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Abstract
In this paper, we consider the generalized Weinstein operator ACVZ",“'". For n = 0, we regain

the classical Weinstein operator A‘;‘;‘I. We introduce and study the Sobolev spaces asso-
ciated with the generalized Weinstein operator and investigate their properties. Next, we
introduce a class of symbols and their associated pseudo-differential operators.
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1 Introduction

In this paper, we consider the generalized Weinstein operator A‘;’,’i’" defined on
R‘i“ = R9X]0, +oo[, by:

s,
dn(a +

amn oY O 2041 0 I@ED A opg (L1)
& oox;  Xay Xy X

where n €N, a > —%, A, is the Laplacian for the d first variables and L, , is the second-
order singular differential operator on the half line given by:

02 +2a+1 0 _4n(a+n)

2 2
()xdﬂ Xd+1 axd+l X1

L

(1.2)

an

For n = 0, we regain the classical Weinstein operator A';;d given by:
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d+1

2  2a+1 0
A=Y 2T =A +L (1.3)
v ; 0x? Xgp1 OXgy ¢ “

L, = L, is the Bessel operator. (see [3, 2, 4, 5, 9] and [10]).

The harmonic analysis associated with the generalized Weinstein operator A';;d’" is stud-
ied by Aboulez et al. (see [1, 6-8]).

Forall f € LI(IRTr1 ,d, 4(x)), we define the Weinstein transform %d’" by:

VA € R4 FHN() () = / FOOA G 4,06 W pig 4 (x)
RTI

where 4, , is the measure defined on R%+! by:
ity g(x) = X35+ dx (1.4)
and A, ,, is the generalized Weinstein kernel given by:
Vi, y& C, Ay 4,06 y) = X2 e B Yas)s

x =, x40, ¥ = (x,%,,...x;) and j, is the normalized Bessel function of index a
defined by:

. D g,
Vée C, =T(a+1 —_— ()"
¢ Jo(&) =T(a )nzzonlr("+“+ 1)(2) (1.5)
The generalized Weinstein transform ﬁw" " can be written in the form
d, ga+2nd
Tt = Fextdo g1, (1.6)

where %‘1 = 5“';","'0 is the classical Weinstein transform and .#, is the map defined by:

Vx € R ,(F)(x) = X2, f(x).

We designe by ., (R%+!) the Schwartz space of rapidly decreasing functions on R%*!, even
with respect to the last variable and .7, ,(R“*!) the subspace of .7, (R**") consisting of
functions f such that

okf
axk

d+1

Vke{l,..,2n—-1}, &, 0)=7(",0)=0.

For all s € R, we define the generalized Sobolev-Weinstein space /*"(R?*!) as the set
of allu € .7 (the strong dual of the space .7, ,(R**!)) such that ") is a function and

/ (1 + 1Py
R:I:H

We investigate the properties of .#"*"(R%*!). Moreover, we introduce a class of symbols
and their associated pseudo-differential operators.

The contents of the paper is as follows:

In the second section, we recapitulate some results related to the harmonic analysis

associated with the generalized Weinstein operator A‘v"’,d’"

TN ditgr20a(8) < o0,

given by the relation (1.1).
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The section 3 is devoted to define and study the generalized Sobolev-Weinstein space
L1y d+1
(}? (R+ ). . . . . .
In the last section, we introduce certain classes of symbols and study their associated
pseudo-differential operators.

2 Preliminaires

In this section, we shall collect some results and definitions from the theory of the har-
monic analysis associated with the Generalized Weinstein operator A”“’/d’" defined on Ri“
by the relation (1.1).

Notations. In what follows, we need the following notations:

o F. (R, the space of continuous functions on R%*!, even with respect to the last vari-
able.

o &(RI), the space of ¢*-functions on R4+, even with respect to the last variable.

o 7. (R¥), the Schwartz space of rapidly decreasing functions on R%*!, even with
respect to the last variable.

o 7,(R™), the space of €™-functions on R**! which are of compact support, even with
respect to the last variable.

° %(Cd“), the space of entire functions on C4+! even with respect to the last variable,
rapidly decreasing and of exponential type.

o . #,, the map defined by:

Vx € R{M, 4, (x) = x5 f(). @.1)

where x = (¥, x4, ;) and X' = (x[,X,, ...,X;)
o L;,(RT),1 < p < +oo, the space of measurable functions on R%+! such that

Wllgny = [ Jra |4 f(x)|ﬂdya+2n,d(x)] " < 400, if 1 <p < +oo,
1Nl o //f,;lf(x)| < +oo,

ess sup
i
xeRIH!

where p, ,is the measure given by the relation (1.4).
* LRH): =12 R, 1 < p < Fooand|lflly, = flleo,
* &,.R"), 2, R*) and .7, (R™!) repespectively stand for the subspace of

nyx

E, (R, 2 (R and .7, (R*) consisting of functions f such that
okf
%

Xa+1

Vk e {1,..,2n— 1}, ,0) =f(',0)=0.

Let us begin by the following result.

Lemma 2.1 (see [1])

i) The map .#, is an isomorphism from &,(R%*!)(resp. .7, (R¥*")) onto &, ,(R¥*)
(resp. yﬂq*([R‘”l)).
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ii)  Forall f € &(R%1), we have
Loty () = A, 0Lo10,(f)- 2.2)
iii) Forall f € &,(R%), we have
AW o, (f) = Mo NG (F). (2.3)
iv) Forall f € &(R™")and g € 2, ,(R*), we have

/ AR g 4(x) =/ FEAG" g(x)dpt (). 2.4)
Riﬂ R:_IH

Definition 2.1 The generalized Weinstein kernel A, is the function given by:

a,d,n

va ye Cd+1 ’ Aa,d,n(x’ y) = 'x(zir-:—le_i<X,,y’>ja+2n(xd+lyd+1)’ (25)

where x = (X', x,,,), ¥’ = (x1 2 Xos ...,xd) and j, is the normalized Bessel function of index
defined by the relation (1.5).

It is easy to see that the generalized Weinstein kernel A, ,;, has a unique extention to
C¥! x C9*! and satisifies the following properties.

Proposition 2.1 i) We have

Vx,y€ R™ AL 10 (6)) = Ay g n (=) = Ay g h(—,Y)

ii) Forall € N**!, x € R™*'and z € C**!, we have
D2 g 06 2] < o X117 exp(liell 1 Tmz])), 2.6)
where
s ud
DZ = W and |ﬂ| = ﬂl + ... +ﬁd+1'
dz,'...0Z, W
In particular, we have
Vx,y € RE, Ay g, (e )| < X321 Q.7
iii) The function x = A, ,(x,y) satisifies the differential equation
DG (A1) @) = =P A 005 3). 238)
iv) For all x, y € C**!, we have
1 1
—ilx'y +2n—2
AgnXY) = g0 /0 (1 =) cos(txyy 1 ygedt 2.9)

where a, is the constant given by:
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2(a + 1)

\/;F<a+ %> (2.10)

Definition 2.2 The generalized Weinstein transform ﬂ“;i;d'" is given for f € L.  (R%*') by:
VA € R ZE((0) = /[R TG00 Wl g () 2.11)

where 4, , is the measure on R%*! given by the relation (1.4).
Some basic properties of the transform ﬁ‘;&d’” are summarized in the following results.

Proposition 2.2

i) Forall f € L} (R%*"), we have
175 P laes < Wl 2.12)
ii)Let m € Nand f € %’*(Rd“),we have
vh € REL [ (AG) |0 = SIS (). @.13)
iii) Let f € Yn’*(R‘”l) and m € N. For all A € R% we have
(NG [, T (D) = M, T (PR (2.14)
where P,,(A) = (=1)"||A]|*™.

Proof

i)  We obtain the result from the relation (2.7).
i) Let f €., (R™"), using the relations (1.6) and (2.3) for all
A€ R we get
T NAT 0 = Z7 ot (A1) 0)
= Ay 0
= |2y [ 1)
= —[IMPZ5 " ()

which proves assertion ii).
iii) The relation (2.8) together with (2.11) give the result. O
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Theorem 2.1

i)Let f € Lé,n([R‘i“). Ifﬁ;"’,d’"(f) el (R‘fl), then we have

a+2n

fo=Cc,,., / T EYO At (X )20, ). @€ x € R 2.15)

szrl
where C, , is the constant given by:

C 1

L e S—— (2.16)
2r)229T(a + 1)

ii) The Weinstein transform %‘1’" is a topological isomorphism from yn‘*(RdH) onto
(R4 and from 9, ,(R¥1) onto A, (CHH).

Proof

i)  We obtain the result from the relation (1.6) and the fact that
px) = Cid /d 1 %d((p)(y)Aa’dp(—x, Vdu, ), aex € IR‘J{:r1
RY*

where ¢, %}d((p) € Li(lR{i”).
ii) The transform 2 is a topological isomorphism from Z.(R¥1) onto itself and from
2,(R¥*1) onto 2, (C?*). Then using the relation (1.6) the assertion ii) is proved.
O

The following Theorem is as an immediate consequence of the relation (1.6) and the
properties of the transform ﬁ‘"f (see [6-8]).

Theorem 2.2

i)Forall f,g € Yn’*(Rd“), we have the following Parseval formula

@@ dp, ) = C2,,, / T YN F (YN g2 V) 2.17)
Rziﬂ

Rfrl
where C, , is the constant given by the relation (2.16).

ii) (Plancherel formula).
Forall f € %l’*(le“), we have:

2
/R N P dpp () = C2py g /[R N |5"‘5f’”(f)@)( dp 32,0 (2.18)
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iii) (Plancherel Theorem):
The transform (‘9}‘;";‘1’" extends uniquely to an isometric isomorphism from
LR, dp, 4(x) onto PRI, C2,,  dity 4, 4(X)).

Definition 2.3 The translation operator Tf’d*”, x € [R‘i“, associated with the operator A‘;“}d’"
is defined on &, ,(R*!) by:

Vy € RE, TEf(y) = Xy TeP 4, () (2.19)

where

T*f(y) = da ”f X +y \/x2 + 2 42X, Vap COSO | (sin 0)*d6, (2.20)
x 2 Jo ’ d+1 d+1 d+17d+1 > :
X' +y = (x; + ;... x; +¥,) and a, is the constant given by (2.10).
Lemma 2.2 Let fy, f > 0, be the function defined by:
-B
Ve e RIT, fy(&) = (1+11€l1”) .
Then there exists kﬂ > 0 such that
-p -p
v,y € REL T%4(£,) () < kg (14 11x17) " (1 + Iy117) ™ 2.21)
Proof Using the relation (2.20), for all x, y € R%+!,we obtain
Tot,d _ aa i 1 / 1112 2 2 2 0 P . 0 2ad9
" (f,;)(y)—? A +||x +y|| + X1 F Vet 2%441Y 441 COS (sin 9)
—p -pa 4 .
kg (T4 11x®) 7 (1 +1y11%) 3/0 (sin 6)**d6
<y (14 Ixl1?) (1 4+ 12 ™
= Kp y

where

-p
e <1+||x'+y'||2+(xd+1—yd+1)2>
P emin (14 Nxl?) (1 + lyll?)

|

The following proposition summarizes some properties of the generalized Weinstein
translation operator.

Proposition 2.3
i) For f € @@n’*(Rd“), we have

Vx, y € RYF, T4 f(y) = TR f(v).

ii) Forall f € éan’*(Rd“) andy € IRT', the function x T)‘j"d’"f(y) belongs to éam*(Rd“).
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iii) We have
d+1 adn_radn _ gadn a,dn
Vx € IR+ s AW ol =T oAW .

iv) Let f € Lg,(R{™), 1 < p < 400 and x € R{*. Then T{4"f belongs to L, (R{™) and
we have

NTE" F gy < X W - (2.22)

v) The functiont — A_ , (t,\), A € C¥!, satisfies on IR‘jfrl the following product formula:

a,d,n
Vx,y € RE AL 40 MDA 1,00 ) = T [A g 4 W] ). (2.23)

vi) Let f € .7, (R and x € R, we have
VA € R FE(THAFY0) = Ay g (=2, DF L (D). (2.24)

Proof The results can be obtained by a simple calculation by using the relation (2.19).
O

Lemma23 Let f € .7, (R™), forall x,y € R4 we hae
T;’d’n ('%nyi;’/d’nfﬂnf) (y) = /d Aa,d,n(x’ }\’)Aa,d,n(y’ }\’)f(}\)dﬂa+2n,d(7\‘)' (225)
R++l

Proof Let f € .7, ,(R**!). Using the the relation (2.15) and (2.24), we obtain

T4 (M Ty L)) = Cry g / {Awan=2.1)
Tl (T4 (M T M) ) D) Yt
C§+2nd/+l Agan (=% WA 4, (=3, MTY g
(A, T3 ) W) 420,00
= Cosmna /R o Daan (WA (=3, T o FI )
Wit y20a®)
o R TR R C
= /R 1 Badn® Mg O M R 2, -

|

Definition 2.4 Let f,g € L;n(RTl).The generalized Weinstein convolution product of f
and g is given by:

Ve RISty g = [ TR Cs0M0) 2.26)

Proposition 2.4 Forall f,g € L, (R%*"),we have f %,, g€ L. (R"!)and
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T 50, 8) = Tl (T (9). 2.27)
Proof Let f,g € L. (R4*!). We have
”f *a,n g“a,n,l S “f”a,n,l ”g“a,n,l'

Now using Fubini’s theorem and the relation (2.24), we obtain

Ff s D)0 = /

d+1
RY

< / Tf’d’”f(—y)g(y)dﬂa,d(y)>Aa,d,n(x, Mdp, 4(x)
Ri+l

=/ g(y)( / THEF ()N g x)dua,du))dua,dcy)
Riﬂ Riﬂ

= [ g7 (1 Yo
Ri+] -

(310 / 8O (V- Mt 4 ()
Riﬂ

TN TL (D).

Remark 2.1 From the relation (2.27), we deduce that
g€ Ry > fx, g€, R

Notations. We denoted by:
. 5/* , the strong dual of the space .7, (R%*1).
-, the strong dual of the space ., ,(R%*").

Definition 2.5 The generalized Fourier-Weinstein transform of a distribution u € Y:l . 18
defined by:

Vo € Z, R, (FEw), ¢) = (u, (F1) (@), (2.28)

The following proposition is as an immediate consequence of Theorem 2.1.

Proposition 2.5 The transform 9"‘;’,’1’" is a topological isomorphism from 5{1 , onto efk

Lemma2.4 Letm € Nandu € %l,*,we have

(Z ) Ay ] = D™ P (F) (2.29)
where

Vo € 7, (R), (AL™"u, §) = (u, AL ). (2.30)

Proof Let meN and ue.¥

M,by invoking (2.13), (2.28) and (2.30), for all
pE.7, (Rd“ ),we can write
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() [yl ¢) = (@5, (Z5) 7 @)
= (u, (A“’d’”r"( Zi) " (@)
= (u, (Z5) (=1 P )
= (FLw), (D" X7 )
= (D"l Z5" ), ).

Which completes the proof. a

3 Sobolev spaces associated with the generalized Weinstein operator

The goal of this section is to introduce and study the Sobolev spaces associated with the
generalized Weinstein operator A';";d’".

Definition 3.1 For s € R, we define the generalized Sobolev-Weinstein space of order s,
that will be denoted f"””(ﬂ%i“), as the setof all u € ,?;L , such that ﬁ“’:‘;d’"(u) is a function

and
-/R‘Hl

We provide " (R4*!) with the inner product

d"(u)(h)( dityionaN) < +oo. 3.1)

(Vg = Cord / (1 + €I Zo " )T 0N i2na®  (3.2)

and the norm

il oo = l 2 / 1+ 2P| 2

The following properties of the spaces 7" can easily be established.

G ) INCEY

Proposition 3.1 (i) For all s € R, we have

T R € (R,
(ii) We have

%g,a,n(Riﬂ) _ Li,n(Riﬂ)-

(iii) For all 5, 1 € R, 1> s, the space #"*"(R%*!) is continuously con-
tained in %’“‘"(R‘fl)..

Proposition 3.2 The space " (R‘i“) provided with the norm ||.|| yp«n is a Banach space.
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Proof Let (f,), ., be a Cauchy sequence of Z*"(R?'). From the defini-
tion of the norm ||.|| ypas, it is clear that (9“’4}‘1’"( 1)),.eny 18 @ Cauchy sequence of

LRI, C L, (U + 117 g0, ()
Since L*(R¥!, C2 2 onall + Ixl1?) dgynng(x) is complete, there exists a function

f e xR, c§+2n S+ X117 d g, 4(%)) such that

dn
A ZGE () = Fligs. 2, eisteydug e = 0 (3.4)

Then f € %, and h = (F5") " (f) € S .
So, Ty =fe€PRM, 2, d(l + [1X1)° dpg 0 q(x)), Which proves that
h € "(R%*!) and we have

dn
W = llsper = NF3" (fon) =Sliz@en 2, (eisiydugpnaen = O-

m—+0oo

Hence, 7" (R%*!) is complete. O

Proposition 3.3 Let s,t € R. The operator U, defined by:
Vx € R, Gt = €2y / (1 4+ BED Ay (5. O F G N Hg120a(0)

is a isomorphism from " ([Ri“) onto 7 _""’"([Rﬁ’r+1 ).

Proof Lets,t € Randu € %‘“’"(IR’”I) The function:
Em L+ IED'A +IE1D T ﬁ”d"(u)(i) belongs to L2, ) (R4*!") and have

Ve € RU, Z0(0u) (@) = (1 + IE) F5b (w)(©).

/ (1 + [l
szl

2\s | gdin 2
<xq [ IR | Z @] @
[Ri+1

Thus

L%d"’(ﬁtu)(f )’2dﬂa+zn,d(5 )

where

2t
o= s [EBDY]
oot | (T F 1P

Then, Ou € #°7"*"(R%*!) and we have
I
”ﬁtullﬁaﬂ.mn < 22 “u”'%mm.

Now, letv € f"’“‘”(ﬂ%‘fl) and put

u=(Fut )((1+||é||) LFE()).
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From the definition of the operator &,, we have ,u = v and we get

/ (1 + 2Py
Rziﬂ

- / L+ 2P + €D
Ri‘f’l

<2 [ asiapr
Riﬂ

Hence, u € #*"(R%*") and we obtain

gﬂ,d,n 2
Zi" @O dbr2na®

aga.d.n 2
</W (V)(§)| dﬂa+2n,d(§)

aqa.d.n 2
Ty (V)(g)‘ Ay ion4(6)-

i1
[[ae]] o < 272 ||ﬁ,u||%ﬂ.n.n.
Which completes the proof. a

Remark 3.1 The dual of s#"*"(R%+!)can be identified with 7#**"(R%*"). The relation of
the identification is as follows:

o VYomn = Cops /R O T N 120(E), (35)

withu € A" (R and v € A" (REH).

Proposition 3.4 Let s,s,5, € R, satisfying s, < s < s,. Then, for all € > 0, there exists a
nonnegative constant C, such that for allu € ,%’”“’"(R‘i“), we have

llull span < Cellull yoran + €llul] sorian. (3.6)
1
Proof Lets;,s, € Rand s = (1 —1)s; + 155,71 € 10, 1[. Letu € """ (R™*"). We put 1 = —
p
1 . . .
and 1 — ¢ = —, applying the Holder’s inequality, we get
q
1—
lull e < Matll ' X Nl
= 1 '
< <e ||u||,w,,,) x (ellull goer)
< €57 [ull yoron + ellul] o

Then the relation (3.6) is proved. O

Proposition 3.5 Let s € R and m € N. Then for all € > 2m, the operator (A‘;";d’")m is con-
tinuous from ,%"’“’"(R‘i“) into %‘”—g’a’"(ﬂ%‘fl ).

Proof Letm €N, e >2m,s € Randu € %’“’"(R‘fl).
Using the relation (2.29), we can see that (A‘;",‘i)mu € A ""(R?*!) and we have

d\™
(AG) ull ycan < Nutll .

Thus the proof is finished. a
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4 Pseudo-differential operators
NotationsWe need the following notations

e Forr > 0, we designate by S, the space of C*®—function @ on R¥*! x R%*! such that for
each compact set K ¢ R%! and each f,y € N, there exists a constant C = C(K, f,7)
satisfying:

V@, &) € K xR, DIDa(x, )| < €1+ (1€, @.1)

e For r,l € R with [ > 0, we denote by S, the space consits of all C®—function a on
R4+! x R%*! such that for each f,y € N, there exist a positive constant C = C(r, 1, ,7)
satisfying the relation:

Ve, £ € R xR, [DIDIatx, &) < CC1+ IEIRE (L + D) 5. 42)

Definition 4.1 The pseudo-differential operator A(a, A“’A’,d‘") associated with a(x, &) € S" is
defined for u € .7, ,(R4*") by:

[A(a, A% )u] (x) = / A (=%, )80 N T 5 )0 g2 a ). (4.3)
RT‘

Theorem 4.1 If a(x, &) € §', then its associated pseudo-differential operator A(a, A:‘}d) is
a well-defined mapping from ., (R into C* ([R"Jrl )

Proof Let a(x, &) € S and s > r + %l + a + 2n + 1. From the relation (4.1), we have for
any compact set K C R%!and any y € N,
V(x, &) € KxR™!, |Da(x, &) < C(1+ [1€]17)3. 4.4

Let u € ., (R*") and x € K, using the relations (4.4), (2.7) and the Cauchy-Schwartz
inequality, we obtain

/ |, DA (5. O T WO Aty 2,4©)
Ri-#l

<csy [ a2 O |y

1

C n r—=s ’
< xfm( /R e dua+2n,d<:>) il oo

a+2n,d

This relation proves that A (a, A;}d)(u) is well-defined and continuous on R‘fl.
By the same argument, we can prove

/d,
R4*

D75, )1, (=5, O F 3" W)ty a () < ] o
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where C’ is a positive constant.
Consequently, in vertue of Leibniz formula, we obtain the result. O

The next lemma plays an important role in this section.
Lemma4.1 Lett > 0andl > 2a +4n+d + 2. Then, for all a(x, &) € S .we have:
| (A 3)) @] < C+ DI+ 1P, 4.5)
where C is a constant depending onr,t,a,d,n and L.

Proof Let k € N. By invoking (2.7), (2.13) and (4.2), we obtain

eI 25 (a0 )| = ‘%"’"[(Aﬁv’d’")k(/flna(~,y))(§)]'

S /
Riﬂ
<
Rd+l

< /(1 + Iy / (U el (146 Y o)

k
(357 052000090 [ Ot

xd+1d/"a )

(A3 ()

<G+ [y

where ! > 2a +4n +d + 2 and
C2 Cl / (1 + ”x” )_7 (1 +xd+1)dﬂa,d(x) = CZ(r> k? «, d, l’l)
We putm = [%] +1, >0, where [5] is the integer part of 5. We get

A+ eI |7y

W (Aal.y) (é)ﬂ—zck eI 25" (A 3) @)

< ¥ GG kad i + Iyl
k=0

<+ yl?:

where C is a constant depending on r, t, a, d,n and L.
Hence, we obtain

| Z3t (A 9) @] < €+ IVIDEC+ 1EIP ™
< CCL+ I3+ NiEP) 2.

|

The following theorem gives an alternative form of A(a, A‘;&d) which will be useful
in the sequel.
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Theorem4.2 Let! > 2a +4n+d+2,a(x, &) € S andu € Yn’*(R‘”l). Then, the pseudo-
differential operator A(a, A‘;Vd) admits the following representation:

[A(a. A u] ) = Copy /R o Naan(=x,9)X 4.6)

l '%; '/%_ ngn'% (% a( y))(f)J dn(u)@)d#a+2nd@)] d#a+2nd(§)
Rdﬂ

where all involved integrals are absolutely convergent.
Proof We put
8:058) = Ny (X, M ol T M F i (M0, ) T W).

ny -y

We shall prove that g, belongs to L' (R x R, dy, s, 1)y 40,.4(E)).

Lett>/landy > g - é + %’ + a + 2n + 1. Using the relations (2.19), (2.7) and (4.5), we
obtain

M M T M, T (M ) @)

<G+ [y

e[+ )|

-
Hence from (2.21), we get

M MNT A, T (Mals ) O] < CA+ VDT A+ DT @7

ny” =y

where C, is a constant depending on r,t,a,d,n and [. On the other hand since
u € .7, (R, then there exist C3 > 0 such that

vy € RE [ Z5 o) < C5(1+ IVIP
Hence, we get
2.0, &) < O (L + Iyl 277 (1 + 1EP) 7.

Since t > [ >2a+4n+d+2 and y>§—é+g+(x+2n+1, the function g, belongs

to L' (R X R dpy o 1) dH g 1204(E))- So, the result follows by applying the inverse
theorem and using the relation (2.25). O

Now, we are in a situation to establish the fundamental result of this section given by the
following result.

Theorem 4.3 Let s, L > a+2n+ g +1, alx, &) € S* and A(x, A;’,d’") be the associated
pseudo-differential operator. Then A(a, A%}d’") maps continuously from """ (R) 1o

AR, Moreover, we have
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d+1 d,
Vue.7, (R L”A@,A;"W“%Mskmmﬁﬂ” 48
where k is a constant depending on s,r,a,d,n and l.

Proof Lets,é >a+2n+ g + 1. We put
@,(&) = MMNT N, T (M0 9)) (=T ()3 Hgy a )
pat ATy

From the relations (4.7), we have

001 < G+ 1R [+ P F [ Z5 000
Ri+l

Hence using the Cauchy-Schwartz inequality, we obtain

Coaana(1 + €I @,(&)] < C5(1 + 1€ [[ull v

where

2

C=Co [ 0+ I s

Then

|+ 1E17): o,

< k]| st

d.n
AaAm’N =C
|| ( P TW ) s at2nd a+2n2

where 1 > |s|+a+2n+§+1and

2

k=, /R IR 200
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