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Abstract
In this paper, we introduce the concepts of derivation of degree n, generalized derivation 
of degree n and ternary derivation of degree n, where n is a positive integer, and then we 
study the algebraic properties of these mappings. For instance, we study the image of deri-
vations of degree n on algebras and in this regard we prove that, under certain conditions, 
every derivation of degree n on an algebra maps the algebra into its Jacobson radical. Also, 
we present some characterizations of these mappings on algebras. For example, under cer-
tain assumptions, we show that if f is an additive generalized derivation of degree n with 
an associated mapping d, then either f is a linear generalized derivation with the associ-
ated linear derivation d or f and d are identically zero. Some other related results are also 
established.

Keywords  Derivation · Derivation of degree n · Generalized derivation of degree n · 
Ternary derivation of degree n · Singer-Wermer theorem

Mathematics Subject Classification  Primary 47B47 · Secondary 47B48

1 � Introduction and preliminaries

Let R be a ring and let n be a positive integer. A mapping Δ ∶ R → R is called a derivation 
of degree n or {n}-derivation if Δ(xy) = Δ(x)yn + xnΔ(y) holds for all x, y ∈ R . Also, Δ is 
called a Jordan derivation of degree n or Jordan {n}-derivation if Δ(x2) = Δ(x)xn + xnΔ(x) 
holds for all x ∈ R . In this paper, we provide an example of a Jordan derivation of degree n 
which is not a derivation of degree n.

By getting the idea from cubic derivations and quadratic derivations, we define a deri-
vation of degree n from an algebra into a module. Before stating the results of this article, 
let us recall some basic definitions and set the notations which we use in what follows. 
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An algebra A is called a domain if A ≠ {0} , and a = 0 or b = 0 , whenever ab = 0 . A 
commutative domain is called an integral domain. Recall that the Jacobson radical of 
an algebra A is the intersection of all primitive ideals of A which is denoted by rad(A) . 
An algebra A is called semisimple if rad(A) = {0} . A nonzero linear functional � on an 
algebra A is called a character  if �(ab) = �(a)�(b) for every a, b ∈ A . The set of all 
characters on A is denoted by ΦA and is called the character space of A . We know that 
ker� is a maximal ideal of A for every � ∈ ΦA (see [4, Proposition 1.3.37]).

Let A be a complex algebra and let M be an A-bimodule. Recall that a linear mapping 
� ∶ A → M is called a derivation if it satisfies the Leibnitz’s rule �(ab) = �(a)b + a�(b) 
for all a, b ∈ A . In [5], Eshaghi Gordji et al. introduced the concept of a cubic derivation. 
A mapping D ∶ A → M is called a cubic derivation if D is a cubic homogeneous mapping, 
that is D(�a) = �3D(a) ( � ∈ ℂ , a ∈ A ), and D(ab) = D(a)b3 + a3D(b) for all a, b ∈ A . 
Also, a mapping d ∶ A → M is called a quadratic derivation if d is a quadratic homogene-
ous mapping, that is d(�a) = �2d(a) ( � ∈ ℂ , a ∈ A ), and d(ab) = d(a)b2 + a2d(b) for all 
a, b ∈ A . The most papers to date have been focused on investigating stability of cubic 
derivations and quadratic derivations, see, e.g. [1, 5, 6, 9, 13, 17], and references therein.

In this paper, by getting the idea from the notions of cubic derivation and quadratic 
derivation, we define the notion of derivation of degree n on algebras, where n is a positive 
integer. In what follows, let A be a complex algebra, let M be an A-bimodule and let n be 
a positive integer. A mapping Δ ∶ A → M is called a derivation of degree n or {n}-deriva-
tion if it satisfies both the equations Δ(ab) = Δ(a)bn + anΔ(b) and Δ(�a) = �nΔ(a) for all 
a, b ∈ A and all � ∈ ℂ.

Now let us to give a background about the image of derivations. The image of derivations 
has a fairly long history and so far, many authors have studied the image of derivations, see, 
e.g. [2, 3, 7, 10–12, 14–16] and references therein. As a pioneering work, Singer and Wermer 
[14] achieved a fundamental result which started investigation into the image of derivations on 
Banach algebras. The so-called Singer-Wermer theorem, which is a classical theorem of com-
plex Banach algebra theory, states that every continuous derivation on a commutative Banach 
algebra maps the algebra into its Jacobson radical, and Thomas [15] proved that the Singer-
Wermer theorem remains true without assuming the continuity of the derivation.

One of our aims in this research is to prove some results similar to Singer- Wermer 
theorem and Thomas theorem for derivations of degree n. In this regard, we first prove the 
following theorem which has been motivated by [7]:

Let A be a unital integral domain and let Δ ∶ A → A be an {n}-derivation such that its 
rank is at most one. Then Δ is identically zero. Using this result, it is proved that if A is a 
unital algebra and Δ ∶ A → A is an {n}-derivation such that Δ(a) − Δ(b) ∈ ker� when-
ever a − b ∈ ker� for every a, b ∈ A and every � ∈ ΦA , then Δ(A) ⊆

⋂
𝜑∈ΦA

ker𝜑 . If A 
is also commutative, then Δ(A) ⊆ rad(A) . In this regard, we provide an example of an {n}
-derivation on an algebra � mapping the algebra into the intersection of all characters of � . 
In addition, we prove that if A is a unital, commutative Banach algebra and Δ ∶ A → A is 
an additive {n}-derivation, then Δ(A) ⊆ rad(A) . As another result in this regard, we prove 
that every {n}-derivation on finite dimensional algebras is identically zero under certain 
conditions. Indeed, we establish the following result. Let m be a positive integer and let A 
be an m-dimensional unital algebra with the basis � = {�1,… , �m} . Furthermore, suppose 
that for every integer k, 1 ≤ k ≤ m , an ideal �k generated by � − {�k} is a proper subset of 
A . If Δ ∶ A → A is an {n}-derivation such that Δ(a) − Δ(b) ∈ �k whenever a − b ∈ �k for 
every a, b ∈ A and 1 ≤ k ≤ m , then Δ is identically zero.

Another objective of this paper is to characterize {n}-derivations, {n}-generalized 
derivations and {n}-ternary derivations on algebras. First, we introduce these notions. A 



2251On the derivations, generalized derivations and ternary…

1 3

mapping f ∶ A → M is called a generalized derivation of degree n or an {n}-generalized 
derivation if there exists a mapping d ∶ A → M such that

for all a, b ∈ A and all � ∈ ℂ . In this case, d is called an associated mapping of f.
A ternary derivation of degree n is defined as follows. A ternary derivation of degree 

n or an {n}-ternary derivation is a triple of mappings (d1, d2, d3) from A into M such that

for all a, b ∈ A , � ∈ ℂ.
For instance, we establish the result below concerning the characterization of {n}-gen-

eralized derivations. Let A be a unital algebra with the identity element e , let M be an A
-bimodule and let f ∶ A → M be an additive generalized {n}-derivation with an associated 
mapping d ∶ A → M such that d(2e) = 2d(e) . Then either f is a nonzero linear generalized 
derivation with the associated linear derivation d or f and d are identically zero.

A theorem similar to the above result is presented for the {n}-ternary derivations.

2 � Definitions and examples

In this section, without further mention, e denotes the identity of any unital ring or algebra. 
We begin this section with the following definition.

Definition 1  Let R be a ring and let n be a positive integer. A mapping Δ ∶ R → R is 
called a derivation of degree n if

holds for all x, y ∈ R . Also, Δ is called a Jordan derivation of degree n if it satisfies

for all x ∈ R.

Obviously, if Δ is a Jordan derivation of degree n on R , then Δ(0) = 0 . Also, if R is uni-
tal with the identity element e , then Δ(e) = 0 . It is clear that every derivation of degree n is 
a Jordan derivation of degree n, but the converse is, in general, not true. In the following, 
we present a Jordan derivation of degree n which is not a derivation of degree n.

Example 2  Let R be a ring such that x4 = 0 for all x ∈ R , but the product of some nonzero 
elements of R is nonzero. Let

f (ab) = f (a)bn + and(b),

f (�a) = �nf (a),

d1(ab) = d2(a)b
n + and3(b),

d1(�a) = �nd1(a),

Δ(xy) = Δ(x)yn + xnΔ(y)

Δ(x2) = Δ(x)xn + xnΔ(x)

ℜ =

⎧
⎪⎨⎪⎩

⎡⎢⎢⎣

0 x y

0 0 x

0 0 0

⎤⎥⎥⎦
∶ x, y ∈ R

⎫⎪⎬⎪⎭
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Define Δ ∶ ℜ → ℜ by

For any A =

⎡
⎢⎢⎣

0 x y

0 0 x

0 0 0

⎤
⎥⎥⎦
∈ ℜ , we have

A straightforward verification shows that

for all A ∈ ℜ and all n ∈ ℕ . We see that Δ is a Jordan derivation of degree n for any 
n ∈ ℕ . Also, it is easy to see that Δ(A)Bn + AnΔ(B) = 0 for all A,B ∈ ℜ and all n ∈ ℕ , but 
Δ(AB) ≠ 0 for some A,B ∈ ℜ . It means that Δ is not a derivation of degree n for all n ∈ ℕ.

In the rest of this article, we consider derivations of degree n from algebras into mod-
ules as follows.

Definition 3  Let A be a complex algebra, let M be an A-bimodule and let n be a positive 
integer. A mapping Δ ∶ A → M is called a derivation of degree n if it satisfies both of the 
following equations:

for all a, b ∈ A and all � ∈ ℂ.

Example 4  Let A an algebra, let M be an A-bimodule, let n be a positive integer and let x0 
be an element of M satisfying

for all a, b ∈ A . Define a mapping Δ ∶ A → M by Δ(a) = anx0 − x0a
n for any a ∈ A . It is 

routine to see that Δ(ab) = Δ(a)bn + anΔ(b) and Δ(�a) = �nΔ(a) for all a, b ∈ A and all 
� ∈ ℂ . This means that Δ is an {n}-derivation. We call such mapping inner derivation of 
degree n or inner {n}-derivation.

Example 5  Let A be a commutative algebra, let n be an arbitrary positive integer and let

It is clear that � is a non-commutative algebra. Define Δ ∶ � → � by

Δ

⎛
⎜⎜⎝

⎡
⎢⎢⎣

0 x y

0 0 x

0 0 0

⎤
⎥⎥⎦

⎞
⎟⎟⎠
=

⎡
⎢⎢⎣

0 0 y2

0 0 0

0 0 0

⎤
⎥⎥⎦
.

Δ(A2) = Δ

⎛⎜⎜⎝

⎡⎢⎢⎣

0 0 x2

0 0 0

0 0 0

⎤⎥⎥⎦

⎞⎟⎟⎠
=

⎡⎢⎢⎣

0 0 x4

0 0 0

0 0 0

⎤⎥⎥⎦
= 0.

Δ(A)An + AnΔ(A) = 0,

Δ(ab) = Δ(a)bn + anΔ(b),

Δ(�a) = �nΔ(a),

x0
[
(ab)n − anbn

]
=
[
(ab)n − anbn

]
x0

� =

⎧
⎪⎨⎪⎩

⎡⎢⎢⎣

0 a b

0 c 0

0 0 e

⎤⎥⎥⎦
∶ a, b, c, e ∈ A

⎫⎪⎬⎪⎭
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It is easy to see that for any A =

⎡
⎢⎢⎣

0 a b

0 c 0

0 0 e

⎤
⎥⎥⎦
∈ � and any k ∈ ℕ , we have

One can easily get that Δ(AB) = Δ(A)Bn + AnΔ(B) and Δ(�A) = �nΔ(A) for all A,B ∈ � 
and all � ∈ ℂ , which means that Δ is a derivation of degree n on �.

Example 6  Let A be an algebra, let n be an arbitrary positive integer and let

Define Δ ∶ � → � by

It is straightforward to see that Δ(AB) = Δ(A)Bn + AnΔ(B) and Δ(�A) = �nΔ(A) for all 
A,B ∈ � and all � ∈ ℂ , which means that Δ is a derivation of degree n on �.

Definition 7  Let A be an algebra and let M be an A-bimodule. A mapping f ∶ A → M is 
called a generalized derivation of degree n or an {n}-generalized derivation if there exists a 
mapping d ∶ A → M such that

for all a, b ∈ A and all � ∈ ℂ . In this case, d is called an associated map of f.

Example 8  Let A an algebra, let M be an A-bimodule, let n be a positive integer and let x0 
and y0 be two elements of M satisfying

for all a, b ∈ A . Define the mappings f , d ∶ A → M by f (a) = anx0 − y0a
n and 

d(a) = anx0 − x0a
n for any a ∈ A . It is routine to see that f (ab) = f (a)bn + and(b) and 

f (�a) = �nf (a) for all a, b ∈ A and all � ∈ ℂ . This means that f is an {n}-generalized deri-
vation with the associated mapping d. We call such mapping inner generalized derivation 
of degree n or inner {n}-generalized derivation.

Δ

⎛
⎜⎜⎝

⎡
⎢⎢⎣

0 a b

0 c 0

0 0 e

⎤
⎥⎥⎦

⎞
⎟⎟⎠
=

⎡
⎢⎢⎣

0 0 bn

0 0 0

0 0 0

⎤
⎥⎥⎦
.

Ak =

⎡⎢⎢⎣

0 ack−1 bek

0 ck 0

0 0 ek

⎤⎥⎥⎦

� =

⎧
⎪⎨⎪⎩

⎡⎢⎢⎣

0 a b

0 0 c

0 0 0

⎤⎥⎥⎦
∶ a, b, c ∈ A

⎫⎪⎬⎪⎭

Δ

⎛⎜⎜⎝

⎡⎢⎢⎣

0 a b

0 0 c

0 0 0

⎤⎥⎥⎦

⎞⎟⎟⎠
=

⎡⎢⎢⎣

0 0 0

0 0 cn

0 0 0

⎤⎥⎥⎦
.

f (ab) = f (a)bn + and(b),

f (�a) = �nf (a),

y0
[
(ab)n − anbn

]
=
[
(ab)n − anbn

]
x0,
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In the following, we define a ternary derivation of degree {n}.

Definition 9  Let A be an algebra and let M be an A-bimodule. A ternary derivation of 
degree n or an {n}-ternary derivation is a triple of mappings (d1, d2, d3) from A into M 
such that

for all a, b ∈ A , � ∈ ℂ.

3 � Results and proofs

Let A and B be two algebras over a field �  . Throughout this section, a mapping D ∶ A → B 
is called a rank-one mapping if there exist a nonzero element � of B and a functional 
� ∶ A → �  such that D(a) = �(a)� for all a ∈ A.

We begin our results with the following theorem.

Theorem  10  Let A be a unital integral domain and let Δ ∶ A → A be a derivation of 
degree n such that its rank is at most one. Then Δ is identically zero.

Proof  Let Δ ∶ A → A be a derivation of degree n such that its rank is at most one. We 
are going to show that Δ(A) = {0} . Suppose that Δ is a rank-one mapping. So there exist 
a nonzero element � of A and a functional � ∶ A → ℂ such that Δ(a) = �(a)� for all 
a ∈ A . To obtain a contradiction, suppose there exists a nonzero element � ∈ A such that 
Δ(�) ≠ 0 . It is clear that �(�) ≠ 0 . We observe two cases for Δ(�) . 

Case 1.	� Δ(�) = 0 . In this case, we have �(�)� = 0 and it implies that �(�) = 0 . We have 
the following expressions: 

 Since we are assuming that Δ(�) = 0 , we have 

 Since A is a domain and �(�) and � are nonzero, we get that Δ(�n) = 0 . Using induction, 
for any m ∈ ℕ , one can easily prove that 

d1(ab) = d2(a)b
n + and3(b),

d1(�a) = �nd1(a),

�(�2)� = Δ(�2)

= Δ(�)�n + �
nΔ(�)

= 2�nΔ(�)

= 2�n�(�)�

= 2�(�)�n�.

0 = (�(�2))nΔ(�) = Δ(�(�2)�) = Δ(2�(�)�n�)

= 2n(�(�))n[Δ(�n)�n + �
n2Δ(�)]

= 2n(�(�))nΔ(�n)�n
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 in which a0 = e . So we have 

 which implies that Δ(�) = 0 , a contradiction.

Case 2.	� Δ(�) ≠ 0 . In this case, we have �(�) ≠ 0 . Now look at the following statements: 

 If �(�2) = 0 , then it follows from (1) that either �(�) = 0 or � = 0 , and we know that both 
of them are nonzero. So �(�2) ≠ 0 . Putting �(�2)

2�(�)
= � in (1), we have 

�(�n − �e) = �n+1 − �� = 0 . In view of this assumption that A is a domain, we infer that 
� = 0 , a contradiction, or �n = �e . So we have 

 Reusing the assumption that A is a domain, we get that � = 0 or Δ(�) = 0 , which these 
are contradictions. It is observed that both Cases 1 and 2 lead to contradictions. Therefore, 
there is no element � of A such that Δ(�) ≠ 0 , and consequently, Δ must be zero. 	�  ◻

In the following, we provide some examples that show that the conditions of Theo-
rem 10 are not superfluous.

Example 11 

	 (i)	 Let n be a positive number. Define Δ ∶ ℝ → ℝ by 

 One can easily check that Δ(ab) = Δ(a)bn + anΔ(b) for all a, b ∈ ℝ and also it is 
clear that the rank of Δ is at most one, but we observe that Δ(�a) ≠ �nΔ(a) for 
some �, a ∈ ℝ . We see that Δ is a nonzero mapping.

	 (ii)	 In Example 5, considering A = ℂ , we see that Δ ∶ � → � defined by 

Δ(am) = Σm
k=1

a(k−1)nΔ(a)a(m−k)n

0 = Δ(�n) = Δ(�n−1�)

= Δ(�n−1)�n + �
n(n−1)Δ(�)

=

[
Σn−1
k=1

�
(k−1)nΔ(�)�(n−1−k)n

]
�
n + �

n(n−1)Δ(�)

= Σn−1
k=1

[
Δ(�)�n

2−n
]
+ �

n2−nΔ(�)

= nΔ(�)�n
2−n,

(1)�(�2)� = Δ(�2) = Δ(�)�n + �
nΔ(�) = 2�nΔ(�) = 2�(�)�n+1

0 = �nΔ(e) = Δ(�e) = Δ(�n) = Δ(�n−1�)

= Δ(�n−1)�n + �
n(n−1)Δ(�)

=

[
Σn−1
k=1

�
(k−1)nΔ(�)�(n−1−k)n

]
�
n + �

n(n−1)Δ(�)

= Σn−1
k=1

[
Δ(�)�n

2−n
]
+ �

n2−nΔ(�)

= nΔ(�)�n
2−n.

Δ(a) =

{
an ln(∣ a ∣) a ≠ 0,

0 a = 0.
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 is a nonzero, rank one derivation of degree n. Note that � is not an integral domain.

In the following theorem, we present some conditions under which every derivation 
of degree n on an algebra maps the algebra into its Jacobson radical.

Theorem 12  Let A be a unital algebra and let Δ ∶ A → A be a derivation of degree n such 
that Δ(a) − Δ(b) ∈ ker� whenever a − b ∈ ker� for every a, b ∈ A and every � ∈ ΦA . In 
this case, Δ(A) ⊆

⋂
𝜑∈ΦA

ker𝜑 . If A is also commutative, then Δ(A) ⊆ rad(A).

Proof  Let � be an arbitrary character on A . We define a mapping Ω ∶
A

ker�
→

A

ker�
 by 

Ω(a + ker�) = Δ(a) + ker� for every a ∈ A . Ω is a derivation of degree n on the algebra 
A

ker�
 . It is clear that the algebra A

ker�
 is a unital, integral domain and it follows from [4, 

Proposition 1.3.37] that dim(
A

ker�
) = 1 . So the rank of Ω is at most one. Now, Theorem 10 

yields that Ω is identically zero, and it means that Δ(A) ⊆ ker𝜑 . Since we are assuming � 
is an arbitrary element of ΦA , Δ(A) ⊆

⋂
𝜑∈ΦA

ker𝜑 . It is obvious that if A is commutative, 
then 

⋂
�∈ΦA

ker� = rad(A) (see [4]). Hence, we deduce that Δ(A) ⊆ rad(A) . 	�  ◻

An immediate corollary of the previous theorem is as follows:

Corollary 13  Let A be a unital algebra such that 
⋂

�∈ΦA
ker� = {0} and let Δ ∶ A → A 

be a derivation of degree n such that Δ(a) − Δ(b) ∈ ker� whenever a − b ∈ ker� for every 
a, b ∈ A and every � ∈ ΦA . Then Δ is identically zero.

Proof  According to [8, Proposition 2.10], the algebra A is commutative and semisimple. 
Now the previous theorem gives the result. 	�  ◻

Remark 14  In this remark, we show that the image of derivation of degree n presented in 
Example 5 is contained in 

⋂
�∈Φ�

ker� . Let A be a unital commutative Banach algebra and 
let

Note that � is a non-commutative algebra. Since A is a unital commutative Banach alge-
bra, it follows from [4, Theorem  2.3.1] that its character space is a non-empty set, i.e. 

ΦA ≠ � . Let � be a character of A . We define �� ∶ � → ℂ by ��
⎛⎜⎜⎝

⎡⎢⎢⎣

0 a b

0 c 0

0 0 e

⎤⎥⎥⎦

⎞⎟⎟⎠
= �(c) . It is 

clear that �� is a character on � and it is easy to see that

Δ

⎛
⎜⎜⎝

⎡
⎢⎢⎣

0 a b

0 c 0

0 0 e

⎤
⎥⎥⎦

⎞
⎟⎟⎠
=

⎡
⎢⎢⎣

0 0 bn

0 0 0

0 0 0

⎤
⎥⎥⎦
= bn

⎡
⎢⎢⎣

0 0 1

0 0 0

0 0 0

⎤
⎥⎥⎦

� =

⎧
⎪⎨⎪⎩

⎡⎢⎢⎣

0 a b

0 c 0

0 0 e

⎤⎥⎥⎦
∶ a, b, c, e ∈ A

⎫⎪⎬⎪⎭
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Also, if we define �� ∶ � → ℂ by

��

⎛
⎜⎜⎝

⎡
⎢⎢⎣

0 a b

0 c 0

0 0 e

⎤
⎥⎥⎦

⎞
⎟⎟⎠
= �(e) , then we deduce that �� is a character on � . It is easy to see that

Therefore, Φ� = {�� ∶ � ∈ ΦA} . It is observed that Δ(�) ⊆
⋂

𝜑∈Φ�

ker 𝜃𝜑.

In the next theorem, we prove that every derivation of degree n on a unital finite-
dimensional algebra is identically zero under certain conditions. Let m be a positive 
integer and let A be an m-dimensional unital algebra with the basis � = {�1, �2,… , �m}.

Theorem  15  Suppose that for every integer k, 1 ≤ k ≤ m , an ideal �k generated by 
� − {�k} is a proper subset of A . Let Δ ∶ A → A be a derivation of degree n such that 
Δ(a) − Δ(b) ∈ �k whenever a − b ∈ �k for every a, b ∈ A and every 1 ≤ k ≤ m . Then Δ is 
identically zero.

Proof  It is clear that dim(
A

�k

) = 1 for every k ∈ {1, ...,m} . We show that �k is a maximal 
ideal of A for each k ∈ {1, ...,m} . If �k is not a maximal ideal of A for some k, 1 ≤ k ≤ m , 
then there exists a maximal ideal �k of A such that �k ⊂ �k ⊂ A , and so 
m − 1 = dim(�k) < dim(�k) < m , a contradiction. Hence, every �k is a maximal ideal of 
A . Moreover, it follows from Proposition 1.3.37 and Corollary 1.4.38 of [4] that for every 
maximal ideal �k ( 1 ≤ k ≤ m ) there exists a character �k ∈ ΦA such �k = ker�k . So the 
algebra A

�k

 is an integral domain. Now Theorem  10 yields that Ω ∶
A

�k

→
A

�k

 defined by 
Ω(a +�k) = Δ(a) +�k , which is a derivation of degree n, is identically zero. This means 
that Δ(A) ⊆ �k , for every k ∈ {1, ...,m} , and so Δ(A) ⊆

⋂n

k=1
�k . Now suppose that there 

is an element � of A such that Δ(�) ≠ 0 . Since � = {�1, ..., �m} is a basis for A , there exist 
the complex numbers �ij

 , and the elements �ij of � such that

We know that Δ(A) ⊆ �k for every k ∈ {1, ...,m} . So we can assume that 
Δ(A) ⊆ �i1

= � − {�i1} . Thus, we have

ker(��) =

⎡⎢⎢⎣

0 A A

0 ker(�) 0

0 0 A

⎤⎥⎥⎦
=

⎧
⎪⎨⎪⎩

⎡⎢⎢⎣

0 a b

0 x 0

0 0 e

⎤⎥⎥⎦
∶ a, b, e ∈ A, x ∈ ker(�)

⎫
⎪⎬⎪⎭
.

ker(��) =

⎡⎢⎢⎣

0 A A

0 A 0

0 0 ker(�)

⎤⎥⎥⎦
=

⎧
⎪⎨⎪⎩

⎡⎢⎢⎣

0 a b

0 c 0

0 0 z

⎤⎥⎥⎦
∶ a, b, c ∈ A, z ∈ ker(�)

⎫
⎪⎬⎪⎭
.

Δ(�) =

r∑
j=1

�ij
�ij

= �i1
�i1

+ �i2
�i2

+ ... + �ir
�ir

, (r ≤ m).

Δ(�) = �i1
�i1

+ �i2
�i2

+ ... + �ir
�ir

∈ �i1
.
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The previous equation asserts that �i1 ∈ �i1
 , which is a contradiction. This contradiction 

proves our claim. 	�  ◻

In the following, we are going to characterize {n}-derivations, {n}-generalized deriva-
tions and {n}-ternary derivations on algebras under certain conditions.

Theorem 16  Let A be a unital algebra, let M be an A-bimodule and let Δ ∶ A → M be 
an additive {n}-derivation. Then either Δ is a nonzero linear derivation or Δ is identically 
zero.

Proof  Since Δ is an additive mapping, Δ(a(b + c)) = Δ(ab) + Δ(ac) for all a, b, c ∈ A . We 
have

Also, we have

Comparing (2) and (3), we get that

Putting b = c = e in (4), we arrive at

It follows from the previous equation that either n = 1 , which means that Δ is a nonzero 
linear derivation from A into M or Δ is identically zero. By the way, in both cases Δ is a 
derivation on A . 	�  ◻

Corollary 17  Let A be a unital, commutative Banach algebra and let Δ ∶ A → A be an 
additive {n}-derivation for some n ∈ ℕ . Then Δ(A) ⊆ rad(A).

Proof  It follows from the previous theorem that Δ is a derivation and now [15, Theo-
rem 4.4] yields the required result. 	�  ◻

Theorem 18  Let A be a unital algebra, let M be an A-bimodule and let f ∶ A → M be a 
generalized {n}-derivation with an associated mapping d ∶ A → M . Then d is an {n}-deri-
vation if and only if f (e)

[
(bc)n − bncn

]
= 0 for all b, c ∈ A.

Proof  For every a, b, c ∈ A , we have

On the other hand, we have

Comparing the last two equations, we get that

(2)Δ(a(b + c)) = Δ(a)(b + c)n + anΔ(b) + anΔ(c).

(3)Δ(ab) + Δ(ac) = Δ(a)bn + anΔ(b) + Δ(a)cn + anΔ(c).

(4)Δ(a)
[
(b + c)n − bn − cn

]
= 0, (a, b, c ∈ A).

(2n − 2)Δ(a) = 0, (a ∈ A).

f (abc) = f (a)(bc)n + and(bc).

f (abc) = f (ab)cn + (ab)nd(c) = f (a)bncc + and(b)cn + (ab)nd(c).

(5)f (a)
[
(bc)n − bncn

]
= an

[
d(b)cn − d(bc)

]
+ (ab)nd(c).
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Putting a = e in (5), we have

If follows from the previous equation that f (e)
[
(bc)n − bncn

]
= 0 if and only if 

d(bc) = d(b)cn + bnd(c) for all b, c ∈ A . We know that f (�a) = �nf (a) for all a ∈ A and all 
� ∈ ℂ . Hence, for any a, b ∈ A and any � ∈ ℂ , we have the following statements:

which implies that and(�b) = �nand(b) . Putting a = e in the previous equation, we get that 
d(�b) = �nd(b) for all b ∈ A . This means that d is an {n}-derivation. 	�  ◻

Theorem 19  Let A be a unital algebra, let M be an A-bimodule and let f ∶ A → M be 
an additive generalized {n}-derivation with an associated mapping d ∶ A → M such that 
d(2e) = 2d(e) . Then either f is a nonzero linear generalized derivation with the associated 
linear derivation d or f and d are identically zero.

Proof  Since f is an additive mapping, f (a(b + c)) = f (ab) + f (ac) for all a, b, c ∈ A . We 
have

Also, we have

Comparing (6) and (7), we get that

Setting b = c = e in (8) and using the assumption that d(2e) = 2d(e) , we arrive at

We consider the following two cases: 

Case 1.	� 2n − 2 = 0 . Then n = 1 and this means that f is a linear generalized derivation 
with an associated mapping d ∶ A → M . Now we show that d is a linear deriva-
tion. Since n = 1 , it follows from (8) that 

 Putting a = e in (10), we see that d is an additive mapping. Also, note that 
f (�a) = �nf (a) = �f (a) for all a ∈ A and all � ∈ ℂ . Similar to the proof of Theorem 18, 
one can easily show that d(�a) = �d(a) for all a ∈ A and we leave it to the interested 
reader. So d is a linear derivation.

Case 2.	� 2n − 2 ≠ 0 . It follows from (9) that f is identically zero. This fact with 
f (ab) = f (a)bn + and(b) imply that and(b) = 0 for all a, b ∈ A . Putting a = e in 
the previous equation, we infer that d is identically zero. By the way, in both 

f (e)
[
(bc)n − bncn

]
= d(b)cn − d(bc) + bnd(c).

f (a)(�b)n + and(�b) = f (a�b) = �nf (a)bn + �nand(b),

(6)f (a(b + c)) = f (a)(b + c)n + and(b + c).

(7)f (ab) + f (ac) = f (a)bn + and(b) + f (a)cn + and(c).

(8)f (a)
[
(b + c)n − bn − cn

]
= an

[
d(b) + d(c) − d(b + c)

]
, (a, b, c ∈ A).

(9)(2n − 2)f (a) = 0, (a ∈ A).

(10)0 = a
[
d(b) + d(c) − d(b + c)

]
, (a, b, c ∈ A).
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above-mentioned cases f is a generalized derivation with an associated deriva-
tion d on A . 	�  ◻

In the following, we present a characterization of {n}-ternary derivations on algebras.

Theorem  20  Let A be a unital algebra, let M be an A-bimodule and let 
(d1, d2, d3) ∶ A → M be an {n}-ternary derivation. Let d3(2e) = 2d3(e) or d2(2e) = 2d2(e) . 
If d1 is an additive mapping, then either all the mappings d1 , d2 and d3 are linear and 
(d1, d2, d3) is a ternary derivation on A or d1 = d2 = d3 = 0.

Proof  Suppose that d3(2e) = 2d3(e) . Let a, b, c be arbitrary elements of A . We have the 
following expressions:

On the other hand, we have

which means that

Comparing (11) and (12), we get that

Putting b = c = e in (13) and using the assumption that d3(2e) = 2d3(e) , we get that

We have two cases concerning 2n − 2 as follows: 

Case 1.	� 2n − 2 = 0 . So n = 1 and it follows from (13) that 

 Setting a = e in (15), we see that d3 is an additive mapping. We know that 
d1(�a) = �nd1(a) = �d1(a) for all a ∈ A and all � ∈ ℂ . Hence, for any a, b ∈ A and any 
� ∈ ℂ , we have the following statements: 

 which implies that ad3(�b) = �ad3(b) . Putting a = e in the previous equation, we get that 
d3(�b) = �d3(b) for all b ∈ A . This means that d3 is a linear mapping. Similarly, we can 
show that d2 is a linear mapping. Hence, (d1, d2, d3) is a ternary derivation on A.

Case 2.	� 2n − 2 ≠ 0 . Then equation (14) yields that d2 must be zero. Considering this case 
and using d1(ab) = d2(a)b

n + and3(b) for all a, b ∈ A , we get that 

(11)d1(a(b + c)) = d2(a)(b + c)n + and3(b + c).

d1(a(b + c)) = d1(ab) + d1(ac)

= d2(a)b
n + and3(b) + d2(a)c

n + and3(c)

= d2(a)(b
n + cn) + an(d3(b) + d3(c)),

(12)d1(a(b + c)) = d2(a)(b
n + cn) + an(d3(b) + d3(c)).

(13)d2(a)
[
(b + c)n − bn − cn

]
= an

[
d3(b) + d3(c) − d3(b + c)

]
.

(14)(2n − 2)d2(a) = 0 for all a ∈ A.

(15)0 = a
[
d3(b) + d3(c) − d3(b + c)

]
.

d2(a)(�b) + ad3(�b) = d1(a�b) = �d2(a)b + �ad3(b),
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 We know that d1 is an additive mapping. So we have d1((b + c)a) = d1(ba) + d1(ca) for all 
a, b, c ∈ A . This equation along with (16) imply that 

 Putting b = c = e in (17) and considering the assumption that 2n − 2 ≠ 0 , we infer that 
d3 = 0 and it follows from (16) that so is d1 . Therefore, d1 , d2 and d3 are zero. Reasoning 
like above, we obtain the required result if we assume that d2(2e) = 2d2(e) . Note, however, 
that in both above-mentioned cases, (d1, d2, d3) is a ternary derivation. 	�  ◻

In the next theorem, we present a characterization of {n}-generalized derivations 
using some functional equations.

Theorem 21  Let A be a unital algebra, let n be a positive integer, and let d1, d2, d3 ∶ A → A 
be mappings satisfying

for all a, b ∈ A and all � ∈ ℂ . Furthermore, assume that di(e)
[
anbn − (ab)n

]
= 0 for all 

a, b ∈ A and i ∈ {2, 3} . Then there exists an {n}-derivation Δ ∶ A → A such that d1, d2 
and d3 are {n}-generalized derivations with the associated {n}-derivation Δ.

Proof  Putting b = e in (18), we obtain

and taking a = e in (18), we see that

Comparing (20) and (21), we get that

for all a ∈ A and i ∈ {1, 2, 3} . It follows from (20) and (22) that

for all a ∈ A . Using (20), we have

and so

(16)d1(ab) = and3(b) for all a, b ∈ A.

(17)
[
(b + c)n − bn − cn

]
d3(a) = 0, for all a, b, c ∈ A.

(18)d1(ab) = d2(a)b
n + and3(b) = d3(a)b

n + and2(b)

(19)d1(�a) = �nd1(a)

(20)d1(a) = d2(a) + and3(e) = d3(a) + and2(e),

(21)d1(b) = d2(e)b
n + d3(b) = d3(e)b

n + d2(b).

(22)di(e)a
n = andi(e)

d3(a) = d2(a) +
(
d3(e) − d2(e)

)
an = d2(a) + an

(
d3(e) − d2(e)

)
,

d2(a)b
n + and3(b) = d1(ab) = d2(ab) + d3(e)(ab)

n

d2(ab) = d2(a)b
n + and3(b) − d3(e)(ab)

n

= d2(a)b
n + an

[
d2(b) + (d3(e) − d2(e))b

n
]
− d3(e)(ab)

n

= d2(a)b
n + and2(b) − d2(e)a

nbn



2262	 A. Hosseini, M. Mohammadzadeh Karizaki 

1 3

We define Δ ∶ A → A by Δ(a) = d2(a) − d2(e)a
n . So by (22) and the assumption that 

di(e)
[
anbn − (ab)n

]
= 0 for all a, b ∈ A and i ∈ {2, 3} , we have the following expressions:

which means that

Our next task is to show that Δ(�a) = �nΔ(a) for all a ∈ A and � ∈ ℂ . Before that, we 
prove that d2(�a) = �nd2(a) for all a ∈ A and � ∈ ℂ . We know that d1(�a) = �nd1(a) for all 
a ∈ A and � ∈ ℂ . So we have

and on the other hand

for all a, b ∈ A and all � ∈ ℂ . By comparing these two equations related to d1(�ab) , we 
deduce that �nd2(a)bn = d2(�a)b

n . Putting b = e in the previous equation, we get that 
d2(�a) = �nd2(a) for all a ∈ A and � ∈ ℂ . Consequently, Δ(�a) = �nΔ(a) for all a ∈ A and 
� ∈ ℂ . So Δ is an {n}-derivation. Using this fact, we have

which means that

So d2 is an {n}-generalized derivation with the associated {n}derivation Δ . Using a similar 
argument, one can easily show that

By defining � ∶ A → A by �(a) = d3(a) − d3(e)a
n and by reasoning like the mapping d2 , 

it is observed that d3 is an {n}-generalized derivation with the associated {n}-derivation � . 
In the following, we show that � = Δ . We know that Δ(a) = d2(a) − d2(e)a

n and it follows 
from (21) that d2(a) = d3(a) + and2(e) − d3(e)a

n for all a ∈ A . So we have

Δ(ab) = d2(ab) − d2(e)(ab)
n

= d2(a)b
n + and2(b) − d2(e)a

nbn − d2(e)(ab)
n

=
[
d2(a) − d2(e)a

n
]
bn + an

[
d2(b) − d2(e)b

n
]

= Δ(a)bn + anΔ(b),

Δ(ab) = Δ(a)bn + anΔ(b), for all a, b ∈ A.

d1(�ab) = �nd1(ab) = �nd2(a)b
n + �nand3(b)

d1(�ab) = d2(�a)b
n + �nand3(b)

d2(ab) = Δ(ab) + d2(e)(ab)
n

= Δ(a)bn + anΔ(b) + d2(e)a
nbn

= (Δ(a) + d2(e)a
n)bn + anΔ(b)

= d2(a)b
n + anΔ(b)

= Δ(a)bn + and2(b),

d2(ab) = d2(a)b
n + anΔ(b) = Δ(a)bn + and2(b), for all a, b ∈ A.

d3(ab) = d3(a)b
n + and3(b) − d3(e)(ab)

n, for all a, b ∈ A.

Δ(a) = d2(a) − d2(e)a
n

= d3(a) + and2(e) − d3(e)a
n − d2(e)a

n

= d3(a) − d3(e)a
n

= �(a)
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for all a ∈ A . Hence, both d2 and d3 are {n}-generalized derivations with the associ-
ated {n}-derivation Δ . We are now ready to show that d1 is also an {n}-generalized deri-
vation with the associated {n}-derivation Δ . We know that d1(a) = d2(a) + d3(e)a

n and 
d2(a) = Δ(a) + d2(e)a

n for all a ∈ A . Hence, we have

which means that d1 is an {n}-generalized derivation with the associated {n}-derivation Δ , 
as required. 	�  ◻

We conclude this paper with the following questions.

Question 22  Let A be an algebra or ring, let n > 1 be a positive integer, and let Δ ∶ A → A 
be a mapping such that Δ(a2) = Δ(a)an + anΔ(a) holds for all a ∈ A . Under what condi-
tions we have Δ(ab) = Δ(a)bn + anΔ(b) for all a, b ∈ A?

Question 23  Let A be a unital algebra or ring, let n > 1 be a positive integer, and let 
Δ ∶ A → A be a mapping satisfying

in which a0 = e , for all a ∈ A and for some positive integer m. Under what conditions we 
have Δ(ab) = Δ(a)bn + anΔ(b) for all a, b ∈ A?
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