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Abstract
In this paper, we discuss well-posedness for a generalized vector variational inequality prob-
lem (GVVIP, in short) in the framework of topological vector spaces. Unlike in the available
literature, we have adopted a topological approach using admissibility and convergence of
nets, instead of monotonicity and convexity etc of the function involved. We provide neces-
sary and sufficient conditions for a GVVIP to be well-posed in generalized sense. We give
a characterization for GVVIP to be well-posed in generalized sense in terms of the upper
semi-continuity of the approximate solution set map. Also, we provide some necessary con-
ditions for a GVVIP to be well-posed in generalized sense in terms of Painlevé–Kuratowski
convergence.

Keywords Generalized vector variational inequality · Well-posedness · Topological vector
space · Compactness

Mathematics Subject Classification 49J40 · 49K40 · 54H99

1 Introduction

The classical notion of variational inequalities (introduced by Stampacchia [26]) was
extended by Gianessi [12] to vector variational inequalities (VVI, in short) in the frame-
work of finite dimensional Euclidean spaces. Thereafter, several variants of VVI have been
introduced and are used to solve vector optimization problem extensively [1, 25, 28, 30].
Ruiz-Garzon et al. [24] have provided some relations between VVI problems and optimiza-
tion problems by using the condition of pseudo-invexity. Recently, in [13, 19, 20] researchers
have provided the existence results for the solutions of several variants of vector variational
inequality problem in the setting of topological vector spaces by using topological approach.
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The concept of well-posedness, which is closely related to stability theory, was initially
introduced by Tykhonov [27] for scalar minimization problem. Due to close relationship of
variational inequality problems andmathematical programming problems, the notion ofwell-
posedness has also been generalized to variational inequalities [4, 21, 29] and further to many
other problems such as fixed point problems [10], equilibrium problems [8], optimization
problems with variational inequality, mixed quasi variational-like inequality and equilibrium
constraints [8, 21, 22].

Crespi et al. [7] proposed the concept of well-posedness for vector optimization problem
and for a VVI of the differential type and also set up a relationship between well-posedness of
these two problems in the setting of Euclidean space R

n . In [9], Fang and Huang introduced
somenotions of parametricwell-posedness for Stampacchia andMinty type vector variational
inequalities. They also, established equivalence between well-posedness of a Stampacchia
VVI and parametric well-posedness of a vector optimization problem under some suitable
conditions. At the subsequent time, in [15], researchers introduced various types of gener-
alized Levitin-Polyak well-posedness for generalized variational inequality problems with
functional constraints in the framework of topological spaces, equipped with norm topology.
In [5], Cheng et al. discussed the well-posedness of a generalized mixed vector variational
type inequality and a constrained optimization problem and proposed metric characterization
of well-posedness in terms of an approximate solution set.

In [18], researchers studied the concept of parametric well-posedness for vector equilib-
rium problem and the concept of generalized well-posedness for an equilibrium problem
with equilibrium constraints in the setting of topological vector spaces. Jayswal and Jha [16]
discussed well-posedness for generalized mixed vector variational-like inequality problem
and optimization problem in the framework of Banach space. Very recently, Jha et al. [17]
have also discussed well-posedness for multi-time variational inequality using generalized
monotonicity.

However, all the above studies have used some type of monotonicity and convexity of
the function involved. In this paper, we provide an alternative method for well-posedness for
the generalized vector variational inequality problem without using any such monotonicity
and convexity. We use topological concepts such as closedness, compactness, upper semi-
continuity, admissibility of function space topology etc to achieve the results. We have found
so far that the concept of admissibility has not been much used in the existing literature to
obtain such results.

In the following we recall a set valued map.
A mapping F : X ⇒ Y is a set-valued map from X to Y if for each x ∈ X , F(x) is a set

in Y .
The generalized vector variational inequality problem proposed by Chen and Craven [6]

can be presented as follows:
Generalized vector variational inequality problem: Let X and Y be two real topological

vector spaces and let K be a nonempty convex subset of X . Let T : K ⇒ C(X , Y ) be a set
valued map, where C(X , Y ) denotes the space of all continuous linear mappings from the
space X to the space Y . Further, let C be a closed convex pointed cone in Y with intC �= ∅,
where intC denotes the interior of C . Then the generalized vector variational inequality
problem (GVVIP) is to find x0 ∈ K such that, there exists tx0 ∈ T (x0) with

tx0(x − x0) /∈ −intC ∀ x ∈ K .

We consider here GVVIP in a more general framework by taking X , Y as topological
vector spaces instead of real topological vector spaces:

Throughout the paper, the set of all solutions to the GVVIP is denoted by SGVV I P .
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Rest part of the paper is arranged as follows: In Sect. 2, we provide some basic definitions
and results, which will be used in the paper. In Sect. 3, we discuss well-posedness and
generalized well-posedness of a GVVIP. It is shown that GVVIP is well-posed in generalized
sense if and only if the solution set of GVVIP is nonempty. We also give a characterization
for the GVVIP to be well-posed in generalized sense in terms of upper semi-continuity of the
approximate solution set-valued map Q(·). Along with, we provide an example to illustrate
our result.

2 Preliminaries

In this section, we recall some definitions and basic results which will be used later to obtain
the main results.

Definition 2.1 [23] Let (X , μ) be a topological space. Then

(i) A set D called a directed set with a partial order � such that for every pair α, β in D,
there exists an element γ in D such that α � γ and β � γ .

(ii) A function ξ from a directed set D into X , is called a net in X ;
We usually denote ξ(α) by xα and the net ξ itself is represented by {xα}α∈D .

(iii) A net {xα} is said to converge to the point x ∈ X if for each neighbourhood U of x ,
there exists some α ∈ D such that for α � β, we have xβ ∈ U .

Definition 2.2 [3] If X and Y are two topological spaces and F : X ⇒ Y is a set-valued
mapping. Then F is called

(i) Upper semi-continuous at x̄ ∈ X if for each open set V in Y containing F(x̄), there is
an open set U in X containing x̄ such that F(x) ⊆ V , for every x ∈ U ;

(ii) Lower semi-continuous at x̄ ∈ X if for each open set V in Y with F(x̄)
⋂

V �= ∅, there
is an open set U in X such that F(x)

⋂
V �= ∅, for every x ∈ U ;

(iii) Upper semi-continuous (respectively, lower semi-continuous) on X if it is upper semi-
continuous (respectively, lower semi-continuous) at every point x ∈ X .

Lemma 2.3 [3] Let X and Y be two topological spaces. Let F : X ⇒ Y be a set-valued
mapping such that F(x) is nonempty and compact for each x ∈ X. Then F is upper semi-
continuous at x̄ if and only if for any net {xn} in X, converging to x̄ and yn ∈ F(xn), there
exists a subnet {ynk } of {yn} such that {ynk } converges to ȳ for some ȳ ∈ F(x̄).

Lemma 2.4 [3] Let X and Y be two topological spaces and let F : X ⇒ Y be a set-valued
map. Then F is lower semi-continuous at x̄ if and only if for any net {xn} in X, converging
to x̄ and for any ȳ ∈ F(x̄), there exists a net {yn} ⊆ F(xn) converging to ȳ.

Wenow recall the notion of Painlevé–Kuratowski convergence [11]. For a net of sets {Uα}α∈D
in X , we have

LiUα = {x ∈ X : xα → x, xα ∈ Uα, α ∈ D}
LsUα = {

x ∈ X : xβ → x, xβ ∈ Uβ, β ∈ D1, D1 is a directed subset of D
}

The net {Uα} converges to U in the sense of Painlevé–Kuratowski if

LsUα ⊆ U ⊆ LiUα.

The relation LsUα ⊆ U is known as the upper part of the convergence and the relation
U ⊆ LiUα is known as the lower part of the convergence.
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Definition 2.5 [2, 14] Let(Y , μ1) and (Z , μ2) be two topological spaces. Let C(Y , Z) be the
space of all continuous mappings from Y to Z . A topology τ on C(Y , Z) is called admissible,
if the evaluation map e : C(Y , Z) × Y → Z , defined by e( f , y) = f (y), is continuous.

Lemma 2.6 [14] A function space topology on C(X , Y ), the collection of continuous map-
pings from the space X to the space Y , is admissible if and only if for any net { fn}n∈D1 in
C(X , Y ), convergence of { fn}n∈D1 to f implies continuous convergence of { fn}n∈D1 to f .
That is, if { fn}n∈D1 converges to f in C(X , Y ) and {xm}m∈D2 is any net in X converging to
x ∈ X, then { fn(xm)}(n,m)∈D1×D2 converges to f (x) in Y .

The above characterization of admissibility remains valid for the family of continuous linear
mappings from X to Y , where X and Y are topological vector spaces.

Throughout the paper 0X and 0Y denote the zero vectors in the space X and in the space
Y respectively. All topological vector spaces considered in the paper are taken to be T1 and
hence they all are Hausdorff.

3 Well-posedness

Authors have found so far that in literature, researchers have used convexity, monotonicity,
hemi-continuity etc. to discuss the well-posedness and generalized well-posedness of a vari-
ational inequality problem [16, 18] but here we adopt topological approach to discuss the
generalized well-posedness of a GVVIP in the setting of topological vector spaces.

Motivated by [16, 18], belowwe define approximating net for GVVIP described in Sect. 1,
in the framework of topological vector spaces, in the following way:

Definition 3.1 (i) A net {xn} ⊆ K is said to be an approximating net for a GVVIP if there
exist a net {εn} ⊆ intC converging to 0Y and txn ∈ T (xn) such that

txn (y − xn) + εn /∈ −intC ∀y ∈ K .

(ii) A GVVIP is said to be well-posed if there exists a unique solution x̄ of GVVIP and
every approximating net converges to x̄ .

(iii) A GVVIP is said to be well-posed in generalized sense if the solution set SGVV I P of
the GVVIP is nonempty and every approximating net has a subnet, which converges to
some point in SGVV I P .

We define a set-valued map Q : intC ∪ {0Y } ⇒ K such that

Q(ε) = {x ∈ K , tx ∈ T (x) : tx (y − x) + ε /∈ −intC ∀y ∈ K }.
Clearly, if the net {εn} ⊆ intC converges to 0Y and xn ∈ Q(εn) for each n, then {xn} is an
approximating net.

Following proposition provides some properties of the map Q.

Proposition 3.2 Let Q : intC ∪ {0Y } ⇒ X be a set-valued map defined by

Q(ε) = {x ∈ K , tx ∈ T (x) : tx (y − x) + ε /∈ −intC ∀ y ∈ K }.
Then

(i) SGVV I P ⊆ Q(ε) ∀ ε ∈ intC ∪ {0Y };
(ii) Q(0Y ) = SGVV I P .
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Proof (i) Let x̄ ∈ SGVV I P , then there exists tx̄ ∈ T (x̄) such that tx̄ (y − x̄) /∈ −intC , for
every y ∈ K , which implies tx̄ (y − x̄) + ε /∈ −intC , that is x̄ ∈ Q(ε).

(ii) From (i), SGVV I P ⊆ Q(0Y ). Let x̂ ∈ Q(0Y ), then tx̂ ∈ T (x̂) with tx̂ (y − x̂) + 0Y /∈
−intC , for every y ∈ K , which implies tx̂ (y − x̂) /∈ −intC , for every y ∈ K , that is,
x̂ ∈ SGVV I P . Hence Q(0Y ) ⊆ SGVV I P .


�

Following theorem provides necessary and sufficient conditions for a GVVIP to be well-
posed in generalized sense.

Theorem 3.3 Let X and Y be two topological vector spaces and let C(X , Y ) be the space of
all continuous linear mappings from X to Y , equipped with an admissible topology. Let K be
a nonempty closed convex compact subset of X and C be a closed convex pointed cone in Y
with intC �= ∅. Further, let T : K ⇒ C(X , Y ) be an upper semi-continuous set valued map
such that for each x ∈ K, T (x) is compact. Then the GVVIP is well-posed in generalized
sense if and only if the solution set SGVV I P , of GVVIP is nonempty.

Proof First suppose GVVIP is well-posed in generalized sense, then the solution set SGVV I P

of GVVIP is nonempty.
Conversely, suppose the solution set SGVV I P is nonempty. We have to show GVVIP is

well-posed in generalized sense. Let {xn} ⊆ K be an approximating net, then there exists a
net {εn} ⊆ intC , converging to 0Y and txn ∈ T (xn) such that

txn (y − xn) + εn /∈ −intC ∀ y ∈ K . (1)

As K is compact, {xn} has a subnet {xnk } converging to some x̄ ∈ K and for the subnet {xnk },
(1) reduces to

txnk (y − xnk ) + εnk /∈ −intC ∀ y ∈ K , (2)

where {εnk } is a subnet of {εn}. Since T is upper semi-continuous, then for xnk → x̄ and
txnk ∈ T (xnk ) there exists a subnet {txnkl } of {txnk }, converging to tx̄ ∈ T (x̄). For {txnkl }, (1)
reduces to

txnkl
(y − xnkl ) + εnkl

/∈ −intC ∀ y ∈ K , (3)

where {εnkl } is a subnet of {εnk }. Since xnkl → x̄ , y− xnkl → y− x̄ and txnkl
→ tx̄ , therefore

by using the virtue of admissibility of function space C(X , Y ), we have {txnkl (y − xnkl )}
converges to tx̄ (y− x̄). Thus, {txnkl (y−xnkl )+εnkl

} converges to tx̄ (y− x̄)+0Y = tx̄ (y− x̄).

If tx̄ (y− x̄) ∈ −intC , for some y ∈ K , then txnkl
(y− xnkl )+ εnkl

∈ −intC eventually, which

contradicts (3). Hence, tx̄ (y − x̄) /∈ −intC , for any y ∈ K , that is, x̄ is a solution of the
GVVIP. 
�

The following example illustrates the above result.

Example 3.4 Consider X = Y = R, K = [0, 2]. Clearly, K is closed convex and compact. Let
C = R

+∪{0}, thenC is a closed convex pointed conewith intC �= ∅, and−intC = (−∞, 0).
Further, let T : K ⇒ C(X , Y ) be a set valued map defined by T (x) = {t ′x , t ′′x }, where
t
′
x (u) = 〈x, u〉 and t

′′
x (u) = −〈x, u〉 for x ∈ K and u ∈ X . That the induced topology of

C(X , Y ) is admissible can be verified by the fact that if {xm} converges to x in X and {ξn}
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converges to ξ in C(X , Y ), then we have

‖ξn(xm) − ξ(x)‖ = ‖ξn(xm) − ξn(x) + ξn(x) − ξ(x)‖
≤ ‖ξn(xm) − ξn(x)‖ + ‖ξn(x) − ξ(x)‖
≤ ‖ξn‖‖xm − x‖ + ‖ξn(x) − ξ(x)‖.

Hence, ξn(xm) → ξ(x).
We take x0 = 0. Then for any y in K , we have t

′′
x0(y − x0) = −〈x0, y − x0〉 = 0. So,

t
′′
x0(y − x0)) /∈ −intC and so x0 is a solution for the GVVIP. Similarly, x0 = 2 is also a
solution for the GVVIP. Thus SGVV I P �= ∅.

Now we show that the GVVIP is well-posed in generalized sense, that is, every approxi-
mating net has a convergent subnet, which converges to some point in SGVV I P . Let {xn} be
an approximating net in [0, 2]. Then there exists a net {εn} in intC = (0,∞) where εn → 0
and t

′′
xn (y−xn)+εn = −〈xn, y−xn〉+εn = −xn(y−xn)+εn = x2n −xn y+εn /∈ (−∞, 0),

for all y ∈ [0, 2]. Since [0, 2] is compact, therefore {xn} has a subnet {xnk }, which converges
to some x̂ ∈ [0, 2]. Also,

t
′′
nk (y − xnk ) + εnk → x̂2 − x̂ y.

Clearly, the inequality x20 − x0y ≥ 0 ∀y ∈ [0, 2], is satisfied by x0 = 0. If x̂ �= 0, then we
have x̂− y ≥ 0 ∀y ∈ [0, 2]. This implies x̂ = 2. It is already shown above that 2 ∈ SGVV I P .
Thus, {xn} has a convergent subnet which converges to some point in SGVV I P . Hence the
GVVIP is well-posed in generalized sense.

Next theorem gives necessary and sufficient condition for a GVVIP to be well-posed in
generalized sense in terms of upper semi-continuity of the map Q(·).
Theorem 3.5 GVVIP is well-posed in generalized sense if and only if the map Q(·) is upper
semicontinuous at 0Y and SGVV I P is compact.

Proof Suppose Q : intC∪{0Y } ⇒ X is not upper semicontinuous at ε = 0Y , then there exists
an open set W containing Q(0Y ) such that for every neighbourhood V of 0Y in intC ∪ {0Y },
there exists εV ∈ V such that Q(εV ) � W . Clearly, εV ∈ intC . Let U denote the family of
neighbourhoods of 0Y in the subspace intC ∪ {0Y }. Then it can be shown that (U,≥) is a
directed set, where “ ≥′′ denotes the inverse set inclusion. Hence {εV : V ∈ U} is a net. For
the sake of simplicity, we denote {εV }V∈U by {εn}n∈D , where D = U . It can be shown that
{εn} converges to 0Y .

As Q(εn) � W , there exists xn ∈ Q(εn) for each n ∈ D such that xn /∈ W . Clearly,
{xn} is an approximating net. Since the GVVIP is well-posed in generalized sense, there
exists a subnet {xnk } of {xn}, converging to some x̄ ∈ SGVV I P . Now, SGVV I P = Q(0Y ) by
Proposition 3.2 and Q(0Y ) ⊆ W . Thus, x̄ ∈ W and hence {xn} is eventually contained in
W . This contradicts the fact that xnk ∈ Q(εnk ) � W . Hence, our assumption is wrong and
hence Q(·) is upper semicontinuous at ε = 0Y .

We now show that SGVV I P is compact. Let {un} be a net in SGVV I P = Q(0Y ), then there
exist tun ∈ T (un) such that

tun (y − un) + 0Y /∈ −intC ∀ y ∈ K ,

which gives

tun (y − un) + εn /∈ −intC ∀ y ∈ K ,

123



Well-posedness of generalized vector variational inequality... 167

which implies {un} is an approximating net. Since the GVVIP is well-posed in generalized
sense, therefore there exists a subnet {unk } of {un}, converging to some ū ∈ SGVV I P .

Conversely, let {xn}be an approximating net, then there exists a net {εn} ⊆ intC converging
to 0Y such that xn ∈ Q(εn) for every n. Since Q(·) is upper semi-continuous at 0Y and
Q(0Y ) = SGVV I P is compact, then by Lemma 2.3, for every net {εn} ⊆ intC , converging
to 0Y and {xn} ⊆ Q(εn), there exists a subnet {xnk } of {xn}, xnk ∈ Q(εnk ) such that {xnk }
converges to some x̄ ∈ Q(0Y ) = SGVV I P . Hence, GVVIP is well-posed in generalized
sense. 
�

In the next result, we give necessary condition for a GVVIP to be well-posed in terms of
lower semi-continuity of the map Q(·).
Theorem 3.6 If GVVIP is well-posed, then the map Q(·) is lower semi-continuous at 0Y .
Proof Let x̄ be the unique solution of GVVIP, that is, SGVV I P = {x̄} such that every
approximating net converges to x̄ . We shall show that the map Q(·) is lower semi-continuous
at 0Y . Let {εn} ⊆ intC be a net which converges to 0Y . Let y0 ∈ Q(0Y ) = {x ∈ K , tx ∈
T (x) : tx (y − x) + 0Y /∈ −intC, ∀ y ∈ K } = SGVV I P = {x̄}. Thus y0 = x̄ . Let {yn} be
a net such that yn ∈ Q(εn), for each n, then {yn} is an approximating net. Since GVVIP is
well-posed, {yn} converges to x̄ = y0. Hence Q(·) is lower semi-continuous at 0Y . 
�

From Theorem 3.5 and 3.6, we can conclude the following:

Corollary 3.7 If the GVVIP is well-posed then the map Q(·) is continuous at 0Y .
In next couple of theorems we provide necessary conditions for a GVVIP to be well-posed
in generalized sense in terms of convergence.

Theorem 3.8 If a GVVIP is well-posed in generalized sense and {εn} is a net in intC such
that {εn} converges to 0Y . Then

Ls Q(εn) ⊆ Q(0Y ).

Proof Let {xn} be a net in K with xn ∈ Q(εn). Let x ∈ Ls Q(εn), then there exists a subnet
{xnk } of {xn} such that xnk ∈ Q(εnk ) and {xnk } converges to x , where {εnk } is a subnet of
{εn}. Clearly, {xnk } is an approximating net for the GVVIP. Since the GVVIP is well-posed in
generalized sense, therefore {xnk } has a subnet that converges to some point in SGVV I P . As
{xnk } converges to x , every subnet of {xnk } converges to x . Hence, x ∈ SGVV I P = Q(0Y ).
Painlevé–Kuratowski 
�
Theorem 3.9 Suppose K is compact, the GVVIP is well-posed in generalized sense, Q(0Y )

is singleton and {εn} is a net in intC such that {εn} converges to 0Y . Then

Q(0Y ) ⊆ Li Q(εn).

Proof Let Q(0Y ) = {x̄}. Let {εn} ⊆ intC be a net, which converges to 0Y and let {xn} be a
net in K such that xn ∈ Q(εn), then there exist txn ∈ T (xn) with

txn (y − xn) + εn /∈ −intC ∀ y ∈ K .

Since K is compact, therefore {xn} has a convergent subnet {xnk } converging to somemember
of K . Then {xnk } is an approximating net as xnk ∈ Q(εnk ), where {εnk } is a subnet of {εn},
converging to 0Y . As the GVVIP is well-posed in generalized sense, {xnk } has a convergent
subnet {xnkl } converging to some x̂ ∈ SGVV I P . Since SGVV I P = Q(0Y ), by Proposition 3.2
and Q(0Y ) is singleton, therefore x̂ = x̄ . Hence {xnkl } converges to x̄ . Thus, there exists a
net {xnkl } in Q(εn) converging to x̄ . Therefore x̄ ∈ Li Q(εn). 
�
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From Theorem 3.8 and 3.9 one can conclude the following result:

Theorem 3.10 Let K be compact and the GVVIP be well-posed in generalized sense. Let
Q(0Y ) be singleton, then whenever the net {εn} ⊆ intC ∪ 0Y converges to 0Y , the image net
{Q(εn)} converges to Q(0Y ) in Painlevé–Kuratowski sense.

4 Conclusion

In this paper, well-posedness is discussed for a GVVIP. We have obtained the results fol-
lowing a new technique, addopting a topological approach. No convexity and monotonicity
conditions are used unlike in the available literature. Topological concepts including admis-
sibility of the function space topology, convergence of nets etc are used to obtain our results.
Further investigation is required to check whether this approach can also work for studying
other aspects of variational inequality problem.
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