
Rendiconti del Circolo Matematico di Palermo Series 2 (2023) 72:4251–4271
https://doi.org/10.1007/s12215-023-00901-8

Existence of solutions for a sixth-order nonlinear equation

Saeid Shokooh1

Received: 24 October 2022 / Accepted: 24 April 2023 / Published online: 10 May 2023
© The Author(s), under exclusive licence to Springer-Verlag Italia S.r.l., part of Springer Nature 2023

Abstract
In this paper, usingvariationalmethods and twocritical point theorems,weprove the existence
of two intervals for a parameter for which a nonlinear equation of sixth-order admits three
weak solutions.
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1 Introduction

The Sturm–Liouville equations of the 2mth order are as follows:

(−1)m
(
pm(x)u(m)

)(m) + (−1)m−1
(
pm−1(x)u

(m−1)
)(m−1)

+ ... +
(
p2(x)u

′′)′′ −
(
p1(x)u

′)′ +
(
p0(x)u

)
= λ f (x, u), a < x < b,

where u satisfies in 2m boundary conditions at the end points a and b. Usually, the functions
pk ∈ L∞(a, b), (0 ≤ k ≤ m), and f is a Carathéodory function.

These problems play a crucial role in applied mathematics, nonlinear physics and engi-
neering. They appear in the modeling and studying of many phenomena such as quantum and
classical mechanics, vibrating rods and beams, hydrodynamic and magnetic hydrodynamic,
a variety of fluid mechanics, etc.

In the past two decades, many researchers have studied these equations of different orders
and with numerical methods such as Homotopy perturbation method [1], Lie-Group meth-
ods [16], Chebyshev method [8], Chebyshev differential matrices [20], variational iteration
method [19], Matrix methods [17], shooting method [12] and Adomian method [14].

Authors have also paid attention to nonlinear analysis methods in studying Sturm–
Liouville equations. In the last few years, many mathematicians, using topological degree
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theory and variational methods, have investigated Sturm–Liouville boundary value problems
[2, 4, 9–11, 15, 18, 21, 22, 24, 25].

In [4, 9], the authors, employing variational method and critical point theorems, proved
the existence of weak solutions for the following problem:

(
p0(x)u

′′(x)
)′′ −

(
q0(x)u

′(x)
)′ +

(
r0(x)u(x)

)
= λ f0(x, u(x)), 0 < x < 1,

u(0) = u(1) = 0 = u′′(0) = u′′(1),

where p0, q0, r0 ∈ L∞([0, 1]) and f0 is a Carathéodory function.
Also, in [10], the authors showed the existence of at least one non-trivial solution for the

following system:
(
pi (x)u

′′
i (x)

)′′ −
(
qi (x)u

′
i (x)

)′ +
(
ri (x)ui (x)

)
= λFui (x, u1, · · ·, un), 0 < x < 1,

ui (0) = ui (1) = 0 = u′′
i (0) = u′′

i (1),

for 1 ≤ i ≤ n, where pi , qi , ri ∈ L∞([0, 1]) (1 ≤ i ≤ n) and F : [0, 1] × R
n → R is a

function such that F(·, t1, ···, tn) is measurable in [0, 1] for all (t1, ···, tn) ∈ R
n, F(x, ·, ···, ·)

is a C1 in R
n for every x ∈ [0, 1].

In the past, Sturm–Liouville equations of sixth-order have been less examined. The pur-
pose of this paper is to consider the following sixth-order Sturm–Liouville problem:

⎧
⎪⎨
⎪⎩

−
(
p(x)u′′′(x)

)′′′ +
(
q(x)u′′(x)

)′′ −
(
r(x)u′(x)

)′ + s(x)u(x)

= λ f (x, u(x)), 0 < x < 1,
u(0) = u(1) = u′′(0) = u′′(1) = u(iv)(0) = u(iv)(1) = 0,

(1.1)

where p, q, r , s ∈ L∞([0, 1]) with p− := ess inf t∈[0,1] p(t) > 0, λ is a positive parameter
and f is a Carathéodory function. In other words, we wish to guarantee the existence of three
weak solutions to the problem (1.1).

It is worth mentioning that sixth-order equations arise in studies on circular structures and
appear in the literature [6, 7, 13].

The organization of the rest of the paper is as follows. Section 2 describes the basic
notations and auxiliary results. In the last section, we present our main results.

2 Preliminaries and auxiliary results

First, we here recall three critical point theoremswhich are ourmain tools to prove the results.
In two of these theorems, the coercivity of the functional �−λ� is assumed and in the third
one, a suitable sign hypothesis is considered.

Theorem 2.1 ([3, Theorem 3.1]) Assume that X be a reflexive and separable real Banach
space, � : X → R be a sequentially weakly lower semi-continuous and non-negative con-
tinuously Gâteaux differentiable functional whose Gâteaux derivative admits a continuous
inverse on X∗, � : X → R be a continuously Gâteaux differentiable functional whose
Gâteaux derivative is compact. Let there exists x0 ∈ X such that

�(x0) = �(x0) = 0

and

lim‖x‖→+∞(�(x) − λ�(x)) = +∞
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Existence of solutions for a nonlinear equation 4253

for all λ ∈ [0,+∞). Suppose that there exist r > 0 and x̄ ∈ X, with r < �(x̄) such that

sup
x∈�−1(]−∞,r [)w

�(x) <
r

r + �(x̄)
�(x̄),

where �−1(] − ∞, r [)w denotes the closure of �−1(] − ∞, r [) in the weak topology. Then,
for each

λ ∈ �1 :=
] �(x̄)

�(x̄) − sup
x∈�−1(]−∞,r [)w �(x)

,
r

sup
x∈�−1(]−∞,r [)w �(x)

[
,

the functional � − λ� has at least three critical points in X . In addition, for each h > 1,
there exist an open interval

�2 ⊆
[
0,

hr

r �(x̄)
�(x̄) − sup

x∈�−1(]−∞,r [)w �(x)

]

and a positive real number σ such that, for each λ ∈ �2, the functional �− λ� has at least
three critical points in X whose norms are less than σ .

Theorem 2.2 ( [5, Theorem3.2]) Assume that X be a reflexive real Banach space,� : X → R

be a coercive and continuously Gâteaux differentiable functional whose Gâteaux derivative
admits a continuous inverse on X∗, � : X → R be a continuously Gâteaux differentiable
functional whose Gâteaux derivative is compact, such that

inf
X

� = �(0) = �(0) = 0.

Let there exists a constant r > 0 and x̄ ∈ X, with �(x̄) > 2r , such that

(a1)
supx∈�−1(]−∞,r[) �(x)

r < 2
3

�(x̄)
�(x̄) ,

(a2) for each λ ∈
]
3
2

�(x̄)
�(x̄) ,

r
supx∈�−1(]−∞,r[) �(x)

[
, the functional � − λ� is coercive.

Then, for each λ ∈
]
3
2

�(x̄)
�(x̄) ,

r
supx∈�−1(]−∞,r[) �(x)

[
, the functional � − λ� has at least three

distinct critical points.

Theorem 2.3 ( [5, Theorem 3.1]) Suppose that X be a reflexive real Banach space;� : X →
R be a coercive, convex and continuously Gâteaux differentiable functional whose Gâteaux
derivative admits a continuous inverse on X∗, � : X → R be a continuously Gâteaux
differentiable functional whose Gâteaux derivative is compact, such that

inf
X

� = �(0) = �(0) = 0.

Assume that there exist two positive constants r1, r2 > 0 and x̄ ∈ X, with 2r1 < �(x̄) < r2
2 ,

such that

(b1)
supx∈�−1(]−∞,r1[) �(x)

r1
< 2

3
�(x̄)
�(x̄) ,

(b2)
supx∈�−1(]−∞,r2[) �(x)

r2
< 1

3
�(x̄)
�(x̄) ,

(b3) for each λ in

�∗ := ]
3

2

�(x̄)

�(x̄)
,min

{
r1

supx∈�−1(]−∞,r1[) �(x)
,

r2
2 supx∈�−1(]−∞,r2[) �(x)

}
[

and for every x1, x2 ∈ X, which are local minima for the functional � − λ�, and such
that �(x1) ≥ 0 and �(x2) ≥ 0, one has inf t∈[0,1] �(t x1 + (1 − t)x2) ≥ 0.
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4254 S. Shokooh

Then, for each λ ∈ �∗ the functional �−λ� has at least three distinct critical points which
lie in �−1] − ∞, r2[.
Let us introduce some notations. Hereafter, let

X :=
{
u ∈ H3(0, 1) ∩ H1

0 (0, 1) : u′′(0) = u′′(1) = 0
}

be endowed with the inner product

(u, v) =
∫ 1

0
(u′′′(x)v′′′(x) + u′′(x)v′′(x) + u′(x)v′(x) + u(x)v(x))dx ∀u, v ∈ X ,

which induces the norm

‖u‖X =
(∫ 1

0

(
|u′′′(x)|2 + |u′′(x)|2 + |u′(x)|2 + |u(x)|2

)
dt

)1/2

= (‖u′′′‖22 + ‖u′′‖22 + ‖u′‖22 + ‖u‖22)1/2 ∀u ∈ X ,

where ‖ · ‖2 denotes the usual norm in L2(0, 1).
Since X is a closed subspace of H3(0, 1), (X , ‖u‖X ) is a Banach space.
Now, we recall the following useful Poincaré type inequalities (see [6]):

‖u(i)‖22 ≤ π−2( j−i)‖u( j)‖22, i = 0, 1, 2, j = 1, 2, 3, i < j (2.1)

for all u ∈ X .

Take (2.1) into account, by adopting the appropriate conditions on the functions p, q, r , s,
one has, the following norm

‖u‖ :=
(∫ 1

0

(
p(x)|u′′′(x)|2 + q(x)|u′′(x)|2 + r(x)|u′(x)|2 + s(x)|u(x)|2

)
dx

)1/2

is equivalent to ‖ · ‖X , that still makes X a Hilbert space.
Now, consider the following set of conditions:

(C1) q− ≥ 0, r− ≥ 0, s− ≥ 0,

(C2) q− ≥ 0, r− ≥ 0, s− < 0 and − q−
π2 − r−

π4 − s−
π6 < p−,

(C3) q− ≥ 0, r− < 0, s− ≥ 0 and − q−
π2 − r−

π4 < p−,

(C4) q− ≥ 0, r− < 0, s− < 0 and − q−
π2 − r−

π4 − s−
π6 < p−,

(C5) q− < 0, r− ≥ 0, s− ≥ 0 and − q−
π2 < p−,

(C6) q− < 0, r− ≥ 0, s− < 0 and max
{ − q−

π2 ,− q−
π2 − r−

π4 − s−
π6

}
< p−,

(C7) q− < 0, r− < 0, s− ≥ 0 and − q−
π2 − r−

π4 < p−,

(C8) q− < 0, r− < 0, s− < 0 and − q−
π2 − r−

π4 − s−
π6 < p−,

where

p− := ess infx∈[0,1] p(x), q− := ess inf x∈[0,1]q(x),

r− := ess inf x∈[0,1]r(x), s− := ess inf x∈[0,1]s(x).

We can state following proposition.

Proposition 2.4 Let p− > 0. The condition
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Existence of solutions for a nonlinear equation 4255

(C) max

{
− q−

π2 ,−q−

π2 − r−

π4 ,−q−

π2 − r−

π4 − s−

π6

}
< p−

holds if and only if one of conditions (C1)-(C8) holds.

Proof Suppose that one of conditions (C1)-(C8) holds. For example, we prove the following
three cases.
Let (C1) holds. Then, we have

max

{
− q−

π2 ,−q−

π2 − r−

π4 ,−q−

π2 − r−

π4 − s−

π6

}
= −q−

π2 < 0 < p−.

Also, let (C3) holds. One has,

max

{
− q−

π2 ,−q−

π2 − r−

π4 ,−q−

π2 − r−

π4 − s−

π6

}
= −q−

π2 − r−

π4 < p−.

If (C8) holds, we obtain

max

{
− q−

π2 ,−q−

π2 − r−

π4 ,−q−

π2 − r−

π4 − s−

π6

}
= −q−

π2 − r−

π4 − s−

π6 < p−.

By the same reasoning as above, readers can prove other cases. So, condition (C) is true. On
the contrary, assume (C). Clearly, according to the signs of q−, r−, s−, one of conditions
(C1)-(C8) is immediately verified. �

In addition, setting

δ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p− if (C1) holds,

min{p−, p− + q−
π2 + r−

π4 + s−
π6 } if (C2) or (C4) holds,

min{p−, p− + q−
π2 + r−

π4 } if (C3) holds,

p− + q−
π2 if (C5) holds,

min{p− + q−
π2 , p− + q−

π2 + r−
π4 } if (C6) holds,

p− + q−
π2 + r−

π4 if (C7) holds,

p− + q−
π2 + r−

π4 + s−
π6 if (C8) holds,

(2.2)

we point out the following proposition.

Proposition 2.5 Let p− > 0 and condition (C) holds. Then, for every u ∈ X ,

‖u‖2 ≥ δ‖u′′′‖22. (2.3)

Proof Assume that (C1) holds. One has ‖u‖2 ≥ p−‖u′′′‖22 and (2.3) holds with δ = p−.

Suppose that (C2) holds. In view of (2.1) one has

‖u‖2 ≥ p−‖u′′′‖22 + q−‖u′′‖22 + (r− + s−

π2 )‖u′‖22.

So, if r− + s−
π2 ≥ 0, we conclude that the (2.3) holds with δ = p−. If r− + s−

π2 < 0, again
from (2.1)

‖u‖2 ≥ p−‖u′′′‖22 + (q− + r−

π2 + s−

π4 )‖u′′‖22.
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4256 S. Shokooh

Hence, if q−+ r−
π2 + s−

π4 ≥ 0,we conclude that the (2.3) holdswith δ = p−. If q−+ r−
π2 + s−

π4 <

0, again from (2.1)

‖u‖2 ≥ (p− + q−

π2 + r−

π4 + s−

π6 )‖u′′′‖22.

Therefore, always (2.3) holds with δ = min{p−, p− + q−
π2 + r−

π4 + s−
π6 }. Exploiting similar

arguments shown above, readers can prove other cases. �
Proposition 2.6 Let p− > 0 and condition (C) holds. Then, for every u ∈ X ,

‖u‖∞ ≤ 1

2π2
√

δ
‖u‖. (2.4)

Proof Since H1
0 (0, 1) ↪→ C0(0, 1) and ‖u‖∞ < 1

2‖u′‖2, take (2.1) into account, one obtains

‖u‖∞ ≤ 1

2π2 ‖u′′′‖2.
So, the conclusion follows from (2.3). �
Remark 2.7 It is simple to observe that there exists M > 0 such that ‖u‖2 ≤ M‖u‖2X .Hence,
in view of (2.3), we observe that ‖ · ‖ defines a norm on X equivalent to ‖ · ‖X .

Let f : [0, 1]×R → R be an L1-Carathéodory functions. We recall that f : [0, 1]×R → R

is an L1-Carathéodory function if

(a) the mapping x �−→ f (x, t) is measurable for every t ∈ R;
(b) the mapping t �−→ f (x, t) is continuous for almost every x ∈ [0, 1];
(c) for every ρ > 0, the function lρ(x) := sup|t |≤ρ | f (x, t)| ∈ L1((0, 1)).

Corresponding to the function f , we introduce the function F : [0, 1] × R → R as follows

F(x, t) :=
∫ t

0
f (x, ξ) dξ,

for all (x, t) ∈ [0, 1] × R.
In order to study (1.1), we consider the functionals �,� : X → R defined by

�(u) := 1

2
‖u‖2, �(u) :=

∫ 1

0
F(x, u(x)) dx

for every u ∈ X .

With standard arguments, we obtain that �,� ∈ C1(X , R) and

�′(u)(v) =
∫ 1

0

(
p(x)u′′′(x)v′′′(x) + q(x)u′′(x)v′′(x) + r(x)u′(x)v′(x) + s(x)u(x)v(x)

)
dx,

� ′(u)(v) :=
∫ 1

0
f (x, u(x))v(x) dx

for any v ∈ X . The following proposition will be useful in the proof of the main results.

Proposition 2.8 Let T : X → X∗ be the operator defined by

T (u)(v) =
∫ 1

0

(
p(x)u′′′(x)v′′′(x) + q(x)u′′(x)v′′(x) + r(x)u′(x)v′(x) + s(x)u(x)v(x)

)
dx,

for every u, v ∈ X . Then, T admits a continuous inverse on X∗.
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Proof First, for every u ∈ X \ {0}, one has

lim‖u‖→+∞
T (u)(u)

‖u‖ = lim‖u‖→+∞
‖u‖2
‖u‖ = +∞,

which shows T is coercive. Furthermore, for all u, v ∈ X , we have

(T (u) − T (v))(u − v) ≥ ‖u − v‖2, (2.5)

so, T is uniformly monotone. Theorem 26.A(d) of [23] ensures the existence of the inverse
operator T−1 of T . To prove the continuity of the operator T−1 on X∗, Choose g1, g2 ∈ X∗.
By (2.5), we deduce

‖T−1(g1) − T−1(g2)‖ ≤ ‖g1 − g2‖.
Thus, T−1 is continuous. This completes the proof. �
Finally, we say that a function u ∈ X is a weak solution of (1.1) if

∫ 1

0

(
p(x)u′′′(x)v′′′(x) + q(x)u′′(x)v′′(x) + r(x)u′(x)v′(x) + s(x)u(x)v(x)

)
dx

−λ

∫ 1

0
f (x, u(x))v(x) dx = 0

holds for all v ∈ X .

3 Main results

In this section, the main results are formulated. Our first existence result is the following.

Theorem 3.1 Let there exist a function w ∈ X and a positive constant r such that

(A1) ‖w‖2 > 2r ,

(A2)
∫ 1

0
sup

t∈
[
− 1

π2
√

δ

√
r
2 , 1

π2
√

δ

√
r
2

] F(x, t)dx < r

∫ 1

0
F(x, w(x))dx

r + ‖w‖2
2

,

(A3) 2
δπ6 lim sup|t |→+∞

F(x, t)

t2
< �1 uniformly with respect to x ∈ [0, 1] where

�1 := max

{∫ 1
0 sup

t∈
[
− 1

π2
√

δ

√
r
2 , 1

π2
√

δ

√
r
2

] F(x, t)dx

r
,

2r
‖w‖2

∫ 1
0 F(x, w(x))dx − ∫ 1

0 sup
t∈

[
− 1

π2
√

δ

√
r
2 , 1

π2
√

δ

√
r
2

] F(x, t)dx

hr

}

with h > 1.

Then, for each λ ∈ �1, where

�1 :=
] 1

2‖w‖2∫ 1
0 F(x, w(x))dx − ∫ 1

0 sup
t∈

[
− 1

π2
√

δ

√
r
2 , 1

π2
√

δ

√
r
2

] F(x, t)dx
,
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4258 S. Shokooh

r∫ 1
0 sup

t∈
[
− 1

π2
√

δ

√
r
2 , 1

π2
√

δ

√
r
2

] F(x, t)dx

[
,

the problem (1.1) admits at least three weak solutions in X . In addition, for each h > 1,
there exist an open interval

�2 ⊆
]
0,

hr

2r
∫ 1
0 F(x,w(x))dx

‖w‖2 − ∫ 1
0 sup

t∈
[
− 1

π2
√

δ

√
r
2 , 1

π2
√

δ

√
r
2

] F(x, t)dx

[
,

and a positive real number σ such that, for each λ ∈ �2, the problem (1.1) admits at least
three weak solutions in X whose norms are less than σ.

Proof With the purpose of using Theorem 2.1, we consider X , � and � as in the previous
section. Owing to Proposition 2.8, �′ admits a continuous inverse on X∗. It is well known
that � is a Gâteaux differentiable functional whose Gâteaux derivative at the point u ∈ X is
the functional � ′(u) ∈ X∗, defined by

� ′(u)(v) =
∫ 1

0
f (x, u(x))v(x)dx

for every v ∈ X , and that � ′ : X → X∗ is a compact and continuous operator. According to
(A3), there exist two constant γ, τ ∈ R with γ < �1 such that

2

δπ6 F(x, t) ≤ γ t2 + τ

for all x ∈ (0, 1) and all t ∈ R. Fix u ∈ X . Then

F(x, u(x)) ≤ δπ6

2
(γ |u(x)|2 + τ) (3.1)

for all x ∈ (0, 1).
To prove the coercivity of the functional � − λ�, first, we suppose that γ > 0. Thus, for
any fixed λ ∈]0, 1

�1
], since

‖u‖2 ≤ 1

π3 ‖u′′′‖2 ≤ 1

π3
√

δ
‖u‖,

by (3.1), we obtain

�(u) − λ�(u) = 1

2
‖u‖2 − λ

∫ 1

0
F(x, u(x))dx

≥ 1

2
‖u‖2 − δπ6

2�1
(γ

∫ 1

0
|u(x)|2dx + τ)

≥ 1

2
(1 − γ

�1
)‖u‖2 − δπ6

2�1
τ,

from which it yilds

lim‖u‖→+∞(�(u) − λ�(u)) = +∞.

On the other hand, if γ ≤ 0, clearly, we have

lim‖u‖→+∞(�(u) − λ�(u)) = +∞.
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Hence, in both cases the functional �−λ� is coercive. Also, according to (A1), we achieve
�(w) > r . In view of ‖u‖∞ ≤ 1

2π2
√

δ
‖u‖ for each u ∈ X and from the definition of �, we

get

�−1(] − ∞, r [) = {u ∈ X; �(u) < r}
⊆ {u ∈ X; ‖u‖ <

√
2r}

⊆ {u ∈ X; |u(x)| <
1

π2
√

δ

√
r

2
} for all x ∈ [0, 1],

consequently,

sup
u∈�−1(]−∞,r [)w

�(u) ≤
∫ 1

0
sup

t∈
[
− 1

π2
√

δ

√
r
2 , 1

π2
√

δ

√
r
2

] F(x, t)dx .

So, from (A2), we obtain

sup
u∈�−1(]−∞,r [)w

�(u) ≤
∫ 1

0
sup

t∈
[
− 1

π2
√

δ

√
r
2 , 1

π2
√

δ

√
r
2

] F(x, t)dx

<
r

r + �(w)
�(w).

Now, we can use Theorem 2.1. Note for each x ∈ [0, 1],
�(w)

�(w) − sup
u∈�−1(]−∞,r [)w �(u)

≤
1
2‖w‖2∫ 1

0 F(x, w(x))dx − ∫ 1
0 sup

t∈
[
− 1

π2
√

δ

√
r
2 , 1

π2
√

δ

√
r
2

] F(x, t)dx
,

and
r

sup
u∈�−1(]−∞,r [)w �(u)

≥ r∫ 1
0 sup

t∈
[
− 1

π2
√

δ

√
r
2 , 1

π2
√

δ

√
r
2

] F(x, t)dx
.

By (A2), we have

1
2‖w‖2∫ 1

0 F(x, w(x))dx − ∫ 1
0 sup

t∈
[
− 1

π2
√

δ

√
r
2 , 1

π2
√

δ

√
r
2

] F(x, t)dx

<

1
2‖w‖2(

r+ 1
2 ‖w‖2
r − 1

) ∫ 1
0 sup

t∈
[
− 1

π2
√

δ

√
r
2 , 1

π2
√

δ

√
r
2

] F(x, t)dx

= r∫ 1
0 sup

t∈
[
− 1

π2
√

δ

√
r
2 , 1

π2
√

δ

√
r
2

] F(x, t)dx
.

Also,

hr

r �(w)
�(w)

− sup
u∈�−1(]−∞,r [)w �(u)
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≤ hr

2r
∫ 1
0 F(x,w(x))dx

‖w‖2 − ∫ 1
0 sup

t∈
[
− 1

π2
√

δ

√
r
2 , 1

π2
√

δ

√
r
2

] F(x, t)dx
= ρ.

Take (A2) into account, one has

2r

∫ 1
0 F(x, w(x))dx

‖w‖2 −
∫ 1

0
sup

t∈
[
− 1

π2
√

δ

√
r
2 , 1

π2
√

δ

√
r
2

] F(x, t)dx

>

(
2r

‖w‖2 − r

r + 1
2‖w‖2

) ∫ 1

0
F(x, w(x))dx

≥
(

2r

‖w‖2 − 2r

‖w‖2
) ∫ 1

0
F(x, w(x))dx = 0,

since
∫ 1
0 F(x, w(x))dx ≥ 0. Owing to Theorem 2.1 with x0 = 0, x̄1 = w, it follows that,

for each λ ∈ �1, problem (1.1) admits at least three weak solutions and there exist an open
interval �2 ⊂ [0, ρ] and real positive number σ such that, for each λ ∈ �2, problem (1.1)
admits at least three weak solutions whose norms in X are less than σ. This completes the
proof. �
Here, we present our second existence result.

Theorem 3.2 Let there exist a positive constant r and a function w ∈ X such that

(B1) ‖w‖2 > 4r ,

(B2)
∫ 1

0
sup

t∈
[
− 1

π2
√

δ

√
r
2 , 1

π2
√

δ

√
r
2

] F(x, t)dx <
4r

3

∫ 1

0
F(x, w(x))dx

‖w‖2 ,

(B3) 2
δπ6 lim sup|t |→+∞

F(x, t)

t2
<

∫ 1
0 sup

t∈
[
− 1

π2
√

δ

√
r
2 , 1

π2
√

δ

√
r
2

] F(x, t)dx

r
.

Then, for each

λ ∈
] 3

4‖w‖2∫ 1
0 F(x, w(x))dx

,
r∫ 1

0 sup
t∈

[
− 1

π2
√

δ

√
r
2 , 1

π2
√

δ

√
r
2

] F(x, t)dx

[
,

the problem (1.1) admits at least three weak solutions in X .

Proof We will apply Theorem 2.2 to problem (1.1). Take the functionals �,� : X → R

as given in the previous section. By (B1), we obtain �(w) > 2r . Bearing in mind ‖u‖∞ ≤
1

2π2
√

δ
‖u‖ for each u ∈ X , from the definition of �, we get
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�−1(] − ∞, r [) = {u ∈ X; �(u) < r}
⊆ {u ∈ X; ‖u‖ <

√
2r}

⊆ {u ∈ X; |u(x)| <
1

π2
√

δ

√
r

2
} for all x ∈ [0, 1],

consequently,

sup
u∈�−1(]−∞,r [)

�(u) = sup
u∈�−1(]−∞,r [)

∫ 1

0
F(x, u(x))dx

≤
∫ 1

0
sup

t∈
[
− 1

π2
√

δ

√
r
2 , 1

π2
√

δ

√
r
2

] F(x, t)dx .

Hence, from (B2), we deduce

supu∈�−1(]−∞,r [) �(u)

r
= supu∈�−1(]−∞,r [)

∫ 1
0 F(x, u(x))dx

r

≤
∫ 1
0 sup

t∈
[
− 1

π2
√

δ

√
r
2 , 1

π2
√

δ

√
r
2

] F(x, t)dx

r

<
4

3

∫ 1
0 F(x, w(x))dx

‖w‖2 = 2�(w)

3�(w)
.

Moreover, according to (B3) there exist two constants η, ϑ ∈ R with

η <

∫ 1
0 sup

t∈
[
− 1

π2
√

δ

√
r
2 , 1

π2
√

δ

√
r
2

] F(x, t)dx

r

such that

2

δπ6 F(x, t) ≤ ηt2 + ϑ

for all x ∈ [0, 1] and all t ∈ R. Fix u ∈ X . Then

F(x, u(x)) ≤ δπ6

2
(η|u(x)|2 + ϑ) (3.2)

for all x ∈ [0, 1].
To prove the coercivity of the functional � − λ�, first, we suppose that η > 0. So, for any
fixed

λ ∈
] 3

4‖w‖2∫ 1
0 F(x, w(x))dx

,
r∫ 1

0 sup
t∈

[
− 1

π2
√

δ

√
r
2 , 1

π2
√

δ

√
r
2

] F(x, t)dx

[
,

since

‖u‖2 ≤ 1

π3 ‖u′′′‖2 ≤ 1

π3
√

δ
‖u‖,
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exploiting (3.2), we get

�(u) − λ�(u) = 1

2
‖u‖2 − λ

∫ 1

0
F(x, u(x))dx

≥ 1

2
‖u‖2 − λδπ6

2
(η

∫ 1

0
|u(x)|2dx + ϑ)

≥ 1

2
(1 − η

r∫ 1
0 sup

t∈
[
− 1

π2
√

δ

√
r
2 , 1

π2
√

δ

√
r
2

] F(x, t)dx
)‖u‖2 − λδπ6

2
ϑ,

and therefore,

lim‖u‖→+∞(�(u) − λ�(u)) = +∞.

Also, if η ≤ 0, clearly, we have

lim‖u‖→+∞(�(u) − λ�(u)) = +∞.

So, in both cases the functional � − λ� is coercive. Hence, all the assumptions of Theorem
2.2 are verified and the conclusion follows. �
Now, we exhibit our third existence result.

Theorem 3.3 Let f : [0, 1] × R → R satisfies the condition f (x, t) ≥ 0 for all x ∈ [0, 1]
and t ≥ 0. Suppose that there exist a function w ∈ X and two positive constants r1 and r2
with 4r1 < ‖w‖2 < r2 such that

(H1)

∫ 1

0
sup

t∈
[
− 1

π2
√

δ

√
r1
2 , 1

π2
√

δ

√
r1
2

] F(x, t)dx <
4r1
3

∫ 1

0
F(x, w(x))dx

‖w‖2 ,

(H2)

∫ 1

0
sup

t∈
[
− 1

π2
√

δ

√
r2
2 , 1

π2
√

δ

√
r2
2

] F(x, t)dx <
2r2
3

∫ 1

0
F(x, w(x))dx

‖w‖2 .

Then, for each

λ ∈
] 3

4‖w‖2∫ 1
0 F(x, w(x))dx

,�2

[
,

where

�2 := min

{
r1∫ 1

0 sup
t∈

[
− 1

π2
√

δ

√
r1
2 , 1

π2
√

δ

√
r1
2

] F(x, t)dx
,

r2
2∫ 1

0 sup
t∈

[
− 1

π2
√

δ

√
r2
2 , 1

π2
√

δ

√
r2
2

] F(x, t)dx

}
,
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the problem (1.1) admits at least three non-negative weak solutions v1, v2, v3 such that

|v j (x)| <
1

π2
√

δ

√
r2
2

for each x ∈ [0, 1], j = 1, 2, 3.

Proof We want to apply Theorem 2.3. Let us check the functional � − λ� satisfies the
assumption (b3) of Theorem 2.3. Assume that u1 and u2 be two local minima for � − λ�.
Then, u1 and u2 are critical points for � − λ�, and so, they are weak solutions for the
problem (1.1). Since f (x, t) ≥ 0 for all (x, t) ∈ [0, 1] × (R+ ∪ {0}), from the Weak
Maximum Principle [23], we get u1(x) ≥ 0 and u2(x) ≥ 0 for all x ∈ [0, 1]. Hence, one
has f (su1 + (1 − s)u2) ≥ 0 and consequently, �(su1 + (1 − s)u2) ≥ 0 for all s ∈ [0, 1].
Furthermore, owing to 4r1 < ‖w‖2 < r2, we have 2r1 < �(w) < r2

2 . Thanks to assumption
(H1), it follows

supu∈�−1(]−∞,r1[) �(u)

r1
= supu∈�−1(]−∞,r1[)

∫ 1
0 F(x, u(x))dx

r1∫ 1
0 sup

t∈
[
− 1

π2
√

δ

√
r1
2 , 1

π2
√

δ

√
r1
2

] F(x, t)dx

r

4

3

∫ 1
0 F(x, w(x))dx

‖w‖2 = 2�(w)

3�(w)
.

As above, recalling (H2), we achieve

supu∈�−1(]−∞,r2[) �(u)

r2
= supu∈�−1(]−∞,r2[)

∫ 1
0 F(x, u(x))dx

r2∫ 1
0 sup

t∈
[
− 1

π2
√

δ

√
r2
2 , 1

π2
√

δ

√
r2
2

] F(x, t)dx

r2

2

3

∫ 1
0 F(x, w(x))dx

‖w‖2 = 2�(w)

3�(w)
.

Hence, all hypotheses of Theorem 2.3 are satisfied. So, problem (1.1) admits at least three
distinct weak solutions in X . This concludes the proof. �

In sequel, we present the Corollaries 3.4–3.6 which are special cases of Theorems 3.1–3.3,
respectively, for a fixed test function w.
Put

k := ‖p‖∞ + 1

π2 ‖q‖∞ + 1

π4 ‖r‖∞ + 1

π6 ‖s‖∞. (3.3)

It is easy to see that k > 0 and δ < k.

Corollary 3.4 Assume that there exist two positive constants c and d with c < 25
√
15

2π2 d such
that

(A4) F(x, t) ≥ 0 for a.e. x ∈ [0, 2
5 ] ∪ [ 35 , 1], and t ∈ [0, d],
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(A5)
∫ 1

0
sup

t∈[−c,c]
F(x, t)dx < (π2c

√
δ)2

∫ 3
5

2
5

F(x, d)dx

(π2c
√

δ)2 + 9375
4 kd2

,

(A6) 2
δπ6 lim sup|t |→+∞

F(x, t)

t2
< �3 uniformly with respect to x ∈ [0, 1] where

�3 := max

{∫ 1
0 supt∈[−c,c] F(x, t)dx

2(π2c
√

δ)2
,

(π2c
√

δ)2

∫ 3
5
2
5

F(x,d)dx

9375
4 kd2

− ∫ 1
0 supt∈[−c,c] F(x, t)dx

2h(π2c
√

δ)2

}

with h > 1.

Then, for each λ ∈ �′
1, where

�′
1 :=

] 9375
2 kd2

∫ 3
5
2
5
F(x, d)dx − ∫ 1

0 supt∈[−c,c] F(x, t)dx
,

2(π2c
√

δ)2∫ 1
0 supt∈[−c,c] F(x, t)dx

[
,

the problem (1.1) admits at least three weak solutions in X . In addition, for each h > 1,
there exist an open interval

�′
2 ⊆

]
0,

2h(π2c
√

δ)2

(π2c
√

δ)2

∫ 3
5
2
5

F(x,d)dx

9375
4 kd2

− ∫ 1
0 sup

t∈
[
−c,c] F(x, t)dx

[
,

and a positive real constant σ such that, for each λ ∈ �′
2, the problem (1.1) admits at least

three weak solutions in X whose norms are less than σ.

Proof We claim that all the hypotheses of Theorem 3.1 are fulfilled with r = 2(
√

δπ2c)2

and

w(x) =

⎧
⎪⎨
⎪⎩

�(x)d, x ∈ [0, 2
5 [,

d, x ∈ [ 25 , 3
5 ],

�(1 − x)d, x ∈] 35 , 1].
(3.4)

where �(x) =
(
5
2

)4
x4 − 2

(
5
2

)3
x3 + 5x for all x ∈ [0, 2/5[. A simple computation shows

that w ∈ X , and in particular,

9375 δd2 ≤ ‖w‖2 ≤ 9375 kd2.

So, bearing c < 25
√
15

2π2 d inmind, we get ‖w‖2 > 2r . Since, 0 ≤ w(x) ≤ d for each x ∈ [0, 1]
the assumption (A4) assures that

∫ 2/5

0
F(x, w(x))dx +

∫ 1

3/5
F(x, w(x))dx ≥ 0,
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thanks to (A5), we deduce

∫ 1

0
sup

t∈[−c,c]
F(x, t)dx ≤ (

√
δπ2c)2

∫ 3/5
2/5 F(x, d)dx

(
√

δπ2c)2 + 9375
4 kd2

= 2(
√

δπ2c)2
∫ 3/5
2/5 F(x, d)dx

2(
√

δπ2c)2 + 9375
2 kd2

≤ 2(δπ2c)2
∫ 1
0 F(x, d)dx

2(
√

δπ2c)2 + 9375
2 kd2

≤ r

∫ 1
0 F(x, w(x))dx

r + 1
2‖w‖2 ,

thus, (A2) holds (note c2 = r
2δπ4 ). Next, notice that

1
2‖w‖2∫ 1

0 F(x, w(x))dx − ∫ 1
0 sup

t∈
[
− 1

π2
√

δ

√
r
2 , 1

π2
√

δ

√
r
2

] F(x, t)dx

≤
9375
2 kd2(∫ 3/5

2/5 F(x, d)dx
)

− ∫ 1
0 supt∈[−c,c] F(x, t)dx

and

r∫ 1
0 sup

t∈
[
− 1

π2
√

δ

√
r
2 , 1

π2
√

δ

√
r
2

] F(x, t)dx
= 2(

√
δπ2c)2∫ 1

0 supt∈[−c,c] F(x, t)dx
.

Additionally,

9375
2 kd2

∫ 3/5
2/5 F(x, d)dx − ∫ 1

0 supt∈[−c,c] F(x, t)dx

<

9375
2 kd2(

2(
√

δπ2c)2+ 9375
2 kd2

2(
√

δπ2c)2
− 1

) ∫ 1
0 supt∈[−c,c] F(x, t)dx

= 2(
√

δπ2c)2∫ 1
0 supt∈[−c,c] F(x, t)dx

.

Finally, note that

hr

2r
∫ 1
0 F(x,w(x))dx

‖w‖2 − ∫ 1
0 sup

t∈
[
− 1

π2
√

δ

√
r
2 , 1

π2
√

δ

√
r
2

] F(x, t)dx

≤ 2(
√

δπ2c)2h

2(
√

δπ2c)2
∫ 3/5
2/5 F(x,d)dx

9375
2 kd2

− ∫ 1
0 supt∈[−c,c] F(x, t)dx

,

and owing to �′
1 ⊆ �1 and �′

2 ⊆ �2, our conclusion follows by Theorem 3.1. �
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Corollary 3.5 Suppose that there exist two positive constants c and d with c < 25
√
15

2π2
√
2
d such

that the assumption (A4) in Corollary 3.4 holds. Assume further that

(B4)

∫ 1

0
sup

t∈[−c,c]
F(x, t)dx

2(
√

δπ2c)2
< 4

3

∫ 3/5

2/5
F(x, d)dx

9375kd2
,

(B5) 2
δπ6 lim sup|t |→+∞

F(x, t)

t2
<

∫ 1
0 supt∈[−c,c] F(x, t)dx

2(
√

δπ2c)2
.

Then, for each

λ ∈
]
3

4

9375kd2∫ 3/5
2/5 F(x, d)dx

,
2(

√
δπ2c)2∫ 1

0 sup
t∈

[
−c,c

] F(x, t)dx

[
,

the problem (1.1) admits at least three weak solutions.

Proof All the hypotheses of Theorem 3.2 are fulfilled by choosing w as given in (3.4) and
2(

√
δπ2c)2. So, in light of Theorem 3.2, we achieve the conclusion. �

Corollary 3.6 Suppose that f : [0, 1] × R → R satisfies the condition f (x, t) ≥ 0 for
all x ∈ [0, 1] and t ≥ 0. Also, let there exist three positive constants c1, c2 and d with

c1 < 25
√
15

2
√
2π2 d and 25

√
15

π2
√
2

√
k
δ
d < c2 such that

(H3)
∫ 1

0
sup

t∈[−c1,c1]
F(x, t)dx

2(
√

δπ2c1)2
<

4

3

∫ 3/5

2/5
F(x, d)dx

9375kd2
,

(H4)
∫ 1

0
sup

t∈[−c2,c2]
F(x, t)dx

2(
√

δπ2c2)2
<

2

3

∫ 3/5

2/5
F(x, d)dx

9375kd2
.

Then, for each

λ ∈
] 3

49375kd
2

∫ 3/5
2/5 F(x, d)dx

,�4

[
,

where

�4 := min

{
2(

√
δπ2c1)2∫ 1

0 sup
t∈

[
−c1,c1

] F(x, t)dx
,

(
√

δπ2c2)2∫ 1
0 sup

t∈
[
−c2,c2

] F(x, t)dx

}
,

problem (1.1) admits at least three non-negative weak solutions v1, v2, v3 such that

|v j (x)| < c2

for each x ∈ [0, 1], j = 1, 2, 3.
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Proof We conclude the stated assertion by exploiting Theorem 3.3 withw as defined in (3.4),
r1 = 2(

√
δπ2c1)2 and r2 = 2(

√
δπ2c2)2. �

Now, we exhibit the following corollaries which are particular cases of Corollaries 3.4–
3.6 in the autonomous case. Assume that the function f : R → R is continuous and set
F(t) = ∫ t

0 f (ξ)dξ for all t ∈ R.

Corollary 3.7 Suppose that there exist two positive constants c and d with c < 25
√
15

2π2 d such
that

(A7) f (t) ≥ 0 for all t ∈ [0, d]

(A8) max
t∈[−c,c] F(t) < (π2c

√
δ)2

1
5 F(d)

(π2c
√

δ)2 + 9375
4 kd2

,

(A9) 2
δπ6 lim sup|t |→+∞

F(t)

t2
< �5

where

�5 := max

{
maxt∈[−c,c] F(t)

2(π2c
√

δ)2
,

4
325

−3(π2c
√

δ)2
F(d)

kd2
− maxt∈[−c,c] F(t)

2h(π2c
√

δ)2

}

with h > 1.

Then, for each λ ∈ �′′
1, where

�′′
1 :=

] 9375
2 kd2

1
5 F(d) − maxt∈[−c,c] F(t)

,
2(π2c

√
δ)2

maxt∈[−c,c] F(t)

[
,

the problem

{
−

(
p(t)u′′′(t)

)′′′ +
(
q(t)u′′(t)

)′′ −
(
r(t)u′(t)

)′ + s(t)u(t) = λ f (u), 0 < t < 1,

u(0) = u(1) = u′′(0) = u′′(1) = u(iv)(0) = u(iv)(1) = 0,
(3.5)

admits at least three weak solutions in X . In addition, for each h > 1, there exist an open
interval

�′′
2 ⊆

]
0,

2h(π2c
√

δ)2

4
325

−3(π2c
√

δ)2
F(d)

kd2
− max

t∈
[
−c,c] F(t)

[
,

and a positive real number σ such that, for each λ ∈ �′′
2, the problem (3.5) admits at least

three weak solutions in X whose norms are less than σ.

Corollary 3.8 Let there exist two positive constants c and d with c < 25
√
15

2π2
√
2
d such that the

assumption (A7) in Corollary 3.7 holds. Suppose further that

(B6)

maxt∈[−c,c] F(t)

2(
√

δπ2c)2
<

(
2

375

)2 F(d)

kd2
,

(B7) 2

δπ6 lim sup
|t |→+∞

F(t)

t2
<

maxt∈[−c,c] F(t)

2(
√

δπ2c)2
.
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Then, for each

λ ∈ ]
(375

2

)2 kd2

F(d)
,

2(
√

δπ2c)2

maxt∈[−c,c] F(t)
[ ,

the problem (3.5) admits at least three weak solutions.

Corollary 3.9 Let f : R → R satisfies the condition f (t) ≥ 0 for all t ≥ 0. Suppose that

there exist three positive constants c1, c2 and d with c1 < 25
√
15

2π2
√
2
d and 25

√
15

π2
√
2

√
k
δ
d < c2

such that

(H5)
maxt∈[−c1,c1] F(t)

2(
√

δπ2c1)2
<

( 2
375

)2 F(d)

kd2
,

(H6)
maxt∈[−c2,c2] F(t)

(
√

δπ2c2)2
<

( 2
375

)2 F(d)

kd2
.

Then, for each

λ ∈
](

375

2

)2 kd2

F(d)
,�6

[
,

where

�6 := min

{
2(

√
δπ2c1)2

maxt∈[−c1,c1] F(t)
,

(
√

δπ2c2)2

maxt∈[−c2,c2] F(t)

}
,

problem (3.5) admits at least three non-negative weak solutions v1, v2, v3 such that

|v j (x)| < c2

for each x ∈ [0, 1], j = 1, 2, 3.

In support of our theoretical conclusions, we present an example that is entirely consistent
with them.

Example 3.10 Assume that p(x) = 4, q(x) = (πx)2

3 , r(x) = (πx)4

3 and s(x) = (πx)6

3 for all
x ∈ [0, 1]. Clearly, we have p− = 4, q− = r− = s− = 0. In view of (2.2) and (3.3), one
has δ = 4 and k = 5. Additionally, define f : [0, 1] × R → R by f (x, t) = x f ∗(t) where

f ∗(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 if t ≤ 1,

2112t − 2111 if 1 < t ≤ 2,

−2112t + 6337 if 2 < t ≤ 3,

1 if 3 < t ≤ 70,

f ∗∗(t) if t > 70,

where f ∗∗ :]70,+∞[→ R can be any arbitrary function. A simple calculation shows that

F∗(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

t if t ≤ 1,

1056t2 − 2111t + 1056 if 1 < t ≤ 2,

−1056t2 + 6337t − 7392 if 2 < t ≤ 3,

t + 2112 if 3 < t ≤ 70,

2182 + ∫ t
70 f ∗∗(ξ)dξ if t > 70,
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Fig. 1 Graph of x F�(t).

where F∗(t) = ∫ t
0 f ∗(ξ)dξ for all t ∈ R. We now verify that the assumptions of Corollary

3.6 are hold. Considering, for example, c1 = 1, d = 3 and c2 = 70, we find that c1 = 1 <

25
√
15

2π2
√
2
d ≈ 10.40 and 25

√
15

π2
√
2

√
k
δ
d ≈ 23.26 < c2 = 70. Moreover,

∫ 1
0 supt∈[−c1,c1] F(x, t)dx

2(
√

δπ2c1)2
≈ 64 × 10−5 <

4

3

∫ 3/5
2/5 F(x, d)dx

9375kd2
≈ 133 × 10−5, (3.6)

∫ 1
0 supt∈[−c2,c2] F(x, t)dx

2(
√

δπ2c2)2
≈ 28 × 10−5 <

2

3

∫ 3/5
2/5 F(x, d)dx

9375kd2
≈ 66 × 10−5. (3.7)

From (3.6) and (3.7), we get the conditions (H3) and (H4) of Corollary 3.6 are verified.
Hence, it follows that for each λ ∈ [749, 1558], the problem

⎧⎪⎨
⎪⎩

−4u(6)(x) +
(

(πx)2

3 u′′(x)
)′′ −

(
(πx)4

3 u′(x)
)′ + (πx)6

3 u(x)

= λx f ∗(u(x)), 0 < x < 1,
u(0) = u(1) = u′′(0) = u′′(1) = u(iv)(0) = u(iv)(1) = 0,

(3.8)

admits at least three non-negative weak solutions v1, v2, v3 such that

|v j (x)| < 70

for each x ∈ [0, 1], j = 1, 2, 3.
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Remark 3.11 In the above example, we can place many functions instead of p, q, r , s and
f to study various other problems. For instance, consider the function f : [0, 1] × R → R

defined by f (x, t) = x f �(t) where

f �(t) =
{
5t4 if t ≤ 1,
5
t2

+ 2
3π cos( 3π2 t) if t > 1.

Clearly, F(x, t) = x F�(t) = x
∫ t
0 f �(ξ)dξ for all (x, t) ∈ [0, 1] × R, see Fig. 1. The

problem (3.8) can be studied again with the new potential term f .
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