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Abstract
In this paper, we consider the generalized Weinstein operator Δd,�,n

W
 . For n = 0, we regain 

the classical Weinstein operator Δ�,d

W
 . We introduce and study the Sobolev spaces asso-

ciated with the generalized Weinstein operator and investigate their properties. Next, we 
introduce a class of symbols and their associated pseudo-differential operators.
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spaces · Pseudo-differential operators

Mathematics Subject Classification 32A50 · 32B10 · 46E35 · 46F12 · 43A32

1 Introduction

In this paper, we consider the generalized Weinstein operator Δ�,d,n

W
 defined on 

ℝ
d+1
+

= ℝ
d
×]0, +∞[, by:

where n ∈ ℕ , 𝛼 > −
1

2
 , Δd is the Laplacian for the d first variables and L

�,n is the second-
order singular differential operator on the half line given by:

For n = 0, we regain the classical Weinstein operator Δ�,d

W
 given by:

(1.1)Δ
�,d,n

W
=

d+1∑

i=1

�
2

�x2
i

+
2� + 1

xd+1

�

�xd+1
−

4n(� + n)

x2
d+1

= Δd + L
�,n

(1.2)L
�,n =

�
2

�x2
d+1

+
2� + 1

xd+1

�

�xd+1
−

4n(� + n)

x2
d+1

.
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L
�
= L

�,0 is the Bessel operator. (see [3, 2, 4, 5, 9] and [10]).
The harmonic analysis associated with the generalized Weinstein operator Δ�,d,n

W
 is stud-

ied by Aboulez et al. (see [1, 6–8]).
For all f ∈ L1(ℝd+1

+
, d�

�,d(x)) , we define the Weinstein transform F�,d,n

W
 by:

where �
�,d is the measure defined on ℝd+1

+
 by:

and Λ
�,d,n is the generalized Weinstein kernel given by:

x = (x�, xd+1), x
�
=
(
x1, x2, ..., xd

)
 and j

�
 is the normalized Bessel function of index �

defined by:

The generalized Weinstein transform F�,d,n

W
 can be written in the form

where F�,d

W
= F

�,d,0

W
 is the classical Weinstein transform and Mn is the map defined by:

We designe by S
∗
(ℝ

d+1
),the Schwartz space of rapidly decreasing functions on ℝd+1 , even 

with respect to the last variable and Sn,∗(ℝ
d+1

) the subspace of S
∗
(ℝ

d+1
) consisting of 

functions f such that

For all s ∈ ℝ , we define the generalized Sobolev-Weinstein space Hs,�,n
(ℝ

d+1
+

) as the set 
of all u ∈ S

�

n,∗
 
(
the strong dual of the space Sn,∗(ℝ

d+1
)
)
 such that ℱ�,d,n

W (u) is a function and

We investigate the properties of Hs,�,n
(ℝ

d+1
+

) . Moreover, we introduce a class of symbols 
and their associated pseudo-differential operators.

The contents of the paper is as follows:
In the second section, we recapitulate some results related to the harmonic analysis 

associated with the generalized Weinstein operator Δ�,d,n

W
 given by the relation (1.1).

(1.3)Δ
�,d

W
=

d+1∑

i=1

�
2

�x2
i

+
2� + 1

xd+1

�

�xd+1
= Δd + L

�

∀λ ∈ ℝ
d+1
+

, F
�,d,n

W
(f )(λ) = ∫

ℝ
d+1
+

f (x)Λ
�,d,n(x, λ)d��,d(x)

(1.4)d�
�,d(x) = x2�+1

d+1
dx

∀x, y∈ ℂ
d+1, Λ

�,d,n(x, y) = x2n
d+1

e−i⟨x
� ,y�⟩j

�+2n(xd+1yd+1),

(1.5)∀�∈ ℂ, j
�
(�) = Γ(� + 1)

∞∑

n=0

(−1)n

n!Γ(n + � + 1)
(
�

2
)
2n.

(1.6)F
�,d,n

W
= F

�+2n,d

W
◦M−1

n
.

∀x ∈ ℝ
d+1
+

, Mn(f )(x) = x2n
d+1

f (x).

∀k ∈ {1, ..., 2n − 1},
�
kf

�xk
d+1

(x�, 0) = f (x�, 0) = 0.

∫
ℝ

d+1
+

(1 + ‖𝜉‖2)s���F
𝛼,d,n

W
(u)(𝜉)

���
2

d𝜇
𝛼+2n,d(𝜉) < ∞.
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The section 3 is devoted to define and study the generalized Sobolev-Weinstein space 
H

s,�,n
(ℝ

d+1
+

).
In the last section, we introduce certain classes of symbols and study their associated 

pseudo-differential operators.

2  Preliminaires

In this section, we shall collect some results and definitions from the theory of the har-
monic analysis associated with the Generalized Weinstein operator Δ�,d,n

W
 defined on ℝd+1

+
 

by the relation (1.1).
Notations. In what follows, we need the following notations:

• C
∗
(ℝ

d+1
), the space of continuous functions on ℝd+1 , even with respect to the last vari-

able.
• E

∗
(ℝ

d+1
), the space of C∞-functions on ℝd+1 , even with respect to the last variable.

• S
∗
(ℝ

d+1
), the Schwartz space of rapidly decreasing functions on ℝd+1 , even with 

respect to the last variable.
• D

∗
(ℝ

d+1
), the space of C∞-functions on ℝd+1 which are of compact support, even with 

respect to the last variable.
• H

∗
(ℂ

d+1
), the space of entire functions on ℂd+1 , even with respect to the last variable, 

rapidly decreasing and of exponential type.
• Mn , the map defined by: 

 where x = (x�, xd+1) and x� =
(
x1, x2, ..., xd

)

• L
p
�,n(ℝ

d+1
+

), 1 ≤ p ≤ +∞, the space of measurable functions on ℝd+1
+

 such that 

 where �
�,d is the measure given by the relation (1.4).

• Lp�(ℝd+1
+ ): = Lp�,0(ℝ

d+1
+ ), 1 ≤ p ≤ +∞,and ‖f‖

�,p ∶= ‖f‖
�,0,p.

• ℰn,∗(ℝd+1), �n,∗(ℝd+1) and Sn,∗(ℝ
d+1

) repespectively stand for the subspace of 
E
∗
(ℝ

d+1
), D

∗
(ℝ

d+1
) and S

∗
(ℝ

d+1
) consisting of functions f such that 

 Let us begin by the following result.

Lemma 2.1 (see [1]) 

i)   The map Mn is an isomorphism from E
∗
(ℝ

d+1
)
(
resp. S

∗
(ℝ

d+1
)
)
 onto En,∗(ℝd+1

) (
resp. Sn,∗(ℝ

d+1
)
)
.

(2.1)∀x ∈ ℝ
d+1
+

, Mn(f )(x) = x2n
d+1

f (x).

‖f‖
𝛼,n,p =

�∫
ℝ

d+1
+

�M−1
n
f (x)�pd𝜇

𝛼+2n,d(x)
� 1

p

< +∞, if 1 ≤ p < +∞,

‖f‖
𝛼,n,∞ = ess sup

x∈ℝd+1
+

���M
−1
n
f (x)

��� < +∞,

∀k ∈ {1, ..., 2n − 1},
�
kf

�xk
d+1

(x�, 0) = f (x�, 0) = 0.
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ii)   For all f ∈ E
∗
(ℝ

d+1
) , we have 

iii)   For all f ∈ E
∗
(ℝ

d+1
) , we have 

iv)  For all f ∈ E
∗
(ℝ

d+1
) and g ∈ Dn,∗(ℝ

d+1
) , we have 

Definition 2.1 The generalized Weinstein kernel Λ
�,d,n is the function given by:

where x = (x�, xd+1), x
�
=
(
x1, x2, ..., xd

)
 and j

�
 is the normalized Bessel function of index �

defined by the relation (1.5).

It is easy to see that the generalized Weinstein kernel Λ
�,d,n has a unique extention to 

ℂ
d+1

× ℂ
d+1 and satisifies the following properties.

Proposition 2.1 i)   We have 

ii)   For all � ∈ ℕ
d+1, x ∈ ℝ

d+1
+

 and z ∈ ℂ
d+1 , we have 

 where 

 In particular, we have 

iii)   The function x ↦ Λ
�,d,n(x, y) satisifies the differential equation 

 iv) For all x, y ∈ ℂ
d+1 , we have 

 where a
�
 is the constant given by: 

(2.2)L
�,n◦Mn(f ) = Mn◦L�+2n(f ).

(2.3)Δ
�,d,n

W
◦Mn(f ) = Mn◦Δ

�+2n
W

(f ).

(2.4)∫
ℝ

d+1
+

Δ
�,d,n

W
(f )(x)g(x)d�

�,d(x) = ∫
ℝ

d+1
+

f (x)Δ
�,d,n

W
g(x)d�

�,d(x).

(2.5)∀x, y∈ ℂ
d+1, Λ

�,d,n(x, y) = x2n
d+1

e−i⟨x
� ,y�⟩j

�+2n(xd+1yd+1),

∀x, y∈ ℝ
d+1, Λ

�,d,n(x, y) = Λ
�,d,n(x,−y) = Λ

�,d,n(−x, y)

(2.6)�D�

z
Λ

�,d,n(x, z)� ≤ x2n
d+1

‖x‖��� exp(‖x‖ ‖Imz‖),

D�

z
=

�
�

�z
�1

1
...�z

�d+1

d+1

and |�| = �1 + ... + �d+1.

(2.7)∀x, y ∈ ℝ
d+1
+

, |Λ
�,d,n(x, y)| ≤ x2n

d+1
.

(2.8)△�,d,n

W

�
Λ

�,d,n(., y)
�
(x) = −‖y‖2Λ

�,d,n(x, y).

(2.9)Λ
�,d,n(x, y) = a

�+2ne
−i⟨x� ,y�⟩x2n

d+1 ∫
1

0

�
1 − t2

�
�+2n−

1

2 cos(txd+1yd+1)dt



3349Pseudo‑differential operators in the generalized weinstein…

1 3

Definition 2.2 The generalized Weinstein transform F�,d,n

W
 is given for f ∈ L1

�,n
(ℝ

d+1
+

) by:

where �
�,d is the measure on ℝd+1

+
 given by the relation (1.4).

Some basic properties of the transform F�,d,n

W
 are summarized in the following results.

Proposition 2.2 

i)  For all f ∈ L1
�,n
(ℝ

d+1
+

) , we have 

ii)  Let m ∈ ℕ and f ∈ Sn,∗(ℝ
d+1

), we have 

iii)  Let f ∈ Sn,∗(ℝ
d+1

) and m ∈ ℕ . For all λ ∈ ℝ
d+1
+

,we have 

 where Pm(λ) = (−1)m‖λ‖2m.

Proof 

i)  We obtain the result from the relation (2.7).
ii)  Let f ∈ Sn,∗(ℝ

d+1
), using the relations (1.6) and (2.3) for all

  λ ∈ ℝ
d+1
+

, we get 

 which proves assertion ii).
iii)  The relation (2.8) together with (2.11) give the result.   ◻

(2.10)a
�
=

2Γ(� + 1)
√
�Γ

�
� +

1

2

� .

(2.11)∀λ ∈ ℝ
d+1
+

, F
�,d,n

W
(f )(λ) = ∫

ℝ
d+1
+

f (x)Λ
�,d,n(x, λ)d��,d(x).

(2.12)‖F�,d,n

W
(f )‖

�,n,∞ ≤ ‖f‖
�,n,1.

(2.13)∀λ ∈ ℝ
d+1
+

, F
�,d,n

W

��
△�,d,n

W

�m
f
�
(λ) = (−1)m‖λ‖2mF�,d,n

W
(f )(λ).

(2.14)
(
△�,d,n

W

)m[
MnF

�,d,n

W
(f )

]
(λ) = MnF

�,d,n

W
(Pmf )(λ)

F
�,d,n

W

��
△�,d,n

W

�
f
�
(λ) = F

�+2n,d

W
◦M−1

n

��
△�,d,n

W

�
f
�
(λ)

= F
�+2n,d

W

�
Δ

�+2n
W

M
−1
n
f
�
(λ)

= −‖λ‖2F�+2n,d

W

�
M

−1
n
f
�
(λ)

= −‖λ‖2F�,d,n

W
(f )(λ)
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Theorem 2.1 

i)  Let f ∈ L1
�,n
(ℝ

d+1
+

) . If F�,d,n

W
(f ) ∈ L1

�+2n
(ℝ

d+1
+

), then we have 

 where C
�,d is the constant given by: 

ii)  The Weinstein transform F�,d,n

W
 is a topological isomorphism from Sn,∗(ℝ

d+1
) onto 

S
∗
(ℝ

d+1
) and from Dn,∗(ℝ

d+1
) onto H

∗
(ℂ

d+1
).

Proof 

i)  We obtain the result from the relation (1.6) and the fact that 

   where �,F�,d

W
(�) ∈ L1

�
(ℝ

d+1
+

).
ii)  The transform ℱ�,d

W
 is a topological isomorphism from S

∗
(ℝ

d+1
) onto itself and from 

D
∗
(ℝ

d+1
) onto H

∗
(ℂ

d+1
) . Then using the relation (1.6) the assertion ii) is proved.  

 ◻

The following Theorem is as an immediate consequence of the relation (1.6) and the 
properties of the transform F�,d

W
 (see [6–8]).

Theorem 2.2 

i)  For all f , g ∈ Sn,∗(ℝ
d+1

), we have the following Parseval formula 

 where C
�,d is the constant given by the relation (2.16).

ii)  (Plancherel formula).
  For all f ∈ Sn,∗(ℝ

d+1
), we have: 

(2.15)f (x) = C2
�+2n,d ∫

ℝ
d+1
+

F
�,d,n

W
(f )(y)Λ

�,d,n(−x, y)d��+2n,d(y), a.e x ∈ ℝ
d+1
+

(2.16)C
�,d =

1

(2�)
d

2 2�Γ(� + 1)
.

�(x) = C2
�,d ∫

ℝ
d+1
+

F
�,d

W
(�)(y)Λ

�,d,0(−x, y)d��,d(y), a.e x ∈ ℝ
d+1
+

(2.17)∫
ℝ

d+1
+

f (x)g(x)d�
�,d(x) = C2

�+2n,d ∫
ℝ

d+1
+

F
�,d,n

W
(f )(λ)F

�,d,n

W
(g)(λ)d�

�+2n,d(λ)

(2.18)∫
ℝ

d+1
+

|f (x)|2d�
�,d(x) = C2

�+2n,d ∫
ℝ

d+1
+

|||F
�,d,n

W
(f )(λ)

|||
2

d�
�+2n,d(λ).
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iii)  (Plancherel Theorem):
  The transform F�,d,n

W
 extends uniquely to an isometric isomorphism from 

L2(ℝd+1
+

, d�
�,d(x)) onto L2(ℝd+1

+
, C2

�+2n,d
d�

�+2n,d(x)).

Definition 2.3 The translation operator T�,d,n
x

, x ∈ ℝ
d+1
+

 , associated with the operator Δ�,d,n

W
 

is defined on En,∗(ℝd+1
+

) by:

where

x� + y� =
(
x1 + y1, ..., xd + yd

)
 and a

�
 is the constant given by (2.10).

Lemma 2.2 Let f
𝛽
, 𝛽 > 0, be the function defined by:

Then there exists k
𝛽
> 0 such that

Proof Using the relation (2.20), for all x, y ∈ ℝ
d+1
+

, we obtain

where

  ◻

The following proposition summarizes some properties of the generalized Weinstein 
translation operator.

Proposition 2.3 

i)  For f ∈ En,∗(ℝ
d+1

) , we have 

ii)  For all f ∈ En,∗(ℝ
d+1

) and y ∈ ℝ
d+1
+

 , the function x ↦ T�,d,n
x

f (y) belongs to En,∗(ℝd+1
).

(2.19)∀y ∈ ℝ
d+1
+

, T�,d,n
x

f (y) = x2n
d+1

y2n
d+1

T�+2n,d
x

M
−1
n
f (y)

(2.20)T�,d
x

f (y) =
a
�

2 ∫
�

0

f

(
x� + y�,

√
x2
d+1

+ y2
d+1

+ 2xd+1yd+1 cos �

)
(sin �)2�d�,

∀� ∈ ℝ
d+1
+

, f
�
(�) =

�
1 + ‖�‖2

�−�
.

(2.21)∀x, y ∈ ℝ
d+1
+

, T�,d
x

�
f
�

�
(y) ≤ k

�

�
1 + ‖x‖2

�−��
1 + ‖y‖2

�−�
.

T�,d
x

�
f
�

�
(y) =

a
�

2 �
�

0

�
1 + ��x� + y���

2
+ x2

d+1
+ y2

d+1
+ 2xd+1yd+1 cos �

�−�

(sin �)2�d�

≤ k
�

�
1 + ‖x‖2

�−��
1 + ‖y‖2

�−� a�
2 �

�

0

(sin �)2�d�

≤ k
�

�
1 + ‖x‖2

�−��
1 + ‖y‖2

�−�

k
�
= sup

x,y∈ℝd+1
+

�
1 + ‖x� + y�‖2 +

�
xd+1 − yd+1

�2
�
1 + ‖x‖2

��
1 + ‖y‖2

�

�−�

.

∀x, y ∈ ℝ
d+1
+

, T�,d,n
x

f (y) = T�,d,n
y

f (x).
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iii)  We have 

iv)  Let f ∈ L
p
�,n(ℝ

d+1
+

), 1 ≤ p ≤ +∞ and x ∈ ℝ
d+1
+

 . Then T�,d,n
x

f  belongs to Lp
�,n(ℝ

d+1
+

) and 
we have 

v)  The function t ↦ Λ
�,d,n(t, λ), λ ∈ ℂ

d+1, satisfies on ℝd+1
+

 the following product formula: 

vi)  Let f ∈ Sn,∗(ℝ
d+1

) and x ∈ ℝ
d+1
+

 , we have 

Proof The results can be obtained by a simple calculation by using the relation (2.19).  
 ◻

Lemma 2.3 Let f ∈ Sn,∗

(
ℝ

d+1
)
 , for all x, y ∈ ℝ

d+1
+

, we hae

Proof Let f ∈ Sn,∗

(
ℝ

d+1
)
 . Using the the relation (2.15) and (2.24), we obtain

  ◻

Definition 2.4 Let f , g ∈ L1
�,n
(ℝ

d+1
+

).The generalized Weinstein convolution product of f 
and g is given by:

Proposition 2.4 For all f , g ∈ L1
�,n
(ℝ

d+1
+

), we have f ∗
�,n g ∈ L1

�,n
(ℝ

d+1
+

)and

∀x ∈ ℝ
d+1
+

, Δ
�,d,n

W
◦T�,d,n

x
= T�,d,n

x
◦Δ�,d,n

W
.

(2.22)‖T�,d,n
x

f‖
�,n,p ≤ x2n

d+1
‖f‖

�,n,p.

(2.23)∀x, y ∈ ℝ
d+1
+

, Λ
�,d,n(x, λ)Λ�,d,n(y, λ) = T�,d,n

x

[
Λ

�,d,n(., λ)
]
(y).

(2.24)∀λ ∈ ℝ
d+1
+

, F
�,d,n

W

(
T�,d,n
x

f
)
(λ) = Λ

�,d,n(−x, λ)F
�,d,n

W
(f )(λ).

(2.25)T�,d,n
x

(
MnF

�,d,n

W
Mnf

)
(y) = ∫

ℝ
d+1
+

Λ
�,d,n(x, λ)Λ�,d,n(y, λ)f (λ)d��+2n,d(λ).

T�,d,n
x

(
MnF

�,d,n

W
Mnf

)
(y) = C2

�+2n,d ∫
ℝ

d+1
+

{
Λ

�,d,n(−y, λ)

F
�,d,n

W

(
T�,d,n
x

(
MnF

�,d,n

W
Mnf

))
(λ)

}
d�

�+2n,d(λ)

= C2
�+2n,d ∫

ℝ
d+1
+

Λ
�,d,n(−x, λ)Λ�,d,n(−y, λ)F

�,d,n

W

(
MnF

�,d,n

W
Mnf

)
(λ)d�

�+2n,d(λ)

= C2
�+2n,d ∫

ℝ
d+1
+

Λ
�,d,n(−x, λ)Λ�,d,n(−y, λ)F

�+2n,d

W
◦F�+2n,d

W
(f )

(λ)d�
�+2n,d(λ)

= ∫
ℝ

d+1
+

Λ
�,d,n(x,−λ)Λ�,d,n(y,−λ)f (−λ)d��+2n,d(λ)

= ∫
ℝ

d+1
+

Λ
�,d,n(x, λ)Λ�,d,n(y, λ)f (λ)d��+2n,d(λ).

(2.26)∀x ∈ ℝ
d+1
+

, f ∗
�,n g(x) = ∫

ℝ
d+1
+

T�,d,n
x

f (−y)g(y)d�
�,d(y).
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Proof Let f , g ∈ L1
�,n
(ℝ

d+1
+

) . We have

Now using Fubini’s theorem and the relation (2.24), we obtain

  ◻

Remark 2.1 From the relation (2.27), we deduce that

Notations. We denoted by:
⋅S�

∗
, the strong dual of the space S

∗
(ℝ

d+1
).

⋅S�

n,∗
 , the strong dual of the space Sn,∗(ℝ

d+1
).

Definition 2.5 The generalized Fourier-Weinstein transform of a distribution u ∈ S
�

n,∗
 is 

defined by:

The following proposition is as an immediate consequence of Theorem 2.1.

Proposition 2.5 The transform F�,d,n

W
 is a topological isomorphism from S�

n,∗
 onto S�

∗
.

Lemma 2.4 Let m ∈ ℕ and u ∈ S
�

n,∗
, we have

where

Proof Let m ∈ ℕ and u ∈ S
�

n,∗
, by invoking (2.13), (2.28) and (2.30), for all 

� ∈ S
∗

(
ℝ

d+1
)
, we can write

(2.27)F
�,d,n

W
(f ∗

�,n g) = F
�,d,n

W
(f )F

�,d,n

W
(g).

‖f ∗
�,n g‖�,n,1 ≤ ‖f‖

�,n,1‖g‖�,n,1.

F
�,d,n

W
(f ∗

�,n g)(λ) = ∫
ℝ

d+1
+

(

∫
ℝ

d+1
+

T�,d,n
x

f (−y)g(y)d�
�,d(y)

)
Λ

�,d,n(x, λ)d��,d(x)

= ∫
ℝ

d+1
+

g(y)

(

∫
ℝ

d+1
+

T�,d,n
−y

f (x)Λ
�,d,n(x, λ)d��,d(x)

)
d�

�,d(y)

= ∫
ℝ

d+1
+

g(y)F
�,d,n

W

(
T�,d,n
−y

f
)
(λ)d�

�,d(y)

= F
�,d

W
(f )(λ)∫

ℝ
d+1
+

g(y)Λ
�,d,n(y, λ)d��,d(y)

= F
�,d

W
(f )(λ)F

�,d

W
(g)(λ).

f , g ∈ Sn,∗(ℝ
d+1

) ⇒ f ∗
�,n g ∈ Sn,∗(ℝ

d+1
).

(2.28)∀� ∈ S
∗
(ℝ

d+1
), ⟨F�,d,n

W
(u), �⟩ = ⟨u,

�
F

�,d,n

W

�−1
(�)⟩.

(2.29)
�
F

�,d,n

W

��
(Δ

�,d,n

W
)
mu

�
= (−1)m‖x‖2m

�
F

�,d,n

W

�
(u)

(2.30)∀� ∈ Sn,∗

�
ℝ

d+1
�
, ⟨Δ�,d,n

W
u, �⟩ = ⟨u, Δ�,d,n

W
�⟩.
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Which completes the proof.   ◻

3  Sobolev spaces associated with the generalized Weinstein operator

The goal of this section is to introduce and study the Sobolev spaces associated with the 
generalized Weinstein operator Δ�,d,n

W
.

Definition 3.1 For s ∈ ℝ , we define the generalized Sobolev-Weinstein space of order s, 
that will be denoted Hs,�,n

(ℝ
d+1
+

) , as the set of all u ∈ S
�

n,∗
 such that F�,d,n

W
(u) is a function 

and

We provide Hs,�,n
(ℝ

d+1
+

) with the inner product

and the norm

The following properties of the spaces Hs,�,n can easily be established.

Proposition 3.1 (i)   For all s ∈ ℝ, we have 

(ii)   We have 

(iii)   For all s,  t ∈ ℝ, t > s , the space Ht,�,n
(ℝ

d+1
+

) is continuously con-
tained in Hs,�,n

(ℝ
d+1
+

)..

Proposition 3.2 The space Hs,�,n
(ℝ

d+1
+

) provided with the norm ‖.‖Hs,�,n is a Banach space.

⟨
�
F

�,d,n

W

��
(Δ

�,d,n

W
)
mu

�
, �⟩ = ⟨(Δ�,d,n

W
)
mu,

�
F

�,d,n

W

�−1
(�)⟩

= ⟨u, (Δ�,d,n

W
)
m
�
F

�,d,n

W

�−1
(�)⟩

= ⟨u,
�
F

�,d,n

W

�−1
((−1)m‖x‖2m�)⟩

= ⟨F�,d,n

W
(u), (−1)m‖x‖2m�)⟩

= ⟨(−1)m‖x‖2mF�,d,n

W
(u),�)⟩.

(3.1)∫
ℝ

d+1
+

(1 + ‖λ‖2)s���F
𝛼,d,n

W
(u)(λ)

���
2

d𝜇
𝛼+2n,d(λ) < +∞.

(3.2)⟨u, v⟩s,�,n = C2
�+2n,d ∫

ℝ
d+1
+

(1 + ‖�‖2)sF�,d,n

W
(u)(�)F

�,d,n

W
(v)(�)d�

�+2n,d(�)

(3.3)‖u‖Hs,�,n =

�
C2
�+2n,d ∫

ℝ
d+1
+

(1 + ‖�‖2)s���F
�,d,n

W
(u)(�)

���
2

d�
�+2n,d(�)

� 1

2

.

Sn,∗(ℝ
d+1

) ⊂ H
s,𝛼,n

(ℝ
d+1
+

).

H
0,�,n

(ℝ
d+1
+

) = L2
�,n
(ℝ

d+1
+

).
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Proof Let 
(
fm
)
m∈ℕ

 be a Cauchy sequence of H
s,�,n

(ℝ
d+1
+

) . From the defini-
tion of the norm ‖.‖Hs,�,n , it is clear that 

(
F

�,d,n

W

(
fm
))

m∈ℕ
 is a Cauchy sequence of 

L2(ℝd+1
+

, C2
�+2n,d

(1 + ‖x‖2)sd�
�+2n,d(x)).

Since L2(ℝd+1
+

, C2
�+2n,d

(1 + ‖x‖2)sd�
�+2n,d(x)) is complete, there exists a function 

f ∈ L2(ℝd+1
+

, C2
�+2n,d

(1 + ‖x‖2)sd�
�+2n,d(x)) such that

Then f ∈ S
�

∗
 and h =

(
F

�,d,n

W

)−1
(f ) ∈ S

�

n,∗
.

So, F
�,d,n

W
(h) = f ∈ L2(ℝd+1

+
, C2

�+2n,d
(1 + ‖x‖2)sd�

�+2n,d(x)) , which proves that 
h ∈ H

s,�,n
(ℝ

d+1
+

) and we have

Hence, Hs,�,n
(ℝ

d+1
+

) is complete.   ◻

Proposition 3.3 Let s, t ∈ ℝ . The operator Ot defined by:

is a isomorphism from Hs,�,n
(ℝ

d+1
+

) onto Hs−t,�,n
(ℝ

d+1
+

).

Proof Let s, t ∈ ℝ and u ∈ H
s,�,n

(ℝ
d+1
+

). The function:
� ↦ (1 + ‖�‖)t(1 + ‖�‖2)

s−t

2 F
�,d,n

W
(u)(�) belongs to L2

�+2n
(ℝ

d+1
+

) and have

Thus

where

Then, Otu ∈ H
s−t,�,n

(ℝ
d+1
+

) and we have

Now, let v ∈ H
s−t,�,n

(ℝ
d+1
+

) and put

(3.4)lim
m→+∞

‖F�,d,n

W

�
fm
�
− f‖L2(ℝd+1

+
,C2

�+2n,d
(1+‖x‖2)sd�

�+2n,d(x))
= 0.

‖fm − h‖Hs,�,n = ‖F�,d,n

W

�
fm
�
− f‖L2(ℝd+1

+
,C2

�+2n,d
(1+‖x‖2)sd�

�+2n,d(x))
→

m→+∞

0.

∀x ∈ ℝ
d+1
+

, Otu(x) = C2
�+2n,d ∫

ℝ
d+1
+

(1 + ‖�‖)tΛ
�,d,n(−x, �)F

�,d,n

W
(u)(�)d�

�+2n,d(�)

∀� ∈ ℝ
d+1
+

, F
�,d,n

W

�
Otu

�
(�) = (1 + ‖�‖)tF�,d,n

W
(u)(�).

�
ℝ

d+1
+

(1 + ‖�‖2)s−t���F
�,d,n

W
(Otu)(�)

���
2

d�
�+2n,d(�)

≤ �t �
ℝ

d+1
+

(1 + ‖�‖2)s���F
�,d,n

W
(u)(�)

���
2

d�
�+2n,d(�)

�t = sup
x∈ℝd+1

+

�
(1 + ‖x‖)2t
(1 + ‖x‖2)t

�
≤ 2�t�.

��Otu
��Hs−t,�,n ≤ 2

�t�
2 ‖u‖Hs,�,n .

u =
�
F

�,d,n

W

�−1�
(1 + ‖�‖)−tF�,d,n

W
(v)

�
.
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From the definition of the operator Ot , we have Otu = v and we get

Hence, u ∈ H
s,�,n

(ℝ
d+1
+

) and we obtain

Which completes the proof.   ◻

Remark 3.1 The dual of Hs,�,n
(ℝ

d+1
+

)can be identified with H−s,�,n
(ℝ

d+1
+

) . The relation of 
the identification is as follows:

with u ∈ H
s,�,n

(ℝ
d+1
+

) and v ∈ H
−s,�,n

(ℝ
d+1
+

).

Proposition 3.4 Let s1, s, s2 ∈ ℝ , satisfying s1 < s < s2 . Then, for all 𝜀 > 0, there exists a 
nonnegative constant C

�
 such that for all u ∈ H

s2,�,n(ℝ
d+1
+

) , we have

Proof Let s1, s2 ∈ ℝ and s = (1 − t)s1 + ts2, t ∈ ]0, 1[ . Let u ∈ H
s2,�,n(ℝ

d+1
+

). We put t = 1

p
 

and 1 − t =
1

q
 , applying the Hölder’s inequality, we get

Then the relation (3.6) is proved.   ◻

Proposition 3.5 Let s ∈ ℝ and m ∈ ℕ . Then for all 𝜀 > 2m, the operator 
(
Δ

�,d,n

W

)m
 is con-

tinuous from Hs,�,n
(ℝ

d+1
+

) into Hs−�,�,n
(ℝ

d+1
+

).

Proof Let m ∈ ℕ, 𝜀 > 2m , s ∈ ℝ and u ∈ H
s,�,n

(ℝ
d+1
+

).
Using the relation (2.29), we can see that 

(
Δ

�,d

W

)m
u ∈ H

s−�,�,n
(ℝ

d+1
+

) and we have

Thus the proof is finished.   ◻

�
ℝ

d+1
+

(1 + ‖�‖2)s���F
�,d,n

W
(u)(�)

���
2

d�
�+2n,d(�)

= �
ℝ

d+1
+

(1 + ‖�‖2)s(1 + ‖�‖)−2t���F
�,d,n

W
(v)(�)

���
2

d�
�+2n,d(�)

≤ 2
�t� �

ℝ
d+1
+

(1 + ‖�‖2)s−t���F
�,d,n

W
(v)(�)

���
2

d�
�+2n,d(�).

‖u‖Hs,�,n ≤ 2
�t�
2 ��Otu

��Hs−t,�,n .

(3.5)⟨u, v⟩0,�,n = C2
�+2n,d ∫

ℝ
d+1
+

F
�,d,n

W
(u)(�)F

�,d,n

W
(v)(�)d�

�+2n,d(�),

(3.6)‖u‖Hs,�,n ≤ C
�
‖u‖Hs1,�,n + �‖u‖Hs2,�,n .

‖u‖Hs,�,n ≤ ‖u‖1−t
H

s1,�,n
× ‖u‖t

H
s2,�,n

≤ �
�

−t

1−t ‖u‖Hs1,�,n

�1−t

×
�
�‖u‖Hs2,�,n

�t

≤ �

s−s1

s−s2 ‖u‖Hs1,�,n + �‖u‖Hs2,�,n .

‖
�
Δ

�,d

W

�m
u‖Hs−�,�,n ≤ ‖u‖Hs,�,n .
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4  Pseudo‑differential operators

NotationsWe need the following notations

• For r ≥ 0, we designate by Sr, the space of C∞
−function a on ℝd+1

×ℝ
d+1 such that for 

each compact set K ⊂ ℝ
d+1 and each �, � ∈ ℕ , there exists a constant C = C(K, �, �) 

satisfying: 

• For r, l ∈ ℝ with l > 0, we denote by Sr,l, the space consits of all C∞
−function a on 

ℝ
d+1

×ℝ
d+1 such that for each �, � ∈ ℕ , there exist a positive constant C = C(r, l, �, �) 

satisfying the relation: 

Definition 4.1 The pseudo-differential operator A
(
a,Δ

�,d,n

W

)
 associated with a(x, �) ∈ S

r is 
defined for u ∈ Sn,∗(ℝ

d+1
) by:

Theorem 4.1 If a(x, �) ∈ S
r , then its associated pseudo-differential operator A

(
a, Δ

�,d

W

)
 is 

a well-defined mapping from Sn,∗(ℝ
d+1

) into C∞
(
ℝ

d+1
)
.

Proof Let a(x, �) ∈ S
r and s > r +

d

2
+ 𝛼 + 2n + 1 . From the relation (4.1), we have for 

any compact set K ⊂ ℝ
d+1 and any � ∈ ℕ,

Let u ∈ Sn,∗(ℝ
d+1

) and x ∈ K , using the relations (4.4), (2.7) and the Cauchy-Schwartz 
inequality, we obtain

This relation proves that A
(
a, Δ

�,d

W

)
(u) is well-defined and continuous on ℝd+1

+
.

By the same argument, we can prove

(4.1)∀(x, �) ∈ K ×ℝ
d+1,

���D
�

�
D�

x
a(x, �)

��� ≤ C(1 + ‖�‖2)
r

2 .

(4.2)∀(x, �) ∈ ℝ
d+1

×ℝ
d+1,

���D
�

�
D�

x
a(x, �)

��� ≤ C(1 + ‖�‖2)
r

2 (1 + ‖x‖2)−
l

2 .

(4.3)
[
A
(
a,Δ

�,d,n

W

)
u
]
(x) = ∫

ℝ
d+1
+

Λ
�,d,n(−x, y)a(x, y)F

�,d,n

W
(u)(y)d�

�+2n,d(y).

(4.4)∀(x, �) ∈ K ×ℝ
d+1, ��D�

x
a(x, �)�� ≤ C(1 + ‖�‖2)

r

2 .

�
ℝ

d+1
+

���a(x, �)Λ�,d,n(−x, �)F
�,d,n

W
(u)(�)

���d��+2n,d(�)

≤ Cx2n
d+1 �

ℝ
d+1
+

(1 + ‖�‖2)
r

2
���F

�,d,n

W
(u)(�)

���d��+2n,d(�)

≤ C

C
�+2n,d

x2n
d+1

�

�
ℝ

d+1
+

(1 + ‖�‖2)r−sd�
�+2n,d(�)

� 1

2

‖u‖Hs,�,n .

�
ℝ

d+1
+

���D
�

x
a(x, �)Λ

�,d,n(−x, �)F
�,d,n

W
(u)(�)

���d��,d(�) ≤ C�‖u‖Hs,�,n
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where C′ is a positive constant.
Consequently, in vertue of Leibniz formula, we obtain the result.   ◻

The next lemma plays an important role in this section.

Lemma 4.1 Let t ≥ 0 and l > 2𝛼 + 4n + d + 2. Then, for all a(x, �) ∈ S
r,l, we have:

where C is a constant depending on r, t, �, d, n and l.

Proof Let k ∈ ℕ . By invoking (2.7), (2.13) and (4.2), we obtain

where l > 2𝛼 + 4n + d + 2 and

We put m =

[
t

2

]
+ 1, t ≥ 0, where 

[
t

2

]
 is the integer part of t

2
 . We get

where C is a constant depending on r, t, �, d, n and l.
Hence, we obtain

  ◻

The following theorem gives an alternative form of A
(
a, Δ

�,d

W

)
 which will be useful 

in the sequel.

(4.5)
���F

�,d,n

W

�
Mna(., y)

�
(�)

��� ≤ C(1 + ‖y‖2)
r

2 (1 + ‖�‖2)−
t

2 ,

‖�‖2k���F
�,d,n

W

�
Mna(., y)

�
(�)

��� =
����
F

�,d,n

W

��
△�,d,n

W

�k�
Mna(., y)

�
(�)

�����

≤ �
ℝ

d+1
+

����

�
△�,d,n

W,x

�k�
x2n
d+1

a(x, y)
�����
��Λ�,d,n(x, �)

��d��,d(x)

≤ �
ℝ

d+1
+

����

�
△�,d,n

W,x

�k�
x2n
d+1

a(x, y)
�����
x2n
d+1

d�
�,d(x)

≤ C1(1 + ‖y‖2)
r

2 �
ℝ

d+1
+

(1 + ‖x‖2)−
l

2

�
1 + x4n

d+1

�
d�

�,d(x)

≤ C2(1 + ‖y‖2)
r

2

C2 = C1 ∫
ℝ

d+1
+

(1 + ‖x‖2)−
l

2

�
1 + x4n

d+1

�
d�

�,d(x) = C2(r, k, �, d, n).

(1 + ‖�‖2)m���F
�,d,n

W

�
Mna(., y)

�
(�)

��� =
m�

k=0

Ck
m
‖�‖2k���F

�,d,n

W

�
Mna(., y)

�
(�)

���

≤
m�

k=0

Ck
m
C2(r, k, �, d, n)(1 + ‖y‖2)

r

2

≤ C(1 + ‖y‖2)
r

2

���F
�,d,n

W

�
Mna(., y)

�
(�)

��� ≤ C(1 + ‖y‖2)
r

2 (1 + ‖�‖2)−m

≤ C(1 + ‖y‖2)
r

2 (1 + ‖�‖2)−
t

2 .
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Theorem 4.2 Let l > 2𝛼 + 4n + d + 2 , a(x, �) ∈ S
r,l and u ∈ Sn,∗(ℝ

d+1
) . Then, the pseudo-

differential operator A
(
a, Δ

�,d

W

)
 admits the following representation:

where all involved integrals are absolutely convergent.

Proof We put

We shall prove that gx belongs to L1
(
ℝ

d+1
+

×ℝ
d+1
+

, d�
�+2n,d(y)d��+2n,d(�)

)
.

Let t > l and 𝛾 >
r

2
−

t

2
+

d

2
+ 𝛼 + 2n + 1. Using the relations (2.19), (2.7) and (4.5), we 

obtain

Hence from (2.21), we get

where C2 is a constant depending on r, t, �, d, n and l. On the other hand since 
u ∈ Sn,∗(ℝ

d+1
) , then there exist C3 > 0 such that

Hence, we get

Since t > l > 2𝛼 + 4n + d + 2 and 𝛾 >
r

2
−

t

2
+

d

2
+ 𝛼 + 2n + 1, the function gx belongs 

to L1
(
ℝ

d+1
+

×ℝ
d+1
+

, d�
�+2n,d(y)d��+2n,d(�)

)
 . So, the result follows by applying the inverse 

theorem and using the relation (2.25).   ◻

Now, we are in a situation to establish the fundamental result of this section given by the 
following result.

Theorem 4.3 Let s, l

2
> 𝛼 + 2n +

d

2
+ 1, a(x, 𝜉) ∈ S

r,l and A
(
x, Δ

�,d,n

W

)
 be the associated 

pseudo-differential operator. Then A
(
a, Δ

�,d,n

W

)
 maps continuously from Hs+r,�,n

(ℝ
d+1
+

) to 
H

s,�,n
(ℝ

d+1
+

) . Moreover, we have

(4.6)
[
A
(
a,Δ

�,d

W

)
u
]
(x) = C2

�+2n,d ∫
ℝ

d+1
+

Λ
�,d,n(−x, �)×

[

∫
ℝ

d+1
+

M
−1
n,�
M

−1
n,y
T�,d,n
−y

MnF
�,d,n

W

(
Mna(., y)

)
(�)F

�,d,n

W
(u)(y)d�

�+2n,d(y)

]
d�

�+2n,d(�)

gx(y, �) = Λ
�,d,n(−x, �)M

−1
n,�
M

−1
n,y
T�,d,n
−y

MnF
�,d,n

W

(
Mna(., y)

)
(�)F

�,d,n

W
(u)(y).

���M
−1

n,�
M

−1

n,y
T�,d,n
−y

MnF
�,d,n

W

�
Mna(., y)

�
(�)

���
≤ C1(1 + ‖y‖2)

r

2

����
T�+2n,d
−y

�
(1 + ‖x‖2)−

t

2

�
(�)

����
.

(4.7)
���M

−1
n,�
M

−1
n,y
T�,d,n
−y

MnF
�,d,n

W

�
Mna(., y)

�
(�)

��� ≤ C2(1 + ‖y‖2)
r−t

2 (1 + ‖�‖2)−
t

2

∀y ∈ ℝ
d+1
+

,
���F

�,d,n

W
(u)(y)

��� ≤ C3(1 + ‖y‖2)−� .

��gx(y, �)�� ≤ Cx2n
d+1

(1 + ‖y‖2)
r

2
−

t

2
−�
(1 + ‖�‖2)−

t

2 .
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where k is a constant depending on s, r, �, d, n and l.

Proof Let s, l

2
> 𝛼 + 2n +

d

2
+ 1 . We put

From the relations (4.7), we have

Hence using the Cauchy-Schwartz inequality, we obtain

where

Then

where t > |s| + 𝛼 + 2n +
d

2
+ 1 and

  ◻
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(4.8)∀u ∈ Sn,∗(ℝ
d+1

),
���A

�
a, Δ

�,d,n

W

�
u
���Hs,�,n

≤ k‖u‖Hs+r,�,n

�s(�) = ∫
ℝ

d+1
+

M
−1
n,�
M

−1
n,y
T�,d,n
y

MnF
�,d,n

W

(
Mna(., y)

)
(−�)F

�,d,n

W
(u)(y)d�

�+2n,d(y)

���s(�)
�� ≤ C2(1 + ‖�‖2)−

t

2 �
ℝ

d+1
+

(1 + ‖y‖2)
r−t

2
���F

�,d,n

W
(u)(y)

���d��+2n,d(y).

C
�+2n,d(1 + ‖�‖2)

s

2 ���s(�)
�� ≤ C3(1 + ‖�‖2)

s

2
−

t

2 ‖u‖Hs+r,�,n

C3 = C2

�

∫
ℝ

d+1
+

(1 + ‖y‖2)−s−td�
�+2n,d(y)

� 1

2

.

���A
�
a, Δ

�,d,n

W

�
u
���Hs,�,n

= C
�+2n,d

���(1 + ‖�‖2)
s

2�s
����+2n,2 ≤ k‖u‖Hs+r,�,n

k = C3

�

∫
ℝ

d+1
+

(1 + ‖�‖2)s−td�
�+2n,d(�)

� 1

2
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