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Abstract
In this paper, we are concerned with the study of parabolic variational inequality. Under
appropriate assumptions on the main functions, we obtain the existence of weak solutions
after the construction of the penalized Young measure by Galerkin’s method and the penalty
method. The passage to the limit follows relying on the theory of Young measures.

Keywords Weak solutions · Variational inequalities · Young measures

Mathematics Subject Classification 35D30 · 35K86

1 Introduction

In this paper, we are concerned with the existence of weak solutions for parabolic systems.
Let Ω ⊂ R

n (n ≥ 2) be a bounded open domain, p ∈ (2n/(n + 2),∞) and 0 < T < ∞ are
given constants and denote Q = Ω × (0, T ) with its boundary ∂ Q = ∂Ω × (0, T ). We deal
with the following variational inequality

∫

Qs

∂u

∂t
(v − u)dxdt +

∫

Qs

a(x, t, Du) : (Dv − Du)dxdt ≥
∫

Qs

f (v − u)dxdt, (1)

for every v ∈ L p(0, T ; W 1,p
0 (Ω;Rm)) and Qs = Ω × (0, s) for all s ∈ [0, T ]. Here

f ∈ L p′
(0, T ; W −1,p′

(Ω;Rm)), p′ = p/(p −1) and a : Q ×M
m×n → M

m×n is a function
assumed to satisfy some conditions. HereMm×n stands for the set ofm×n matrices equipped
with the inner product ξ : η = ∑m

i=1
∑n

j=1 ξi jηi j . To deal with (1), we shall find a function
u(x, t) ∈ K satisfying the previous inequality, where

K =
{
w ∈ L p(0, T ; W 1,p

0 (Ω;Rm) ∩ C(0, T ; L2(Ω;Rm)),
∂w

∂t
∈ L p′

(0, T ; W −1,p′
(Ω;Rm)) :

0 ≤ w(x, 0) = u0(x) ∈ L2(Ω;Rm), w(x, t) ≥ 0 a.e. (x, t) ∈ Q
}
.
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732 F. Balaadich

It should be noted, that the variational inequality (1) come from and is governed by the
following quasilinear parabolic system

∂u

∂t
− div a(x, t, Du) = f in Q. (2)

There is a large number of papers to consider (2). By the theory of Youngmeasures, the author
in [17] has proved the existence of weak solutions, under mild monotonicity assumptions
on the function a. This theory is used to serve the existence of weak solutions, since that
problem can not be treated by the classical monotone operator method developed in [10, 11,
21, 22, 25]. And this is because a does not need to satisfy the strict monotonicity condition
of Leray-Lions’s type. We refer the reader to [1–7] where the theory of Young measures has
been applied for both elliptic and parabolic problems. The elliptic case of (1) was investigated
in [8] where the authors have proved the existence of weak solutions employing the theory
of Young measures and a theorem of Kinderlehrer and Stampacchia.

Variational inequalities as the development and extension of classic variational problems
are a very useful tool to research partial differential equations, optimal control, and other
fields. Many papers (see e.g. [15, 18, 21, 23, 24]) are interested in the solvability of the
different kinds of parabolic variational inequalities, relying on themethods of time discretion,
semigroup property of the corresponding differential quotient and a penalization method
which transform a parabolic variational inequality into a parabolic equation with a penalty
term. These works assumed themonotonicity or regularity condition of the obstacles.We find
another method in [19], where only the continuity on obstacles was used. Works which are
dealing with double-phase problems or multivalued problems can be found in [12, 26–29].
We point out these works are concerned with obstacle problems where the authors have used
tools from the nonsmooth analysis.

Motivated by the works [17, 23, 24], we will study the existence of weak solutions to the
problem (1) by using the penalty method (which transforms the inequality (1) into equality
(3) below) and the theory of Young measures. To be more precise, we shall construct a Young
measure νε

(x,t) generated by a penalized gradient sequence, with ε ∈ (0, 1), which converges
to the Young measure ν(x,t) as ε tends to zero. To the best of our knowledge, this is the first
paper treating the problem (1) by such methods.

This paper is organized as follows. Section2 is devoted to recalling some necessary prop-
erties of Young measures. In Sect. 3, we prove the existence of weak solutions by Galerkin’s
approximation and the theory of Young measures for (3), while Sect. 4 is concerned to show
the existence of weak solutions for variational problem (1).

2 Youngmeasures: necessary properties

Consider C0(R
m) = {

ϕ ∈ C(Rm) : lim|λ|→∞ ϕ(λ) = 0}. Its dual is the well-known signed
Radon measuresM(Rm) with finite mass. The duality of

(M(Rm), C0(R
m)
)
is given by the

following integrand

〈ν, ϕ〉 =
∫

Rm

ϕ(λ)dν(λ), where ν : Ω → M(Rm).

Lemma 1 ([14]) Let (zk)k be a bounded sequence in L∞(Ω;Rm). Then there exist a subse-
quence (still denoted (zk)) and a Borel probability measure νx on R

m for a.e. x ∈ Ω , such
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Existence of solutions for parabolic variational inequalities 733

that for almost each ϕ ∈ C(Rm) we have

ϕ(zk)⇀
∗ϕ(x) = 〈νx , ϕ〉 weakly in L∞(Ω;Rm)

for a.e. x ∈ Ω .

Definition 1 The family ν = {νx }x∈Ω is called Young measures associated with (generated
by) the subsequence (zk)k .

In [9], it is shown that if for all R > 0

lim sup
L→∞

∣∣{x ∈ Ω ∩ BR(0) : |zk(x)| ≥ L}∣∣ = 0,

then for any measurable Ω ′ ⊂ Ω , we have

ϕ(x, zk)⇀〈νx , ϕ(x, .)〉 =
∫

Rm

ϕ(x, λ)dνx (λ) in L1(Ω ′),

for every Carathéodory function ϕ : Ω×R
m → R such that (ϕ(x, zk(x)))k is equiintegrable.

The following lemmas are useful throughout this paper.

Lemma 2 ([16]) If |Ω| < ∞ and νx is the Young measure generated by the (whole) sequence
(zk), then there holds

zk −→ z in measure ⇔ νx = δz(x) for a.e. x ∈ Ω.

It should be noted that the above properties remain true when zk = Dwk , with wk : Ω →
R

m and Ω can be replaced by the cylinder Q.

Lemma 3 ([13])Let ϕ : Q×M
m×n → R be a Carathéodory function and (wk) be a sequence

of measurable functions, where wk : Q → R
m, such that Dwk generates the Young measure

ν(x,t). Then

lim inf
k→∞

∫

Q

ϕ(x, t, Dwk)dxdt ≥
∫

Q

∫

Mm×n

ϕ(x, t, λ)dν(x,t)(λ)dxdt

provided that the negative part ϕ−(x, t, Dwk) is equiintegrable.

The following lemma describes limits points of gradient sequences utilizing the Young
measures.

Lemma 4 ([3]) The Young measure ν(x,t) generated by Dwk in L p(0, T ; L p(Ω)) satisfy the
following properties:

(i) ν(x,t) is a probability measure, i.e., ‖ν(x,t)‖M(Mm×n) = 1 for a.e. (x, t) ∈ Q.
(ii) The weak L1-limit of Dwk is given by 〈ν(x,t), id〉.
(iii) For a.e. (x, t) ∈ Q, 〈ν(x,t), id〉 = Dw(x, t).

Let νε
(x,t) be the Young measure generated by the penalized gradient sequence (Dwε).

Lemma 5 ([9]) For every continuous function ϕ,

〈νε
(x,t), ϕ〉 −→ 〈ν(x,t), ϕ〉 as ε → 0 for a.e. (x, t) ∈ Q.
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734 F. Balaadich

3 Nonlinear parabolic systems with parameter �

Let Ω be a bounded open domain of Rn , p ∈ (2n/(n + 2),∞) and ε ∈ (0, 1) be fixed.
In this section, we shall consider the existence result for the following parabolic system of
Dirichlet’s type given in the form:⎧⎨

⎩
∂u
∂t − div a(x, t, Du) − 1

ε
|u−|p−2u− = f in Q,

u = 0 on ∂ Q,

u(x, 0) = u0(x) in Ω,

(3)

where u− = max{−u, 0} and a : Q × M
m×n → M

m×n satisfy the following hypothesis:

(H0) a is a Carathéodory function, that is measurable in (x, t) ∈ Q for fixed ξ ∈ M
m×n and

continuous in ξ for fixed (x, t) in Q.
(H1) There exist a function l ∈ L p′

(Q) and a constant α0 > 0 such that

|a(x, t, ξ)| ≤ l(x, t) + |ξ |p−1 (4)

and

a(x, t, ξ) : ξ ≥ α0|ξ |p. (5)

(H2) For all ξ, ξ ′ ∈ M
m×n ,(

a(x, t, ξ) − a(x, t, ξ ′)
) : (ξ − ξ ′) ≥ 0.

Definition 2 A function uε ∈ L p(0, T ; W 1,p
0 (Ω;Rm)) with ∂uε

∂t ∈ L p′
(0, T ; W −1,p′

(Ω;Rm)) is called a weak solution of (3), if for all ϕ ∈ L p(0, T ; W 1,p
0 (Ω;Rm)), it holds

∫

Q

∂uε

∂t
ϕdxdt +

∫

Q

a(x, t, Duε) : Dϕdxdt − 1

ε

∫

Q

|u−
ε |p−2u−

ε ϕdxdt =
∫

Q

f (x, t)ϕdxdt .

Similar to that in [20], we take a sequence {w j } j≥1 ⊂ C∞
0 (Ω;Rm), such that

C∞
0 (Ω;Rm) ⊂ ⋃

k≥1 Vk
C1(Ω)

, where {w j } j≥1 is a standard orthogonal basis in L2(Ω;Rm)

and Vk = span{w1, ..., wk}. Firstly, remark that since u0 ∈ L2(Ω;Rm), there exists a
sequence ψk(x) ∈ Vk such that ψk(x) → u0(x) in L2(Ω;Rm) as k → ∞. Indeed,
for u0 ∈ L2(Ω;Rm), there exists a sequence vk in C∞

0 (Ω;Rm) such that vk → u0

in L2(Ω;Rm). Since {vk} ⊂ C∞
0 (Ω;Rm) ⊂ ⋃

N≥1 VN
C1(Ω)

, we can find a sequence

{vi
k} ⊂ ⋃

N≥1 VN such that vi
k → vk in C1(Ω;Rm) as i → ∞. For 1

2k , there exists ik ≥ 1

such that ‖vik
k − vk‖C1(Ω) ≤ 1

2k . Therefore

‖vik
k − u0‖L2(Ω) ≤ C‖vik

k − vk‖C1(Ω) + ‖vk − u0‖L2(Ω).

Hence v
ik
k → u0 in L2(Ω;Rm) as k → ∞. Let us denote uk = v

ik
k . Since uk ∈ ⋃

N≥1 VN ,
there exists VNk such that uk ∈ VNk , without loss of generality, we assume that VN1 ⊂ VN2 as
N1 ≤ N2. We suppose that N1 > 1 and define ψk as follows: ψk(x) = 0, k = 1, ..., N1 − 1;
ψk = u1, k = N1, ..., N2 − 1; ψk = u2, k = N2, ..., N3 − 1;..., then we obtain the desired
sequence {ψk} and ψk → u0 in L2(Ω;Rm) as k → ∞.

Theorem 1 Let f ∈ L p′
(0, T ; W −1,p′

(Ω;Rm)). Suppose that (H0)-(H2) are satisfied. Then
for every ε > 0 to be fixed, there exists a weak solution of Eq. (3).
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Existence of solutions for parabolic variational inequalities 735

Proof (i) Galerkin approximation
For each k ∈ N, k ≥ 1, we define a vector-valued function Pk(t, v) : [0,∞) × R

k → R
k as

follows:

(
Pk(t, v)

)
i =

∫

Ω

a

(
x, t,

k∑
j=1

v j Dw j

)
: Dwi dx − 1

ε

∫

Ω

∣∣ k∑
j=1

v jw j
∣∣p−2

( k∑
j=1

v jw j

)
wi dx,

where v = (v1, ..., vk). Since a is continuous, the continuity of Pk(t, v) follows.
Now, we shall construct the approximate solutions of problem (3) in the form

uk(x, t) =
k∑

j=1

(ηk(t)) jw j (x),

where (ηk(t))k are unknown functions, which can be determined as solutions of the following
system of ordinary differential equations

{
η′(t) + Pk(t, η(t)) = F,

η(0) = Uk(0),
(6)

where (F)i = ∫
Ω

f wi dx , (Uk(0))i = ∫
Ω

ψk(x)wi dx , ψk(x) ∈ Vk , ψk(x) → u0(x) in

L2(Ω;Rm) as k → ∞.
We multiply the Eq. (6) by η(t), thus

η′η = Pk(t, η)η = Fη.

By the coercivity condition in (H1), we have

Pk(t, η)η =
∫

Ω

a
(
x, t,

k∑
j=1

η j Dw j
) :

( k∑
i=1

ηi Dwi

)
dx

− 1

ε

∫

Ω

∣∣
( k∑

j=1

η jw j

)−∣∣p−2
( k∑

j=1

η jw j

)−( k∑
i=1

ηiwi

)
dx ≥ 0.

(7)

From (7) and Young’s inequality, we arrive at

1

2

∂

∂t
|η(t)|2 ≤ |Fη| ≤ 1

2
|F |2 + 1

2
|η|2.

Integrating the above inequality with respect to t from 0 to t , we obtain

|η(t)| ≤ ck +
t∫

0

|η(τ)|2dτ,

which implies, by Gronwall’s inequality, that |η(t)| ≤ ck(T ). Consider

Lk = max
t∈[0,T ] |F − Pk(t, η)| and τk = min

{
T ,

ck(T )

Lk

}
.

Since Pk(t, η) is continuous in t and η, the Peano Theorem implies that (6) has a C1 solution
locally in [0, τk]. Let τk = t1 andη(t1) be an initial value, thenwe repeat the above process and
get aC1 solution on [t1, t1+τk].We can divide [0, T ] into [(i −1)τk , iτk], i = 1, ..., L , where
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736 F. Balaadich

T
L ≤ τk , then there exist C1 solution ηi

k(t) in [(i − 1)τk, iτk], i = 1, ..., L . Consequently, we
arrive at a solution ηk(t) ∈ C1([0, T ]) defined by

ηk(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

η1k (t) if t ∈ [0, τk),

η2k (t) if t ∈ (τk, 2τk],
...

ηL
k (t) if t ∈ ((L − 1)τk, Lτk].

Therefore, we get the approximate solutions uk(x, t) = ∑k
j=1(ηk(t)) jw j (x). From (6) it

follows for 1 ≤ i ≤ k, that
∫

Ω

∂uk

∂t
wi dx +

∫

Ω

a(x, t, Duk) : Dwi dx − 1

ε

∫

Ω

|u−
k |p−2u−

k wi dx =
∫

Ω

f wi dx . (8)

Remark by (6), that ηk(t) should be dependent on ε, but for convenience we omit ε, and for
all ϕ ∈ C1(0, T ; Vj ), j ≤ k, there holds
∫

Q

∂uk

∂t
ϕdxdt +

∫

Q

a(x, t, Duk) : Dϕdxdt − 1

ε

∫

Q

|u−
k |p−2u−

k ϕdxdt =
∫

Q

f ϕdxdt . (9)

(ii) Passage to the limit
We multiply (8) by (ηk(t))i and sum up i from 1 to k, it holds by integrating with respect to
t from 0 to τ (τ ∈ (0, T ]), that

∫

Qτ

∂uk

∂t
ukdxdt + α0

∫

Qs

|Duk |pdxdt − 1

ε

∫

Qs

|u−
k |p−2u−

k ukdxdt

≤ ‖ f ‖L p′
(0,T ;W−1,p′

(Ω;Rm ))
‖uk‖L p(0,τ ;W 1,p

0 (Ω;Rm ))
,

with Qτ = Ω × (0, τ ), where we have used the coercivity condition in (H1) and Hölder’s
inequality. We have uk(x, 0) → u0 in L2(Ω;Rm), this implies

∫
Ω

u2
k(x, 0)dx ≤ c, where c

is a constant independent of ε and k. Moreover ‖ f ‖L p′
(0,T ;W−1,p′

(Ω;Rm ))
≤ c. Therefore

1

2

∫

Ω

|uk(x, τ )|2dx + α0

∫

Qτ

|Duk |pdx + 1

ε

∫

Qτ

|u−
k |pdxdt

≤ c(‖uk‖L p(0,τ ;W 1,p
0 (Ω;Rm ))

+ 1). (10)

From this inequality, we deduce, that

‖uk‖L p(0,T ;W 1,p
0 (Ω;Rm ))

≤ c,
∫

Ω

|uk(x, T )|2dx ≤ c and
1

ε

∫

Q

|u−
k |pdxdt ≤ c. (11)

By (11) and the growth condition in (H1), we have

∫

Q

|a(x, t, Duk)|p′
dxdt ≤ c

⎛
⎜⎝
∫

Q

|Duk |pdxdt + 1

⎞
⎟⎠ ≤ c, (12)
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Existence of solutions for parabolic variational inequalities 737

where c is a constant independent of ε and k. From (11) and (12), there exist a subsequence
of (uk)k (still denoted by (uk)), χ ∈ L p′

(Q;Mm×n) and g ∈ L p′
(Q;Rm) such that

⎧⎪⎪⎨
⎪⎪⎩

uk⇀uε in L p(0, T ; W 1,p
0 (Ω;Rm)),

uk⇀
∗uε in L∞(0, T ; L2(Ω;Rm)),

a(x, t, Duk)⇀χ in L p′
(Q;Mm×n),

1
ε
|u−

k |p−2u−
k ⇀g in L p′

(Q;Rm).

By the compact embedding W 1,p
0 (Ω;Rm) ↪→ L p(Ω;Rm), one has uk → uε in L p(Q;Rm)

and almost everywhere in Q (for a subsequence). Thus, as k → ∞, we have
{

u−
k −→ u−

ε a.e. (x, t) ∈ Q,
1
ε
|u−

k |p−2u−
k −→ 1

ε
|u−

ε |p−2u−
ε a.e. (x, t) ∈ Q.

(13)

From (11) and (13), it follows that g = 1
ε
|u−

ε |p−2u−
ε . Let ϕ ∈ L p(0, T ; W 1,p

0 (Ω;Rm)), then

there exists a sequence ϕk ∈ C1(0, T ; Vk) such that ϕk → ϕ in L p(0, T ; W 1,p
0 (Ω;Rm)).

By virtue of (9) and Hölder’s inequality, we get
∣∣∣
∫

Q

∂uk

∂t
ϕkdxdt

∣∣∣

=
∣∣∣
∫

Q

f (x, t)ϕkdxdt −
∫

Q

a(x, t, Duk) : Dϕkdxdt + 1

ε

∫

Q

|u−
k |p−2u−

k ϕkdxdt
∣∣∣

≤ c‖ϕk‖L p(0,T ;W 1,p
0 (Ω;Rm ))

,

where we have used (11) and (12), and c is a constant independent of k and ε. Consequently,
‖ ∂uk

∂t ‖L p′
(0,T ;W−1,p′

(Ω;Rm ))
≤ c. It immediately follows the existence of a subsequence of

(uk) (still denoted as (uk)) such that

∂uk

∂t
⇀α in L p′

(0, T ; W −1,p′
(Ω;Rm)).

Let ψ ∈ C∞
0 (Q;Rm), by letting k → ∞ in

∫
Q

∂uk
∂t ψdxdt = − ∫

Q
uk

∂ψ
∂t dxdt , it results

∫

Q

αψdxdt = −
∫

Q

uε

∂ψ

∂t
dxdt .

This implies α = ∂uε

∂t . On the other hand, since
∫
Ω

|uk(x, T )|2dx ≤ c, there is a subse-
quence of (uk(x, T )) (still labelled by (uk(x, T ))) and a function u∗ in L2(Ω;Rm) such that
uk(x, T )⇀u∗ in L2(Ω;Rm). To identify u∗ with u(x, T ), we use the fact that∫

Q

∂uk

∂t
wi dxdt =

∫

Ω

uk(x, T )wi dx −
∫

Ω

uk(x, 0)wi dx .

Passing k to infinity, it results by integration by parts, that
∫
Ω

u∗wi dx = ∫
Ω

uε(x, T )wi dx .
We conclude, by the completeness of {wi }i , that u∗ = uε(x, T ), i.e.,∫

Ω

u2
ε(x, T )dx ≤ lim inf

k→∞

∫

Ω

u2
k(x, T )dx . (14)
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738 F. Balaadich

Note that, since (uk) is bounded in L p(0, T ; W 1,p
0 (Ω;Rm)), it follows by Lemma 1

the existence of a Young measure νε
(x,t) generated by (Duk) in L p(Q;Mm×n) and satisfy-

ing Lemma 4. Remark that the generated Young measure is labeled by ε, as well as Duk ,
depending on it.

To identify χ with a(x, t, Duε), we will need the following inequality:∫

Q

∫

Mm×n

(
a(x, t, λ) − a(x, t, Duε)

) : (λ − Duε)dνε
(x,t)(λ)dxdt ≤ 0. (15)

To see this, consider the sequence

Yk = (
a(x, t, Duk) − a(x, t, Duε)

) : (Duk − Duε)

= Yk,1 − Yk,2,

where Yk,1 = (a(x, t, Duk) : (Duk − Duε) and Yk,2 = a(x, t, Duε) : (Duk − Duε). As in
(12), it follows that a(x, t, Duε) ∈ L p′

(Q;Mm×n). On the one hand, because of the weak
limit defined in Lemma 4, we obtain

lim inf
k→∞

∫

Q

Yk,2dxdt =
∫

Q

∫

Mm×n

a(x, t, Duε) : (λ − Duε)dxdt

=
∫

Q

a(x, t, Duε)
( ∫

Mm×n

λdνε
(x,t)(λ)

︸ ︷︷ ︸
:=Duε (x,t)

− Duε

)
dxdt = 0. (16)

On the other hand, since (a(x, t, Duk) : (Duk − Duε)) is equiintegrable (by (11), (12) and
Hölder’s inequality), Lemma 3 implies

lim inf
k→∞

∫

Q

a(x, t, Duk) : (Duk − Duε)dxdt

≥
∫

Q

∫

Mm×n

a(x, t, λ) : (λ − Duε)dνε
(x,t)(λ)dxdt .

(17)

The next step is to show, that the left-hand side of the above inequality is ≤ 0. We have∫

Q

∂uk

∂t
ukdxdt +

∫

Q

a(x, t, Duk) : Dukdxdt − 1

ε

∫

Q

|u−
k |p−2u−

k ukdxdt =
∫

Q

f ukdxdt .

By using this equation, it results

Y := lim inf
k→∞

∫

Q

a(x, t, Duk) : (Duk − Duε)dxdt

= lim inf
k→∞

⎛
⎜⎝
∫

Q

f ukdxdt −
∫

Q

∂uk

∂t
ukdxdt + 1

ε

∫

Q

|u−
k |p−2u−

k ukdxdt

−
∫

Q

a(x, t, Duk) : Duεdxdt

⎞
⎟⎠ .

(18)
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Passing to the limit as k → ∞ in (9), we then have the following energy equality:

∫

Q

∂uε

∂t
ϕdxdt +

∫

Q

χ : Dϕdxdt − 1

ε

∫

Q

|u−
ε |p−2u−

ε ϕdxdt =
∫

Q

f ϕdxdt .

Passing to the limit as k → ∞ on the right hand-side of (18), we get

Y ≤
∫

Q

f uεdxdt − 1

2

∫

Ω

u2
ε(x, T )dx + 1

2

∫

Ω

u2
ε(x, 0)dx

− 1

ε

∫

Q

|u−
ε |pdxdt −

∫

Q

χ : Duεdxdt .

By taking ϕ = uε in the energy equality and plugging it in the right-hand side of the above
inequality, we arrive at Y ≤ 0 as desired. From this and (16), the Eq. (15) follows. In virtue
of the monotonicity of the function a, we conclude the following localization of the support
of νε

(x,t):

(
a(x, t, λ) − a(x, t, Duε)

) : (λ − Duε) = 0 on supp νε
(x,t). (19)

Now, we identify χ with a(x, t, Duε) as follows:
From the monotonicity assumption, we can write for all τ ∈ R and ξ ∈ M

m×n

0 ≤ (
a(x, t, λ) − a(x, t, Duε + τξ)

) : (λ − Duε − τξ)

= a(x, t, λ) : (λ − Duε) − a(x, t, λ) : τξ − a(x, t, Duε + τξ) : (λ − Duε − τξ),
(20)

which implies by (19)

−a(x, t, λ) : τξ ≥ −a(x, t, Duε) : (λ − Duε) + a(x, t, Duε + τξ) : (λ − Duε − τξ).

Note that

a(x, t, Duε + τξ) : (λ − Duε − τξ)

= a(x, t, Duε + τξ) : (λ − Duε) − a(x, t, Duε + τξ) : τξ

= a(x, t, Duε) : (λ − Duε)

+ τ
((∇a(x, t, Duε)ξ

) : (λ − Duε) − a(x, t, Duε) : ξ
)

+ o(τ ),

where ∇ is the derivative of a with respect to its third variable. Therefore

−a(x, t, λ) : τξ ≥ τ
((∇a(x, t, Duε)ξ

) : (λ − Duε) − a(x, t, Duε) : ξ
)

+ o(τ ).

Since τ is arbitrary in R, we get

a(x, t, λ) : ξ = a(x, t, Duε) : ξ + (∇a(x, t, Duε)ξ
) : (Duε − λ) (21)
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holds on the support of νε
(x,t). The equiintegrability of a(x, t, Duk) implies that its weak

L1-limit aε is given by

aε(x, t) :=
∫

Mm×n

a(x, t, λ)dνε
(x,t)(λ)

=
∫

supp νε
(x,t)

(
a(x, t, Duε) + (∇a(x, t, Duε)

) : (Duε − λ)
)

dνε
(x,t)(λ) (by (21))

= a(x, t, Duε),

(22)

where we used

‖νε
(x,t)‖M(Mm×n) = 1 and

(∇a(x, t, Duε)
) ∫

supp νε
(x,t)

(Duε − λ)dνε
(x,t)(λ) = 0.

Consequently

a(x, t, Duk)⇀χ = a(x, t, Duε) in L p′
(Q;Mm×n).

In view of (9), for all ϕ ∈ C1(0, T ; Vj ) with j ≤ k, letting k → ∞ it holds∫

Q

∂uε

∂t
ϕdxdt +

∫

Q

a(x, t, Duε) : Dϕdxdt − 1

ε

∫

Q

|u−
ε |p−2u−

ε ϕdxdt =
∫

Q

f ϕdxdt,

(23)

and since C1(0, T ;⋃ j≥1 Vj ) is dense in L p(0, T ; W 1,p
0 (Ω;Rm)), the Eq. (23) holds for all

ϕ ∈ L p(0, T ; W 1,p
0 (Ω;Rm)). ��

4 Variational inequality

We shall prove the main result of this paper. Denote

K =
{
w ∈ L p(0, T ; W 1,p

0 (Ω;Rm) ∩ C(0, T ; L2(Ω;Rm)),
∂w

∂t
∈ L p′

(0, T ; W−1,p′
(Ω;Rm)) :

0 ≤ w(x, 0) = u0(x) ∈ L2(Ω;Rm), w(x, t) ≥ 0 a.e. (x, t) ∈ Q
}
.

The main theorem can be stated as follows:

Theorem 2 Let f ∈ L p′
(0, T ; W −1,p′

(Ω;Rm)) and suppose that (H0)-(H2) are satisfied.
Then there exists a function u(x, t) ∈ K such that for all v ∈ L p(0, T ; W 1,p

0 (Ω;Rm)) with
v(x, t) ≥ 0 for a.e. (x, t) ∈ Q, there holds∫

Qs

∂u

∂t
(v − u)dxdt +

∫

Qs

a(x, t, Du) : (Dv − Du)dxdt ≥
∫

Qs

f (v − u)dxdt,

for almost every s ∈ [0, T ].
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Proof (i) A prior estimates
Let us take ϕ = uε .χ(0,t) as a test function in Definition 2 (where χ(0,t) is the characteristic
function of (0, t)), t ∈ (0, T ], thus

∫

Qt

∂uε

∂t
uεdxdt +

∫

Qt

a(x, t, Duε) : Duεdxdt − 1

ε

∫

Qt

|u−
ε |p−2u−

ε uεdxdt

=
∫

Qt

f (x, t)uεdxdt,

where Qt = Ω × (0, t). Integrate the first term, it follows by the coercivity condition in (H1)
and Hölder’s inequality, that

1

2

∫

Ω

|uε(x, t)|2dx + α0

∫

Qt

|Duε |pdxdt + 1

ε

∫

Qt

|u−
ε |pdxdt

≤ c(1 + ‖uε‖L p(0,T ;W 1,p
0 (Ω;Rm ))

), (24)

where c is a constant independent of ε and t . Consequently

(uε)ε is bounded in L∞(0, T ; L2(Ω;Rm)) ∩ L p(0, T ; W 1,p
0 (Ω;Rm))

and
1

ε

∫

Q

|u−
ε |pdxdt ≤ c. (25)

Similar to that in (12), one has

‖a(x, t, Duε)‖L p′
(Q)

≤ c and
∥∥1
ε
|u−

ε |p−2u−
ε

∥∥
L p′

(Q)
≤ c. (26)

Using (25) and (26), we deduce from Definition 2 that for all ϕ ∈ L p(0, T ; W 1,p
0 (Ω;Rm))

∥∥∂uε

∂t

∥∥
L p′

(0,T ;W−1,p′
(Ω;Rm ))

= sup
‖ϕ‖

L p (0,T ;W1,p
0 (Ω;Rm ))

≤1

∣∣∣
∫

Q

∂uε

∂t
ϕdxdt

∣∣∣ ≤ c. (27)

(ii) Passage to the limit
As in the previous section, from (25 to 27) there exists a subsequence of (uε) (still labeled
by (uε)), such that

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

uε⇀u in L p(0, T ; W 1,p
0 (Ω;Rm)),

uε⇀
∗u in L∞(0, T ; L2(Ω;Rm)),

a(x, t, Duε)⇀σ in L p′
(Q;Mm×n),

u−
ε −→ 0 in L p(Q;Rm),

∂uε

∂t ⇀α in L p′
(0, T ; W −1,p′

(Ω;Rm)).

(28)

Let ϕ ∈ C∞
0 (Q;Rm), we have

∫
Q

∂uε

∂t ϕdxdt = − ∫
Q uε

∂ϕ
∂t dxdt . Passing to the limit and

using (28), there holds
∫

Q αϕdxdt = − ∫
Q u ∂ϕ

∂t dxdt , and therefore α = ∂u
∂t . By virtue of

(28), there exists a subsequence, still denoted as (uε), such that uε → u in L p(Q;Rm)

and almost everywhere, thus u−
ε → u− a.e. (x, t) ∈ Q. Moreover, from (13) we have

u− = 0 for a.e. (x, t) ∈ Q, that is to say u(x, t) ≥ 0 for a.e. (x, t) ∈ Q. Since uε ∈
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L∞(0, T ; L2(Ω;Rm)), for all s ∈ [0, T ], we have uε(x, s)⇀u∗ in L2(Ω;Rm). Let ϕ ∈
C∞
0 (Ω;Rm) and η(t) ∈ C([0, s]). By passing to the limit in

∫

Qs

∂uε

∂t
η(t)ϕ(x)dxdt

=
∫

Ω

uε(x, s)η(s)ϕ(x)dx −
∫

Ω

u0(x)η(0)ϕ(x)dx −
∫

Qs

uε

∂η

∂t
ϕdxdt,

it follows by the integration by parts, that

∫

Ω

((
u∗ − u(x, s)

)
η(s)ϕ(x) − (

u(x, 0) − u0(x)
)
η(0)ϕ(x)

)
dx = 0.

If we choose η(s) = 1 and η(0) = 0, or η(s) = 0 and η(0) = 1, we then get u∗ = u(x, s)
and u(x, 0) = u0(x) (by the density of C∞

0 (Ω;Rm) in L2(Ω;Rm)).
By (25), there exists a Young measure ν(x,t) generated by Duε in L p(Q;Mm×n) and verify
the properties of Lemma 4. The next step has for goal to identify σ with a(x, t, Du). To do
this, we consider the sequence

Iε = (
a(x, t, Duε) − a(x, t, Du)) : (Duε − Du)

According to the weak limit in Lemma 4, we have

lim
ε→0

∫

Q

a(x, t, Du) : (Duε − Du)dxdt

=
∫

Q

a(x, t, Du) :
( ∫

Mm×n

λdν(x,t)(λ)

︸ ︷︷ ︸
:=Du(x,t)

− Du
)

dxdt = 0.

This and Lemma 3 implies

lim inf
ε→0

∫

Q

Iεdxdt ≥
∫

Q

∫

Mm×n

a(x, t, λ) : (λ − Du)dν(x,t)(λ)dxdt .

Similar to the previous section, there holds

(
a(x, t, λ) − a(x, t, Du)

) : (λ − Du) = 0 on supp ν(x,t). (29)

By the same procedure from (20) to (22) and equiintegrability of (a(x, t, Duε)), it follows
that the weak L1-limit of a(x, t, Duε) is a(x, t, Du). Therefore σ = a(x, t, Du). ��
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Remark 1 Note that, since a(x, t, Duε) = ∫
Mm×n

a(x, t, λ)dνε
(x,t)(λ), thus one can directly

pass to the limit using Lemma 5 and (21) as follows:

a(x, t, Duε) =
∫

supp νε
(x,t)

a(x, t, λ)dνε
(x,t)(λ)

⇀

∫

supp ν(x,t)

a(x, t, λ)dν(x,t)(λ)

=
∫

supp ν(x,t)

(
a(x, t, Du) + (∇a(x, t, Du)

) : (Du − λ)
)

dν(x,t)(λ)

= a(x, t, Du).

Proof (iii) Existence of weak solutions
Let v ∈ L p(0, T ; W 1,p

0 (Ω;Rm)), v ≥ 0. By taking ϕ = v−uε as a test function inDefinition
2, we get∫

Qs

∂uε

∂t
vdxdt +

∫

Qs

a(x, t, Duε) : (Dv − Duε)dxdt −
∫

Qs

f (v − uε)dxdt

=
∫

Qs

∂uε

∂t
uεdxdt + 1

ε

∫

Qs

|u−
ε |p−2u−

ε (v − uε)dxdt

≥ 1

2

∫

Ω

|uε(x, s)|2dx − 1

2

∫

Ω

|uε(x, 0)|2dx,

i.e., ∫

Qs

∂uε

∂t
vdxdt +

∫

Qs

a(x, t, Duε) : Dvdxdt −
∫

Qs

f (v − uε)dxdt

≥ 1

2

∫

Ω

|uε(x, s)|2dx − 1

2

∫

Ω

|uε(x, 0)|2dx +
∫

Qs

a(x, t, Duε) : Duεdxdt .
(30)

Since ∂uε

∂t ⇀∂u
∂t in L p′

(0, T ; W −1,p′
(Ω;Rm)), a(x, t, Duε)⇀σ = a(x, t, Du) in L p′

(Q;Mm×n) and Duε⇀〈ν(x,t), id〉 = Du(x, t) in L p(Q;Mm×n), we conclude as ε → 0,
that ∫

Qs

∂u

∂t
(v − u)dxdt +

∫

Qs

a(x, t, Du) : (Dv − Du)dxdt ≥
∫

Qs

f (v − u)dxdt,

for almost every s ∈ [0, T ]. Remark that, since u ∈ L p(0, T ; W 1,p
0 (Ω;Rm)), ∂u

∂t ∈
L p′

(0, T ; W −1,p′
(Ω;Rm)) and

{
u ∈ L p(0, T ; W 1,p

0 (Ω;Rm)) : ∂u
∂t ∈ L p′

(0, T ; W −1,p′

(Ω;Rm))
}
is continuously embedded inC(0, T ; L2(Ω;Rm)), thusu ∈ C(0, T ; L2(Ω;Rm))

and the proof is complete. ��
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