann_R M$ which is a non-zerodivisor on A/\mathfrak{a} . Taking $\mathfrak{b} = \mathfrak{a} + xA$, we have dim $A/\mathfrak{b} = d - 1$. Since $\operatorname{Supp}_A A/\mathfrak{b} \subseteq \operatorname{Supp}_A A/\mathfrak{a}$, it follows $\operatorname{Ext}_A^i(A/\mathfrak{b}, M)$ is finitely generated for all $i \le n + 1$. If $H_{\mathfrak{a}}^i(M)$ is \mathfrak{a} -cofinite for each i < n, then $H_{\mathfrak{b}}^i(M)$ is \mathfrak{b} -cofinite for each i < n. The induction hypothesis implies that $\operatorname{Hom}_A(A/\mathfrak{b}, H_{\mathfrak{b}}^i(M))$ is finitely generated for all $i \le n$. By the same reasoning in the proof of Lemma 3.2, we have $\operatorname{Hom}_A(A/\mathfrak{a}, H_{\mathfrak{a}}^i(M))$ is finitely generated for all $i \le n$. Conversely, assume that $\operatorname{Hom}_A(A/\mathfrak{a}, H_{\mathfrak{a}}^i(M))$ is finitely generated for all $i \le n$. The induction hypothesis implies that $\operatorname{Hom}_A(A/\mathfrak{b}, H_{\mathfrak{b}}^i(M))$ is finitely generated for all $i \le n$. The induction hypothesis hop that $\operatorname{Hom}_A(A/\mathfrak{b}, H_{\mathfrak{b}}^i(M))$ is finitely generated for all $i \le n$. The induction hypothesis implies that $\operatorname{Hom}_A(A/\mathfrak{b}, H_{\mathfrak{b}}^i(M))$ is finitely generated for all $i \le n$. The induction hypothesis implies that $H_{\mathfrak{b}}(M)$ is \mathfrak{b} -cofinite for each i < n and so $\operatorname{Hom}_A(A/\mathfrak{b}, H_{\mathfrak{b}}^i(M))$ is finitely generated for all $i \le n$. The induction hypothesis implies that $H_{\mathfrak{b}}^i(M)$ is \mathfrak{b} -cofinite for each i < n and so $\operatorname{Hom}_A(A/\mathfrak{b}, H_{\mathfrak{b}}^i(M))$ is finitely generated for all $i \le n$. The induction hypothesis implies that $H_{\mathfrak{b}}^i(M)$ is \mathfrak{b} -cofinite for each i < n and so $H_{\mathfrak{a}}^i(M)$ is \mathfrak{a} -cofinite for each i < n.

Corollary 3.4 Let \mathfrak{b} an ideal of A and $\mathfrak{a} = \Gamma_{\mathfrak{b}}(A)$ such that dim $A/\mathfrak{a} = 3$. Then $\operatorname{Hom}_A(A/\mathfrak{a}, H^i_\mathfrak{a}(A/\mathfrak{b}))$ is finitely generated for all $i \leq n$ if and only if $H^i_\mathfrak{a}(A/\mathfrak{b})$ is \mathfrak{a} -cofinite for all i < n.

Proof As $\Gamma_{\mathfrak{b}}(A/\mathfrak{a}) = 0$, we have depth($\mathfrak{b}, A/\mathfrak{a}$) > 0. Now the assertion is obtained by using Lemma 3.2.

Corollary 3.5 Let \mathfrak{b} an ideal of A and $\mathfrak{a} = \Gamma_{\mathfrak{b}}(A)$ such that dim $A/\mathfrak{a} = 3$. Then $\operatorname{Hom}_A(A/\mathfrak{a}, H^i_\mathfrak{a}(A))$ is finitely generated for all $i \leq n$ if and only if $H^i_\mathfrak{a}(A)$ is \mathfrak{a} -cofinite for all i < n. In particular, $\operatorname{Hom}_A(A/\mathfrak{a}, H^1_\mathfrak{a}(A))$ is finitely generated.

Proof There exists a positive integer t such that $\mathfrak{b}^t \mathfrak{a} = 0$ and so $\Gamma_{\mathfrak{a}}(\mathfrak{b}^t) = \mathfrak{b}^t$. Thus applying the functor $\Gamma_{\mathfrak{a}}(-)$ to the exact sequence $0 \longrightarrow \mathfrak{b}^t \longrightarrow A \longrightarrow A/\mathfrak{b}^t \longrightarrow 0$,

we deduce that $H_{\mathfrak{a}}^{i}(A) \cong H_{\mathfrak{a}}^{i}(A/\mathfrak{b}^{t})$ for each i > 0. Since $\Gamma_{\mathfrak{b}}(A/\mathfrak{a}) = 0$, we have depth($\mathfrak{b}^{t}, A/\mathfrak{a}$) = depth($\mathfrak{b}, A/\mathfrak{a}$) > 0. If $\operatorname{Hom}_{A}(A/\mathfrak{a}, H_{\mathfrak{a}}^{i}(A))$ is finitely generated for all $i \leq n$, then $\operatorname{Hom}_{A}(A/\mathfrak{a}, H_{\mathfrak{a}}^{i}(A/\mathfrak{b}^{t}))$ is finitely generated for all $i \leq n$. Now Lemma 3.2 implies that $H_{\mathfrak{a}}^{i}(A/\mathfrak{b}^{t})$ is a-cofinite for all i < n; and hence $H_{\mathfrak{a}}^{i}(A/\mathfrak{b}^{t})$ is a-cofinite for all i < n. Conversely, if $H_{\mathfrak{a}}^{i}(A)$ is a-cofinite for all i < n, then $H_{\mathfrak{a}}^{i}(A/\mathfrak{b}^{t})$ is a-cofinite for all i < nand so using again Lemma 3.2, $\operatorname{Hom}_{A}(A/\mathfrak{a}, H_{\mathfrak{a}}^{i}(A/\mathfrak{b}^{t}))$ is finitely generated for all $i \leq n$ so that $\operatorname{Hom}_{A}(A/\mathfrak{a}, H_{\mathfrak{a}}^{i}(A))$ is finitely generated for all $i \leq n$

Corollary 3.6 Let \mathfrak{p} be a prime ideal of A with dim $A/\mathfrak{p} = 3$ and let \mathfrak{b} be an ideal of A such that $\mathfrak{b} \notin \mathfrak{p}$. Then $\operatorname{Hom}_A(A/\mathfrak{p}, H^i_\mathfrak{p}(A/\mathfrak{b}))$ is finitely generated for all $i \leq n$ if and only if $H^i_\mathfrak{p}(A/\mathfrak{b})$ is \mathfrak{p} -cofinite for all i < n.

Proof Since $\mathfrak{b} \not\subseteq \mathfrak{p}$, we have depth $(\mathfrak{b}, A/\mathfrak{p}) > 0$ and so the the result follows from Theorem 3.3.

If dim $A \ge 4$, then we have the following result.

Proposition 3.7 Let dim $A = d \ge 4$ with depth $(Ann(M), A/(\mathfrak{a} + \Gamma_{\mathfrak{a}}(A))) \ge d - 3$ and let $\operatorname{Ext}_{A}^{i}(A/\mathfrak{a}, M)$ be finitely generated for all $i \le n + 1$. Then the conditions in Lemma 3.2 are equivalent.

Proof We can choose an integer t such that $(0:_A \mathfrak{a}^t) = \Gamma_\mathfrak{a}(A)$. Put $\overline{A} = A/\Gamma_\mathfrak{a}(A)$ and $\overline{M} = M/(0:_M \mathfrak{a}^t)$ which is an \overline{A} -module. Taking $\overline{\mathfrak{a}}$ as the image of \mathfrak{a} in \overline{A} , we have $\Gamma_{\overline{\mathfrak{a}}}(\overline{A}) = 0$. Thus $\overline{\mathfrak{a}}$ contains an \overline{A} -regular element so that dim $A/(\mathfrak{a} + \Gamma_\mathfrak{a}(A)) = \dim \overline{A}/\overline{\mathfrak{a}} \le d - 1$. The assumption on M together with the fact that $\operatorname{Supp}_A(A/(\mathfrak{a} + \Gamma_\mathfrak{a}(A))) \subset \operatorname{Supp}_A(A/\mathfrak{a})$ and [4, Proposition 1] imply that $\operatorname{Ext}_A^i(A/(\mathfrak{a} + \Gamma_\mathfrak{a}(A)), M)$ is finitely generated for all $i \le n$. Since by the assumption $(0:_M \mathfrak{a})$ is finitely generated, it is clear that $(0:_M \mathfrak{a}^t)$ is finitely generated and we have an exact sequence

$$0 \longrightarrow (0:_{M} \mathfrak{a}^{t}) \longrightarrow \Gamma_{\mathfrak{a}}(M) \longrightarrow \Gamma_{\mathfrak{a}}(\overline{M}) \longrightarrow 0$$

and the isomorphism $H^i_{\mathfrak{a}}(M) \cong H^i_{\mathfrak{a}}(\overline{M})$ for all i > 0. In order to prove (i) \Rightarrow (ii), assume that $\operatorname{Hom}_A(A/\mathfrak{a}, H^i_{\mathfrak{a}}(M))$ is finitely generated for all $i \le n$. Then in view of the previous argument and the independence theorem for local cohomology $\operatorname{Hom}_A(A/(\mathfrak{a} + \Gamma_{\mathfrak{a}}(A)), H^i_{\mathfrak{a} + \Gamma_{\mathfrak{a}}(A)}(\overline{M}))$ is finitely generated for all $i \le n$. It now follows from Theorem 3.3 that $H_{\mathfrak{a} + \Gamma_{\mathfrak{a}}(A)}(\overline{M})$ is $\mathfrak{a} + \Gamma_{\mathfrak{a}}(A)$ -cofinite for all $i \le n$. It now follows from Theorem 3.3 that $H_{\mathfrak{a} + \Gamma_{\mathfrak{a}}(A)}(\overline{M})$ is $\mathfrak{a} + \Gamma_{\mathfrak{a}}(A)$ -cofinite for all i < n; and hence using the change of ring principle [4, Proposition 2], $H^i_{\mathfrak{a}}(\overline{M})$ is \mathfrak{a} -cofinite for all i < n. Consequently, the previous argument implies that $H^i_{\mathfrak{a}}(M)$ is \mathfrak{a} -cofinite for all i < n. (ii) \Rightarrow (i). Assume that $H^i_{\mathfrak{a}}(M)$ is \mathfrak{a} -cofinite for all i < n. (ii) \Rightarrow (i). Assume that $H^i_{\mathfrak{a}}(M)$ is \mathfrak{a} -cofinite for all i < n. (ii) \Rightarrow (i) so the same reasoning as mentioned before, we deduce that $H^i_{\mathfrak{a} + \Gamma_{\mathfrak{a}}(A)}(\overline{M})$ is $\mathfrak{a} + \Gamma_{\mathfrak{a}}(A)$ -cofinite for all i < n. Now, using again Theorem 3.3, we deduce that $\operatorname{Hom}_A(A/\mathfrak{a}, H^i_{\mathfrak{a}}(\overline{M})) \cong$ $\operatorname{Hom}_A(A/(\mathfrak{a} + \Gamma_{\mathfrak{a}}(A)), H^i_{\mathfrak{a} + \Gamma_{\mathfrak{a}}(A)}(\overline{M}))$ is finitely generated for all $i \le n$ and consequently the previous argument yields that $\operatorname{Hom}_A(A/\mathfrak{a}, H^i_{\mathfrak{a}}(M))$ is finitely generated for all $i \le n$. \Box

Acknowledgements The authors are grateful to the referees for careful reading of the paper and the valuable suggestions.

Declarations

Conflict of interest The authors have no conflict of interest.

References

- 1. Bahmanpour, K., Naghipour, R., Sedghi, M.: Cofiniteness with respect to ideals of small dimension. Algebras Represent. Theory 18(2), 369–379 (2014)
- Bahmanpour, K., Naghipour, R., Sedghi, M.: On the category of cofinite modules which is abelian. Proc. Am. Math. Soc 142(4), 1101–1107 (2014)
- Brodmann, M., Sharp, R.Y.: Local Cohomology: An Algebraic Introduction with Geometric Applications. Cambridge University Press, Cambridge (1998)
- Delfino, D., Marley, T.: Cofinite modules of local cohomology. J. Pure. Appl. Algebra 121(1), 45–52 (1997)
- 5. Hartshorne, R.: Affine duality and cofiniteness. Invent. Math. 9, 145-164 (1970)
- 6. Kawasaki, K.-I.: On a category of cofinite modules which is abelian. Math. Z. 269(1-2), 587-608 (2011)
- Khazaei, M., Sazeedeh, R.: A criterion for cofiniteness of modules. Rend. Sem. Mat. Univ. Padova (2023). https://doi.org/10.4171/RSMUP/128
- 8. Melkersson, L.: Modules cofinite with respect to an ideal. J. Algebra 285, 649–668 (2005)
- 9. Melkersson, L.: Cofiniteness with respect to ideals of dimesnion one. J. Algebra 372, 459-462 (2012)
- Nazari, M., Sazeedeh, R.: Cofiniteness with respect to two ideals and local cohomology. Algebras Represent. Theory 22, 375–385 (2019)
- 11. Sazeedeh, R.: Cofiniteness of Koszul cohomology modules. arXiv:math.AC/4690830 (2023)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.