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Abstract

In this paper, we introduce the concepts of derivation of degree n, generalized derivation
of degree n and ternary derivation of degree n, where n is a positive integer, and then we
study the algebraic properties of these mappings. For instance, we study the image of deri-
vations of degree n on algebras and in this regard we prove that, under certain conditions,
every derivation of degree n on an algebra maps the algebra into its Jacobson radical. Also,
we present some characterizations of these mappings on algebras. For example, under cer-
tain assumptions, we show that if f'is an additive generalized derivation of degree n with
an associated mapping d, then either f is a linear generalized derivation with the associ-
ated linear derivation d or f and d are identically zero. Some other related results are also
established.

Keywords Derivation - Derivation of degree n - Generalized derivation of degree n -
Ternary derivation of degree n - Singer-Wermer theorem

Mathematics Subject Classification Primary 47B47 - Secondary 47B48

1 Introduction and preliminaries

Let R be aring and let n be a positive integer. A mapping A : R — R is called a derivation
of degree n or {n}-derivation if A(xy) = A(x)y" + x"A(y) holds for all x,y € R. Also, A is
called a Jordan derivation of degree n or Jordan {n}-derivation if A(x*) = A(x)x" + X" A(x)
holds for all x € R. In this paper, we provide an example of a Jordan derivation of degree n
which is not a derivation of degree n.

By getting the idea from cubic derivations and quadratic derivations, we define a deri-
vation of degree n from an algebra into a module. Before stating the results of this article,
let us recall some basic definitions and set the notations which we use in what follows.
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An algebra A is called a domain if A # {0}, and a =0 or b =0, whenever ab =0. A
commutative domain is called an integral domain. Recall that the Jacobson radical of
an algebra A is the intersection of all primitive ideals of .4 which is denoted by rad(A).
An algebra A is called semisimple if rad(A) = {0}. A nonzero linear functional ¢ on an
algebra A is called a character if p(ab) = p(a)p(b) for every a,b € A. The set of all
characters on A is denoted by @ 4 and is called the character space of .4. We know that
ker ¢ is a maximal ideal of A for every ¢ € @ 4 (see [4, Proposition 1.3.37]).

Let A be a complex algebra and let M be an A-bimodule. Recall that a linear mapping
6 : A— Mis called a derivation if it satisfies the Leibnitz’s rule 6(ab) = 6(a)b + ad(b)
for all a, b € A. In [5], Eshaghi Gordji et al. introduced the concept of a cubic derivation.
A mapping D : A — M s called a cubic derivation if D is a cubic homogeneous mapping,
that is D(Aa) = 4*D(a) (A € C, a € A), and D(ab) = D(a)b® + a*D(b) for all a,b € A.
Also, a mapping d : A — M is called a quadratic derivation if d is a quadratic homogene-
ous mapping, that is d(Aa) = A2d(a) (A € C, a € A), and d(ab) = d(a)b* + a>d(b) for all
a,b € A. The most papers to date have been focused on investigating stability of cubic
derivations and quadratic derivations, see, e.g. [1, 5, 6,9, 13, 17], and references therein.

In this paper, by getting the idea from the notions of cubic derivation and quadratic
derivation, we define the notion of derivation of degree n on algebras, where 7 is a positive
integer. In what follows, let .4 be a complex algebra, let M be an .4-bimodule and let n be
a positive integer. A mapping A : 4 — M is called a derivation of degree n or {n}-deriva-
tion if it satisfies both the equations A(ab) = A(a)b™ + a*A(b) and A(Aa) = A" A(a) for all
a,be Aandall A € C.

Now let us to give a background about the image of derivations. The image of derivations
has a fairly long history and so far, many authors have studied the image of derivations, see,
e.g. [2, 3,7, 10-12, 14-16] and references therein. As a pioneering work, Singer and Wermer
[14] achieved a fundamental result which started investigation into the image of derivations on
Banach algebras. The so-called Singer-Wermer theorem, which is a classical theorem of com-
plex Banach algebra theory, states that every continuous derivation on a commutative Banach
algebra maps the algebra into its Jacobson radical, and Thomas [15] proved that the Singer-
Wermer theorem remains true without assuming the continuity of the derivation.

One of our aims in this research is to prove some results similar to Singer- Wermer
theorem and Thomas theorem for derivations of degree n. In this regard, we first prove the
following theorem which has been motivated by [7]:

Let A be a unital integral domain and let A : .4 — A be an {n}-derivation such that its
rank is at most one. Then A is identically zero. Using this result, it is proved that if A is a
unital algebra and A : A — A is an {n}-derivation such that A(a) — A(b) € kerp when-
ever a — b € kerg for every a,b € A and every ¢ € @4, then A(A) C ﬂ(pE(I)A ker . If A
is also commutative, then A(A) C rad(A). In this regard, we provide an example of an {n}
-derivation on an algebra 2l mapping the algebra into the intersection of all characters of 2.
In addition, we prove that if A4 is a unital, commutative Banach algebra and A : 4 — A s
an additive {n}-derivation, then A(A) C rad(A). As another result in this regard, we prove
that every {n}-derivation on finite dimensional algebras is identically zero under certain
conditions. Indeed, we establish the following result. Let m be a positive integer and let .4
be an m-dimensional unital algebra with the basis B = {b,, ..., b,,}. Furthermore, suppose
that for every integer k, 1 < k < m, an ideal X, generated by 8B — {b, } is a proper subset of
A.IfA : A — Ais an {n}-derivation such that A(a) — A(b) € X, whenever a — b € X for
every a,b € Aand1 < k < m, then A is identically zero.

Another objective of this paper is to characterize {n}-derivations, {n}-generalized
derivations and {n}-ternary derivations on algebras. First, we introduce these notions. A
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mapping f : A — M is called a generalized derivation of degree n or an {n}-generalized
derivation if there exists a mapping d : A — M such that

flab) = f(a)b" + a"d(b),

f(Aa) = A"f(a),
foralla,b € Aandall A € C. In this case, d is called an associated mapping of f.

A ternary derivation of degree n is defined as follows. A ternary derivation of degree

n or an {n}-ternary derivation is a triple of mappings (d,, d,, d;) from A into M such that
dl (ab) = dz(a)bn + and3(b),
d\(Aa) = 1'd,(a),

foralla,b e A, 1€ C.

For instance, we establish the result below concerning the characterization of {rn}-gen-
eralized derivations. Let A be a unital algebra with the identity element e, let M be an A
-bimodule and let f : A — M be an additive generalized {n}-derivation with an associated
mapping d : A — M such that d(2e) = 2d(e). Then either fis a nonzero linear generalized

derivation with the associated linear derivation d or f'and d are identically zero.
A theorem similar to the above result is presented for the {7 }-ternary derivations.

2 Definitions and examples

In this section, without further mention, e denotes the identity of any unital ring or algebra.
We begin this section with the following definition.

Definition 1 Let R be a ring and let n be a positive integer. A mapping A : R — R is
called a derivation of degree n if
A(xy) = A" +x"A®Q)
holds for all x,y € R. Also, A is called a Jordan derivation of degree n if it satisfies
AGP) = A@X" + X" ARX)
forall x € R.

Obviously, if A is a Jordan derivation of degree n on R, then A(0) = 0. Also, if R is uni-
tal with the identity element e, then A(e) = 0. It is clear that every derivation of degree n is
a Jordan derivation of degree n, but the converse is, in general, not true. In the following,
we present a Jordan derivation of degree n which is not a derivation of degree n.

Example 2 Let R be a ring such that x* = 0 for all x € R, but the product of some nonzero
elements of R is nonzero. Let

0xy
R=<4[00x]: x,yeR
000
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2252 A. Hosseini, M. Mohammadzadeh Karizaki

Define A : R - Rby

Oxy 00 y?

Al]0OO0Ox ||=[{000

000 000
0Oxy

Forany A= 0 0 x | € R, we have

000

00 x? 00 x*

AAH=Alfo0 0 ||=[000 |=0.
000 000

A straightforward verification shows that
AA)A" +A"AA) =0,

for all A € R and all n € N. We see that A is a Jordan derivation of degree n for any
n € N. Also, it is easy to see that A(A)B" + A"A(B) =0 for all A,B € R and all n € N, but
A(AB) # 0 for some A, B € R. It means that A is not a derivation of degree n for all n € N.

In the rest of this article, we consider derivations of degree n from algebras into mod-
ules as follows.

Definition 3 Let A be a complex algebra, let M be an .4-bimodule and let n be a positive
integer. A mapping A : A — M is called a derivation of degree n if it satisfies both of the
following equations:

A(ab) = A(@)b" + a"A(D),
A(Aa) = A" A(a),

foralla,b € Aandall A € C.

Example 4 Let A an algebra, let M be an .A-bimodule, let n be a positive integer and let x,
be an element of M satisfying

Xy [(ab)" - a"b”] = [(ab)” - a"b"]xo

for all a,b € A. Define a mapping A : A - M by A(a) = a"xy — xya" forany a € A. It is
routine to see that A(ab) = A(a)b" + a"A(b) and A(Aa) = A*A(a) for all a,b € A and all
A € C. This means that A is an {n}-derivation. We call such mapping inner derivation of
degree n or inner {n}-derivation.

Example 5 Let A be a commutative algebra, let n be an arbitrary positive integer and let
Oabd
A=210c0] : ab,c,ec A
00e

It is clear that 2 is a non-commutative algebra. Define A : 2 — 2 by

@ Springer



On the derivations, generalized derivations and ternary... 2253

0Oab 00Dp"
AlIfOcO|]=]000
00e 000
0Oabd
It is easy to see that forany A =] 0 ¢ 0 [ € € and any k£ € N, we have
00e
0 ack! bek
Ak=10 & 0
0 0 &

One can easily get that A(AB) = A(A)B" + A"A(B) and A(AA) = A"A(A) for all A,Be A
and all 4 € C, which means that A is a derivation of degree n on 2.

Example 6 Let A be an algebra, let n be an arbitrary positive integer and let

Oab
A=3100c| : abce A
000
Define A : A — Aby
Oab 000
All0OO0c ||=[00c" |
000 000

It is straightforward to see that A(AB) = A(A)B" + A"A(B) and A(4A) = A"A(A) for all
A,B € and all 41 € C, which means that A is a derivation of degree n on 2.

Definition 7 Let A be an algebra and let M be an .A-bimodule. A mapping f : A — M is
called a generalized derivation of degree n or an {n}-generalized derivation if there exists a
mapping d : A — M such that

f(ab) = f(@)b" + a"d(b),

f(Aa) = A’f(a),

for all a, b € A and all A € C. In this case, d is called an associated map of f.

Example 8 Let A an algebra, let M be an .A-bimodule, let n be a positive integer and let x,
and y, be two elements of M satisfying

Yo [(ab)” - a”b"] = [(ab)” - a"b”]xo,

for all a,b € A. Define the mappings f,d: A—> M by f(a)=a"x,—y,a" and
d(a) = a"x, — x,a" for any a € A. It is routine to see that f(ab) = f(a)b" + a"d(b) and
f(4a) = A"f(a) for all a,b € A and all A € C. This means that fis an {n}-generalized deri-
vation with the associated mapping d. We call such mapping inner generalized derivation
of degree n or inner {n}-generalized derivation.
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In the following, we define a ternary derivation of degree {n}.

Definition 9 Let A be an algebra and let M be an A-bimodule. A ternary derivation of
degree n or an {n}-ternary derivation is a triple of mappings (d,,d,,d;) from A into M
such that

d,(ab) = dy(@)b" + a"d5(b),

d,(Aa) = A"d\(a),

foralla,b € A, A € C.

3 Results and proofs

Let A and B be two algebras over a field . Throughout this section, a mapping D : A — B
is called a rank-one mapping if there exist a nonzero element b of B and a functional
u . A — [Fsuch that D(a) = u(a)b for all a € A.

We begin our results with the following theorem.

Theorem 10 Let A be a unital integral domain and let A : A — A be a derivation of
degree n such that its rank is at most one. Then A is identically zero.

Proof Let A : A — A be a derivation of degree n such that its rank is at most one. We
are going to show that A(A) = {0}. Suppose that A is a rank-one mapping. So there exist
a nonzero element ¢ of A and a functional u : A — C such that A(a) = u(a)c for all
a € A. To obtain a contradiction, suppose there exists a nonzero element a € A such that
A(a) # 0. It is clear that u(a) # 0. We observe two cases for A(c).

Case 1. A(c) =0. In this case, we have u(c)c = 0 and it implies that p(c) = 0. We have
the following expressions:
u(a*)e = Aa?)
= A(a)a" + a"A(a)
= 2a"A(a)
=2a"u(a)c
=2u(a)a"c.

Since we are assuming that A(c¢) = 0, we have

0 = (u(a®))"A(c) = A(u(a?)c) = AQu(a)a’c)
= 2"(u(a))"[A(a")" + a" A(©)]
= 2"(u(a))" Ada")c"

Since A is a domain and u(a) and ¢ are nonzero, we get that A(a”) = 0. Using induction,
for any m € N, one can easily prove that
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A(am) — er(n_la(k—l)nA(a)a(m—k)n
in which a® = e. So we have
0=A(a") = A" 'a)
= A(a" a" + o™V A(a)
[En k=D A (g1 k)n] " + a"" D A(a)

= [A(a)a —"] +a" " Ada)

= nA(a)a” -
which implies that A(a) = 0, a contradiction.

Case 2. A(c) # 0. In this case, we have p(c) # 0. Now look at the following statements:
u(e)e = A(?) = A" + ¢"Ade) = 2¢"A(¢c) = 2u(c)e™! 1

If 44(c?) = 0, then it follows from (1) that either p(c) = 0 or ¢ = 0, and we know that both

of them are nonzero. So u(c?)#0. Putting g(—t(; a in (1), we have

(" — ae) = "' —ac = 0. In view of this assumption that A is a domain, we infer that
¢ = 0, a contradiction, or ¢" = ae. So we have

0= a"Ae) = A(ae) = A(c") = A" o)
= A D" + "V A(0)

= [l e 4 DA
= - 1[A(c)c —"] + A
= nA(c)c” -,

Reusing the assumption that A4 is a domain, we get that ¢ = 0 or A(c) = 0, which these
are contradictions. It is observed that both Cases 1 and 2 lead to contradictions. Therefore,
there is no element a of .4 such that A(a) # 0, and consequently, A must be zero. O

In the following, we provide some examples that show that the conditions of Theo-
rem 10 are not superfluous.

Example 11

(i) Letn be a positive number. Define A : R — R by

Aa) = { a ln(()l al) aa:;éot?,

One can easily check that A(ab) = A(a)b™ + a*A(b) for all a,b € R and also it is
clear that the rank of A is at most one, but we observe that A(aa) # a"A(a) for
some a,a € R. We see that A is a nonzero mapping.

(i) In Example 5, considering A = C, we see that A : 9 — 2 defined by
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Oab 00" 001
AlfOcOf]=[{000 [=b"1000
00e 000 000

is a nonzero, rank one derivation of degree n. Note that 2 is not an integral domain.

In the following theorem, we present some conditions under which every derivation
of degree n on an algebra maps the algebra into its Jacobson radical.

Theorem 12 Let A be a unital algebra and let A : A — A be a derivation of degree n such
that A(a) — A(b) € kergp whenever a — b € kerg for every a,b € A and every ¢ € @ 4. In

this case, A(A) C _— ker @. If A is also commutative, then A(A) C rad(A).

A
ker(p - ker by
Q(a + ker @) = A(a) + ker ¢ for every a € A. Q is a derivation of degree n on the algebra

é It is clear that the algebra ki is a unital, integral domain and it follows from [4,

Proposition 1.3.37] that dlm(—) = 1. So the rank of Q is at most one. Now, Theorem 10

Proof Let ¢ be an arbitrary character on A. We define a mapping Q :

yields that Q is identically zero, and it means that A(A) C ker . Since we are assuming ¢
is an arbitrary element of ® ,, A(A4) C [ ped, ker @. It is obvious that if .4 is commutative,
then [ ped, ker ¢ = rad(A) (see [4]). Hence, we deduce that A(A) C rad(A). O

An immediate corollary of the previous theorem is as follows:

Corollary 13 Ler A be a unital algebra such that ﬂwe% kerp = {0} and let A : A —> A
be a derivation of degree n such that A(a) — A(b) € kerp whenever a — b € kerg for every
a,b € Aand every ¢ € ® 4. Then A is identically zero.

Proof According to [8, Proposition 2.10], the algebra A is commutative and semisimple.
Now the previous theorem gives the result. a

Remark 14 In this remark, we show that the image of derivation of degree n presented in
Example 5 is contained in | ker . Let A be a unital commutative Banach algebra and

PEDy
let
Oab
A=2(0c0]| : abcec A
00e

Note that 2 is a non-commutative algebra. Since .4 is a unital commutative Banach alge-

bra, it follows from [4, Theorem 2.3.1] that its character space is a non-empty set, i.e.
Oab

@, # ¢. Let @ be a character of A. We define 6, : A - Cby 0,[[ 0 c 0 |]= (o). Itis
00e

clear that 6, is a character on 2 and it is easy to see that
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0o A A Oab
ker(0,) =| 0 ker(p) 0 |=9[0x 0| : a,b,e € A, x € ker(p) ¢.
0o 0 A 00e

Also, if we define 6, : % - Cby

Oab
0,[[ 0 ¢ O [[= w(e), then we deduce that 6, is a character on 2. It is easy to see that
00e
0A A Oab
ker(8,)=[{0 A 0 =4{0cO0| : ab,ceAz€cker(p),.
0 0 ker(p) 00z
Therefore, @y = {0, : @ € @ 4}. Itis observed that A(2) C ﬂ(pe% ker 6,

In the next theorem, we prove that every derivation of degree n on a unital finite-
dimensional algebra is identically zero under certain conditions. Let m be a positive
integer and let A be an m-dimensional unital algebra with the basis 8 = {b,b,,...,b,}.

Theorem 15 Suppose that for every integer k, 1 <k <m, an ideal X, generated by
B — {b,} is a proper subset of A. Let A : A — A be a derivation of degree n such that
A(a) — A(b) € X, whenever a — b € X, for every a,b € A and everyl < k < m. Then A is
identically zero.

Proof 1t is clear that dim(xi) =1 for every k € {1, ...,m}. We show that X, is a maximal
k

ideal of A for each k € {1, ...,m}. If X, is not a maximal ideal of A for some k,1 <k < m,
then there exists a maximal ideal I, of 4 such that X, Cc M, Cc A, and so
m—1=dim(X,) < dim(M;) < m, a contradiction. Hence, every X, is a maximal ideal of
A. Moreover, it follows from Proposition 1.3.37 and Corollary 1.4.38 of [4] that for every
maximal ideal X, (1 <k < m) there exists a character ¢, € ® , such X, = kerg,. So the
algebra xﬁ is an integral domain. Now Theorem 10 yields that € : xA — % defined by

k k
Qa + X,) = A(a) + X, which is a derivation of degree n, is identically zero. This means

that A(A) C X, for every k € {1,...,m}, and so A(A) C ﬂ::1 X,. Now suppose that there
is an element a of .4 such that A(a) # 0. Since B = {b,, ..., b,, } is a basis for A, there exist
the complex numbers His and the elements B'}- of B such that

Aa) = Z b, = by + by + o+ b (r<m).
=1
We know that A(A) C X, for every ke {l,..,m}. So we can assume that

A(A) C X; =B~ {b; }. Thus, we have

A(a) = p; b, + p; b, +...+p; b; €X; .
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The previous equation asserts that b; € X;, which is a contradiction. This contradiction
proves our claim. O

In the following, we are going to characterize {n}-derivations, {n}-generalized deriva-
tions and {n }-ternary derivations on algebras under certain conditions.

Theorem 16 Let A be a unital algebra, let M be an A-bimodule and let A : A - M be
an additive {n}-derivation. Then either A is a nonzero linear derivation or A is identically
zero.

Proof Since A is an additive mapping, A(a(b + ¢)) = A(ab) + A(ac) for all a, b,c € A. We
have

Ala(b + ¢)) = A(@)(b + )" + d"AD) + a" A(c). )
Also, we have
A(ab) + A(ac) = A(@b" + a"A(b) + Aa)c" + a"A(c). 3)
Comparing (2) and (3), we get that
A@|b+c)"=b"=c"] =0, (a,b,c€A. @)
Putting b = ¢ = e in (4), we arrive at
(2" = 2)A(a) =0, (a€ A.

It follows from the previous equation that either n = 1, which means that A is a nonzero
linear derivation from A into M or A is identically zero. By the way, in both cases A is a
derivation on A. O

Corollary 17 Let A be a unital, commutative Banach algebra and let A : A - A be an
additive {n}-derivation for some n € N. Then A(A) C rad(A).

Proof 1t follows from the previous theorem that A is a derivation and now [15, Theo-
rem 4.4] yields the required result. a

Theorem 18 Let A be a unital algebra, let M be an A-bimodule and let f : A — M be a
generalized {n}-derivation with an associated mapping d : A - M. Then d is an {n}-deri-
vation if and only if f(e) [(bc)" - b"c"] =0forallb,c € A.

Proof For every a,b,c € A, we have
f(abc) = f(a)(be)" + d"d(bc).
On the other hand, we have
f(abc) = f(ab)c" + (ab)*d(c) = f(a)b" ¢ + a"d(b)c" + (ab)"d(c).
Comparing the last two equations, we get that

f@]be)" = b"c"| = a"[d(b)c" - d(bc)| + (ab)'d(c). (5)
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Putting a = e in (5), we have
f©[be)" = b"c"| = d(b)c" — d(bc) + b"d(c).

If follows from the previous equation that f(e) [(bc)” - b”c”] =0 if and only if
d(bc) = d(b)c" + b"d(c) for all b, c € A. We know that f(Aa) = A*f(a) for all a € A and all
4 € C. Hence, for any a,b € A and any 4 € C, we have the following statements:

f(@)(Ab)" + a"d(Ab) = f(arb) = A'f(a)b" + Aa"d(D),
which implies that a"d(Ab) = A"a"d(b). Putting a = e in the previous equation, we get that
d(Ab) = A'd(b) for all b € A. This means that d is an {n}-derivation. O

Theorem 19 Let A be a unital algebra, let M be an A-bimodule and let f : A - M be
an additive generalized {n}-derivation with an associated mapping d : A - M such that
d(2e) = 2d(e). Then either f is a nonzero linear generalized derivation with the associated
linear derivation d or f and d are identically zero.

Proof Since f is an additive mapping, f(a(b + ¢)) = f(ab) + f(ac) for all a,b,c € A. We
have

flad + o) =fla)b+c)" +a"db+c). (6)
Also, we have
flab) + f(ac) = f(@b" + a"d(b) + f(a)" + a"d(c). (7
Comparing (6) and (7), we get that
f@[b+o)y =b"=c"] =a"[db)+d(c)—d(b+ )|, (a,b,cEA). (8)
Setting b = ¢ = e in (8) and using the assumption that d(2e) = 2d(e), we arrive at
2" = 2)f(a) =0, (@€ A. 9)

We consider the following two cases:

Casel. 2"—2=0. Then n =1 and this means that f is a linear generalized derivation
with an associated mapping d : A — M. Now we show that d is a linear deriva-
tion. Since n = 1, it follows from (8) that

0=ald(b)+d(c)—d(b+0)|, (ab,ceA. (10)

Putting a =e in (10), we see that d is an additive mapping. Also, note that
f(Aa) = A'f(a) = Af(a) for all a € A and all A € C. Similar to the proof of Theorem 18,
one can easily show that d(Aa) = Ad(a) for all a € A and we leave it to the interested
reader. So d is a linear derivation.

Case2. 2"—-2#0. It follows from (9) that f is identically zero. This fact with

f(ab) = f(a)b" + a"d(b) imply that a"d(b) = 0 for all a,b € A. Putting a = e in
the previous equation, we infer that d is identically zero. By the way, in both
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above-mentioned cases f is a generalized derivation with an associated deriva-
tion d on A. O

In the following, we present a characterization of {n}-ternary derivations on algebras.

Theorem 20 Let A be a unital algebra, let M be an A-bimodule and let
d,,dy,d3) : A > Mbe an {n}-ternary derivation. Let d;(2e) = 2d;(e) or d,(2e) = 2d,(e).
If d, is an additive mapping, then either all the mappings d,, d, and d; are linear and
(d,,d,, dy) is a ternary derivation on Aord, =d, = dy = 0.

Proof Suppose that d;(2e) = 2d;(e). Let a, b, ¢ be arbitrary elements of .A. We have the
following expressions:

di(a(b+c)) =dy(a)(b+ )"+ a"d;(b+ ). (11)
On the other hand, we have

d(a(b + ¢)) = d,(ab) + d,(ac)
=dy(@)b" + a"ds(b) + dy(a)c" + a"d;(c)
= d,(@)(D" + ") + a"(d5(b) + d5(¢)),

which means that
di(a(b + ) = dy(a)(D" + ") + d"(d5(D) + d5(c)). (12)
Comparing (11) and (12), we get that
dy(@)[(b+ )" = b" = "] = d"[dy(b) + ds(c) — d3(b + ©)]. (13)
Putting b = ¢ = e in (13) and using the assumption that d;(2e) = 2d;(e), we get that
(2" =2)dy(a) =0 foralla € A. (14)

We have two cases concerning 2" — 2 as follows:

Casel. 2"—-2=0.Son = 1and it follows from (13) that
0 = a[d;(b) + ds(c) — d5(b + ¢)]. (15)

Setting a=e in (15), we see that d; is an additive mapping. We know that
d,(Aa) = A'd,(a) = Ad,(a) for all a € A and all A € C. Hence, for any a,b € A and any
4 € C, we have the following statements:

dy(a)(Ab) + ady(Ab) = d,(aib) = Ad,(a)b + Aads(b),

which implies that ad;(Ab) = Aad;(b). Putting a = e in the previous equation, we get that
dy(Ab) = Ad5(D) for all b € A. This means that d is a linear mapping. Similarly, we can
show that d, is a linear mapping. Hence, (d,, d,,d;) is a ternary derivation on A.

Case 2. 2" —2 # 0. Then equation (14) yields that d, must be zero. Considering this case
and using d,(ab) = d,(a)b" + a"d;(b) for all a, b € A, we get that
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d\(ab) = a"dy(b) foralla,b e A. (16)

We know that d, is an additive mapping. So we have d,((b + c)a) = d,(ba) + d,(ca) for all
a,b,c € A. This equation along with (16) imply that

[(b+ ) —b" = c"]ds(a) =0, foralla,b,c €A (17)

Putting b = ¢ = e in (17) and considering the assumption that 2" — 2 # 0, we infer that
d; = 0 and it follows from (16) that so is d,. Therefore, d,, d, and d; are zero. Reasoning
like above, we obtain the required result if we assume that d,(2e) = 2d,(e). Note, however,
that in both above-mentioned cases, (d,, d,, d3) is a ternary derivation. O

In the next theorem, we present a characterization of {n}-generalized derivations
using some functional equations.

Theorem 21 Let A be a unital algebra, let n be a positive integer, and letd,,d,,d; : A - A
be mappings satisfying

d,(ab) = dy(@)b" + d"dy(b) = dy(@)b" + a"d,(b) (18)

d,(Aa) = A'd,(a) (19)

for all a,b € A and all 2 € C. Furthermore, assume that d;(e) [a”b" - (ab)”] =0 for all
a,b e A and i € {2,3}. Then there exists an {n}-derivation A : A — A such that d,, d,
and dy are {n}-generalized derivations with the associated {n}-derivation A.

Proof Putting b = e in (18), we obtain
d\(a) = dy(a) + d"d;(e) = ds(a) + a"d,(e), (20)
and taking a = e in (18), we see that
d,(b) = dy(e)b" + d3(b) = d3(e)b" + d,(b). Q1)
Comparing (20) and (21), we get that
di(e)d" = d"dj(e) (22)
foralla € Aandi € {1,2,3}. It follows from (20) and (22) that
dy(a) = dy(a) + (ds(e) — dy(e))a" = dy(a) + d"(d;(e) — dy(e)),
for all a € A. Using (20), we have
dy(a@)b" + a"dy(b) = d,(ab) = d,(ab) + d;(e)(ab)"
and so
dy(ab) = dy(a)b" + a"d;(b) — d;(e)(ab)"

= dy(a)b" + a"[d,(b) + (d;(e) — dy(e))b"| — d;(e)(ab)"
= d,(a)b" + d"d,(b) — dy(e)a"b"
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We define A : A - A by A(a) = d,(a) — d,(e)a". So by (22) and the assumption that
d;(e) [a”b" - (ab)"] =0foralla,b € Aandi € {2,3}, we have the following expressions:
A(ab) = d,(ab) — d,(e)(ab)"
=d,(a)b" + a"d,(b) — d,(e)a"b" — d,(e)(ab)"
= [dy(@) — dy(e)a"|b" + a" [d,(b) — dy(e)b"]
= A(a)b" + d"A(b),
which means that

Aab) = A(@b" +d"Ab), forall a,b € A.

Our next task is to show that A(Ada) = A"A(a) for all a € A and A € C. Before that, we
prove that d,(Aa) = A"d,(a) for alla € A and A € C. We know that d, (Aa) = A"d,(a) for all
a € Aand A € C. So we have

d\(Aab) = A'd,(ab) = 1'd,(a)b" + A"a"d;(b)
and on the other hand
d\(Aab) = d,(Aa)b" + A"a"d5(D)

for all a,b € A and all 1 € C. By comparing these two equations related to d;(Aab), we
deduce that A"d,(a)b" = d,(Aa)b". Putting b = e in the previous equation, we get that
dy(Aa) = A'd,(a) for alla € A and A € C. Consequently, A(4a) = A"A(a) for all a € A and
A € C. So Ais an {n}-derivation. Using this fact, we have
dy(ab) = A(ab) + d,(e)(ab)"

= A(a)b" + d"A(b) + d,(e)a" D"

= (A(a) + dy(e)a™)b" + a" A(b)

=d,(a)b" + a"A(b)

= A(a)b" + d"d,(b),

which means that
dy(ab) = dy(a)b" + a"A(b) = A(a)b" + a"d,(b), foralla,b e A.

So d, is an {n}-generalized derivation with the associated {n}derivation A. Using a similar
argument, one can easily show that

dsy(ab) = dy(@)b" + a"ds(b) — dy(e)(ab)", forall a,b € A.

By defining 6 : A — A by 6(a) = d;(a) — d;(e)a" and by reasoning like the mapping d,,
it is observed that d; is an {n}-generalized derivation with the associated {n}-derivation §.
In the following, we show that 6 = A. We know that A(a) = d,(a) — d,(e)a" and it follows
from (21) that d,(a) = d;(a) + a"d,(e) — d;(e)a" for all a € A. So we have
A(a) = dy(a) — d,(e)a"

=d;(a) + a"d,(e) — ds(e)a" — d,(e)a"

= d;(a) — ds(e)d”

= 6(a)
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for all a € A. Hence, both d, and d; are {n}-generalized derivations with the associ-
ated {n}-derivation A. We are now ready to show that d, is also an {n}-generalized deri-
vation with the associated {n}-derivation A. We know that d,(a) = d,(a) + d;(e)a" and
dy(a) = A(a) + d,(e)a" for all a € A. Hence, we have

d\(a) = Aa) + dy(e)d" + dy(e)a" = Aa) + d, (€)d",

which means that d, is an {n}-generalized derivation with the associated {#}-derivation A,
as required. a

We conclude this paper with the following questions.

Question 22 Let .4 be an algebra or ring, let n > 1be a positive integer, and letA : 4 — A
be a mapping such that A(a?) = A(a)a” + a”" A(a) holds for all a € A. Under what condi-
tions we have A(ab) = A(a)b" + a"A(b) for all a, b € A?

Question 23 Let A be a unital algebra or ring, let n > 1 be a positive integer, and let
A : A — Abe amapping satisfying

A(Clm) — Z;r;la(k—l)n A(a)a(m—k)n

in which a° = e, for all a € A and for some positive integer m. Under what conditions we
have A(ab) = A(a)b" + a"A(b) for all a, b € A?
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