Hilbert squares of degeneracy loci

Enrico Fatighenti1 [·](http://orcid.org/0000-0002-4157-5535) Francesco Meazzini2 · Giovanni Mongardi2 · Andrea T. Ricolf2

Received: 8 June 2022 / Accepted: 19 October 2022 / Published online: 3 November 2022 © The Author(s), under exclusive licence to Springer-Verlag Italia S.r.l., part of Springer Nature 2022

Abstract

Let *S* be the first degeneracy locus of a morphism of vector bundles corresponding to a general matrix of linear forms in ^{ps}. We prove that, under certain positivity conditions, its Hilbert square $\text{Hilb}^2(S)$ is isomorphic to the zero locus of a global section of an irreducible homogeneous vector bundle on a product of Grassmannians. Our construction involves a naturally associated Fano variety, and an explicit description of the isomorphism.

Keywords Hilbert schemes · Fano varieties · Grassmannians · Degeneracy loci

1 Introduction

The Hilbert scheme of 2 points $Hilb²(S)$ on a smooth variety *S*, called the *Hilbert square of S*, is an interesting smooth variety, whose geometry is incredibly rich, and yet not fully understood. An intriguing problem consists in finding a projective embedding of $Hilb²(*S*)$, for example by either writing down equations or realising it as the zero locus of a section of some vector bundle. An archetypical example is when S_g is a K3 surface of genus *g*, in which case $\text{Hilb}^2(S_g)$ is a hyperkähler fourfold, and a projective embedding is known in a bunch of cases, including $g = 3, 5, 7, 8, 12$ $g = 3, 5, 7, 8, 12$ $g = 3, 5, 7, 8, 12$ —the last one only up to deformations, see [[1,](#page-29-0) 3, [10](#page-29-2), [11,](#page-29-3) [16\]](#page-29-4). A few other cases are known, including the recent case of \mathbb{P}^2 , see [\[15\]](#page-29-5).

In this paper, we focus on the special case where $S \subset \mathbb{P}^s$ arises as the first degeneracy locus of a general morphism of vector bundles

 \boxtimes Enrico Fatighenti fatighenti@mat.uniroma1.it

> Francesco Meazzini francesco.meazzini2@unibo.it

> Giovanni Mongardi giovanni.mongardi2@unibo.it

Andrea T. Ricolf andreatobia.ricolfi@unibo.it

² Dipartimento di Matematica, Alma Mater studiorum Università di Bologna, Piazza di porta San Donato 5, 40126 Bologna, Italy

¹ Dipartimento di Matematica "Guido Castelnuovo", Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy

$$
\varphi\,:\,\mathcal{O}_{\mathbb{P}^s}^{\oplus n+m}\rightarrow\mathcal{O}_{\mathbb{P}^s}(1)^{\oplus n}.
$$

The case $s = 3$, $n = 3$, $m = 0$ coincides with the quartic determinantal K3 surface studied by Iliev and Manivel in [\[16\]](#page-29-4). Letting *s*, *n*, *m* vary, we fnd many examples of interesting varieties, including surfaces of general type.

Our idea is to study $\text{Hilb}^2(S)$ via an auxiliary hypersurface $Y \subset \mathbb{P}^s \times \mathbb{P}^{n+m-1} \times \mathbb{P}^{n-1}$ naturally associated to *S*, and defned explicitly in Eq. [2.2](#page-3-0). The variety *Y* is always a *Fano variety*, whose study was one of the initial motivations for our project. Via a modular-type construction we then pass from *Y* to *Z*, defned as

$$
Z = V(\omega) \hookrightarrow \text{Gr}(2, n) \times \text{Gr}(2, s+1) \times \text{Gr}(n+m-2, n+m),
$$

where ω is a tri-tensor naturally attached to φ . As explained in Sect. [2.1,](#page-2-0) *Z* is the zero locus of a section of an irreducible, globally generated, homogeneous vector bundle naturally associated to *Y*.

Our main result proves that, in a certain infnite range, the variety *Z* and the Hilbert square $\text{Hilb}^2(S)$ of the variety we started with are isomorphic. Namely, we have the following.

Theorem A (Theorem [6.2](#page-21-0)) Let $n \ge 3$, $m \ge 0$, $s \in \{m+2, ..., 2m+3\}$. Assume $n > 2s - 2m - 3$. Then, there is an isomorphism of schemes ϑ : $Z \rightarrow Hilb^2(S)$.

Our proof goes via the explicit construction of the morphism ϑ . In principle, it says nothing on the cases $n \leq 2s - 2m - 3$. However, we show that for low values of *m* these two varieties are not even deformation equivalent—indeed, their topological Euler characteristics are diferent. This observation leads us to conjecture that, in fact, our bound is optimal, see Conjecture [7.6.](#page-24-0)

In Sects. [2](#page-2-1)–[3](#page-7-0) we explain the geometric setup and the main motivating ideas behind this paper; we also explicitly describe various examples in which our result applies. Sections [4–](#page-10-0)[5](#page-15-0) are the technical core of this paper: frst we describe in full detail the geometry of *Z* (cf. Theorem [4.7](#page-13-0)) independently upon the choice of *s*, *n*, *m*, then we explain how the cases in which our main result does *not* work are related to the presence of some *special lines* contained in *S* (cf. Theorem [5.2](#page-16-0) and Theorem [5.3](#page-17-0)). Our main result, Theorem [A,](#page-1-0) is proved in Sect. 6 (cf. Theorem [6.2](#page-21-0)), whereas Sect. [7](#page-22-0) is devoted to the study of the geometry of some interesting varieties arising as the limit cases for which our method fails, but enjoying a beautiful and rich geometry. Among these examples we include *generalised Bordiga scrolls* (cf. Example [7.3](#page-22-1)), *higher dimensional White varieties* (cf. Example [7.4](#page-23-0)), and also certain varieties containing a fnite number of special lines (cf. Example [7.5](#page-23-1) and Conjecture [7.6\)](#page-24-0).

1.1 Notation

We work over the field of complex numbers \mathbb{C} . For an arbitrary positive integer *d* we let V_d be a *d*-dimensional *C*-vector space, which we also identify with the *d*-dimensional affine space \mathbb{A}^d .

We denote by $Gr(k, n)$ the Grassmannian of *k*-dimensional subspaces in V_n . We denote with U the rank k tautological vector bundle over it, with anti-ample determinant. We write $X = (G, \mathcal{F})$ to denote the zero locus $X = V(\sigma) \subset G$, for a general section $\sigma \in H^0(G, \mathcal{F})$ of a vector bundle F on a variety G. Sometimes we will need to work with a specific σ , and we will specify it accordingly.

2 Setup, motivation and some toy cases

2.1 Degeneracy loci, Fano varieties, and Hilbert schemes

We start by considering a very simple construction from linear algebra. We consider a general $n \times (n + m)$ matrix of homogeneous linear forms

$$
M = \begin{pmatrix} f_1^1 & \dots & f_{n+m}^1 \\ f_1^2 & \dots & f_{n+m}^2 \\ \vdots & \ddots & \vdots \\ f_1^n & \dots & f_{n+m}^n \end{pmatrix}
$$

on an ambient projective space $\mathbb{P}^s = \mathbb{P}(V_{s+1})$. If we ask *M* to have non-maximal rank, we have to consider the locus where all the $\binom{n+m}{n}$ maximal minors vanish. This is of course equivalent to the existence of some linear relations between the rows of *M*. We can therefore consider two strictly related loci: the first one is $S_{n,s,m} \subset \mathbb{P}^s$,

given by the vanishing of the maximal minors of *M*—i.e. the *frst degeneracy locus* $D_{n-1}(\varphi)$ —where we implicitly identify the matrix with the morphism φ : $\mathcal{O}_{\mathbb{P}^s}^{\oplus n+m} \to \mathcal{O}_{\mathbb{P}^s}(1)^{\oplus n}$ defining it. Sometimes we will shorten $S_{n,s,m}$ with *S*, when the subscripts are clear from the context. In other words,

$$
S_{n,s,m} = \{ [v] \in \mathbb{P}^s \mid \text{rank}(M_v) \le n - 1 \},
$$

where $M_v \in \text{Mat}_{n,n+m}(\mathbb{C})$ is the evaluation of *M* at $v \in V_{s+1}$.

The second relevant locus is a subvariety $X_{n,s,m} \subset \mathbb{P}^s \times \mathbb{P}^{n+m-1}$, given by *n* bihomogeneous linear polynomials of bi-degree $(1, 1)$, i.e. by a section of $\mathcal{O}(1, 1)^{\oplus n}$.

What is the relation between *S* and *X*? First of all, assume *S* to be smooth with $dim(S) > 0$. Under our generality assumption, this will be equivalent to requiring $m + 2 \leq s \leq 2m + 3$, where the second inequality ensures that the further degeneracy loci will be empty.

Now, $X_{n,s,m}$ is constructed in a tautological way as follows: if y_1, \ldots, y_{n+m} are chosen coordinates on \mathbb{P}^{n+m-1} , and $F_i = (f_1^i, \ldots, f_{n+m}^i)$ is the *i*-th row of our matrix *M*, we will have

$$
X_{n,s,m} = V(F_1 \cdot \underline{y}, \dots, F_n \cdot \underline{y}) \subset \mathbb{P}^s \times \mathbb{P}^{n+m-1}.
$$

Using our notation,

$$
X_{n,s,m} = (\mathbb{P}^s \times \mathbb{P}^{n+m-1}, \mathcal{O}(1,1)^{\oplus n}).
$$
\n(2.1)

The fibres of the projection $\pi : X_{n,s,m} \hookrightarrow \mathbb{P}^s \times \mathbb{P}^{n+m-1} \to \mathbb{P}^s$ are generically cut out by *n* linear equations, or $n - 1$ exactly where there is a linear dependence relation in *M* (and that is all that can happen, since by hypothesis there are no further degenerations): in other words, we have proved the following lemma.

Lemma 2.1 *In the setup above,* π : $X_{n,s,m}$ \rightarrow \mathbb{P}^s *is generically a* \mathbb{P}^{m-1} *-bundle jumping to a* \mathbb{P}^m -*bundle exactly over* $S_{n,s,m}$.

We call $X = X_{n,s,m}$ a generalised $(m-1,m)$ blow up of $S = S_{n,s,m}$. This construction is sometimes referred to as *Cayley trick*. This is in fact a generalisation of the blow up formula, and it implies that the vanishing cohomologies of *X* and *S* are isomorphic, and also that $D^b(X)$, the bounded derived category of coherent sheaves over *X*, contains a copy of $D^b(S)$. Refer-ences for this fact can be found in [\[18](#page-29-6), Theorem 2.[4](#page-29-7)] and [4, Proposition 46].

We could have built yet another natural variety starting from the matrix *M* (or better, its transpose). If we take the transpose M^t of the matrix M , and we apply it to a vector $\underline{z} = (z_1, \dots, z_n)^t$ we can consider the locus $\Gamma_{n,s,m} \subset \mathbb{P}^s \times \mathbb{P}^{n-1}$, given by $M^t \cdot \underline{z} = 0$. In other words, if we write $F_i^t = (f_i^1, \dots, f_i^n)$, we have then

$$
\Gamma_{n,s,m} = V(F_1^t \cdot \underline{z}, \dots, F_{n+m}^t \cdot \underline{z}) \subset \mathbb{P}^s \times \mathbb{P}^{n-1}
$$

and again, in our notation,

$$
\Gamma_{n,s,m} = (\mathbb{P}^s \times \mathbb{P}^{n-1}, \mathcal{O}(1,1)^{\oplus n+m}).
$$

Consider, this time, the restricted projection $\Gamma_{n,s,m} \hookrightarrow \mathbb{P}^s \times \mathbb{P}^{n-1} \to \mathbb{P}^s$. This time the fibre is generically empty, and it becomes a point exactly where the rank drops, i.e. on *S*. In other words, one has the following lemma.

Lemma 2.2 *The projection* $\mathbb{P}^s \times \mathbb{P}^{n-1} \to \mathbb{P}^s$ *restricts to an isomorphism* $\Gamma_{n,s,m} \to S_{n,s,m}$.

This implies that the Picard group of $S_{n,s,m}$ is \mathbb{Z}^2 (at least generically), and the line bundles $\mathcal{O}(1, 1)$ and $\mathcal{O}(1, 0)$ (restricted from $\mathbb{P}^s \times \mathbb{P}^{n-1}$) are both very ample. In what follows, we will study as well the morphism induced by $\mathcal{O}(0, 1)$, showing that it will be very ample in a certain range (namely $n > 2s - 2m - 3$) as well.

Consider now two triples (n_1, s_1, m_1) and (n_2, s_2, m_2) : if we set $n_2 = s_1 + 1$, $s_2 = n_1 - 1$, $m_2 = n_1 + m_1 - s_1 - 1$, then Γ_{n_1,s_1,m_1} and Γ_{n_2,s_2,m_2} are both $(n_1 + m_1)$ -codimensional linear sections of $\mathbb{P}^{s_1} \times \mathbb{P}^{n_1-1}$, with the role of the two projective spaces exchanged, hence they belong to the same deformation family. When the triples satisfy such a relation, we call them *associated*.

If we are in the correct range for the first triple, i.e. $m_1 + 2 \le s_1 \le 2m_1 + 3$, $n_1 \ge 3$ and $n_1 > 2s_1 - 2m_1 - 3$, then the second triple will be in the correct range as well (in fact $n_2 > 2s_2 - 2m_2 - 3$ reduces exactly to $s_1 \leq 2m_1 + 3$.

In this range both projections to \mathbb{P}^{s_1} and \mathbb{P}^{n_1-1} are embeddings when restricted to Γ (this follows from Theorem [5.2](#page-16-0)): in other words,

$$
S_{n_2,s_2,m_2} \cong S_{s_1+1,n_1-1,n_1+m_1-s_1-1}
$$

yields another presentation for S_{n_1,s_1,m_1} , with a different embedding. We will see these phenomena in detail when dealing with two presentations of determinantal quartic K3 surfaces (abstractly but not projectively isomorphic), and of a quintic determinantal surface embedded as a codimension 2 degeneracy locus, see Sect. [2.3.](#page-5-0)

Let us now get back to $X = X_{n,s,m}$, and perform once again a *Cayley trick*. In fact, we can associate to $X_{n,s,m}$ another variety

$$
Y_{n,s,m} = (\mathbb{P}^s \times \mathbb{P}^{n+m-1} \times \mathbb{P}^{n-1}, \mathcal{O}(1, 1, 1)),
$$
\n(2.2)

defned tautologically starting from the equations of *X*. This will be simply given by

$$
Y_{n,s,m} = V\left(\sum_{i=1}^n z_i (F_i \cdot \underline{y})\right).
$$

Of course, the projection $\mathbb{P}^{n-1} \times \mathbb{P}^s \times \mathbb{P}^{n+m-1} \to \mathbb{P}^s \times \mathbb{P}^{n+m-1}$ restricted to *Y* is generically $a \mathbb{P}^{n-2}$ -bundle, with special fibres the whole \mathbb{P}^{n-1} over *X*.

Notice that $Y = Y_{n,s,m}$ is a Fano variety, simply by adjunction: on the other hand this is not the case in general for *X* or *S*: as a matter of fact, we will work only under certain (at least) non-negativity assumption for the canonical bundle of *S*.

In a certain sense, the main character of the whole story is precisely the Fano variety *Y*: we can see it as the universal variety associated to a tri-tensor $\omega \in V^{\vee}_{s+1} \otimes V^{\vee}_{n+m} \otimes V^{\vee}_{n}$ simply given by $\omega = \sum_{1 \le i \le n} z_i (F_i \cdot y)$.

The geometry of a tri-tensor is an old and fascinating topic, with one of the frst references being [\[6](#page-29-8)]. See also, [\[26,](#page-29-9) [30](#page-30-0)] for a modern account. The degeneracy locus *S*, the rational variety *X* and all the other characters appearing in this picture can be seen to be induced by *Y* via the obvious projections.

Finally, we associate to $Y_{n,s,m}$ one last variety $Z_{n,s,m}$, which is far from being a Fano variety. Denote by

$$
G_{n,s,m} := \text{Gr}(2,n) \times \text{Gr}(2,s+1) \times \text{Gr}(n+m-2,n+m),\tag{2.3}
$$

then define the vanishing locus $Z_{n, s, m} = V(\omega) \subset G_{n, s, m}$. In our notation,

$$
Z_{n,s,m} = (G_{n,s,m} \quad \mathcal{U}^{\vee} \boxtimes \mathcal{U}^{\vee}) \boxtimes \mathcal{U}^{\vee}). \tag{2.4}
$$

The reason for this apparently arbitrary choice is that by Borel–Bott–Weil

$$
\mathrm{H}^0(\mathbb{P}^{n-1}\times\mathbb{P}^s\times\mathbb{P}^{n+m-1},\mathcal{O}(1,1,1))\cong\mathrm{H}^0\big(G_{n,s,m},\,\mathcal{U}^\vee\boxtimes\mathcal{U}^\vee\boxtimes\mathcal{U}^\vee\big).
$$

Notice that this holds true for any product Gr $(k_3, n) \times$ Gr $(k_1, s + 1) \times$ Gr $(k_2, n + m)$. However, with this particular choice of ambient spaces, we have that the dimension of *Z* is equal to $2(s - m - 1)$, i.e. dim $Z = 2 \cdot \dim S$.

This is not a coincidence: in fact the purpose of this paper is to show that as long as the triple (n, s, m) satisfies the constraints

$$
m + 2 \le s \le 2m + 3, \quad n > 2s - 2m - 3,
$$

one has an isomorphism of schemes

$$
Z_{n,s,m} \cong \text{Hilb}^2(S_{n,s,m}).
$$

We stress that the condition $n > 2s - 2m - 3$ is not necessary. In fact our proof goes via the explicit construction of a morphism to the Hilbert scheme, which exists and happens to be an isomorphism in that range. This a priori says nothing on the other cases. However, we show that for e.g. $m = 0$, 1 our bound is optimal, see Examples [7.2](#page-22-2) and [7.5](#page-23-1) where we explicitly compute the Hodge numbers of *Z* and Hilb²(*S*) in the range $n \le 2s - 2m - 3$, confrming that they are diferent.

2.2 A conjectural relation with the Hilbert scheme of the Fano variety *Y*

Before discussing some examples, we mention one more relation between *Z* and the Hilbert scheme, that we leave for future research to explore. More precisely, we conjecture that *Z* can be realised as a Hilbert scheme *onY* as well. In fact, if we call $\mathbb{P}_{1,n-3}$: = $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^{n-3}$ contained fibre-wise in $\mathbb{P}_{n,s,m}$: = $\mathbb{P}^{n-1} \times \mathbb{P}^s \times \mathbb{P}^{n+m-1}$, we can consider the incidence variety

$$
F = \{ (p, \mathbb{P}_{1,1,n-3}) \subset \mathbb{P}_{n,s,m} \times G_{n,s,m} | p \in \mathbb{P}_{1,1,n-3} \},\
$$

with $G_{n \, s \, m}$ as in [\(2.3\)](#page-4-0).

Notice that *F* can be described as the zero locus

$$
F = (\text{Fl}(1, 2, n) \times \text{Fl}(1, 2, s + 1) \times \text{Fl}(n + m - 3, n + m - 2, n + m), \mathcal{O}(1, 0) \otimes \mathcal{O}(1, 0) \otimes \mathcal{Q}_2),
$$

where the first two bundles are the pullback of the ample line bundles from \mathbb{P}^{n-1} and \mathbb{P}^s , and the last is the pullback of the rank 2 quotient bundle in Gr $(n + m - 2, n + m)$. This implies that the projection *p* from *F* to *Y* is a $\mathbb{P}^{n-2} \times \mathbb{P}^{s-1} \times \mathbb{P}^{n+m-2}$ -bundle, while the projection *q* from *F* to $G_{n,s,m}$ is a \mathbb{P}^{n+m-3} $\cup \mathbb{P}^{n+m-3}$ generically, degenerating to a $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^{n+m-3}$ over *Z*. Our Hodge theoretic intuition suggests that one should also have an isomorphism

$$
Z \cong \text{Hilb}_{\mathbb{P}_{1,1,n-3}}(Y)
$$

with the induced isomorphism in cohomology realised by the classical *Abel-Jacobi type p*[∗] q [∗]-map. However, we have not been able to prove this for the time being, and we hope to return to it in the future.

2.3 Toy case I: determinantal

As a first special sub-case, it is worth mentioning the case $m = 0$, in which case *S* is a determinantal hypersurface in ℙ*^s* . Also, we need *s* ≤ 3, since from threefolds onwards *S* will in fact be singular.

With $s = 3$, the last case excluded by Theorem [A,](#page-1-0) $n = 3$, is the one of a cubic surface, and we can immediately show that *Z* and Hilb²(*S*) are not isomorphic: as a matter of fact, e_{top} (Hilb²(S)) = e_{top} (Z) + 21, where the discrepancy by 21 should be accounted for by the 6 exceptional lines plus the other 15 which are strict transforms of lines passing through two of the six points. This will be also discussed right after Conjecture [7.6](#page-24-0).

If we consider $n = 4$, we have that $X \cong \Gamma \cong S$, and with three different representations. In this case the isomorphism was already known to be true from [\[16,](#page-29-4) Proposition 1]. In fact *S* is a determinantal quartic K3 surface, presented with three diferent models, hence *Z* is a hyperkähler fourfold. This construction is very classical, starting from $[6]$ $[6]$, and the relations between the three models have been recently explored in [\[12,](#page-29-10) [24,](#page-29-11) [31](#page-30-1)].

Another interesting case which is covered by our theorem is the one of a determinantal *quintic surface*, which we will explore in detail in Sect. [3.2.](#page-8-0)

2.4 Toy case II: sub‑determinantal

Another relevant case is the sub-determinantal case, i.e. for $m = 1$. In this case we can borrow some results from [\[19,](#page-29-12) §2.2] and [\[5](#page-29-13), Proposition 3.6] to readily compute the invariants of *S*. We remark that our smoothness condition forces $3 \leq s \leq 5$. In fact, the *k*-th degeneracy locus $D_{n-k}(\varphi)$ has expected codimension $k(m+k)$ in the ambient space \mathbb{P}^s . Hence for $m = 1$, $k = 2$, it has expected codimension 6, i.e. $D_{n-2}(\varphi) = \emptyset$.

Notice how in this case the map $X \to \mathbb{P}^s$ is particularly simple, indeed it agrees with the blow up map $X = Bl_S \mathbb{P}^s \to \mathbb{P}^s$.

The structure sheaf of $S = D_{n-1}(\varphi)$ admits a resolution by the so-called Eagon–Northcott complex, which has this form every time that we have a morphism of globally generated vector bundles \mathcal{E}, \mathcal{F} of rank $(n + 1, n)$: In this case, it takes the form:

$$
0 \to \mathcal{F}^{\vee} \to \mathcal{E}^{\vee} \to \det(\mathcal{E}^{\vee}) \otimes \det(\mathcal{F}) \to (\det(\mathcal{E}^{\vee}) \otimes \det(\mathcal{F}))|_{D_{n-1}(\varphi)} \to 0. \tag{2.5}
$$

In our case it will suffices to take $\mathcal{E} \cong \mathcal{O}_{\mathbb{P}^s}^{\oplus n+1}$ and $\mathcal{F} \cong \mathcal{O}_{\mathbb{P}^s}(1)^{\oplus n}$.

One can use suitably twisted versions of this complex to compute some invariants of *S*, as shown in the next examples. Of course one could have worked directly on Γ as well, or on *X*, applying the blow up formula.

Proposition 2.3 *Fix s* = 3 *and n* > 1. Let φ : $\mathcal{O}_{\mathbb{P}^3}^{\oplus n+1} \to \mathcal{O}_{\mathbb{P}^3}(1)^{\oplus n}$ *be a general morphism. Consider the smooth curve* $S_n := S_{n,3,1} = D_{n-1}(\varphi) \subset \mathbb{P}^3$. *Then*

$$
g(S_n) = n\binom{n}{3} - (n+1)\binom{n-1}{3}, \qquad \deg(S) = \binom{n+1}{2}.
$$

Proof Consider the Eagon–Northcott resolution of \mathcal{O}_{S_n} from ([2.5\)](#page-6-0). Twisting back, we have

$$
0 \to \mathcal{O}_{\mathbb{P}^3}(-n-1)^{\oplus n} \to \mathcal{O}_{\mathbb{P}^3}(-n)^{\oplus n+1} \to \mathcal{O}_{\mathbb{P}^3} \to \mathcal{O}_{S_n} \to 0.
$$

We have that

$$
\chi(\mathcal{O}_{S_n}) = \chi(\mathcal{O}_{\mathbb{P}^3}) + \chi(\mathcal{O}_{\mathbb{P}^3}(-n-1)^{\oplus n}) - \chi(\mathcal{O}_{\mathbb{P}^3}(-n)^{\oplus n+1}),
$$

i.e.

$$
1 - g(S_n) = 1 - n \binom{n}{3} + (n+1) \binom{n-1}{3}.
$$

In order to compute the degree, it suffices to check the Hilbert polynomial, which for a curve we know to be equal to $p_{S_n}(t) = dt + 1 - g$, where *d* is the degree. Since in general $p_{S_n}(t) = at + b$, we have of course $\chi(\mathcal{O}_{S_n}) = p_{S_n}(0) = 1 - g$ and

$$
\chi(\mathcal{O}_{S_n}(1)) = p_{S_n}(1) = 4 - n \binom{n-1}{3} + (n+1) \binom{n-2}{3},
$$

where we used as before the sequence (2.5) (2.5) . It follows that

$$
a = 3 + n \left(\binom{n}{3} - \binom{n-1}{3} \right) - (n+1) \left(\binom{n-1}{3} - \binom{n-2}{3} \right),
$$

which simplifies to $a = \begin{pmatrix} n+1 \\ 2 \end{pmatrix}$ 2 \Box The result follows.

Proposition 2.4 $Fix s \in \{3,4\}$ and $n > 1$. Let $\varphi : \mathcal{O}_{\mathbb{P}^s}^{\oplus n+1} \to \mathcal{O}_{\mathbb{P}^s}(1)^{\oplus n}$ be a general mor*phism. Then the smooth subvariety* $S_{s,n}$: = $S_{n,s,1} = D_{n-1}(\varphi) \subset \mathbb{P}^s$, *of codimension* 2, *has topological Euler characteristic*

 \bigcirc Springer

$$
e_{\text{top}}(S_{s,n}) = \begin{cases} 4n^2 - 2n^3 + (3n - 4) \binom{n}{2} - \binom{n}{3} & \text{if } s = 3\\ n^2(10 - 10n + 3n^2) + \binom{n}{2}(-10 + 15n - 6n^2) + \binom{n}{3}(4n - 5) - \binom{n}{4} & \text{if } s = 4 \end{cases}
$$

Proof See Appendix 1. □

Lemma 2.5 *Fix s* = 4. *Then the smooth surface* $S_{n,4,1} \subset \mathbb{P}^4$ *has irregularity* $q = 0$ *, and geometric genus*

$$
p_g(S_{n,4,1}) = n \binom{n}{4} - (n+1) \binom{n-1}{4}.
$$

Proof The Euler characteristic of the structure sheaf $\chi(\mathcal{O}_{S_n})$ is computed as in Proposi-tion [2.3,](#page-6-1) using the sequence ([2.5\)](#page-6-0) on \mathbb{P}^4 . We have in particular that

$$
\chi(\mathcal{O}_{S_n}) = 1 + n \binom{n}{4} - (n+1) \binom{n-1}{4}.
$$

Moreover, S_n is connected and $q = 0$. The first statement can be proven as in the curve case. The second follows from the isomorphism $\Gamma \cong S_n$. On the other hand, we know that $\Gamma = (\mathbb{P}^4 \times \mathbb{P}^{n-1}, \mathcal{O}(1, 1)^{\oplus n+1})$. Hence, by Lefschetz hyperplane section theorem, the only weight where the cohomology of Γ has non-zero level is the middle one; therefore, $q = 0$.

◻

Remark 2.6 From the above lemma one immediately deduces that $p_g = q = 0$ as long as $n < 4$. Moreover the same argument tells us that for a threefold which is a degeneracy locus in \mathbb{P}^5 , $h^1(\mathcal{O}_{S_n}) = h^2(\mathcal{O}_{S_n}) = 0$ and $h^{1,1}(S_n) = 2$.

A nice observation is that the sub-determinantal case $n = 4$, $s = 4$, $m = 1$ and the determinantal case $n = 5$, $s = 3$, $m = 0$ both give rise to a determinantal quintic, since Γ in both cases is given by

$$
\Gamma = (\mathbb{P}^3 \times \mathbb{P}^4, \mathcal{O}(1, 1)^{\oplus 5}),
$$

albeit the role of \mathbb{P}^3 and \mathbb{P}^4 is exchanged.

3 Some examples

In this section, we collect some examples that do fall within the 'good range' prescribed by Theorem [A](#page-1-0), and that therefore realise the desired isomorphism Hilb²(S) \cong *Z*. For the sake of completeness, we write down the Hodge numbers of the varieties involved, which can be computed using the methods detailed in [[9](#page-29-14), §3.2].

3.1 The cases n = **3,s** = **3, m** = **1 and n** = **4,s** = **2, m** = **0**

We discuss first an example which is quite classical. Let us consider $S \subset \mathbb{P}^3$, where *S* is a degree 6, genus 3 space curve given by the intersection of four cubics (i.e. the maximal minors of a 4×3 matrix of linear forms).

In the notation of the previous section, according to (2.1) (2.1) in the case $(n, s, m) = (3, 3, 1)$ we have $X \subset \mathbb{P}^3 \times \mathbb{P}^3$, given as the complete intersection of three divisors of bi-degree $(1, 1)$, i.e. $X = (\mathbb{P}^3 \times \mathbb{P}^3, \mathcal{O}(1, 1)^{\oplus 3})$. This variety *X* is the Fano threefold **2–12** in the original Mori–Mukai notation, see [\[2](#page-29-15), [9,](#page-29-14) [21\]](#page-29-16).

Following the discussion of the previous section, *X* is identified with the blow up $BI_S \mathbb{P}^3$, see also [\[8,](#page-29-17) 2-12]. One can immediately compute the Hodge numbers of *X*, these being

$$
\begin{array}{cccc}\n0 & 3 & 3 & 0 \\
0 & 2 & 0 \\
0 & 0 \\
1\n\end{array}
$$

The rational map $\eta : \mathbb{P}^3 \to \mathbb{P}^3$ induced by this construction is the cubo-cubic Cremona transformation of \mathbb{P}^3 already known to Max Noether, see [\[22,](#page-29-18) [28\]](#page-30-2) and it is the only nontrivial Cremona transformation of \mathbb{P}^3 that is resolved by just one blow up along a smooth curve, see [\[17\]](#page-29-19).

The second variety in the picture is $Y = (\mathbb{P}^3 \times \mathbb{P}^3 \times \mathbb{P}^2, \mathcal{O}(1, 1, 1))$. This is a Fano sevenfold, with anti-canonical class equal to $-K_y \cong \mathcal{O}_Y(3, 3, 2)$. We can apply the Cayley trick from *Y* to *X* to determine the Hodge numbers of *Y*, which can be also computed using the standard Koszul resolution. These are:

$$
\begin{array}{cccccc} 0 & 0 & 0 & 3 & 3 & 0 & 0 & 0 \\ 0 & 0 & 0 & 9 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 6 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 1 & 0 \end{array}
$$

Finally, we consider the variety $Z = (Gr(2, 4) \times Gr(2, 4) \times Gr(2, 3), U' \boxtimes U' \boxtimes U'$. By our theorem, $Z \cong \text{Hilb}^2(S) \cong \text{Sym}^2(S)$. We can check that $K_Z \cong \mathcal{O}_Z(0,0,1)$ and that its Hodge numbers are the expected ones, namely

$$
\begin{array}{cc}\n3 & 10 & 3 \\
3 & 3 \\
1\n\end{array}
$$

Finally, notice that, using the notation of the previous section, the associated triple to (3, 3, 1) is (4, 2, 0). In this case $S_{4,2,0} \subset \mathbb{P}^2$ is a plane quartic curve, and *Z* describes its symmetric square as well.

3.2 The case n = **5,s** = **3, m** = **0 and n** = **4,s** = **4, m** = **1**

As before, these two cases defne the same surface, in two diferent presentations. In fact, the first triple of invariants immediately identifies $S_{5,3,0} \subset \mathbb{P}^3$ as a quintic determinantal surface, which has Picard rank 2 in general. On the other hand $S_{4,4,1} \subset \mathbb{P}^4$ is a codimension 2 surface defned by 5 quartic equations. However, thanks to Lemma [2.2](#page-3-1) they are both isomorphic to the same Γ , which is

$$
\Gamma = (\mathbb{P}^3 \times \mathbb{P}^4, \mathcal{O}(1, 1)^{\oplus 5}).
$$

The Hodge numbers of *S* (of course regardless of the presentation) are as follows:

$$
\begin{array}{cc}\n4 & 45 & 4 \\
0 & 0 \\
1\n\end{array}
$$

We can consider the associated $Z = (\text{Gr}(2, 5) \times \text{Gr}(3, 5) \times \text{Gr}(2, 4), \mathcal{U} \boxtimes \mathcal{U} \boxtimes \mathcal{U}^{\vee}),$ which is of course the same in both cases. The Hodge numbers of $Z \cong \text{Hilb}^2(S)$ (see also Appendix 2) are:

$$
\begin{array}{cccc}\n10 & 184 & 1097 & 184 & 10 \\
0 & 0 & 0 & 0 \\
4 & 46 & 4 \\
0 & 0 & 1\n\end{array}
$$

3.3 The case n = **6,s** = **5, m** = **1**

If for $m \in \{0, 1\}$ in the surface case our condition $n > 2s - 2m - 3$ corresponded essentially to a non-negative Kodaira dimension, for $(m, s) = (1, 5)$, the limit case which is not covered by Theorem [A,](#page-1-0) is a threefold of general type: we are going to show in Example [7.5](#page-23-1) that *Z* and Hilb²(S) are *not* isomorphic. In fact, the first case with $m = 1$, $s = 5$ which is covered by our Theorem is for $n = 6$. In this case, the associated triple to $(6, 5, 1)$ is again $(6, 5, 1)$.

Our threefold $S_{6,5,1} \subset \mathbb{P}^5$ is defined by 7 minors (of degree 6): it is isomorphic to $\Gamma = (\mathbb{P}^5 \times \mathbb{P}^5, \mathcal{O}(1, 1)^{\oplus 7}).$

We can compute the Hodge numbers of $S_{5,6,1}$, these being:

$$
\begin{array}{ccc}\n29 & 520 & 520 & 29 \\
0 & 2 & 0 \\
0 & 0 & 1\n\end{array}
$$

The Hodge numbers of Hilb²(*S*) \cong *Z* \subset Gr (2, 6) \times Gr (2, 6) \times Gr (5, 7) are

Notice that the Euler characteristic $e_{\text{top}}(Z) = 593502$ coincides with $e_{\text{top}}(\text{Hilb}^2(S))$, which is computed in Appendix 2.2.

3.4 The cases $n = 4$, $s = 5$, $m = 2$ and $n = 6$, $s = 3$, $m = 0$

These two associated cases describe two diferent presentations for *S*, as a smooth determinantal sextic and as a codimension 3 surface in \mathbb{P}^5 . Here Γ can be described as $\Gamma = (\mathbb{P}^5 \times \mathbb{P}^3, \mathcal{O}(1, 1)^{\oplus 6})$. The Hodge numbers for *S* are:

$$
\begin{array}{cc}\n10 & 86 & 10 \\
0 & 0 \\
1\n\end{array}
$$

We can compute the Hodge numbers of Hilb²(*S*) \cong *Z* \subset Gr (2, 6) \times Gr (2, 4) \times Gr (4, 6), which are:

$$
\begin{array}{cccc}\n55 & 870 & 3928 & 870 & 55 \\
0 & 0 & 0 & 0 & 0 \\
10 & 87 & 10 & \\
 & 0 & 0 & \\
 & & 1 & \n\end{array}
$$

4 Key construction and preparation lemmas

In this more technical section we explain the key constructions that will allow us to prove Theorem [6.2](#page-21-0). For the reader convenience we begin by briefy recalling the notations needed. As above, we fix integers $n \ge 3$, $m \ge 0$, and $s \in \{m+2, \ldots, 2m+3\}$; we shall consider a *general* map of vector bundles

$$
\varphi : \mathcal{O}_{\mathbb{P}^s}^{\oplus n+m} \to \mathcal{O}_{\mathbb{P}^s}(1)^{\oplus n} \tag{4.1}
$$

.

along with the associated $(m + 1)$ -codimensional, *smooth* degeneracy locus

$$
S = S_{n,s,m} = D_{n-1}(\varphi) \hookrightarrow \mathbb{P}^s
$$

Indeed, by the genericity of φ , each degeneracy locus $D_k(\varphi) = \{p \in \mathbb{P}^s | \text{rank}(\varphi(p)) \leq k\} \subset \mathbb{P}^s$ has codimension in \mathbb{P}^s equal to the expected one, namely $(n - k)(n + m - k)$. In the range $s \in \{m + 2, ..., 2m + 3\}$, we have dim *D_{n−1}*(φ) > 0, and the singularities are exactly in $D_{n-2}(\varphi) = \emptyset$, whence the smoothness.

As already outlined in the previous sections, φ can be understood from an algebraic point of view as a matrix

$$
M = \begin{pmatrix} f_1^1 & \cdots & f_{n+m}^1 \\ f_1^2 & \cdots & f_{n+m}^2 \\ \vdots & \ddots & \vdots \\ f_1^n & \cdots & f_{n+m}^n \end{pmatrix} \in \text{Mat}_{n,n+m}(\text{H}^0(\mathbb{P}^s, \mathcal{O}_{\mathbb{P}^s}(1)))
$$

of linear forms f_j^i depending on $s + 1$ variables. We shall switch from φ to *M* freely in what follows.

Working in the affine setup, one is led to consider the locus

$$
\widehat{S} = \{ v \in V_{s+1} \mid \text{rank} \,(M_v) = n - 1 \} \subset V_{s+1},
$$

where $M_v \in \text{Mat}_{n,n+m}(\mathbb{C})$ denotes the matrix M evaluated at the point $v \in V_{s+1}$. By the linearity of f_j^i , the subvariety $\hat{S} \subset V_{s+1}$ descends to a subvariety $S \hookrightarrow \mathbb{P}^s = \mathbb{P}(V_{s+1})$, in such a way that $\hat{S} \cup \{0\}$ is the affine cone over $S \hookrightarrow \mathbb{P}^s$. We shall use the notation [*v*] to denote a point in projective space, to emphasise that we take the projective point of view.

4.1 Constructing points in the triple Grassmannian

Consider the set-theoretic map

$$
\psi: S \to \mathbb{P}^{n-1}, \qquad [\nu] \mapsto [\alpha_{\nu}],
$$

where $[\alpha_{\nu}]$ is determined by the 1-dimensional \mathbb{C} -vector space

$$
\ker\left(\mathcal{O}_{\mathbb{P}^s}(-1)|_{[v]}^{\oplus n}\xrightarrow{\varphi'_{[v]}}\mathcal{O}_{\mathbb{P}^s}|_{[v]}^{\oplus n+m}\right)\subset \mathcal{O}_{\mathbb{P}^s}(-1)|_{[v]}^{\oplus n}=V_n=\mathbb{C}^n.
$$

Of course, if *M* is the $n \times (n + m)$ matrix of linear forms corresponding to the morphism φ , then $\alpha_{\nu} \in V_n$ is defined (up to scalar multiplication) by $M_{\nu}^t \cdot \alpha_{\nu} = 0$.

Lemma 4.1 *The association* $[v] \mapsto [\alpha_v]$ *defines an algebraic morphism* $\psi : S \to \mathbb{P}^{n-1}$.

Proof As already mentioned, since φ is general, one has $D_{n-2}(\varphi) = \emptyset$, and thus $\varphi_{[v]}$ has rank precisely *n* − 1 for every [*v*] \in *S*. Therefore the sheaf $\mathcal{L} = \text{coker}(\varphi)|_S$ is a locally free sheaf of rank 1, and moreover it is globally generated by *n* sections $\alpha^1, \ldots, \alpha^n$, arising from the linear dependence relations

$$
\alpha_{[v]}^1 F_{[v]}^1 + \dots + \alpha_{[v]}^n F_{[v]}^n = 0, \quad [v] \in S,
$$

where $F_{\{v\}}^i$ denotes the *i*-th row of the matrix associated to $\varphi_{\{v\}} = M_v$. The data $(L, \alpha^1, \ldots, \alpha^n)$ defines the sought after algebraic morphism $\psi : S \to \mathbb{P}^{n-1}$. \mathbf{a}

Our key construction starts now. Let $[v]$, $[w] \in S$ be distinct points and consider the space

$$
\pi_{v,w} = \langle M_v^t \cdot \alpha_w, M_w^t \cdot \alpha_v \rangle \subset V_{n+m}.
$$
\n(4.2)

The following lemma aims to explain the geometric role of $\pi_{v,w}$ just defined.

Lemma 4.2 *Let* [*v*], [*w*] *be two distinct points in S*. *Then*:

- (1) dim $\pi_{v,w} = 0$ *if and only if the line* $e_{v,w}$ *joining* [*v*], [*w*] *is entirely contained in S, and* $\psi(\mathcal{C}_{v,w})$ reduces to a point in \mathbb{P}^{n-1} .
- (2) dim $\pi_{v,w} = 1$ *if and only if the line* $e_{v,w}$ *joining* [*v*], [*w*] *is entirely contained in S, and* $\psi(\mathcal{C}_{v,w})$ is a line in \mathbb{P}^{n-1} .
- (3) dim $\pi_{v,w} = 2$ if and and only if $\psi(\ell_{v,w}) \subset \mathbb{P}^{n-1}$ intersects the line between $[\alpha_v]$ and $[\alpha_w]$ *in precisely two points*.

Proof We proceed case by case.

(1) $\langle \alpha_v \rangle = \langle \alpha_w \rangle$ if and only if $M_v^t \cdot \alpha_w = M_w^t \cdot \alpha_v = 0$; therefore dim $\pi_{v,w} = 0$ if and only if $\dim \langle \alpha_v, \alpha_w \rangle = 1$ and the statement follows by

$$
M^t_{\lambda v + \mu w} \cdot \alpha_v = M^t_{\lambda v} \cdot \alpha_v + M^t_{\mu w} \cdot \alpha_v = 0
$$

for every $\lambda, \mu \in \mathbb{C}$.

- (2) If dim $\pi_{v,w} = 1$ then there exist $\delta_1, \delta_2 \in \mathbb{C}$ such that $\delta_1 M_w^t \cdot \alpha_v + \delta_2 M_v^t \cdot \alpha_w = 0$. Therefore $M'_{\lambda v + \mu w}(\lambda \delta_1 \alpha_v + \mu \delta_2 \alpha_w) = \lambda \mu (\delta_2 M_v^t \cdot \alpha_w + \delta_1 M_w^t \cdot \alpha_v) = 0$, so that $[\lambda v + \mu w] \in S$ for every $\lambda, \mu \in \mathbb{C}$ and the kernels of the transpose matrices are aligned in \mathbb{P}^{n-1} . For the converse, first notice that dim $\pi_{v,w} \neq 0$. Moreover, if there exists another point $[u] \in \mathcal{E}_{v,w} \cap S$ with $\alpha_u = \delta_1 \alpha_v + \delta_2 \alpha_w$, and $u = \lambda v + \mu w$. Then $\lambda \delta_2 M_v^t \cdot \alpha_w + \mu \delta_1 M_w^t \cdot \alpha_v = 0$, so that dim $\pi_{v,w} = 1$.
- (3) By contradiction, suppose there exists a third point $[u] \in \mathcal{C}_{v,w} \cap S$ with $\alpha_u = \delta_1 \alpha_v + \delta_2 \alpha_w$, and $u = \lambda v + \mu w$. Then $\lambda \delta_2 M_v^t \cdot \alpha_w + \mu \delta_1 M_w^t \cdot \alpha_v = M_u^t \cdot \alpha_u = 0$, so that dim $\pi_{v,w} \le 1$. Viceversa, if dim $\pi_{v,w} \leq 1$ then $\ell_{v,w} \subset S$ by the above items so that $\psi(\ell_{v,w})$ intersects the line between $[\alpha_{\nu}]$, $[\alpha_{\nu}]$ either in one point or in infinite points.

Defnition 4.3 We shall use the shorthand notation

$$
G_{n,s,m} = \text{Gr}(2,n) \times \text{Gr}(2,s+1) \times \text{Gr}(n+m-2,n+m),
$$

and we shall denote with the same letter U the tautological (sub)bundle on each Grassmannian. There is a natural section $\omega \in H^0(G_{n,s,m}, \mathcal{U}^{\vee} \boxtimes \mathcal{U}^{\vee} \boxtimes \mathcal{U}^{\vee})$ associated to *M*, defined by

$$
\omega: V_n \otimes V_{s+1} \otimes V_{n+m} \longrightarrow \mathbb{C}, \qquad (a, u, b) \mapsto a^t \cdot M_u \cdot b.
$$

We denote by $Z = V(\omega) \subset G_{n \text{ s.m}}$ its zero scheme.

We note that there is an identity

$$
Z = \left\{ P \in G_{n,s,m} \, : \, \omega \middle|_P \equiv 0 \right\}
$$

where, if $P = (\rho_1, \rho_2, \rho_3)$, then $\omega|_P \equiv 0$ means that $\omega(a, u, b) = 0$ for every $a \in \rho_1, u \in \rho_2$, $b \in \rho_{3}$.

Definition 4.4 To any pair of distinct points $[v]$, $[w] \in S$ such that dim $\pi_{v,w} = 2$ we can associate the point

$$
P_{[v],[w]} = \left(\langle \alpha_v, \alpha_w \rangle, \langle v, w \rangle, \pi_{v,w}^{\perp} \right) \in G_{n,s,m},
$$

where π _{*v*,*w*} is as defined in Equation [4.2](#page-11-0).

Remark 4.5 By Lemma [4.2,](#page-11-1) there is an immersion

H → *G*_{*n*},_{*sm*}, [*v*] + [*w*] \mapsto *P*_{[*v*],[*w*]},

where *H* = {[*v*] + [*w*] ∈ Sym²(*S*) | [*v*] ≠ [*w*] and dim $\pi_{v,w}$ = 2} ⊂ Sym²(*S*).

Lemma 4.6 *Let* $P_{[v],[w]}$ *be as in Definition* [4.4](#page-12-0), *then* $P_{[v],[w]}$ ∈ *Z*.

 \mathcal{D} Springer

ਾ ਸ਼ਾਮਲ ਸਮਾਜ ਦੇ ਸੰਗਾਮਿਤ ਸਮਾਜ ਦੇ ਸੰਗਾਮਿਤ ਸਮਾਜ ਦੇ ਸੰਗਾਮਿਤ ਸਮਾਜ ਦੀ ਸ਼ਾਮਲ ਸਮਾਜ ਦੀ ਸ

Proof We need to prove that $\omega|_{P_{\text{full}}} \equiv 0$. Let $a = h_1 \alpha_v + h_2 \alpha_w$ and $u = \lambda v + \mu w$. Then

$$
\omega(a, u, b) = (h_1 \alpha_v^t + h_2 \alpha_w^t) \cdot M_{\lambda v + \mu w} \cdot b
$$

= $h_1 \mu (\alpha_v^t \cdot M_w) \cdot b + h_2 \lambda (\alpha_w^t \cdot M_v) \cdot b$
= 0.

4.2 Main technical result

In the following, given $\rho \in \text{Gr}(2, k)$ we shall denote by $[\rho] \subset \mathbb{P}^{k-1}$ the projective line defined by ρ . Also, given two distinct points [v] and [w] in \mathbb{P}^s , we shall denote by $\mathscr{C}_{v,w} \subset \mathbb{P}^s$ the line connecting them.

The following is the main technical result of the paper.

Theorem 4.7 *Let* $P = (\rho_1, \rho_2, \rho_3) \in \mathbb{Z}$. *Then one of the following holds:*

- **a**. there exist two (and only two) distinct points [*v*], [*w*] $\in S \cap [\rho_2]$ such that $P = P_{[\nu],[\nu]}$
- **b**. $[\rho_2] \subset S$ and $\psi([\rho_2])$ reduces to a point in $[\rho_1] \subset \mathbb{P}^{n-1}$,
- **c**. there exists exactly one point $[v] \in S$ where $[\rho_2]$ is tangent and such that $[\alpha_v] \in [\rho_1]$.
d. $[\rho_2] \subset S$ and $[\rho_1] = \psi(\ell_{\text{max}}) \subset \mathbb{P}^{n-1}$.
- **d**. $[\rho_2] \subset S$ and $[\rho_1] = \psi(\mathcal{C}_{\nu,\nu}) \subset \mathbb{P}^{n-1}$.

Proof Consider the linear subspace

$$
W_{(\rho_1, \rho_2)} = \left\{ M_u^t \cdot a \mid a \in \rho_1, u \in \rho_2 \right\} \subset V_{n+m}.
$$

Now, since $(\rho_1, \rho_2, \rho_3) \in Z$, we have $W_{(\rho_1, \rho_2)} \subset \rho_3^{\perp}$ so that dim $W_{(\rho_1, \rho_2)} \leq 2$. Let us proceed case by case.

- Suppose dim $W_{(\rho_1,\rho_2)} = 0$ first. This means that $M_t^t \cdot a = 0$ for every $u \in \rho_2$ and for every $a \in \rho_1$. This is impossible since it would imply dim ker(M_u^t) ≥ 2, i.e. rank $(M_u) < n - 1$. But this is in contradiction with the generality assumption on *M*.
- Next, let us suppose dim $W_{(\rho_1,\rho_2)} = 1$. This means that we can find a basis $\{M_{u_1}^t \cdot a_1\}$ for *W*_{(ρ_1, ρ_2). We can complete to bases {*a*₁, *a*₂} *⊂* ρ_1 and {*u*₁, *u*₂} *⊂* ρ_2 , in such a way that}

$$
M_{u_1}^t \cdot a_2 = M_{u_2}^t \cdot a_1 = 0 \; .
$$

In fact, if $\{a_1, a'_2\}$ is any basis for ρ_1 , then $M^t_{u_1} \cdot (ha_1 + a'_2) = 0$ for some $h \in \mathbb{C}$. Hence it is sufficient to choose $a_2 = ha_1 + a'_2$. A similar argument provides the required choice of $u_2 \in \rho_2$. In particular, $[u_1]$, $[u_2] \in S$ and by assumption $M_{u_1}^t \cdot a_1 + M_{u_2}^t \cdot a_2 = 0$ (up to a possible rescale of a_2). Therefore

$$
M^t_{\lambda u_1 + \mu u_2} \cdot (\mu a_1 + \lambda a_2) = \lambda \mu (M^t_{u_1} \cdot a_1 + M^t_{u_2} \cdot a_2) = 0,
$$

so that $[\rho_2] \subset S$ and $[\rho_1] = \psi(\mathcal{C}_{\nu,\omega}) \subset \mathbb{P}^{n-1}$. This is the case *d* in the statement.

• Finally, let us suppose dim $W_{(\rho_1, \rho_2)} = 2$, which means $W_{(\rho_1, \rho_2)} = \rho_3^{\perp}$. Choose bases ${a_1, a_2}$ ⊂ ρ_1 and ${u_1, u_2}$ ⊂ ρ_2 , define

$$
v_{i,j} = M_{u_i}^t \cdot a_j, \qquad i,j \in \{1,2\} .
$$

Now, if dim $\langle v_{1,1}, v_{2,1} \rangle = 1$ then there exist $\delta_1, \delta_2 \in \mathbb{C}$ such that $\delta_1 v_{1,1} + \delta_2 v_{2,1} = 0$. It follows that $M'_{\delta_1 u_1 + \delta_2 u_2} \cdot a_1 = 0$ so that $[\delta_1 u_1 + \delta_2 u_2] \in S$. Now if $\delta_1 \neq 0$ we define $u'_1 = \delta_1 u_1 + \delta_2 u_2$ and we replace the basis $\{u_1, u_2\}$ with $\{u'_1, u_2\}$. Since dim $W_{(\rho_1, \rho_2)} = 2$ there exist $\gamma_1, \gamma_2, \gamma_3 \in \mathbb{C}$ such that

$$
\gamma_1 M_{u_2}^t \cdot a_1 + \gamma_2 M_{u_1'}^t \cdot u_2 + \gamma_3 M_{u_2}^t \cdot a_2 = 0 \qquad \text{so that} \qquad M_{\gamma_2 u_1' + \gamma_3 u_2}^t \cdot (\gamma_1 a_1 + \gamma_3 a_2) = 0 \; .
$$

Therefore, if $\gamma_3 \neq 0$ we have two distinct points in *S* (u'_1 and $\gamma_2 u'_1 + \gamma_3 u_2$) so that the statement follows by Lemma [4.2](#page-11-1) (being one of the cases *a*, *b*, *d*). On the other hand, if $\gamma_3 = 0$ we may assume

$$
v_{1,1} = 0, \quad v_{1,2} = v_{2,1}, \quad W_{(\rho_1, \rho_2)} = \langle v_{1,2}, v_{2,2} \rangle
$$

which gives item c of the statement. One can argue in a similar way for the case \dim $\langle v_{1,2}, v_{2,2} \rangle = 1$ simply reordering the basis $\{a_1, a_2\}$. We are only left with the case

$$
W_{(\rho_1,\rho_2)} = \langle v_{1,1}, v_{2,1} \rangle = \langle v_{1,2}, v_{2,2} \rangle.
$$

Hence there exists a matrix $\Phi \in Mat_{2,2}(\mathbb{C})$ realising a coordinate change

$$
(\nu_{1,2}, \nu_{2,2}) = -(\nu_{1,1}, \nu_{2,1}) \cdot \Phi,
$$

where we adopted the notation $(v_{1,j}, v_{2,j})$ to denote the $(n + m) \times 2$ matrix whose columns are $v_{1,j}$ and $v_{2,j}$. Our aim is now to study vectors $v \in \rho_2$ corresponding to points $[v] \in S$ with the additional property that $[\alpha_{v}] \in [\rho_1]$. Such a point is given by the choice of a nonzero vector

$$
\binom{\lambda}{\mu}\in\mathbb{C}^2
$$

together with scalars $\delta_1, \delta_2 \in \mathbb{C}$, not both vanishing, such that

$$
M^t_{\lambda u_1 + \mu u_2} \cdot (\delta_1 a_1 + \delta_2 a_2) = 0.
$$

In particular, it is not restrictive to assume $\delta_2 \neq 0$ since dim $\langle v_{1,1}, v_{2,1} \rangle = 2$. Rename $\delta = \delta_1 \delta_2^{-1} \in \mathbb{C}$ and consider the following equalities:

$$
M'_{\lambda u_1 + \mu u_2} \cdot (\delta a_1 + a_2) = \lambda \delta M'_{u_1} \cdot a_1 + \mu \delta M'_{u_2} \cdot a_1 + \lambda M'_{u_1} \cdot a_2 + \mu M'_{u_2} \cdot a_2
$$

= $\lambda \delta v_{1,1} + \mu \delta v_{2,1} + \lambda v_{1,2} + \mu v_{2,2}$
= $(v_{1,1} v_{2,1}) \cdot \begin{pmatrix} \delta \lambda \\ \delta \mu \end{pmatrix} + (v_{1,2} v_{2,2}) \cdot \begin{pmatrix} \lambda \\ \mu \end{pmatrix}$
= $(v_{1,1} v_{2,1}) \cdot \begin{pmatrix} \delta \lambda \\ \delta \mu \end{pmatrix} - (v_{1,1} v_{2,1}) \cdot \Phi \cdot \begin{pmatrix} \lambda \\ \mu \end{pmatrix}$
= $(v_{1,1} v_{2,1}) \cdot \begin{pmatrix} \delta \cdot id - \Phi \end{pmatrix} \cdot \begin{pmatrix} \lambda \\ \mu \end{pmatrix}$.

Now, since dim $\langle v_{1,1}, v_{2,1} \rangle = 2$ the last line vanishes if and only if δ is an eigenvalue of Φ and $(λ μ)^t$ is an eigenvector relative to $δ$. Since $\mathbb C$ is algebraically closed, we conclude that the line $[\rho_2] \subset \mathbb{P}^s$ always intersects *S* in (at least) one point $[v] = [\lambda u_1 + \mu u_2]$ satisfying $[\alpha_{\nu}] \in [\rho_1]$. More precisely we have the following three possibilities.

a. *The matrix* Φ *admits two different eigenvalues* δ *and* θ . In this case we have two (independent) eigenvectors λ

$$
\begin{pmatrix} \lambda_{\delta} \\ \mu_{\delta} \end{pmatrix}, \quad \begin{pmatrix} \lambda_{\theta} \\ \mu_{\theta} \end{pmatrix}
$$

and the above discussion provides two distinct points

$$
[v] = [\lambda_{\delta} u_1 + \mu_{\delta} u_2] \in S \cap [\rho_2],
$$

\n
$$
[w] = [\lambda_{\theta} u_1 + \mu_{\theta} u_2] \in S \cap [\rho_2].
$$

Notice that by Lemma 4.2 either we are in case d of the statement or the points [*v*], [*w*] ∈ *S* ∩ [ρ ₂] are the only ones satisfying the additional property [α ^{*w*}], [α ^{*w*}] ∈ [ρ ₁]. Clearly, in this last case $\rho_1 = \langle \alpha_v, \alpha_w \rangle$, $\rho_2 = \langle v, w \rangle$, and $W_{(\rho_1, \rho_2)} = \langle M_v^t \alpha_w, M_w^t \alpha_v \rangle = \pi_{v,w}$; therefore $(\rho_1, \rho_2, \rho_3) = P_{[v],[w]}$. This is item *a* in the statement.

- **b**. *The matrix* Φ *admits one eigenvalue 𝛿 whose eigenspace is* 2-*dimensional.* In this case every non-trivial $(\lambda \mu)^t \in \mathbb{C}^2$ is an eigenvector so that the line defined by $[\rho_2]$ in \mathbb{P}^3 is entirely contained in *S*. On the other hand the matrix M_v^t admits the same kernel $\delta a_1 + a_2 \in \rho_1$ for every $v \in \rho_2$. This is item *b* in the statement.
- **c**. *The matrix* Φ *admits only one eigenvalue 𝛿 whose eigenspace is* 1-*dimensional.* In this case any eigenvector $(\lambda \mu)^t$ corresponds to the same point $[v] = [\lambda u_1 + \mu u_2] \in S$. Hence [*v*] is the only point in the intersection $[\rho_2] \cap S$ such that $[\alpha_{\nu}] \in [\rho_1]$. Moreover, in this case the *algebraic* multiplicity of δ is 2; i.e. the multiplicity of the intersection $[\rho_2] \cap S$ is 2 at [*v*]. This is item *c* in the statement.

The proof is now complete. \Box

5 Existence of special lines

As in the previous section, we fix integers $n \ge 3$, $m \ge 0$, $s \in \{m+2, \ldots, 2m+3\}$ and a general map of vector bundles φ as in ([4.1](#page-10-1)). Moreover, we shall use the following terminology: a line $\ell \subset S = D_{n-1}(\varphi) \subset \mathbb{P}^s$ is said to be *of type b* (resp. *of type d*) if it arises from a point $P \in \mathbb{Z}$ satisfying condition *b* (resp. condition *d*) in Theorem [4.7](#page-13-0).

5.1 Excluding lines of type b

The first aim of this section is to understand the fibres of the map ψ , and we will be particularly interested in the existence of points $[\alpha] \in \mathbb{P}^{n-1}$ whose fibre $\psi^{-1}([\alpha])$ is a line in *S*.

Fix $[\alpha] \in \mathbb{P}^{n-1}$ and observe that

$$
\psi^{-1}([\alpha]) = \left\{ [\nu] \in S \, | \, M^t_{\nu} \cdot \alpha = 0 \right\} \subset S \tag{5.1}
$$

is nothing but the solutions set of a linear system of $n + m$ equations in $s + 1$ variables, namely an intersection of $n + m$ hyperplanes in \mathbb{P}^s . Therefore the fibre ([5.1](#page-16-1)) is always linear. Moreover, it can be described by means of a matrix $A_{\alpha} \in Mat_{n+m,s+1}(\mathbb{C})$, and by the linearity with respect to α we get an immersion

$$
f: \mathbb{P}^{n-1} \hookrightarrow \mathbb{P} = \mathbb{P}(\text{Mat}_{n+m,s+1}(\mathbb{C})), \quad [\alpha] \mapsto [A_{\alpha}].
$$
 (5.2)

Remark 5.1 Notice that an additional condition $s \leq n+m$ is essential in order to obtain 0-dimensional fibres of ψ , and similarly $s \leq n + m + 1$ is necessary in order to obtain 1-dimensional fibres, as well as $s \le n + m + 2$ for 2-dimensional fibres.

Let us denote by $N_k \subset \mathbb{P}$ the subvariety of matrices of rank at most *k*. We can easily compute the codimension of N_k in $\mathbb P$ as

$$
codim (N_k) = (n + m - k)(s + 1 - k),
$$

so that in particular assuming $s \leq n + m$ one finds

 $codim(N_s) = n + m - s \ge 0$ $\text{codim}(N_{s-1}) = 2(n+m-s+1) \geq 2$ $\text{codim}(N_{s-2}) = 3(n+m-s+2) \geq 6.$

Theorem 5.2 *Let* ψ : $S \to \mathbb{P}^{n-1}$ *and* f : $\mathbb{P}^{n-1} \hookrightarrow \mathbb{P}$ *be the maps defined by Lemma* [4.1](#page-11-2) *and* ([5.2\)](#page-16-2) *respectively*. *Fix integers n* ≥ 3, *m* ≥ 0, *s* ∈ {*m* + 2, … , 2*m* + 3}.

 (i) Assume $s = n + m$. Then

(1) ψ is surjective and its generic fibre is a point.

(2) $f \circ \psi$ admits 1-dimensional fibres precisely over Im(*f*) ∩ N_{s-1} . *(ii)* Assume $s < n + m$. Then

> (1) ψ is a closed immersion if and only if $n > 2s - 2m - 3$, in which case the image of the composition $f \circ \psi$ is $Im(f) ∩ N_s ⊂ P,$

(2) *f* ◦*𝜓* admits 1-dimensional fbres if and only if $n \leq 2s - 2m - 3$, and such fibres arise precisely over Im(*f*) ∩ N_{s-1} , (3) $f \circ \psi$ admits 2-dimensional fibres if and only if $n \leq \frac{1}{2}(3s - 3m - 7)$, and such fibres arise precisely over $Im(f) ∩ N_{s-2}$,

Proof Let us proceed by steps.

- (i) First suppose that $s = n + m$. As already observed the fibre $\psi^{-1}([\alpha])$ is cut by $n + m$ hyperplanes in ℙ*^s* , hence the generic fbre reduces to a point. Moreover, the fbre is 1-dimensional at those $\lceil \alpha \rceil$ such that $f(\lceil \alpha \rceil) \in \text{Im}(f) \cap N_{s-1} \subset \mathbb{P}$, which has dimension $(n-1) - 2 = n - 3 ≥ 0.$
- (ii) Now assume $s < n + m$. Then the fibre $\psi^{-1}([\alpha])$ is a point (respectively a line) precisely at those $[\alpha]$ such that $f([\alpha]) \in \text{Im}(f) \cap N_k \subset \mathbb{P}$ with $k = s < n + m$ (respectively $k = s - 1 < n + m$). Therefore the image of ψ describes a subvariety of \mathbb{P}^{n-1} of dimension

$$
\dim \psi(S) = (n-1) - \operatorname{codim} (N_s) = (n-1) - (n+m-s) = s-m-1 = \dim(S) ,
$$

while the 1-dimensional fibres of ψ (if they exist) are mapped onto a locus of dimension

$$
(n-1) - \operatorname{codim}(N_{s-1}) = (n-1) - 2(n+m-s+1) = 2s - n - 2m - 3.
$$

The condition $n > 2s - 2m - 3$ is the same as codim $(N_{s-1}) = 2(n + m - s + 1) > n - 1$, which in turn is equivalent to require that N_{s-1} is empty; here we are using the genericity of the original matrix *M* (hence of the form ω) from which it follows the genericity of the immersion of \mathbb{P}^{n-1} in ℙ through *f*. Hence the fbres of the map consist of at most one point if and only if $n > 2s - 2m - 3$, in which case ψ is a closed immersion, as wanted. Finally, the fibres of dimension at least 2 arise over Im(f) ∩ N_{s-2} , for which the expected dimension is

$$
(n-1) - \operatorname{codim} (N_{s-2}) = (n-1) - 3(n+m-s+2) = 3s - 2n - 3m - 7.
$$

This number is non-negative if and only if $n \leq \frac{1}{2}(3s - 3m - 7)$, as required. ◻

5.2 Excluding lines of type d

The next aim of this section is to show that the lines described by item *d* of Theorem [4.7](#page-13-0) do not occur whenever $n > 2s - 3m - 2$. Recall that these are the lines $\ell \subset S$ such that the image $\ell' = \psi(\ell)$ remains a line in \mathbb{P}^{n-1} .

Theorem 5.3 *Let n* ≥ 3, *m* ≥ 0 *and s* ∈ {*m* + 2, …, 2*m* + 3}.

• If $n > 2s - 3m - 1$ then the composition

$$
\pi_Z: Z \stackrel{\iota}{\longrightarrow} G_{n,s,m} \stackrel{\text{pr}_{12}}{\longrightarrow} \text{Gr}(2,n) \times \text{Gr}(2,s+1)
$$

is injective, where ι is the natural inclusion and pr_{12} is the natural projection.

• A line $\ell \subset S \subset \mathbb{P}^s$ such that $\ell' = \psi(\ell)$ remains a line in \mathbb{P}^{n-1} exists if and only if the map π _{*z*} admits an (*n* + *m* − 2)-dimensional linear fibre.

Proof Let us proceed by steps.

• The fibre of π _Z over $(\rho_1, \rho_2) \in$ Gr $(2, n) \times$ Gr $(2, s + 1)$ can be easily described as

$$
\pi_Z^{-1}(\rho_1, \rho_2) = \left\{ (\rho_1, \rho_2, \rho_3) \in G_{n,s,m} \, \middle| \, \rho_3 \subset W_{(\rho_1, \rho_2)}^\perp \right\}
$$

where $W_{(\rho_1,\rho_2)} = \langle M_u^t \cdot a \mid a \in \rho_1, u \in \rho_2 \rangle \subset V_{n+m}$. Notice that

$$
W_{(\rho_1,\rho_2)} = \langle M_{u_i}^t \cdot a_j \mid 1 \le i, j \le 2 \rangle
$$

where $\{a_1, a_2\}$ and $\{u_1, u_2\}$ are arbitrary bases for ρ_1 and ρ_2 respectively. In particular, dim W _{(α_1, α_2) ≤ 4. Since ρ_3 ∈ Gr ($n + m - 2, n + m$), we deduce}

$$
\pi_Z^{-1}(\rho_1, \rho_2) = \begin{cases} \emptyset & \text{if } \dim W_{(\rho_1, \rho_2)} \ge 3 \\ (\rho_1, \rho_2, W_{(\rho_1, \rho_2)}^{\perp}) & \text{if } \dim W_{(\rho_1, \rho_2)} = 2 \\ \text{Gr}(n + m - 2, W_{(\rho_1, \rho_2)}^{\perp}) & \text{if } \dim W_{(\rho_1, \rho_2)} = 1 \end{cases}
$$

Notice that dim $W_{(q_1,q_2)} \neq 0$, otherwise we would have points $u \in V_{s+1}$ satisfying rank $M_u = n - 2$ and this is excluded since $D_{n-2}(\varphi) = \emptyset$. In particular, for $\dim W_{(q_1,q_2)} = 1$ we have

$$
Gr\left(n+m-2, W^{\perp}_{(\rho_1,\rho_2)}\right) \cong \mathbb{P}^{n+m-2}.
$$

On the other hand *Z* cannot contain an $(n + m - 2)$ -dimensional subspace whenever $\dim(Z) = 2(s - m - 1) < n + m - 2$, i.e. when $n > 2s - 3m$. Moreover, in the case $n = 2s - 3m$, the irreducibility of *Z* together with the non injectivity of the map π _{*Z*} would imply $Z \cong \mathbb{P}^{n+m-2}$, which is impossible because otherwise the map π_Z would be constant so that *S* would reduce to a line $S = [\rho_2] \cong \mathbb{P}^1 \subset \mathbb{P}^s$. Of course this is false being $n \geq 3$.

• We claim that the existence of a line $\ell \subset S$ such that $\ell' = \psi(\ell)$ remains a line in \mathbb{P}^{n-1} is equivalent to the existence of a $(n + m - 2)$ -dimensional fibre of the map π_Z . In fact, by Lemma [4.2](#page-11-1) the existence of such a line ℓ is equivalent to a point

$$
(\rho_1, \rho_2) \in \text{Gr}\,(2,n) \times \text{Gr}\,(2,s+1)
$$

with $[\rho_1] = \ell'$ and $[\rho_2] = \ell$, that moreover satisfies dim $W_{(\rho_1, \rho_2)} = 1$. As shown in the first item this is equivalent to the condition dim $\pi_Z^{-1}(\rho_1, \rho_2) = n + m - 2$.

 ◻ In Corollary [5.5](#page-19-0) we will be able to give a better bound than the one in Theorem [5.3](#page-17-0) in the cases $m = 0$ and $m = 1$.

Remark 5.4 Notice that for large values of *m*, the bound $n > 2s - 2m - 3$ obtained in Theorem [5.2](#page-16-0) is stronger than the one obtained in Theorem [5.3.](#page-17-0) More precisely,

 $n > 2s - 2m - 3$ $\implies n > 2s - 3m - 1$

as soon as $m \geq 2$.

5.3 Conclusions

We now summarise the main results of this section in the following corollary.

Corollary 5.5 *Let n* ≥ 3, *m* ≥ 0 *and s* ∈ {*m* + 2, … , 2*m* + 3}. *Assume n >* 2*s* − 2*m* − 3 *and let* $(\rho_1, \rho_2, \rho_3) \in Z$.

Then one of the following holds:

- (1) *there exist two (and only two) distinct points* $[v]$ *,* $[w] \in S \cap [\rho_2]$ *such that* $P = P_{[v], [w]}$
- (2) *there exists exactly one point* $[v] \in S$ *where* $[\rho_2]$ *is tangent and such that* $[\alpha_v] \in [\rho_1]$.

Proof If $m \geq 2$, then by Remark [5.4](#page-19-1) the statement is an immediate consequence of Theorem [4.7,](#page-13-0) Theorem [5.2](#page-16-0), Theorem [5.3](#page-17-0).

For $m = 1$ our assumption becomes $n > 2s - 5$, so that the hypothesis of Theorem [5.2](#page-16-0) are satisfied while Theorem [5.3](#page-17-0) works as soon as $n > 2s - 4$. Let us prove by hand that choosing $m = 1$ and $n = 2s - 4$ the map

$$
\pi_Z: Z \xrightarrow{\iota} G_{n,s,m} \xrightarrow{\text{pr}_{12}} \text{Gr}(2,n) \times \text{Gr}(2,s+1)
$$

is still injective. Here ι is the natural inclusion and π is the natural projection. The idea is to exclude high dimensional fbres following the proof of Theorem [5.3.](#page-17-0)

- (A) Set $s = 5$, $n = 6$, $m = 1$. We have to exclude the existence of a $\mathbb{P}^5 \subset \mathbb{Z}$. However, in this case *Z* is a sixfold with $h^{2,0} = h^{0,2} = 0$ and $h^{1,1} = 3$, which in this case is equal to the Picard rank. In fact, Pic(*Z*) is generated by the restrictions of the three Plücker line bundles from the ambient Grassmannians. Hence, by degree reasons, since *Z* is smooth and of degree > 1 , it cannot contain a \mathbb{P}^5 .
- (B) Set $s = 4, n = 4, m = 1$. We have to exclude the existence of a $\mathbb{P}^3 \subset \mathbb{Z}$. This time, we know that $Pic(S)$ is only generically of rank 2, and the same holds for Z (in fact $h^{2,0}(Z) = 4$). For the same reasons above, we can therefore exclude the existence of a P³ for a general *Z*. But this is enough, since we started by hypothesis from a general matrix, and *S* - which is a isomorphic to a determinantal quintic hypersurface also described as a complete intersection in $\mathbb{P}^4 \times \mathbb{P}^3$ - in this case the Picard group will be \mathbb{Z}^2 and generated by the two hyperplane classes of \mathbb{P}^4 and \mathbb{P}^3 , and will not even contain lines by a Noether–Lefschetz type argument, see [[20](#page-29-20)] and also [\[7](#page-29-21), Theorem 1.2]. Similarly *Z* won't contain a copy of \mathbb{P}^3 .

Hence the statement is proven for every $m \ge 1$. We are only left with the case $m = 0$. In this case our assumption becomes $n > 2s - 3$, so that the hypothesis of Theorem [5.2](#page-16-0) are satisfied while Theorem [5.3](#page-17-0) works as soon as $n > 2s - 1$. Hence we only need to check the following cases, where $m = 0$ and either $n = 2s - 1$ or $n = 2s - 2$.

- (C) Set $s = 2, n = 3, m = 0$. Just observe that in this case *S* is a curve of genus $g \neq 0$, so that in particular it does not contain lines and the conclusion follows by the second item in Theorem [5.3.](#page-17-0)
- (D) Set $s = 3, n = 5, m = 0$. We have to exclude the existence of $\mathbb{P}^3 \subset \mathbb{Z}$. To this aim, it is sufficient to run exactly the same argument as in case (B) .
- (E) Set $s = 3$, $n = 4$, $m = 0$. In this case *S* and $\psi(S)$ in \mathbb{P}^3 are precisely the K3 surfaces studied by Oguiso in [\[23,](#page-29-22) [24](#page-29-11)]. Notice that a generic determinantal K3 surface does not contain lines, since the Picard lattice is

$$
\begin{pmatrix} 4 & 6 \\ 6 & 4 \end{pmatrix}
$$

 and the square of every other element is divisible by 4. Therefore we do not have (−2)-curves in general. Hence the second item in Theorem [5.3](#page-17-0) implies the injectivity of the map π ⁷ : $Z \rightarrow$ Gr (2, 4) \times Gr (2, 4) as required.

◻

6 Hilbert squares of degeneracy loci

In this section we fnally prove our main theorem, namely Theorem [A.](#page-1-0)

We denote by $Fl(1, 2, n)$ and by $Fl(1, 2, s + 1)$ the appropriate flag varieties. Moreover, we denote by

$$
\Gamma_{\psi} \subset \mathbb{P}^{n-1} \times S \subset \mathbb{P}^{n-1} \times \mathbb{P}^{s}
$$

the graph of the morphism ψ of Lemma [4.1.](#page-11-2)

In the category of $\mathbb C$ -schemes, we consider the limit $\mathcal V$ of the following diagram of solid arrows

Notice that, set-theoretically, V can be described as

$$
\mathcal{V} = \left\{ \left([v], \psi([v]), (\rho_1, \rho_2, \rho_3) \right) \in \Gamma_{\psi} \times Z \mid [v] \in [\rho_2], \psi([v]) \in [\rho_1] \right\} \hookrightarrow \Gamma_{\psi} \times Z
$$

and via the natural isomorphism $\Gamma_w \stackrel{\sim}{\rightarrow} S$ we make the identification

$$
\mathcal{V} = \left\{ \left([v], (\rho_1, \rho_2, \rho_3) \right) \mid [v] \in [\rho_2], \psi([v]) \in [\rho_1] \right\} \hookrightarrow S \times Z.
$$

Composing with the projection $S \times Z \rightarrow Z$, we obtain a morphism

$$
\pi: \mathcal{V} \hookrightarrow S \times Z \to Z.
$$

We now show that this morphism defines a modular map $Z \to \text{Hilb}^2(S)$.

Lemma 6.1 *Let* $n \ge 3$, $m \ge 0$, $s \in \{m+2, ..., 2m+3\}$. *Assume* $n > 2s - 2m - 3$. *Then the natural morphism*

$$
\pi\,:\,\mathcal{V}\hookrightarrow S\times Z\rightarrow Z
$$

is a fat family of length 2 *subschemes of S*.

Proof Since *Z* is smooth, in particular reduced, it is enough to prove that the fibre over any closed point is a fnite subscheme of length 2. Flatness is then automatic.

In fact, the fibre $\pi^{-1}(\rho_1, \rho_2, \rho_3)$ over a point $P = (\rho_1, \rho_2, \rho_3) \in \mathbb{Z}$ is of the form

 $\pi^{-1}(P) = \{([v], P) | [v] \in S \cap [\rho_2], [\alpha_w] \in [\rho_1]\}.$

By Corollary [5.5](#page-19-0), this is a length 2 subscheme of $S \times \{P\}$ if $n > 2s - 2m - 3$, which we are \Box assuming.

In particular, if $n > 2s - 2m - 3$, the morphism π gives rise, via the universal property of the Hilbert scheme, to a morphism

$$
\vartheta : Z \to \text{Hilb}^2(S).
$$

Theorem 6.2 *Let* $n \ge 3$, $m \ge 0$, $s \in \{m+2, ..., 2m+3\}$. Assume $n > 2s - 2m - 3$. Then *the morphism* $\vartheta : Z \to \text{Hilb}^2(S)$ *is an isomorphism.*

Proof To prove ϑ is an isomorphism, by Zariski's Main Theorem it is enough to prove it is bijective, since both source and target are smooth ℂ-varieties of the same dimension $2(s - m - 1)$.

On $\mathbb C$ -valued points, the morphism ϑ is defined by

$$
\vartheta(P) = [\pi^{-1}(P)] \in \text{Hilb}^2(S).
$$

By the uniqueness conditions spelled out in Corollary [5.5](#page-19-0), the map θ is injective. By the same argument, one can see that $\vartheta(B)$ is an injective map of sets for every *C*-scheme *B*. Thus ϑ is a proper monomorphism, i.e. a closed immersion.

Since source and target are smooth of the same dimension, θ is an lci morphism of codimension 0, hence the tangent map $T_Z \to \theta^* T_{\text{Hilb}^2(S)}$ is an isomorphism, in particular θ is étale. Thus it is an open and closed map to a connected scheme, hence it is surjective.

◻

7 Geometric examples

Our aim is to list some interesting examples of varieties arising as degeneracy loci that can be described by Theorem [5.2](#page-16-0).

Example 7.1 Let us study in more detail the case $m = 1$. Recall that we are only interested in applications with $n \geq 3$ and $s \in \{3, 4, 5\}$. Theorem [5.2](#page-16-0) above proves that the map ψ does not contract lines inside *S* precisely when one of the following conditions is satisfed:

- $n \ge 3$ for curves in \mathbb{P}^3 (we excluded the case of the twisted cubic obtained for $n = 2$),
- $n \geq 4$ for surfaces in \mathbb{P}^4 ,
- $n \ge 6$ for threefolds in \mathbb{P}^5 .

Moreover, again by Theorem [5.2,](#page-16-0) under the assumption $n \geq 3$ the map ψ does not admit 2-dimensional fbres.

Example 7.2 (White surfaces) Fix $m \ge 0$ and choose $s = m + 3$ and $n = s - m = 3$. Now, the degeneracy locus S_m is a surface in \mathbb{P}^{m+3} . Moreover, by Theorem [5.2](#page-16-0) the map $\psi : S_m \to \mathbb{P}^2$ is surjective and generically injective. The exceptional divisor (i.e. the union of the 1-dimensional fibres) arises over a 0-dimensional locus so that S_m is the blow up of ℙ² at *c* points. Again by Theorem [5.2](#page-16-0), *c* can be easily computed as the degree of *Ns*[−]1 in ℙ(𝖬𝖺𝗍*^s*,*s*+1(ℂ)), namely

$$
c = \frac{(s+1)!}{(s-1)!2!} = \binom{m+4}{2} \ .
$$

We also observe the following:

- For $m = 0$ we obtain the determinantal cubic surface $S_0 \subset \mathbb{P}^3$ realised as the blow up of \mathbb{P}^2 in 6 points.
- For $m = 1$ we recover the classical construction of the Bordiga surface $S_1 \subset \mathbb{P}^4$ realised as the blow up of \mathbb{P}^2 in 10 points, see e.g. [[26](#page-29-9)]. In this case $e_{top}(Z) = 94$, with $h^{1,1} = 12$, $h^{2,2} = 68$ and the other relevant Hodge numbers being 0. On the other hand, Hilb²(S₁) has topological Euler characteristic 104, with $h^{2,2} = 78$.

In the general case $S_m \subset \mathbb{P}^{m+3}$ is nothing but the $(m+3)$ -th White surface named after F. Puryer White, see [[32](#page-30-3)].

Example 7.3 (Generalised Bordiga scrolls over \mathbb{P}^2) Fix $m \ge 1$ and choose $s = m + 4$ and $n = s - m - 1 = 3$. Notice that the condition $m \ge 1$ ensures that $s \in \{m + 2, \ldots, 2m + 3\}$. In this case the degeneracy locus B_m is a threefold in \mathbb{P}^{m+4} . Since the fibre of the map ψ : $B_m \rightarrow P^2$ is cut by $n + m = s - 1$ equations, the generic fibre of ψ is 1-dimensional. On the other hand, following the same argument of the proof of Theorem [5.2](#page-16-0) it is immediate to see that 2-dimensional fibres of *f* ∘ ψ may only arise over Im(*f*) ∩ $N_{s-3} = \emptyset$, being codim $(N_{s-3}) = 8$. Hence the map ψ is surjective and realises $B_m \subset \mathbb{P}^{m+4}$ as a \mathbb{P}^1 -bundle over \mathbb{P}^2 , so that B_m is the projectivisation of a rank 2 vector bundle over \mathbb{P}^2 .

In particular, for $m = 1$ we recover the classical construction of the Bordiga scroll $B_1 \subset \mathbb{P}^5$, i.e. the (rational, non Fano) variety described by $\mathbb{P}_{\mathbb{P}^2}(E)$, with *E* a rank 2 stable bundle with $c_1(E) = 4$, $c_2(E) = 10$, see e.g. [[25](#page-29-23)].

We were not able to fnd a precise reference for the threefolds described in Example [7.3](#page-22-1), so that we decided to call these threefolds *generalised Bordiga scrolls*, in analogy with the classical Bordiga scroll, see e.g. [\[25\]](#page-29-23).

Example 7.4 (White varieties) Choose $m \ge 0$, and $3 \le n \le m + 3$. Fix $s = n + m \in \{m+3, \ldots, 2m+3\}$. Denote by $W_{m,n} = D_{n-1}(\varphi)$ the usual degeneracy locus. Then by Theorem [5.2](#page-16-0) the map $\psi : W_{m,n} \to \mathbb{P}^{n-1}$ is surjective and generically injective. In particular, dim $W_{m,n} = n - 1$. Moreover, 1-dimensional fibres arise over an $(n - 3)$ -dimensional locus.

We also observe the following:

- For any $m \geq 0$, W_{m-3} is nothing but the $(m+3)$ -th White surface denoted by S_m in Example [7.2](#page-22-2).
- For any $m \ge 1$, $W_{m,4} \subset \mathbb{P}^{m+4}$ is a threefold that contains a \mathbb{P}^1 -scroll over a curve $W'_{m,4} \subset \mathbb{P}^3$. We can also compute the degree and the genus of $W'_{m,4}$ as

$$
deg(W'_{m,4}) = deg(N_{m+3}) = {m+5 \choose 2}
$$

$$
g(W'_{m,4}) = (m+4){m+4 \choose 3} - (m+5){m+3 \choose 3},
$$

as proved in Proposition [2.3.](#page-6-1)

We were not able to fnd a precise reference for the construction spelled out in Example [7.4,](#page-23-0) so we decided to call these (*n* − 1)-folds *White varieties*, in analogy with the usual White surfaces described in Example [7.2.](#page-22-2)

Apart from the limit case of White varieties $(s = n + m)$ we provide examples for which $s \le n + m$ but *Z* need not to be isomorphic to Hilb²(*S*). More precisely, it may be interesting to investigate the limit case when $n = 2s - 2m - 3$. Notice that, given $m ≥ 0$, assuming $s \in \{m+2,\ldots,2m+3\}$ the system

$$
\begin{cases} s \le n+m \\ n=2s-2m-3 \ge 3 \end{cases}
$$

implies $s \ge m + 3$ and $n \le 2m + 3$.

Example 7.5 ($n = 2s - 2m - 3$) Fix $m \ge 0$, $s \in \{m + 3, ..., 2m + 3\}$, and choose *n* = 2*s* − 2*m* − 3. By Theorem [5.2](#page-16-0) the map ψ maps the degeneracy locus $M_{m,s}$ ⊂ ^{p_{*s*}} onto a certain variety $M'_{m,s} \subset \mathbb{P}^{n-1}$ of dimension $s - m - 1$, having a finite number *c* of special points over which the fbres are 1-dimensional. Notice that it is easy to compute *c*, since it equals the degree of *N_{s−1}* inside $\mathbb{P}(\text{Mat}_{n+m,s+1}(\mathbb{C}))$, which is given by the formula [\[26\]](#page-29-9)

$$
c = \deg(N_{s-1}) = \prod_{i=0}^{1} \frac{(n+i+m)! i!}{(s+i-1)!(n+m-s+i+1)!}
$$

= $\frac{1}{s} {2s-m-2 \choose s-1} {2s-m-3 \choose s-1}.$

Remarkably, the same proof of Theorem [5.3](#page-17-0) excludes lines of type d as soon as $m \geq 3$. Notice that the choice $s = m + 3$ implies $n = 3$, so that in particular we recover the White surfaces described in Example [7.2,](#page-22-2) i.e. $M_{m,m+3} = S_m$.

- $m = 0$ In this case we only have the White surface $M_{0,3} = S_0 \subset \mathbb{P}^3$.
- $m = 1$ In this case, apart from the Bordiga surface $M_{1,4} = S_1$ already discussed in Exam-ple [7.2,](#page-22-2) we may only choose $s = n = 5$. Then $M_{1,5}$ is a threefold in \mathbb{P}^5 . By the above formula there are $c = 105$ fibres of dimension 1 and the image of $M_{1.5}$ inside \mathbb{P}^4 is a determinantal threefold $\mathsf{M}'_{1,5} = f^{-1}(\text{Im}(f) \cap N_5)$ of degree 6, whose singular locus consists exactly of these 105 points. In fact, $M_{1,5}$ is a small resolution of $M'_{1,5}$. Notice how in this case $e_{\text{top}}(Z) = 46158$ and $e_{\text{top}}(\text{Hilb}^2(S_{1,5})) = 46053$ by Appendix 2.2. Their difference is exactly 105 so that in particular $Z \not\cong \text{Hilb}^2(\mathsf{M}_{1,5})$.
- $m = 2$ In this case, apart from the White surface $M_{2,5} = S_2$, we may choose $s = 6$ and $n = 5$ or $s = n = 7$. Now, by Theorem [5.2,](#page-16-0) $M_{2,6} \subset \mathbb{P}^6$ is a threefold, and the map ψ contracts $c = \frac{1}{6}$ $\sqrt{8}$ 5 $\binom{7}{ }$ 5 $=$ 196 lines. On the other hand $M_{2,7} \subset \mathbb{P}^6$ is a fourfold, and the map ψ contracts $c = \frac{1}{7}$ $(10$ 6 $\binom{9}{ }$ 6 λ $= 2520$ lines.

Example [7.5](#page-23-1) leads us to formulate the following conjecture.

Conjecture 7.6 *Fix* $m \ge 1$, $s \in \{m+3, ..., 2m+3\}$, and choose $n = 2s - 2m - 3$. Then

$$
e_{\text{top}}(\text{Hilb}^{2}(\mathsf{M}_{m,s})) - e_{\text{top}}(Z_{n,s,m}) = (-1)^{\dim(\mathsf{M}_{m,s})} \frac{1}{s} \begin{pmatrix} 2s - m - 2 \\ s - 1 \end{pmatrix} \begin{pmatrix} 2s - m - 3 \\ s - 1 \end{pmatrix}.
$$

Notice that in Examples [7.2](#page-22-2) and [7.5](#page-23-1) we have shown that the above conjecture holds true for *m* = 1. We also did the computation for White surfaces taking higher values of *m* confrming the prediction of Conjecture [7.6](#page-24-0).

On the other hand we excluded the case $m = 0$, for which the conjecture is easily seen to fail. However, this can be justified by noticing that $M_{0,3} = S_0$ contains 15 lines of type *d* (arising as birational transforms of lines in \mathbb{P}^2 passing through 2 out of the 6 points of \mathbb{P}^2), and indeed we compute the diference to be

$$
e_{\text{top}}(\text{Hilb}^2(\text{M}_{0,3})) - e_{\text{top}}(Z_{3,3,0}) = 6 + 15
$$
.

As already remarked in Example [7.5](#page-23-1) it is immediate to see that for $m \geq 3$ the varieties M_m , do not admit lines of type *d*, and actually we do not expect this to happen even in the cases $m = 1$ and $m = 2$.

We are particularly interested in Conjecture [7.6](#page-24-0) since it would imply for instance that the bound provided by Theorem [6.2](#page-21-0) is optimal.

Appendix 1: Euler characteristic of Hilbert squares

The goal of this appendix is to give a detailed proof of Proposition [2.4.](#page-6-2) We shall exploit a nontrivial Chern class calculation on (smooth) degeneracy loci following Pragacz [[27](#page-30-4)].

Fix $m = 1$ throughout this section. Let $s \in \{3, 4\}$, and consider, as ever, a general map $\varphi : \mathcal{F} \to \mathcal{E}$ between vector bundles $\mathcal{F} = \mathcal{O}_{\mathbb{P}^s}^{\oplus n+1}$ and $\mathcal{E} = \mathcal{O}_{\mathbb{P}^s}(1)^{\oplus n}$. The *k*-th degeneracy locus of φ is the closed subscheme $D_k(\varphi) \subset \mathbb{P}^s$ defined by the condition rank $(\varphi) \leq k$, which is (locally) equivalent to the vanishing of the $(k + 1)$ -minors of φ . We are interested in the case $k = n - 1$, which leads to $D_{n-2}(\varphi)$ of expected codimension 6, and $D_{n-1}(\varphi)$ of expected codimension 2. Since φ is general, we have $D_{n-2}(\varphi) = \emptyset$, so that $D_{n-1}(\varphi) \subset \mathbb{P}^s$ is a smooth subvariety of codimension 2. In the case $s = 4$, we shall denote it by $S_n \subset \mathbb{P}^4$, whereas in the case $s = 3$ we shall denote it by $C_n \subset \mathbb{P}^3$.

We start assuming $s = 4$, the case $s = 3$ being essentially a truncation of the case $s = 4$. Let $H \in A^1(\mathbb{P}^4)$ denote the first Chern class of $\mathcal{O}_{\mathbb{P}^4}(1)$. The ordinary Segre class of $\mathcal E$ is the class

$$
\widetilde{s}(\mathcal{E}) = \sum_{0 \le i \le 4} \widetilde{s}_i(\mathcal{E}) = (1 + H)^{-n},
$$

with $\widetilde{s}_i(\mathcal{E}) \in A^i(\mathbb{P}^4) = \mathbb{Z}[H^i]$ sitting in codimension *i*. Inverting the Chern class

$$
c(\mathcal{E}) = 1 + nH + \binom{n}{2}H^2 + \binom{n}{3}H^3 + \binom{n}{4}H^4
$$

we fnd

$$
\widetilde{s}_1(\mathcal{E}) = -c_1(\mathcal{E}) = -nH
$$
\n
$$
\widetilde{s}_2(\mathcal{E}) = s_1(\mathcal{E})^2 - c_2(\mathcal{E}) = \left[n^2 - \binom{n}{2} \right] H^2
$$
\n
$$
\widetilde{s}_3(\mathcal{E}) = -s_1(\mathcal{E})c_2(\mathcal{E}) - s_2(\mathcal{E})c_1(\mathcal{E}) - c_3(\mathcal{E}) = \left[-n^3 - \binom{n}{3} + 2n \binom{n}{2} \right] H^3
$$
\n
$$
\widetilde{s}_4(\mathcal{E}) = -s_1(\mathcal{E})c_3(\mathcal{E}) - s_2(\mathcal{E})c_2(\mathcal{E}) - s_3(\mathcal{E})c_1(\mathcal{E}) - c_4(\mathcal{E})
$$
\n
$$
= \left[n^4 + 2n \binom{n}{3} - 3n^2 \binom{n}{2} + \binom{n}{2}^2 - \binom{n}{4} \right] H^4.
$$

We set $s_i = (-1)^i \tilde{s_i}(\mathcal{E})$ for $0 \le i \le 4$. Then, unraveling [[27](#page-30-4), Example 5.8 (ii)], we have, for the smooth surface $S_n \subset \mathbb{P}^4$, an identity

$$
e_{\text{top}}(S_n) = s_2 c_2(\mathbb{P}^4) - [s_{(2,1)} + 2s_3] c_1(\mathbb{P}^4) + s_{(2,1,1)} + 3s_{(3,1)} + 3s_4,
$$
(7.1)

given the Schur polynomials

$$
s_{(2,1)} = \begin{vmatrix} s_2 & s_3 \\ s_0 & s_1 \end{vmatrix} = \begin{vmatrix} s_2 & s_3 \\ 1 & s_1 \end{vmatrix} = s_2 s_1 - s_3
$$

\n
$$
s_{(3,1)} = \begin{vmatrix} s_3 & s_4 \\ s_0 & s_1 \end{vmatrix} = \begin{vmatrix} s_3 & s_4 \\ 1 & s_1 \end{vmatrix} = s_3 s_1 - s_4
$$

\n
$$
s_{(2,1,1)} = \begin{vmatrix} s_2 & s_3 & s_4 \\ s_0 & s_1 & s_2 \\ 0 & s_0 & s_1 \end{vmatrix} = \begin{vmatrix} s_2 & s_3 & s_4 \\ 1 & s_1 & s_2 \\ 0 & 1 & s_1 \end{vmatrix} = s_2 (s_1^2 - s_2) - (s_1 s_3 - s_4).
$$

Expanding, we obtain

$$
s_2 c_2(\mathbb{P}^4) = 10n^2 - 10\binom{n}{2}
$$

$$
[s_{(2,1)} + 2s_3]c_1(\mathbb{P}^4) = 5(s_2 s_1 + s_3)H = 10n^3 - 15n\binom{n}{2} + 5\binom{n}{3}
$$

$$
s_{(2,1,1)} = n\binom{n}{3} - \binom{n}{4}
$$

$$
3s_{(3,1)} = \binom{n}{2} \left[3n^2 - 3\binom{n}{2}\right] - 3n\binom{n}{3} + 3\binom{n}{4}
$$

$$
3s_4 = 3n^4 + 6n\binom{n}{3} - 9n^2\binom{n}{2} + 3\binom{n}{2}^2 - 3\binom{n}{4}.
$$

Formula ([7.1\)](#page-25-0) then yields

$$
e_{\text{top}}(S_n) = n^2(10 - 10n + 3n^2) + {n \choose 2}(-10 + 15n - 6n^2) + {n \choose 3}(4n - 5) - {n \choose 4}.
$$

In the case of a smooth determinantal *curve* $C_n \subset \mathbb{P}^3$, i.e. when we set $s = 3$, we only need to use

$$
s_0 = 1
$$
, $s_1 = nH$, $s_2 = \left[n^2 - \left(\begin{array}{c} n \\ 2 \end{array} \right) \right] H^2$, $s_3 = \left[n^3 + \left(\begin{array}{c} n \\ 3 \end{array} \right) - 2n \left(\begin{array}{c} n \\ 2 \end{array} \right) \right] H^3$.

In this case, [[27](#page-30-4), Example 5.8 (i)] gives

$$
e_{\text{top}}(C_n) = s_2 c_1(\mathbb{P}^3) - s_{(2,1)} - 2s_3 = 4Hs_2 - (s_2 s_1 - s_3) - 2s_3 = 4Hs_2 - s_2 s_1 - s_3
$$

= $4n^2 - 4\binom{n}{2} - n^3 + n\binom{n}{2} - n^3 - \binom{n}{3} + 2n\binom{n}{2}$
= $4n^2 - 2n^3 + (3n - 4)\binom{n}{2} - \binom{n}{3}$.

The formulas for $e_{\text{top}}(S_n)$ and $e_{\text{top}}(C_n)$ prove Proposition [2.4.](#page-6-2)

Appendix 2: Hodge–Deligne polynomial of Hilbert squares

We again set $m = 1$ throughout this section. We shall consider once more smooth (sub-determinantal) degeneracy loci $S = D_{n-1}(\varphi) \subset \mathbb{P}^s$ (of dimension 2 or 3), and we shall compute the Hodge–Deligne polynomial

$$
E(\text{Hilb}^2(S); u, v) = \sum_{p,q \ge 0} h^{p,q}(\text{Hilb}^2(S))(-u)^p(-v)^q \in \mathbb{Z}[u, v]
$$

via standard motivic techniques, exploiting the power structure on the Grothendieck ring of varieties K_0 (Var _C) [\[14\]](#page-29-24), as well as our knowledge of the Hodge numbers of *S* (cf. Sect. [3\)](#page-7-0).

2.1. Surface case: $(s, n, m) = (4, 4, 1)$

Let us consider the smooth determinantal surface $S_4 = D_3(\varphi) \subset \mathbb{P}^4$. By Göttsche's formula [[13](#page-29-25)] for the motive of the Hilbert scheme of points on a surface, combined with the main result of $[14]$ $[14]$, there is an identity

$$
\sum_{n\geq 0} \left[\text{Hilb}^n(S_4) \right] q^n = \prod_{n>0} \left(1 - \mathbb{L}^{n-1} q^n \right)^{-[S_4]}
$$

in $K_0(\text{Var}_{\Omega}[\sigma]]$, where exponentiation is to be thought of in the language of power structures. The Hodge–Deligne polynomial of a smooth projective ℂ-variety *Y* is the polynomial

$$
E(Y; u, v) = \sum_{p,q \ge 0} h^{p,q}(Y)(-u)^p(-v)^q \in \mathbb{Z}[u, v].
$$

We have, on $\mathbb{Z}[u, v]$, the power structure defined by the identity

$$
(1-q)^{-f(u,v)} = \prod_{i,j} \left(1 - u^i v^j q\right)^{-p_i}
$$

if $f(u, v) = \sum_{i,j} p_{ij} u^i v^j$. Looking at the Hodge diamond depicted in Sect. [3.2](#page-8-0), we deduce

$$
E(S_4; u, v) = 1 + 4u^2 + 45uv + 4v^2 + u^2v^2,
$$

and since $E(-)$ defines a morphism $K_0(\text{Var}_{\Omega}) \to \mathbb{Z}[u, v]$ of *rings with power structure* sending $\mathbb{L} \mapsto uv$, we have an identity

$$
\sum_{n\geq 0} E(\text{Hilb}^{n}(S_{4}); u, v)q^{n} = \prod_{n>0} (1 - u^{n-1}v^{n-1}q^{n})^{-E(S_{4}; u, v)}
$$

=
$$
\prod_{n>0} (1 - q)^{-E(S_{4}; u, v)}|_{q \mapsto u^{n-1}v^{n-1}q^{n}}
$$

=
$$
\prod_{n>0} (1 - u^{n-1}v^{n-1}q^{n})^{-1}(1 - u^{n+1}v^{n-1}q^{n})^{-4}.
$$

$$
\cdot (1 - u^{n}v^{n}q^{n})^{-45}(1 - u^{n-1}v^{n+1}q^{n})^{-4}(1 - u^{n+1}v^{n+1}q^{n})^{-1}
$$

where the substitution $q \mapsto u^{n-1}v^{n-1}q^n$ is possible thanks to the properties of a power structure.

Expanding and isolating the coefficient of q^2 gives

$$
E(\text{Hilb}^2(S_4); u, v) = 1 + 46uv + 4(u^2 + v^2) + 1097u^2v^2 + 184(uv^3 + u^3v) + 10(u^4 + v^4) + 46u^3v^3 + 4(u^4v^2 + u^2v^4) + u^4v^4,
$$

in full agreement with the Hodge diamond depicted in Sect. [3.2](#page-8-0).

2.2. Threefold case: $(s, n, m) = (5, 5, 1)$

In the case $(s, n, m) = (5, 5, 1)$, we obtain a smooth threefold $S_{5,5,1} \subset \mathbb{P}^5$ outside the 'good range' of Theorem [A](#page-1-0), cf. Example [7.5.](#page-23-1) There is an identity [[14,](#page-29-24) [29](#page-30-5)]

$$
Z_{S_{5,5,1}}(q) = \sum_{n\geq 0} \left[\text{Hilb}^n(S_{5,5,1}) \right] q^n = \left(\sum_{n\geq 0} \left[\text{Hilb}^n(\mathbb{A}^3)_0 \right] q^n \right)^{[S_{5,5,1}]}
$$

in K_0 (Var _C)[[*q*]], where Hilbⁿ(\mathbb{A}^3)₀ denotes the punctual Hilbert scheme, namely the subscheme of Hilbⁿ(\mathbb{A}^3) parametrising subschemes entirely supported at the origin $0 \in \mathbb{A}^3$. Let us define classes $\Omega_n \in K_0(\text{Var}_{\Omega})$ via the relation

$$
\sum_{n\geq 0} \left[\mathrm{Hilb}^n(\mathbb{A}^3)_0\right] q^n = \mathrm{Exp}\left(\sum_{n>0} \Omega_n q^n\right) = \prod_{n>0} \left(1-q^n\right)^{-\Omega_n}.
$$

Since Hilb ${}^{1}(\mathbb{A}^{3})_{0}$ = Spec C and Hilb ${}^{2}(\mathbb{A}^{3})_{0}$ = \mathbb{P}^{2} , one can easily compute Ω_{1} = 1 and $\Omega_2 = \mathbb{L} + \mathbb{L}^2$. Therefore

$$
Z_{S_{5,5,1}}(q) = \prod_{n>0} (1 - q^n)^{-\Omega_n[S_{5,5,1}]},
$$

which implies

$$
\sum_{n\geq 0} E(\text{Hilb}^n(S_{5,5,1});u,v)q^n = \prod_{n>0} (1-q^n)^{-E(\Omega_n;u,v)E(S_{5,5,1};u,v)}.
$$
\n(B.1)

One can compute the Hodge–Deligne polynomial of $S_{5,5,1}$ to be

$$
E(S_{5,5,1};u,v) = 1 + 2uv + 2u^2v^2 + u^3v^3 - (5u^3 + 151u^2v + 151uv^2 + 5v^3),
$$

so that extracting the coefficient of q^2 from $(B.1)$ $(B.1)$ $(B.1)$, one obtains

$$
E(\text{Hilb}^{2}(S_{5,5,1});u,v) = \left[\frac{(1 - u^{3}q)^{5}(1 - v^{3}q)^{5}(1 - uv^{2}q)^{151}(1 - u^{2}vq)^{151}}{(1 - q)(1 - uvq)^{2}(1 - u^{2}v^{2}q)^{2}(1 - u^{3}v^{3}q)}\right]_{q^{2}}
$$

$$
+(uv + u^{2}v^{2})E(S_{5,5,1};u,v).
$$

In particular, the topological Euler characteristic is

$$
e_{\text{top}}(\text{Hilb}^2(S_{5,5,1})) = E(\text{Hilb}^2(S_{5,5,1}); 1, 1) = 46053 = e_{\text{top}}(Z_{5,5,1}) - 105.
$$

B.3. Threefold case: $(s, n, m) = (5, 6, 1)$

In the case $(s, n, m) = (5, 6, 1)$, we get a smooth threefold $S_{5, 6, 1} \subset \mathbb{P}^5$. Using the Hodge diamond depicted in Sect. [3.3](#page-9-0), one has

$$
E(S_{5,6,1};u,v) = 1 + 2uv + 2u^2v^2 + u^3v^3 - (29u^3 + 520u^2v + 520uv^2 + 29v^3).
$$

Formula ([B.1](#page-28-0)) applied to this case yields

$$
E(\text{Hilb}^2(S_{5,6,1});u,v) = \left[\frac{(1-u^3q)^{29}(1-v^3q)^{29}(1-u^2q)^{520}(1-u^2vq)^{520}}{(1-q)(1-uvq)^2(1-u^2v^2q)^2(1-u^3v^3q)}\right]_{q^2}
$$

$$
+(uv+u^2v^2)E(S_{5,6,1};u,v).
$$

In particular,

$$
e_{\text{top}}(\text{Hilb}^2(S_{5,6,1})) = E(\text{Hilb}^2(S_{5,6,1}); 1, 1) = 593502,
$$

in complete agreement with what one gets out of the Hodge diamond for *Z* depicted in Sect. [3.3.](#page-9-0)

Acknowledgements We are grateful to Kieran O'Grady and Claudio Onorati for useful discussions on the subject of this paper. The first three authors are members of INDAM-GNSAGA. The authors have been partially supported by PRIN2017 2017YRA3LK and PRIN2020 2020KKWT53.

References

- 1. Beauville, A., Donagi, R.: La variété des droites d'une hypersurface cubique de dimension 4. CR Acad. Sci. Paris Sér. I Math. **301**(14), 703–706 (1985)
- 2. Belmans, P.: Fanography, An online database available at [www.fanography.infof](http://www.fanography.info)anography.info
- 3. Benedetti, V.: Sous-variétés spéciales des espaces homogènes, Ph.D. thesis, Aix-Marseille (2018)
- 4. Bernardara, M., Fatighenti, E., Manivel, L.: Nested varieties of K3 type. Journal de l'École polytechnique — Mathématiques **8**, 733–778 (2021)
- 5. Bernardara, M., Fatighenti, E., Manivel, L., Tanturri, F.: Fano fourfolds of K3 type, [arXiv:2111.13030](http://arxiv.org/abs/2111.13030) (2021)
- 6. Cayley, A.: A memoir on quartic surfaces. Proc. Lond. Math. Soc. **1**(1), 19–69 (1869)
- 7. Ciliberto, C., Zaidenberg, M.: Lines, conics, and all that, [arXiv:1910.11423](http://arxiv.org/abs/1910.11423) (2019)
- 8. Coates, T., Corti, A., Galkin, S., Kasprzyk, A.: Quantum periods for 3-dimensional Fano manifolds. Geom. Topol. **20**(1), 103–256 (2016)
- 9. De Biase, L., Fatighenti, E., Tanturri, F.: Fano 3-folds from homogeneous vector bundles over Grassmannians. Revista Matemática Complutense, 1–62 (2021)
- 10. Debarre, O., Voisin, C.: Hyper-Kähler fourfolds and Grassmann geometry. J. Reine Angew. Math. **649**, 63–87 (2010)
- 11. Fatighenti, E., Mongardi, G.: Fano varieties of k3-type and ihs manifolds. Int. Math. Res. Not. **2021**(4), 3097–3142 (2021)
- 12. Festi, D., Garbagnati, A., Van Geemen, B., Van Luijk, R.: The Cayley-Oguiso automorphism of positive entropy on a K3 surface. J. Mod. Dyn. **7**(1), 75 (2013)
- 13. Göttsche, L.: On the motive of the Hilbert scheme of points on a surface. Math. Res. Lett. **8**, 613–627 (2001)
- 14. Gusein-Zade, S.M., Luengo, I., Melle-Hernández, A.: Power structure over the Grothendieck ring of varieties and generating series of Hilbert schemes of points. Mich. Math. J. **54**(2), 353–359 (2006)
- 15. Hauenstein, J.D., Manivel, L., Szendrői, B.: On the equations defning some Hilbert schemes. Vietnam J. Math. **50**, 487–500 (2022)
- 16. Iliev, A., Manivel, L.: Hyperkaehler manifolds from the Tits-Freudenthal magic square. Eur. J. Math. **5**(4), 1139–1155 (2019)
- 17. Katz, S.: The cubo-cubic transformation of ℙ³ is very special. Math. Z. **195**(2), 255–257 (1987)
- 18. Kiem, Y.-H., Kim, I.-K., Lee, H., Lee, K.-S.: All complete intersection varieties are Fano visitors. Adv. Math. **311**, 649–661 (2017)
- 19. Kuznetsov, A.: Küchle fvefolds of type c5. Math. Z. **284**(3–4), 1245–1278 (2016)
- 20. Lopez, A.F.: Noether–Lefschetz theory and the Picard group of projective surfaces. Am. Math. Soc. **438** (1991)
- 21. Mori S., Mukai, S.: Classification of Fano 3-folds with $B_2 \geq 2$. I, Algebraic and topological theories—to the memory of Dr. Takehiko Miyata (Kinokuniya, Tokyo) (M. Nagata et al., ed.), pp. 496–595 (1985)
- 22. Noether, M.: Ueber die eindeutigen raumtransformationen. insbesondere in ihrer anwendung auf die abbildung algebraischer fächen. Mathematische Annalen **3**(4), 547–580 (1871)
- 23. Oguiso, K.: Smooth quartic K3 surfaces and Cremona transformations, ii, [arXiv:1206.5049](http://arxiv.org/abs/1206.5049)
- 24. Oguiso, K.: Isomorphic quartic K3 surfaces in the view of Cremona and projective transformations. Taiwan. J. Math. **21**(3), 671–688 (2017)
- 25. Ottaviani, G.: On 3-folds in P⁵ which are scrolls. Annali della Scuola Normale Superiore di Pisa -Classe di Scienze **19**(3), 451–471 (1992)
- 26. Ottaviani, G.: Some constructions of projective varieties, [http://web.math.unif.it/users/ottaviani/bcn.](http://web.math.unifi.it/users/ottaviani/bcn.pdf%20) [pdf](http://web.math.unifi.it/users/ottaviani/bcn.pdf%20)Online Lectures (2005)
- 27. Pragacz, P.: Enumerative geometry of degeneracy loci. Annales scientifques de l'École Normale Supérieure **Ser. 4, 21**(3), 413–454 (1988)
- 28. Reede, F.: The cubo-cubic transformation and K3 surfaces. Res. Math. **74**(4), 1–7 (2019)
- 29. Ricolf, A.T.: On the motive of the Quot scheme of fnite quotients of a locally free sheaf. J. Math. Pures Appl. **144**, 50–68 (2020)
- 30. Tanturri, F.: On degeneracy loci of morphisms between vector bundles, Ph.D. thesis (2013)
- 31. Veniani, D.C.: Symmetries and equations of smooth quartic surfaces with many lines. Revista Matemática Iberoamericana **36**(1), 233–256 (2019)
- 32. White, F.P.: On certain nets of plane curves. Proc. Camb. Philos. Soc. **22**, 1–10 (1923)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.