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Abstract
The aim of this work is to discuss the proportionality of the multifractal measures. We
will prove that the ratio of the multifractal measures is bounded. In addition, for a class of
homogeneous Cantor sets, we find an explicit formula for their multifractal Hausdorff and
packing function dimensions and discuss some interesting examples.
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Packing dimension · Homogeneous Moran measures
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1 Introduction

Let μ be a probability measure on a metric space X . The Hausdorff multifractal spectrum
function, fμ, and the packingmultifractal spectrum function, Fμ, of themeasureμ are defined
respectively by

fμ(α) = dimH (E(α)) and Fμ(α) = dimP (E(α)) for α ≥ 0,

where

E(α) = {x ∈ supp(μ); μ
(
B(x, r)

) ∼ rα
}
.

During the past 25 years there has been an enormous interest in computing the multifractal
spectra of measures in the mathematical literature. Particularly, the multifractal spectra of
various classes of measures in Euclidean space Rn exhibiting some degree of self-similarity

B Zhihui Yuan
yzhh@ecut.edu.cn ; 201860156@ecut.edu.cn

Bilel Selmi
bilel.selmi@fsm.rnu.tn ; bilel.selmi@isetgb.rnu.tn

1 Analysis, Probability and Fractals Laboratory: LR18ES17, Department of Mathematics, Faculty of
Sciences of Monastir, University of Monastir, Monastir 5000, Tunisia

2 School of Science, East China University of Technology, Nanchang 330013, Jiangxi, People’s Republic
of China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s12215-023-00873-9&domain=pdf


3950 B. Selmi, Z. Yuan

have been computed rigorously. The reader can be referred to the paper [13], the textbooks
[8, 15] and the references therein. Some heuristic arguments using techniques of statistical
mechanics (see [11]) show that the singularity spectrum should be finite on a compact interval,
noted byDom(μ), and is expected to be the Legendre transform conjugate of the τμ-function,
given by

τμ(q) = lim sup
r→0

1

− log r
log sup

{
∑

i

μ(B(xi , r))q

}

,

where the supremum is taken over all centered packing
(
B(xi , r)

)
i of supp(μ). That is, for

all α ∈ Dom(μ),

fμ(α) = inf
q∈R

{
αq + τμ(q)

}
=: τ ∗

μ(α). (1.1)

The multifractal formalism (1.1) has been proved rigorously for random and non-random
self-similar measures, for self-conformal measures, for self-affine measures and for Moran
measures.Wenotice that the proofs of themultifractal formalism (1.1) in the above-mentioned
references (see for example [2, 3, 13, 14, 21, 23–25] and references therein) are all based on
the same key idea. The upper bound for fμ(α) is obtained by a standard covering argument,
involving Besicovitch’s covering theorem or Vitali’s covering theorem. However, its lower
bound is usually much harder to prove and is related to the existence of an auxiliary measure
(Gibbs measures, Frostman measures) which is supported by the set to be analyzed. In an
attempt to develop a general theoretical framework for studying the multifractal structure
of arbitrary measures, Olsen [13], Pesin [15] and Peyrière [16] suggested various ways of
defining measures analogous to those of Gibbs measures in very general settings. For an
arbitrary Borel probability measure μ on R

n , they introduced two parameter families of
measures,

{
H q,t

μ ; q, t ∈ R

}
and

{
Pq,t

μ ; q, t ∈ R

}
,

based on certain generalizations of the Hausdorff measure and of the packing measure. One
of the main importance of the multifractal measuresH q,t

μ and P
q,t
μ , and the corresponding

dimension functions b and B is due to the fact that the multifractal spectra functions fμ and
Fμ are bounded above by the Legendre transforms of b and B, respectively, i.e.,

dimH (E(α)) ≤ b∗(α) and dimP (E(α)) ≤ B∗(α) for all α ≥ 0.

These inequalities may be viewed as rigorous versions of the multifractal formalism.
Furthermore, for many natural families of measures we have

dimH (E(α)) = b∗(α) and dimP (E(α)) = B∗(α) for some α ≥ 0,

see for example [2, 3, 5, 12–14, 21, 23–26]. It is clear by comparing the definitions of the
measuresH q,t

μ and P
q,t
μ , and definition of the τμ-function which appears in the multifractal

formalism that b(q) and B(q) are mathematically rigorous versions of τμ(q), and that the
one-parameter families

{
H q,b(q)

μ ; q ∈ R

}
and

{
Pq,B(q)

μ ; q ∈ R

}
,

play the role of the auxiliary measures
{
μq ; q ∈ R

}
. In particular, we would expect that

the measures
{
H

q,b(q)
μ ; q ∈ R

}
and
{
P

q,B(q)
μ ; q ∈ R

}
have similar properties to those

of the auxiliary measures
{
μq ; q ∈ R

}
. This has been proved rigorously for self-similar,
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quasi self-similar, homogeneous Moran measures, self-conformal measures and for arbitrary
measures.

Even though it seems rather unlikely that the multifractal Hausdorff and packingmeasures
are proportional in general. In this paper, we will prove that the ratio of the measuresH q,b(q)

μ

and P
q,B(q)
μ might still be bounded, i.e., there exists a number 0 < cq < +∞ such that

H q,b(q)
μ �supp(μ)

≤ Pq,B(q)
μ �supp(μ)

≤ cqH
q,b(q)

μ �supp(μ)
,

which provide a positive answer to Olsen’s questions [13, Question 7.6] and [14, Question
4.1.12] in a more general framework. We give also a reasonable lower and upper bound for
the multifractal Hausdorff and packing measures of homogeneous Moran sets. In particular,
these results find an explicit formula for their multifractal Hausdorff and packing function
dimensions.We note that our results, due to the use of the multifractal Hausdorff and packing
measures introduced in [13], appear as natural multifractal generalizations of some of the
main results in [1, 9, 10, 17, 18] and completely different from those found in [19].

We will now give a brief description of the organization of the paper. In the next section,
we recall the definitions of the various multifractal dimensions and measures investigated in
the paper. Section2 recalls the multifractal formalism introduced in [13]. Section3 contain
our main results. The proofs are given in Sect. 4. The paper is concluded with Sect. 4 that,
lists some interesting examples.

2 Preliminaries

We start by recalling the fine multifractal formalism introduced by Olsen in [13]. The key
ideas behind thefinemultifractal formalism in [13] are certainmeasures ofHausdorff-packing
type which are tailored to see only the multifractal decomposition sets E(α). These measures
are natural multifractal generalizations of the centered Hausdorff measure and the packing
measure and are motivated by the τμ-function which appears in the multifractal formalism.
We first recall the definition of the multifractal Hausdorff measure and the the multifractal
packing measure. Let μ be a compactly supported probability measure on Rn . For q, t ∈ R,
E ⊆ R

n and δ > 0, we define

P
q,t
μ,δ(E) = sup

{
∑

i

μ
(
B(xi , ri )

)q(2ri
)t
}

, E 
= ∅,

where the supremum is taken over all centered δ-packing of E . Moreover we can set
P

q,t
μ,δ(∅) = 0. The packing pre-measure is then given by

P
q,t
μ (E) = inf

δ>0
P

q,t
μ,δ(E).

In a similar way, we define

H
q,t
μ,δ(E) = inf

{
∑

i

μ
(
B(xi , ri )

)q(2ri
)t
}

, E 
= ∅,

where the infinimum is taken over all centered δ-covering of E . Moreover we can set
H

q,t
μ,δ(∅) = 0. The Hausdorff pre-measure is defined by

H
q,t
μ (E) = sup

δ>0
H

q,t
μ,δ(E).
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Especially, we have the conventions 0q = ∞ for q ≤ 0 and 0q = 0 for q > 0.
H

q,t
μ is σ -subadditive but not increasing and P

q,t
μ is increasing but not σ -subadditive.

That’s why Olsen introduced the following modifications on the multifractal Hausdorff and
packing measures H q,t

μ and P
q,t
μ ,

H q,t
μ (E) = sup

F⊆E
H

q,t
μ (F) and Pq,t

μ (E) = inf
E⊆⋃i Ei

∑

i

P
q,t
μ (Ei ).

In follows thatH q,t
μ andP

q,t
μ are metric outer measures and thus measures on the Borel

family of subsets of Rn . An important feature of the Hausdorff and packing measures is
that Pq,t

μ ≤ P
q,t
μ . Moreover, there exists an integer ξ ∈ N, such that H q,t

μ ≤ ξP
q,t
μ . The

measure H
q,t

μ is a multifractal generalization of the centered Hausdorff measure, whereas
P

q,t
μ is a multifractal generalization of the packing measure. In fact, it is easily seen that if

t ≥ 0, then H 0,t
μ = H t and P0,t

μ = P t , where H t denotes the t-dimensional centered
Hausdorff measure and P t denotes the t-dimensional packing measure.

The measuresH q,t
μ andP

q,t
μ and the pre-measureP

q,t
μ assign in the usual way a multi-

fractal dimension to each subset E of Rn . They are respectively denoted by bq
μ(E), Bq

μ(E)

and �
q
μ(E) and satisfy

bq
μ(E) = inf

{
t ∈ R; H q,t

μ (E) = 0
}
,

Bq
μ(E) = inf

{
t ∈ R; Pq,t

μ (E) = 0
}

and

�q
μ(E) = inf

{
t ∈ R; P

q,t
μ (E) = 0

}
.

The number bq
μ(E) is an obvious multifractal analogue of the Hausdorff dimension

dimH (E) of E whereas Bq
μ(E) and �

q
μ(E) are obvious multifractal analogues of the pack-

ing dimension dimP (E) and the pre-packing dimension �(E) of E respectively. In fact, it
follows immediately from the definitions that

dimH (E) = b0μ(E), dimP (E) = B0
μ(E) and �(E) = �0

μ(E).

Next, for q ∈ R, we define the separator functions bμ, Bμ and �μ by

bμ(q) = bq
μ

(
supp(μ)

)
, Bμ(q) = Bq

μ

(
supp(μ)

)
and �μ(q) = �q

μ

(
supp(μ)

)
.

It is well known that the functions bμ, Bμ and �μ are decreasing and Bμ, �μ are convex
and satisfying bμ ≤ Bμ ≤ �μ.

The multifractal formalism based on the measures H
q,s

μ and P
q,s
μ and the dimension

functions bμ, Bμ and �μ provides a natural, unifying and very general multifractal theory
which includes all the hitherto introducedmultifractal parameters, i.e., themultifractal spectra
functions fμ and Fμ, the multifractal box dimensions. The dimension functions bμ and Bμ

are intimately related to the spectra functions fμ and Fμ, whereas the dimension function
�μ is closely related to the upper box spectrum (more precisely, to the upper multifractal
box dimension function τμ, see [13]).

The reader is referred to as Olsen’s classical text [13] for an excellent and systematic
discussion of the multifractal Hausdorff and packing measures and dimensions.
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3 Main results

In the next, we suppose the existence of aGibbs’measure at a state (q, Bμ(q)) for themeasure
μ, i.e., the existence of a measure νq on supp(μ) and constants K , K > 0 and δ > 0 such
that for every x ∈ supp(μ) and every 0 < r < δ,

K μ(B(x, r))q (2r)Bμ(q) ≤ νq(B(x, r)) ≤ K μ(B(x, r))q (2r)Bμ(q)

to obtain the following result which provides a positive answer to Olsen’s questions [13,
Question 7.6] and [14, Question 4.1.12] in a more general framework.

Theorem 1 Let q ∈ Rand we assume that there exists a Gibbs measure νq forμat (q, Bμ(q)),
then there exists C > 0 such that

C P
q,Bμ(q)
μ ≤ H

q,bμ(q)
μ ≤ ξ P

q,Bμ(q)
μ on supp(μ),

where ξ is the constant that appears in Besicovitch’s covering theorem. In addition, if μ

satisfies the doubling condition, then there exists C1 > 0 such that

C1 P
q,Bμ(q)
μ ≤ H

q,bμ(q)
μ ≤ P

q,Bμ(q)
μ on supp(μ).

Example A Let μ be the Bernoulli measure with parameters P1 and P2 which is defined by
the repeated subdivision of a unit mass between the basic intervals of the pre-fractals of the
middle-third Cantor set C . Then,

H
q,bμ(q)

μ (C) = P
q,Bμ(q)
μ (C).

Example B To define the Bedford–McMullen carpets, we introduce a digit set

A ⊆ {0, 1, . . . , m − 1} × {0, 1, . . . , n − 1} := I × J ,

where 1 < m ≤ n. For each (i, j) ∈ A, we define Ti, j : R2 → R
2 by

Ti, j (x, y) =
(

x + i

n
,

y + j

m

)
.

We divide the unit square into nm congruent rectangles

Ri, j =
[

i

n
,

i + 1

n

]
×
[

j

m
,

j + 1

m

]
.

It follows immediately from the definitions that

Ti, j

(
[0, 1] × [0, 1]

)
= Ri, j , ∀(i, j) ∈ I × J .

We let E be the unique non-empty compact set which satisfies

E =
⋃

(i, j)∈A

Ti, j (E).

Sets of the form E are usually known as Bedford–McMullen carpets.

We introduce a positive probability vector p with element pi, j for each (i, j) ∈ A. We
also define the related probability vector q where

qi =
∑

j,(i, j)∈A

pi, j .
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Thus,we candefine a self-affinemeasureμwhich is the uniqueprobabilitymeasure satisfying

μ =
∑

(i, j)∈A

pi, j μ ◦ T −1
i, j .

Now, suppose that E satisfies these following disjointness conditions: for all distinct
ordered pairs (i, j) ∈ A, (i ′, j ′) ∈ A, we have

Ti, j

(
[0, 1] × [0, 1]

)
∩ Ti ′, j ′

(
[0, 1] × [0, 1]

)
= ∅ and |i − i ′| 
= 1.

Put 
 as the set of all infinite sequences of ordered pairs belonging to A,


 = {ω = (x1, x2, . . .)
∣∣ xi ∈ A, i = 1, 2, . . .

}
.

By the disjointness conditions, we known that there is a bijection π : 
 → E defined by

π(ω) = lim inf
n→+∞ Tx1 ◦ Tx2 ◦ . . . ◦ Txn

(v).

The value ofπ(ω) is independent of the initial value v ∈ [0, 1]×[0, 1]. For x ∈ E , let us write
ωx = π−1(x) and let us denoteω(n) = (x1, x2, . . . , xn) for all xi ∈ A, i = 1, 2, . . . , n. Let
{ai, j ; (i, j) ∈ A} be a set of real numbers indexed by A, then write aω(n) = ax1ax2 . . . axn

.
Similarly Tω(n) means that the map Tx1 ◦ Tx2 ◦ . . . ◦ Txn

. Now, for (x, y) ∈ R
2, let

PH (x, y) = y and PW (x, y) = x .

For k ∈ N, we let l = l(k) = �σk�, where �.� denotes the integer part and σ = logm
log n . Then

the k-th level approximate square is defined as

Sk(ω) = PW
(
r(ω, l)

)× PH
(
r(ω, k)

)
, where r(ω, k) = Tω(k)

(
[0, 1] × [0, 1]

)
.

It follows that

μ(Sk(ω)) = pω(l).qω(k).q
−1
ω(l).

Therefore, we define β(q) (q ∈ R) as the unique solution to

m−β(q)
∑

(i, j)∈A

pq
i, j q

(1−σ)q
i

⎛

⎝
∑

j,(i, j)∈A

pq
i, j

⎞

⎠

σ−1

= 1.

Let γi =∑ j,(i, j)∈A pq
i, j . We then define the function ϕ

q
k (ω) by

ϕ
q
k (ω) = qq

ω(l)/γω(l)

qσq
ω(k)/γ

σ
ω(k)

.

Now, we define the set F̃ as a subset of 
 satisfying the following condition

0 < inf
ω∈F̃

lim inf
k→+∞ ϕ

q
k (ω) ≤ sup

ω∈F̃

lim sup
k→+∞

ϕ
q
k (ω) < +∞. (3.1)

Now, we write

Pi, j = pq
i, j m−β(q) q(1−σ)q

i γ σ−1
i and Qi =

∑

j,(i, j)∈A

Pi, j = m−β(q) q(1−σ)q
i γ σ

i .
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It follows from the definition of β that
∑

(i, j)∈A

Pi, j = 1.

Denote by μq the self-affine measure generated by Pi, j and Ti, j , then

μq(Sk(ω)) = Pω(l) · Qω(k) · Q−1
ω(l)

=
(

pq
ω(l) m−lβ(q) q(1−σ)q

ω(l) γ σ−1
ω(l)

) (
m−kβ(q) q(1−σ)q

ω(k) γ σ
ω(k)

)

(
mlβ(q) q−(1−σ)q

ω(l) γ −σ
ω(l)

)

= m−kβ(q)
(

pω(l) qω(k) q−1
ω(l)

)q
(

qq
ω(l)/γω(l)

qσq
ω(k)/γ

σ
ω(k)

)

= m−kβ(q)μ(Sk(ω))qϕ
q
k (ω).

If we assume that supp(μ) = π(F̃), x ∈ supp(μ) and r > 0, then for all ω = π−1(x), we
can choose h, k ∈ N such that

m−h < r ≤ m−h+1 and m−k <
r

n
√
2

≤ m−k+1. (3.2)

It follows from (3.2) and the disjointness conditions that

Sk(ω) ⊆ B(x, r) and B(x, r) ∩ E ⊆ Sh−1(ω).

Now, (3.1) implies that μq is a Gibbs measure for μ at (q, β(q)) and

bμ(q) = β(q) = Bμ(q).

Finally, by using Theorem 1, there exists C1 > 0 such that

C1 P
q,Bμ(q)
μ ≤ H

q,bμ(q)
μ ≤ P

q,Bμ(q)
μ on supp(μ).

Note that this example is already discussed much more comprehensively and complexly in
[14, Section 6.7]. Indeed, in [14], Olsen considers Bedford–McMullen sponges in Rd rather
than Bedford–McMullen carpets in R2.

In the following, we give an example that had not already been investigated and studied
for which the conditions of our main theorem are satisfied.

Example C Let p be an integer with p ≥ 2. Theorem 1 applies to a family of measures
supported by the full p-adic grid of [0, 1], namely the quasi-Bernoulli measures.

We denote A the set of words constructed with {0, 1, ..., p − 1} as an alphabet. Provided
with concatenation, A is a monoid: if a and b are two elements of A , we denote by ab the
word obtained by concatenation of a and b. The empty word, which is the unit, is denoted by
ε. we denote the set of words of length n byAn . Now, we consider a sequence

{{Ia}a∈An

}
n≥1

of nested finite partitions of the interval [0, 1[ in right half-open intervals: the intervals Ial ,
l = 0, 1, ..., p − 1 constitute a partition of the interval Ia . If x ∈ [0, 1[, we denote by In(x)

the element of the n-th generation {Ia}a∈A which contains it. The length of an interval I is
denoted |I |. We assume (| · | is almost multiplicative) that there is a positive constant L such
that

∀a, b ∈ A , L−1 |Ia | |Ib| ≤ |Iab| ≤ L |Ia | |Ib| .
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Let us now consider the particular case where the sequence of partitions is given by the
p-adic intervals

{{Ia}a∈An

}
n≥1:

Ifa = a1 . . . · an, then Ia =
[

n∑

k=1

ak p−k,

n∑

k=1

ak p−k + p−n

]

.

A probability measure on [0, 1[ is said to be quasi-Bernoulli if there exists M > 0 such
that, for any a and b ∈ A ,

M−1μ (Ia) μ (Ib) ≤ μ (Iab) ≤ Mμ (Ia) μ (Ib) .

Let μ be a quasi-Bernoulli measure, for any q, t ∈ R, we define

Kμ(q, t) = lim sup
n→+∞

∗∑

a∈An

μ(Ia)q |Ia |t ,

where the star ∗ means that the terms for which μ(Ia) = 0 are removed (a convention valid
throughout this example), and let

τμ(q) = sup
{

t ∈ R; Kμ(q, t) = +∞
}
.

It follows from Bhouri [4] and Peyrière [16] that, ifμ is a quasi-Bernoulli measure then there
exist K > 0 and a measure νq such that for all a ∈ A ,

1

K
μ(Ia)q |Ia |τμ(q) ≤ νq(Ia) ≤ K μ(Ia)q |Ia |τμ(q). (3.3)

In the next, we will compare the function τμ(q) to �μ(q). For this we need the following
extra condition:

μ(Ia)μ(Ib) = 0 whenever the intervals Ia and Ib are contiguous. (3.4)

Lemma 1 One has τμ(q) = �μ(q).

Proof Let x ∈ supp(μ), 0 < r < 1
p and n such that p−n−1 ≤ r < p−n . To prove Lemma 1,

we will prove that, there exist a ∈ A and j ∈ {0, . . . , p − 1} such that
0 < μ

(
Iaj
) ≤ μ(B(x, r)) ≤ μ (Ia) . (3.5)

Proof of (3.5). Without loss of generality, we can assume that x ∈ [0, 1[. Two cases can
then arise.

Case 1. μ(In(x)) 
= 0.
Note that in this case, μ(B(x, r)) ≤ μ (In(x)). Indeed, the condition (3.4) implies that

In(x) is the only interval of the n-th generation, of non-zero measure, meeting the ball
B(x, r). Moreover, we have In+1(x) ⊂ B(x, r) since p−n−1 ≤ r . The property (3.5) is then
verified if μ (In+1(x)) 
= 0. It therefore remains to study the case where μ (In+1(x)) = 0.
Let Ia be the interval In(x), given (3.4) and the fact that x ∈ supp(μ), In+1(x) is different
from Ia0 and therefore the interval Iaj which is just to the left of In+1(x) is contained in
B(x, r) and has a non-zero measure. The property (3.5) is therefore satisfied in the case
where μ (In+1(x)) = 0.

Case 2. μ(In(x)) = 0.
Since x ∈ supp(μ), x is necessarily the left end of the interval In(x). Consider now

the interval Ia of the n-th generation which is to the left of In(x) and which is contiguous
to it. We then have μ (Ia) 
= 0, since x ∈ supp(μ). The real r being strictly less than
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p−n , Ia is therefore the only interval of order n, of non-zero measure, meeting B(x, r). As
consequence μ(B(x, r)) ≤ μ (Ia). Moreover, taking into account the inequality p−n−1 ≤ r ,
we have Iaj ⊂ B(x, r) for j = p − 1. The assumption x ∈ supp(μ) then implies that
μ
(
Iaj
) 
= 0, which establishes the property (3.5).

The proof of Lemma 1 follows immediately from the property (3.5) (for more details see
[20]). ��

Let us now show that (3.3) is valid for intervals centered in the support of μ, in other
words νq is a Gibbs measure for μ at (q,�μ(q)).

We consider here only the case q ≥ 0, the other case is treated in the same way. Let
x ∈ supp(μ) = supp(νq), 0 < r < p−1 and n be the integer such that p−n−1 ≤ r < p−n . It
follows immediately from (3.3) that

νq (Ia) = 0 ⇔ μ (Ia) = 0. (3.6)

By using (3.5) and (3.6), there is a word a ∈ An and a letter j ∈ {0, 1, . . . , p − 1} such that
0 < μ

(
Iaj
) ≤ μ(B(x, r)) ≤ μ (Ia) (3.7)

and

0 < νq
(
Iaj
) ≤ νq(B(x, r)) ≤ νq (Ia) . (3.8)

It follows from (3.3) and (3.8) that

1

K
μ
(
Iaj
)q ∣∣Iaj

∣∣τ(q) ≤ νq(B(x, r)) ≤ Kμ (Ia)q |Ia |τ(q) . (3.9)

Since μ is a quasi-Bernoulli measure and μ
(
Iaj
) 
= 0, it results that

1

K

( ρ

M

)q
μ (Ia)q

∣∣Iaj
∣∣τ(q) ≤ νq(B(x, r)) ≤ K

(
M

ρ

)q

μ
(
Iaj
)q |Ia |τ(q) ,

where ρ = inf
{
μ (Ib) ; b ∈ {0, 1, . . . , p − 1} and μ (Ib) 
= 0

}
. Since r < |Ia | ≤ pr , we,

therefore, have by using (3.7) and (3.9),

1

K

( ρ

M

)q
(

1

2p

)τ(q)

μ(B(x, r))q(2r)τ(q)

≤ νq(B(x, r)) ≤ K

(
M

ρ

)q

(2p)τ(q) μ(B(x, r))q(2r)τ(q).

Now, Lemma 1 implies that, there exists a constant K1 > 0 such that

1

K1
μ(B(x, r))q(2r)�μ(q) ≤ νq(B(x, r)) ≤ K1μ(B(x, r))q(2r)�μ(q),

where K1 =
(

M
ρ

)q
(2p)�μ(q). Which implies that

bμ(q) = Bμ(q) = �μ(q) = τμ(q)

and νq is a Gibbs measure for μ at (q, Bμ(q)). Finally, it follows from Theorem 1 that, there
exists C1 > 0 such that

C1 P
q,Bμ(q)
μ ≤ H

q,bμ(q)
μ ≤ ξ P

q,Bμ(q)
μ on supp(μ),

where ξ is the constant that appears in Besicovitch’s covering theorem.
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3.1 Moran sets

Let us recall the class of Moran sets. We denote by {nk}k≥1 a sequence of positive integers
with nk ≥ 2 and � = {�k}k≥1 be a sequence of vectors satisfying

�k = (ck,1, ck,2, . . . , ck,nk ), with 0 < ck, j < 1, ∀k ∈ N, ∀1 ≤ j ≤ nk .

Dm,k =
{

(im, im+1, . . . , ik) ; 1 ≤ i j ≤ n j , m ≤ j ≤ k
}

and Dk = D1,k .

Define D =⋃k≥1 Dk .

Let σ = (σ1, . . . , σk) ∈ Dk, τ = (τk+1, . . . , τm) ∈ Dk+1,m,we denote σ ∗ τ =
(σ1, . . . , σk, τk+1, . . . , τm) .

Definition 1 We say that the collection F = {Jσ , σ ∈ D} fulfills the Moran structure if it
satisfies the following conditions:

(1) For all σ ∈ D, Jσ is similar to J , that is there exists a similarity mapping Sσ : Rd → R
d

such that Sσ (J ) = Jσ . Here we set J∅ = J .
(2) For all k ≥ 0 and σ ∈ Dk, Jσ∗1, Jσ∗2, . . . , Jσ∗nk+1 are subsets of Jσ , and satisfy that

J ◦
σ∗i ∩ J ◦

σ∗ j = ∅ (i 
= j) [we call such assumption open set condition (OSC)], where
A◦ denotes the interior of A.

(3) For any k ≥ 1, σ ∈ Dk−1 and 1 ≤ j ≤ nk , ck, j = |Jσ∗ j |
|Jσ | , 1 ≤ j ≤ nk , where |A|

denotes the diameter of A.

Let F = F (J , {nk} , {�k}) be a collection having Moran structure. The set E(F ) =⋂
k≥1
⋃

σ∈Dk
Jσ is called a Moran set determined by F . It is convenient to denote

M (J , {nk} , {�k}) the collection of Moran sets determined by J , {nk} and {�k}.
Remark 1 If limk→+∞ supσ∈Dk

|Jσ | > 0, then E contains interior points. Thus the measure
and dimension properties will be trivial. We assume therefore limk→+∞ supσ∈Dk

|Jσ | = 0.

Now, we consider a class of Moran sets E which satisfy a special property called the
strong separation condition (SSC, which is stronger than OSC), i.e., take Jσ ∈ F . Let
Jσ∗1, Jσ∗2, . . . , Jσ∗nk+1 be the nk+1 basic sets of order k + 1 contained in Jσ , then we
assume that for all 1 ≤ i 
= j ≤ nk+1 − 1, dist(Jσ∗i , Jσ∗ j ) ≥ �k |Jσ |, where (�k)k∈N is a
sequence of positive real numbers, such that

0 < � = inf
k∈N�k < 1.

Then the assumption limk→+∞ supσ∈Dk
|Jσ | = 0 follows.

Ifwe ask ck, j = ck for all 1 ≤ j ≤ nk , where {ck}k≥1 is a sequence of positive numbers,we
can get the Moran structure and Moran sets. In this situation, we call them by homogeneous
Moran structure and the collection of Moran sets, and denote byF = F (J , {nk} , {ck}) and
M = M (J , {nk} , {ck}) .

3.2 Moranmeasure

Let
{

Pi, j
}ni

j=1 be probability vectors, i.e., Pi, j > 0 and
∑ni

j=1 Pi, j = 1(i = 1, 2, . . .),

suppose that P0 = inf
{

Pi, j
}

> 0. Let μ be a mass distribution on E such that for any

Jσ (σ ∈ Dk) μ (Jσ ) = P1,σ1 P2,σ2 · · · Pk,σk and μ
(∑

σ∈Dk
Jσ

)
= 1, we call μ a Moran

measure on E .
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For q ∈ R, we define the following functions

βk(q) =
∑k

m=1 log
(∑nm

j=1 Pq
m, j

)

− log(c1 · · · ck)
,

β(q) = lim inf
k→+∞ βk(q) and β(q) = lim sup

k→+∞
βk(q).

In the following theorem, we find an explicit formula for the multifractal Hausdorff and
packing function dimensions of a homogeneous Moran set satisfying the strong separation
condition.

Theorem 2 Let E be a homogeneous Moran set satisfying (SSC) and μ be the Moran measure
on E. Then for all q ∈ R, we have

bμ(q) = β(q) and Bμ(q) = β(q) = �μ(q).

Remark 2 The results developed by Beak in [1] and Feng et al. in [10] are obtained as a
special case of the multifractal theorems when q equals 0.

Remark 3 Let E be a homogeneous Moran set satisfying (SSC) andμ be the Moran measure
on E . If the limit limk→+∞ βk(q) = β(q) exists, and for all k ≥ 1, k(β(q)−βk(q)) < +∞,
then by using [24, Proposition 3.1] there exists a probability measure νq supported by E such
that for any k ≥ 1 and σ0 ∈ Dk ,

νq
(
Jσ0

) = μ
(
Jσ0

)q ∣∣Jσ0

∣∣β(q)

∑

σ∈Dk

μ (Jσ )q |Jσ |β(q)
.

It follows from k(β(q) − βk(q)) < +∞ for all k ≥ 1 that

0 < lim inf
k→+∞

∑

σ∈Dk

μ (Jσ )q |Jσ |β(q) ≤ lim sup
k→+∞

∑

σ∈Dk

μ (Jσ )q |Jσ |β(q) < +∞.

Now, by using the strong separation condition, we have

bμ(q) = β(q) = Bμ(q)

and νq is a Gibbs measure for μ at (q, Bμ(q)) (it is the case of [6, 7]) which implies that the
conditions in Theorem 1 are satisfied.

4 Proof of main results

4.1 Proof of Theorem 1

This theorem follows immediately from the following lemma.

Lemma 2 For any q ∈ R, there exist two constants K1 > 0 and K2 > 0 such that

P
q,Bμ(q)
μ ≤ K2 νq and K1 νq ≤ H

q,bμ(q)
μ on supp(μ).
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Proof Fix δ > 0 and let
(

B (xi , ri )
)

i∈N be a centered δ-covering of supp(μ). Then

νq(supp(μ)) ≤
∑

i

νq (B (xi , ri ))

≤ K
∑

i

μ (B(xi , ri ))
q (2ri )

Bμ(q)

= K
∑

i

μ (B(xi , ri ))
q (2ri )

bμ(q) .

Consequently

1

K
νq(supp(μ)) ≤ H

q,bμ(q)

μ,δ (supp(μ)) ≤ H
q,bμ(q)

μ (supp(μ)) ≤ H
q,bμ(q)

μ (supp(μ)).

Let F be a closed subset of supp(μ). For δ > 0 write

B(F, δ) =
{

x ∈ supp(μ); dist(x, F) ≤ δ
}
.

Since F is closed, B(F, δ) ↘ F for δ ↘ 0. Then for all ε > 0, there exists δ0 satisfying

νq
(
B(F, δ)

) ≤ νq(F) + ε, ∀ 0 < δ < δ0.

Now, fix δ > 0 and let
(

B(xi , ri )
)

i∈N be a centered δ-packing of F . Observing that

K
∑

i

μ (B(xi , ri ))
q (2ri )

Bμ(q) ≤
∑

i

νq
(
B (xi , ri )

)

≤ νq
(
B(F, δ)

) ≤ νq(F) + ε

≤ νq(supp(μ)) + ε.

It results that

K P
q,Bμ(q)

μ (F) ≤
(
νq(supp(μ)) + ε

)
.

Letting ε ↓ 0, now yields

K P
q,Bμ(q)
μ (supp(μ)) ≤ P

q,Bμ(q)

μ (supp(μ)) ≤ νq(supp(μ))

which proves the desired result with K2 = 1
K and K1 = 1

K
. ��

4.2 Proof of Theorem 2

We present the tools, as well as the intermediate results, which will be used in the proof
of our main result. First, we express the multifractal Hausdorff and packing measures of a
homogeneous Moran set as the explicit form with nk, ck and Pi, j .

Proposition 1 Let E be a homogeneous Moran set satisfying (SSC) and μ be the Moran
measure on E. Then for all q, t ∈ R,

(1) there exists A > 0 such that

A lim inf
k→∞

k∏

m=1

nm∑

j=1

Pq
m, j c

t
m ≤ H q,t

μ (E) ≤ lim inf
k→∞

k∏

m=1

nm∑

j=1

Pq
m, j c

t
m .

123



On the multifractal measures: proportionality and dimensions of... 3961

(2) If lim supk→∞
∏k

m=1
∑nm

j=1 Pq
m, j c

t
m = 0 or +∞ then P

q,t
μ (E) = 0 or +∞ which

implies that P
q,t
μ (E) = 0 or +∞.

(3) There exist C and cp > 1 such that

max
(
1, C2q

)
c−1

p lim sup
k→∞

k∏

m=1

nm∑

j=1

Pq
m, j c

t
m ≤ Pq,t

μ (E)

≤ P
q,t
μ (E) ≤ cp lim sup

k→∞

k∏

m=1

nm∑

j=1

Pq
m, j c

t
m .

Proof The verification of this proposition now follows routinely from the theory described
by Wu et al. [24, Propositions 3.3 and 3.4] and [22, Theorem 1]. ��

Remark 4 For any k ≥ 1 and σ ∈ Dk−1, Jσ , Jσ∗1, ..., Jσ∗nk are arranged from the left to the
right, Jσ∗1 and Jσ have the same left endpoint, Jσ∗nk and Jσ have the same right endpoint,
and the lengths of the gaps between any two consecutive sub-intervals are equal. We denote
the length of one of the gaps by yk . Motivated by some results developed in [17, 18], we
conjecture that if yk+1 ≤ yk (or yk+2 ≤ yk and yk+3 ≤ yk) for all k ≥ 1 then

H
q,bμ(q)

μ (E) = lim inf
k→∞

k∏

m=1

nm∑

j=1

Pq
m, j c

bμ(q)
m .

Now, we define the following auxiliary dimensions

ϕ(q) = inf
{

t ∈ R; lim inf
k→∞

k∏

m=1

nm∑

j=1

Pq
m, j c

t
m = 0

}

= sup
{

t ∈ R; lim inf
k→∞

k∏

m=1

nm∑

j=1

Pq
m, j c

t
m = +∞

}

and

ϕ(q) = inf
{

t ∈ R; lim sup
k→∞

k∏

m=1

nm∑

j=1

Pq
m, j c

t
m = 0

}

= sup
{

t ∈ R; lim sup
k→∞

k∏

m=1

nm∑

j=1

Pq
m, j c

t
m = +∞

}
.

It follows from Proposition 1 that, for all q ∈ R

bμ(q) = ϕ(q) and Bμ(q) = ϕ(q) = �μ(q).

Theorem 2 is a consequence of the following proposition.

Proposition 2 Let E be a homogeneous Moran set satisfying (SSC) and μ be the Moran
measure on E. Then for all q ∈ R, we have

ϕ(q) = β(q) and ϕ(q) = β(q).
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Proof Let t > β(q), then there exists a subsequence (ki )i such that

t >

∑ki
m=1 log

(∑nm
j=1 Pq

m, j

)

− log(c1 · · · cki )
.

Which implies that

ki∏

m=1

nm∑

j=1

Pq
m, j c

t
m ≤ 1 and lim inf

k→∞

k∏

m=1

nm∑

j=1

Pq
m, j c

t
m ≤ 1

which clearly implies that ϕ(q) ≤ β(q). The proof of the other inequality is identical to the
proof of the first statement and is therefore omitted.

We will prove the second assertion. Let t > β(q), there exists N ∈ N such that for all
k ≥ N we have

t >

∑k
m=1 log

(∑nm
j=1 Pq

m, j

)

− log(c1 · · · ck)
.

Which clearly implies that

k∏

m=1

nm∑

j=1

Pq
m, j c

t
m ≤ 1 and lim sup

k→∞

k∏

m=1

nm∑

j=1

Pq
m, j c

t
m ≤ 1.

It follows that ϕ(q) ≤ β(q). The proof of the other inequality is identical to the proof of the
first statement and is therefore omitted which yields the desired result. ��

5 Some examples

In this section, more motivations and examples related to these concepts, will be discussed.
In particular, some examples show that the two main results are completely related.

5.1 Example 1

If J = [0, 1], nk = 2 and ck = 1
3 for all k ≥ 1 then the set E is the middle-third Cantor set

and μ is the Bernoulli measure with parameters P1 = P1,1 and P2 = P1,2. Also, Theorem 2
implies that

bμ(q) = Bμ(q) = log
(
Pq
1 + Pq

2

)

log 3
.

5.2 Example 2

Let A = {a, b} be a two-letter alphabet, and A∗ the free monoid generated by A. Let F
be the homomorphism on A∗, defined by F(a) = ab and F(b) = a. It is easy to see that
Fn(a) = Fn−1(a)Fn−2(a). We denote by |Fn(a)| the length of the word Fn(a), thus

Fn(a) = s1s2 · · · s|Fn(a)|, si ∈ A.
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Therefore, as n → ∞, we get the infinite sequence

ω = lim
n→+∞ Fn(a) = s1s2s3 · · · sn · · · ∈ {a, b}N

which is called the Fibonacci sequence. For any n ≥ 1, write ωn = ω|n = s1s2 · · · sn . We
denote by |ωn |a the number of the occurrence of the letter a in ωn, and |ωn |b the number of
occurrence of b. Then |ωn |a +|ωn |b = n. It follows fromWu [23] that limn→+∞ |ωn |a

n = η,

where η2 + η = 1.
Let 0 < ra < 1

2 , 0 < rb < 1
3 , ra, rb ∈ R. In the above Moran construction, let

|J | = 1, nk =
{
2, if sk = a
3, if sk = b

and

ck =
⎧
⎨

⎩

ra, if sk = a

rb, if sk = b
, 1 ≤ j ≤ nk .

Thenwe construct the homogeneousMoran set relating to the Fibonacci sequence and denote
it by E := E(ω) = (J , {nk} , {ck}). By the construction of E, we have

|Jσ | = r
|ωk |a
a r

|ωk |b
b , ∀σ ∈ Dk .

Let Pa = (Pa1 , Pa2

)
, Pb = (Pb1 , Pb2 , Pb3

)
be probability vectors, i.e.,

Pai > 0, Pbi > 0, and
2∑

i=1

Pai = 1,
3∑

i=1

Pbi = 1.

For any k ≥ 1 and any σ ∈ Dk, we know σ = σ1σ2 · · · σk where

σk ∈
{ {1, 2}, if sk = a

{1, 2, 3}, if sk = b.

For σ = σ1σ2 · · · σk, we define σ(a) as follows: let ωk = s1s2 · · · sk and e1 < e2 < · · · <

e|ωk |a be the occurrences of the letter a in ωk, then σ(a) = σe1σe2 · · · σe|ωk |a . Similarly, let
δ1 < δ2 < · · · < δ|ωk |b be the occurrences of the letter b inωk, then σ(b) = σδ1σδ2 · · · σδ|ωk |b .

Let

Pσ(a) = Pσe1
Pσe2

· · · Pσe|ωk |a and Pσ(b) = Pσδ1
Pσδ2

· · · Pσδ|ωk |b .

Obviously
∑

σ∈Dk

Pσ(a) Pσ(b) = 1.

Let μ be a mass distribution on E, such that for any σ ∈ Dk,

μ (Jσ ) = Pσ(a) Pσ(b).

It follows that

βk(q) = −
|ωk |a log

(∑2
i=1 Pq

ai

)
+ |ωk |b log

(∑3
i=1 Pq

bi

)

|ωk |a log ra + |ωk |b log rb
.
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By using Theorem 2 we have

bμ(q) = lim
k→+∞ βk(q) = −

log
(∑2

i=1 Pq
ai

)
+ η log

(∑3
j=1 Pq

b j

)

log ra + η log rb
= Bμ(q),

where η2 + η = 1.
Given q ∈ R, it follows from Wu [23, Proposition 3.1] that there exists a probability

measure νq supported by E such that for any k ≥ 1 and σ0 ∈ Dk ,

νq
(
Jσ0

) = μ
(
Jσ0

)q ∣∣Jσ0

∣∣β(q)

∑

σ∈Dk

μ (Jσ )q |Jσ |β(q)
,

where

bμ(q) = lim
k→+∞ βk(q) = Bμ(q) = β(q).

By a simple calculation, we have
∑

σ∈Dk

(
Pσ(a) Pσ(b)

)q |Jσ |βk (q) = 1

which implies that β(q) − βk(q) = O( 1k ) and
∑

σ∈Dk

μ (Jσ )q |Jσ |β(q) = |Jσ |β(q)−βk (q) ≥ (min {ra, rb})k(β(q)−βk (q)) ,

which gives that

lim inf
k→+∞

∑

σ∈Dk

μ (Jσ )q |Jσ |β(q) > 0.

By a similar way, we obtain

lim sup
k→+∞

∑

σ∈Dk

μ (Jσ )q |Jσ |β(q) < +∞.

This implies that

0 < lim inf
k→+∞

∑

σ∈Dk

μ (Jσ )q |Jσ |β(q) ≤ lim sup
k→+∞

∑

σ∈Dk

μ (Jσ )q |Jσ |β(q) < +∞. (5.1)

Now, (5.1) gives that νq is a Gibbs measure for μ at (q, Bμ(q)) and then the conditions of
Theorem 1 are satisfied.

5.3 Example 3

A particular homogeneous Moran set E satisfying (SSC) and a Moran measure μ on E may
now be defined as follows: Let

nk =
⎧
⎨

⎩

2, k is odd number,

3, k is even number.
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and

ck =
⎧
⎨

⎩

r1, k is odd number,

r2, k is even number,

where 0 < r1 < 1
2 and 0 < r2 < 1

3 . Put

Pk, j =
⎧
⎨

⎩

P1, j , k is odd number, 1 ≤ j ≤ 2,

P2, j , k is even number, 1 ≤ j ≤ 3,

where

2∑

j=1

P1, j = 1 and
3∑

j=1

P2, j = 1.

We conclude that

βk(q) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

− (k + 1) log
∑2

j=1 Pq
1, j + (k − 1) log

∑3
j=1 Pq

2, j

(k + 1) log r1 + (k − 1) log r2
, k is odd number,

− log
∑2

j=1 Pq
1, j + log

∑3
j=1 Pq

2, j

log r1 + log r2
, k is even number,

It follows from Theorem 2 that

bμ(q) = lim
k→+∞ βk(q) = − log

∑2
j=1 Pq

1, j + log
∑3

j=1 Pq
2, j

log r1 + log r2
= Bμ(q).

It is obvious that k(β(q) − βk(q)) < +∞ for all k ≥ 1 which implies, by using similar
techniques of Sect. 5.2, that

0 < lim inf
k→+∞

∑

σ∈Dk

μ (Jσ )q |Jσ |β(q) ≤ lim sup
k→+∞

∑

σ∈Dk

μ (Jσ )q |Jσ |β(q) < +∞.

Wu and Xiao [24, Proposition 3.1] implies that, there exists a probability measure νq

supported by E such that for any k ≥ 1 and σ0 ∈ Dk ,

νq
(
Jσ0

) = μ
(
Jσ0

)q ∣∣Jσ0

∣∣β(q)

∑

σ∈Dk

μ (Jσ )q |Jσ |β(q)
.

Now, it follows from Theorem 2 that νq is a Gibbs measure for μ at (q, Bμ(q)) which gives
that the conditions in Theorem 1 are satisfied.

Next, we give concrete interesting examples related to our main result and we obtain the
multifractal Hausdorff and packing dimension functions of Moran measure associated with
homogeneous Moran fractals for which bμ(q) and Bμ(q) differ for all q 
= 1.
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5.4 Example 4

Let (tk)k be a sequence of integers such that

t1 = 1, t2 = 3 and tk+1 = 2tk, ∀ k ≥ 3.

In the Moran construction described in Definition 1, we define the family of parameters ni ,
ci and pi, j as follows:

n1 = 2, ni =
{
3, if t2k−1 ≤ i < t2k,

2, if t2k ≤ i < t2k+1.

For 0 < ra < 1
2 and 0 < rb < 1

3 , let

c1 = ra, ci =
{

rb, if t2k−1 ≤ i < t2k,

ra, if t2k ≤ i < t2k+1.

Let (Pa, j )
2
j=1 and (Pb, j )

3
j=1 be two probability vectors. Define

P1, j = Pa, j , for all 1 ≤ j ≤ 2,

and

Pi, j =
{

Pb, j , if t2k−1 ≤ i < t2k, 1 ≤ j ≤ 3,
Pa, j , if t2k ≤ i < t2k+1, 1 ≤ j ≤ 2.

If Nk is the number of integers i ≤ k such that Pi, j = Pa, j , then

lim inf
k→+∞

Nk

k
= 1

3
, lim sup

k→+∞
Nk

k
= 2

3

and

βk(q) = −
Nk
k log

(∑2
j=1 Pq

a, j

)
+
(
1 − Nk

k

)
log
(∑3

j=1 Pq
b, j

)

Nk
k log ra +

(
1 − Nk

k

)
log rb

.

We can then conclude from Theorem 2 that

bμ(q) = min

{

−
1
3 log

∑2
j=1 Pq

a, j + 2
3 log

∑3
j=1 Pq

b, j
1
3 log ra + 2

3 log rb
,

−
2
3 log

∑2
j=1 Pq

a, j + 1
3 log

∑3
j=1 Pq

b, j
2
3 log ra + 1

3 log rb

}

and

Bμ(q) = max

{

−
1
3 log

∑2
j=1 Pq

a, j + 2
3 log

∑3
j=1 Pq

b, j
1
3 log ra + 2

3 log rb
,

−
2
3 log

∑2
j=1 Pq

a, j + 1
3 log

∑3
j=1 Pq

b, j
2
3 log ra + 1

3 log rb

}

.

123



On the multifractal measures: proportionality and dimensions of... 3967

5.5 Example 5

Let A = {a, b} be a two-letter alphabet, ω = s1s2...sk .... be a sequence over A, si ∈ A. For
any n ≥ 1, write ωn = ω|n = s1s2 · · · sn . We denote by |ωn |a the number of the occurrence
of the letter a in ωn, and |ωn |b the number of occurrence of b. Then |ωn |a + |ωn |b = n. In
the above Moran construction, we take

J = (a, b), nk =
{
2, if sk = a
3, if sk = b,

ck j = ck =
{

ra, if sk = a
rb, if sk = b

, 1 ≤ j ≤ nk .

where 0 < ra < 1
2 , 0 < rb < 1

3 . Let Pa = (Pa1 , Pa2

)
, Pb = (Pb1 , Pb2 , Pb3

)
be probability

vectors such that

Pa1 ≥ Pb1 ≥ Pb2 ≥ Pb3 ≥ Pa2 and Pb1 ≥ 1

e
. (5.2)

By a simple calculation, we get

βk(q) = −
log
(∑2

1 Pq
ai

)
+ k−|ωk |a|ωk |a log

(∑3
i Pq

bi

)

log ra + k−|ωk |a|ωk |a log rb

=
τk(a)

(
log
(∑3

i Pq
b j

)
− log

(∑2
i Pq

ai

))
− log

(∑3
1 Pq

b j

)

τk(b) (log ra − log rb) + log rb
,

where τk(a) = |ωk |a
k . Write τ(a) = lim infk→∞ τk(a) and τ(a) = lim supk→∞ τk(a). Using

(5.2), we have

(1) if q < 1, then

log(ra) log

(
3∑

i

Pq
b j

)

− log(rb) log

(
2∑

i

Pq
ai

)

≥ 0,

bμ(q) =
τ(a)

(
log
(∑3

i Pq
b j

)
− log

(∑2
i Pq

ai

))
− log

(∑3
1 Pq

b j

)

τ(a) (log ra − log rb) + log rb

and

Bμ(q) =
τ(a)

(
log
(∑3

i Pq
b j

)
− log

(∑2
i Pq

ai

))
− log

(∑3
1 Pq

b j

)

τ(a) (log ra − log rb) + log rb
.

(2) If q ≥ 1, then

log(ra) log

(
3∑

i

Pq
b j

)

− log(rb) log

(
2∑

i

Pq
ai

)

≤ 0,

bμ(q) =
τ(a)

(
log
(∑3

i Pq
b j

)
− log

(∑2
i Pq

ai

))
− log

(∑3
1 Pq

b j

)

τ(a) (log ra − log rb) + log rb

and

Bμ(q) =
τ(a)

(
log
(∑3

i Pq
b j

)
− log

(∑2
i Pq

ai

))
− log

(∑3
1 Pq

b j

)

τ(a) (log ra − log rb) + log rb
.
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5.6 Example 6

Let J = [0, 1], ni = 2 and N := {Nk}k∈N be an increasing sequence of integers with
N0 = 0 and limk→+∞ Nk+1

Nk
= +∞. Fix four real numbers A, B, p, p̃ with A > B > 2 and

0 < p, p̃ ≤ 1/2. Now for every i ∈ N, we define ci and {Pi, j }1≤ j≤ni as follows:

ci =
{
1/A, if N2k < i ≤ N2k+1,

1/B, if N2k+1 < i ≤ N2k+2.
and

Pi, j =

⎧
⎪⎪⎨

⎪⎪⎩

p, if N2k < i ≤ N2k+1 and j = 1,
1 − p, if N2k < i ≤ N2k+1 and j = 2,
p̃, if N2k+1 < i ≤ N2k+2 and j = 1,
1 − p̃, if N2k+1 < i ≤ N2k+2 and j = 2.

Now, we can define a homogeneous Moran set E satisfying (SSC) and a Moran measure μ

on it. Define the functions

β1 : R → R

q �→ log(pq + (1 − p)q)

log A
,

and

β2 : R → R

q �→ log( p̃q + (1 − p̃)q)

log B
.

We can conclude that

bμ(q) = min{β1(q), β2(q)} and Bμ(q) = max{β1(q), β2(q)}.
If − log(1− p̃)

log B < − log p
log A , the method in [2, 26] can follows that:

for all α ∈
[
− log(1 − p̃)

log B
,min{− log p

log A
,− log p̃

log B
}
]
we have fμ(α) = b∗

μ(α),

and

Fμ(α) = B∗
μ(α), when α ∈ {B ′

μ(q) : q ∈ R and Bμ is differentiable at q}.
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