

On the derivations, generalized derivations and ternary derivations of degree *n*

Amin Hosseini1 · Mehdi Mohammadzadeh Karizaki[2](http://orcid.org/0000-0001-7645-1076)

Received: 10 May 2022 / Accepted: 30 June 2022 / Published online: 3 August 2022 © The Author(s), under exclusive licence to Springer-Verlag Italia S.r.l., part of Springer Nature 2022

Abstract

In this paper, we introduce the concepts of derivation of degree *n*, generalized derivation of degree *n* and ternary derivation of degree *n*, where *n* is a positive integer, and then we study the algebraic properties of these mappings. For instance, we study the image of derivations of degree *n* on algebras and in this regard we prove that, under certain conditions, every derivation of degree *n* on an algebra maps the algebra into its Jacobson radical. Also, we present some characterizations of these mappings on algebras. For example, under certain assumptions, we show that if *f* is an additive generalized derivation of degree *n* with an associated mapping *d*, then either *f* is a linear generalized derivation with the associated linear derivation *d* or *f* and *d* are identically zero. Some other related results are also established.

Keywords Derivation · Derivation of degree $n \cdot$ Generalized derivation of degree $n \cdot$ Ternary derivation of degree *n* · Singer-Wermer theorem

Mathematics Subject Classifcation Primary 47B47 · Secondary 47B48

1 Introduction and preliminaries

Let R be a ring and let *n* be a positive integer. A mapping $\Delta : \mathcal{R} \to \mathcal{R}$ is called a derivation of degree *n* or {*n*}-derivation if $\Delta(xy) = \Delta(x)y^n + x^n \Delta(y)$ holds for all $x, y \in \mathcal{R}$. Also, Δ is called a Jordan derivation of degree *n* or Jordan {*n*}-derivation if $\Delta(x^2) = \Delta(x)x^n + x^n \Delta(x)$ holds for all $x \in \mathcal{R}$. In this paper, we provide an example of a Jordan derivation of degree *n* which is not a derivation of degree *n*.

By getting the idea from cubic derivations and quadratic derivations, we defne a derivation of degree *n* from an algebra into a module. Before stating the results of this article, let us recall some basic defnitions and set the notations which we use in what follows.

 \boxtimes Mehdi Mohammadzadeh Karizaki m.mohammadzadeh@torbath.ac.ir Amin Hosseini

hosseini.amin82@gmail.com

¹ Kashmar Higher Education Institute, Kashmar, Iran

² Department of Computer Engineering, University of Torbat Heydarieh, Torbat Heydarieh, Iran

An algebra A is called a domain if $A \neq \{0\}$, and $a = 0$ or $b = 0$, whenever $ab = 0$. A commutative domain is called an integral domain. Recall that the Jacobson radical of an algebra A is the intersection of all primitive ideals of A which is denoted by $rad(A)$. An algebra A is called semisimple if $rad(A) = \{0\}$. A nonzero linear functional φ on an algebra A is called a *character* if $\varphi(ab) = \varphi(a)\varphi(b)$ for every $a, b \in A$. The set of all characters on A is denoted by Φ_A and is called the character space of A. We know that ker φ is a maximal ideal of A for every $\varphi \in \Phi_A$ (see [[4,](#page-14-0) Proposition 1.3.37]).

Let A be a complex algebra and let M be an A -bimodule. Recall that a linear mapping δ : $\mathcal{A} \to \mathcal{M}$ is called a derivation if it satisfies the Leibnitz's rule $\delta(ab) = \delta(a)b + a\delta(b)$ for all $a, b \in A$. In [[5\]](#page-14-1), Eshaghi Gordji et al. introduced the concept of a cubic derivation. A mapping $D: A \rightarrow M$ is called a cubic derivation if *D* is a cubic homogeneous mapping, that is $D(\lambda a) = \lambda^3 D(a)$ ($\lambda \in \mathbb{C}$, $a \in \mathcal{A}$), and $D(ab) = D(a)b^3 + a^3D(b)$ for all $a, b \in \mathcal{A}$. Also, a mapping $d : A \rightarrow M$ is called a quadratic derivation if *d* is a quadratic homogeneous mapping, that is $d(\lambda a) = \lambda^2 d(a)$ ($\lambda \in \mathbb{C}$, $a \in \mathcal{A}$), and $d(ab) = d(a)b^2 + a^2 d(b)$ for all $a, b \in A$. The most papers to date have been focused on investigating stability of cubic derivations and quadratic derivations, see, e.g. [\[1,](#page-14-2) [5](#page-14-1), [6,](#page-14-3) [9](#page-14-4), [13,](#page-15-0) [17\]](#page-15-1), and references therein.

In this paper, by getting the idea from the notions of cubic derivation and quadratic derivation, we defne the notion of derivation of degree *n* on algebras, where *n* is a positive integer. In what follows, let A be a complex algebra, let M be an A-bimodule and let *n* be a positive integer. A mapping $\Delta : A \to M$ is called a derivation of degree *n* or $\{n\}$ -derivation if it satisfies both the equations $\Delta(ab) = \Delta(a)b^n + a^n\Delta(b)$ and $\Delta(\lambda a) = \lambda^n\Delta(a)$ for all $a, b \in A$ and all $\lambda \in \mathbb{C}$.

Now let us to give a background about the image of derivations. The image of derivations has a fairly long history and so far, many authors have studied the image of derivations, see, e.g. [\[2](#page-14-5), [3](#page-14-6), [7,](#page-14-7) [10](#page-14-8)[–12,](#page-14-9) [14–](#page-15-2)[16](#page-15-3)] and references therein. As a pioneering work, Singer and Wermer [[14\]](#page-15-2) achieved a fundamental result which started investigation into the image of derivations on Banach algebras. The so-called Singer-Wermer theorem, which is a classical theorem of complex Banach algebra theory, states that every continuous derivation on a commutative Banach algebra maps the algebra into its Jacobson radical, and Thomas [\[15\]](#page-15-4) proved that the Singer-Wermer theorem remains true without assuming the continuity of the derivation.

One of our aims in this research is to prove some results similar to Singer- Wermer theorem and Thomas theorem for derivations of degree *n*. In this regard, we frst prove the following theorem which has been motivated by [[7\]](#page-14-7):

Let A be a unital integral domain and let $\Delta : A \to A$ be an {*n*}-derivation such that its rank is at most one. Then Δ is identically zero. Using this result, it is proved that if $\mathcal A$ is a unital algebra and $\Delta : \mathcal{A} \to \mathcal{A}$ is an {*n*}-derivation such that $\Delta(a) - \Delta(b) \in \text{ker}\varphi$ whenever $a - b \in \text{ker}\varphi$ for every $a, b \in A$ and every $\varphi \in \Phi_A$, then $\Delta(A) \subseteq \bigcap_{\varphi \in \Phi_A} \ker \varphi$. If A is also commutative, then $\Delta(A) \subseteq rad(A)$. In this regard, we provide an example of an {*n*} -derivation on an algebra $\mathfrak A$ mapping the algebra into the intersection of all characters of $\mathfrak A$. In addition, we prove that if A is a unital, commutative Banach algebra and $\Delta : A \rightarrow A$ is an additive {*n*}-derivation, then $\Delta(A) \subseteq rad(A)$. As another result in this regard, we prove that every $\{n\}$ -derivation on finite dimensional algebras is identically zero under certain conditions. Indeed, we establish the following result. Let m be a positive integer and let A be an *m*-dimensional unital algebra with the basis $\mathfrak{B} = \{\mathfrak{b}_1, \dots, \mathfrak{b}_m\}$. Furthermore, suppose that for every integer *k*, $1 \le k \le m$, an ideal \mathfrak{X}_k generated by $\mathfrak{B} - \{\mathfrak{b}_k\}$ is a proper subset of A. If $\Delta : A \to A$ is an {*n*}-derivation such that $\Delta(a) - \Delta(b) \in \mathfrak{X}_k$ whenever $a - b \in \mathfrak{X}_k$ for every $a, b \in A$ and $1 \le k \le m$, then Δ is identically zero.

Another objective of this paper is to characterize {*n*}-derivations, {*n*}-generalized derivations and $\{n\}$ -ternary derivations on algebras. First, we introduce these notions. A

mapping $f : A \rightarrow M$ is called a generalized derivation of degree *n* or an {*n*}-generalized derivation if there exists a mapping $d : A \rightarrow M$ such that

$$
f(ab) = f(a)bn + and(b),
$$

$$
f(\lambda a) = \lambdan f(a),
$$

for all $a, b \in A$ and all $\lambda \in \mathbb{C}$. In this case, *d* is called an associated mapping of *f*.

A ternary derivation of degree *n* is defned as follows. A ternary derivation of degree *n* or an $\{n\}$ -ternary derivation is a triple of mappings (d_1, d_2, d_3) from A into M such that

$$
d_1(ab) = d_2(a)b^n + a^nd_3(b),
$$

$$
d_1(\lambda a) = \lambda^n d_1(a),
$$

for all $a, b \in A$, $\lambda \in \mathbb{C}$.

For instance, we establish the result below concerning the characterization of $\{n\}$ -generalized derivations. Let A be a unital algebra with the identity element **e**, let M be an A -bimodule and let $f : A \to M$ be an additive generalized $\{n\}$ -derivation with an associated mapping $d : A \rightarrow M$ such that $d(2e) = 2d(e)$. Then either f is a nonzero linear generalized derivation with the associated linear derivation *d* or *f* and *d* are identically zero.

A theorem similar to the above result is presented for the {*n*}-ternary derivations.

2 Defnitions and examples

In this section, without further mention, **e** denotes the identity of any unital ring or algebra. We begin this section with the following defnition.

Definition 1 Let R be a ring and let *n* be a positive integer. A mapping $\Delta : \mathbb{R} \to \mathbb{R}$ is called a *derivation of degree n* if

$$
\Delta(xy) = \Delta(x)y^{n} + x^{n}\Delta(y)
$$

holds for all $x, y \in \mathcal{R}$. Also, Δ is called a *Jordan derivation of degree n* if it satisfies

$$
\Delta(x^2) = \Delta(x)x^n + x^n \Delta(x)
$$

for all $x \in \mathcal{R}$.

Obviously, if Δ is a Jordan derivation of degree *n* on \mathcal{R} , then $\Delta(0) = 0$. Also, if \mathcal{R} is unital with the identity element **e**, then $\Delta(\mathbf{e}) = 0$. It is clear that every derivation of degree *n* is a Jordan derivation of degree *n*, but the converse is, in general, not true. In the following, we present a Jordan derivation of degree *n* which is not a derivation of degree *n*.

Example 2 Let R be a ring such that $x^4 = 0$ for all $x \in \mathbb{R}$, but the product of some nonzero elements of R is nonzero. Let

$$
\mathbf{\mathfrak{R}} = \left\{ \begin{bmatrix} 0 & x & y \\ 0 & 0 & x \\ 0 & 0 & 0 \end{bmatrix} : x, y \in \mathcal{R} \right\}
$$

Define $\Delta : \mathcal{R} \to \mathcal{R}$ by

$$
\Delta \left(\left[\begin{array}{cc} 0 & x & y \\ 0 & 0 & x \\ 0 & 0 & 0 \end{array} \right] \right) = \left[\begin{array}{cc} 0 & 0 & y^2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right].
$$

For any $A =$ ⎢ l 0 *x y* 0 0 *x* 000 $\overline{}$ \overline{a} $\overline{\mathsf{I}}$ $\in \Re$, we have

$$
\Delta(A^2) = \Delta \begin{pmatrix} 0 & 0 & x^2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{bmatrix} 0 & 0 & x^4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = 0.
$$

A straightforward verifcation shows that

$$
\Delta(A)A^n + A^n \Delta(A) = 0,
$$

for all $A \in \mathcal{R}$ and all $n \in \mathbb{N}$. We see that Δ is a Jordan derivation of degree *n* for any $n \in \mathbb{N}$. Also, it is easy to see that $\Delta(A)B^n + A^n\Delta(B) = 0$ for all $A, B \in \mathbb{R}$ and all $n \in \mathbb{N}$, but $\Delta(AB) \neq 0$ for some $A, B \in \mathcal{R}$. It means that Δ is not a derivation of degree *n* for all $n \in \mathbb{N}$.

In the rest of this article, we consider derivations of degree *n* from algebras into modules as follows.

Definition 3 Let A be a complex algebra, let M be an A-bimodule and let *n* be a positive integer. A mapping $\Delta : A \to M$ is called a derivation of degree *n* if it satisfies both of the following equations:

$$
\Delta(ab) = \Delta(a)b^n + a^n \Delta(b),
$$

$$
\Delta(\lambda a) = \lambda^n \Delta(a),
$$

for all $a, b \in A$ and all $\lambda \in \mathbb{C}$.

Example 4 Let A an algebra, let M be an A-bimodule, let *n* be a positive integer and let x_0 be an element of M satisfying

$$
x_0[(ab)^n - a^n b^n] = [(ab)^n - a^n b^n]x_0
$$

for all $a, b \in A$. Define a mapping $\Delta : A \to M$ by $\Delta(a) = a^n x_0 - x_0 a^n$ for any $a \in A$. It is routine to see that $\Delta(ab) = \Delta(a)b^n + a^n \Delta(b)$ and $\Delta(\lambda a) = \lambda^n \Delta(a)$ for all $a, b \in \mathcal{A}$ and all *λ* ∈ ℂ. This means that Δ is an {*n*}-derivation. We call such mapping inner derivation of degree *n* or inner {*n*}-derivation.

Example 5 Let A be a commutative algebra, let *n* be an arbitrary positive integer and let

$$
\mathfrak{A} = \left\{ \begin{bmatrix} 0 & a & b \\ 0 & c & 0 \\ 0 & 0 & e \end{bmatrix} : a, b, c, e \in \mathcal{A} \right\}
$$

It is clear that $\mathfrak A$ is a non-commutative algebra. Define $\Delta : \mathfrak A \to \mathfrak A$ by

$$
\Delta \left(\begin{bmatrix} 0 & a & b \\ 0 & c & 0 \\ 0 & 0 & e \end{bmatrix} \right) = \begin{bmatrix} 0 & 0 & b^n \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.
$$

It is easy to see that for any $A = \begin{bmatrix} 0 & a & b \\ 0 & c & 0 \\ 0 & 0 & e \end{bmatrix} \in \mathfrak{A}$ and any $k \in \mathbb{N}$, we have

$$
A^k = \begin{bmatrix} 0 & ac^{k-1} & be^k \\ 0 & c^k & 0 \\ 0 & 0 & e^k \end{bmatrix}
$$

One can easily get that $\Delta(AB) = \Delta(A)B^n + A^n\Delta(B)$ and $\Delta(\lambda A) = \lambda^n\Delta(A)$ for all $A, B \in \mathfrak{A}$ and all $\lambda \in \mathbb{C}$, which means that Δ is a derivation of degree *n* on \mathfrak{A} .

Example 6 Let A be an algebra, let *n* be an arbitrary positive integer and let

$$
\mathfrak{A} = \left\{ \begin{bmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{bmatrix} : a, b, c \in \mathcal{A} \right\}
$$

Define $\Delta : \mathfrak{A} \to \mathfrak{A}$ by

$$
\Delta \left(\left[\begin{array}{cc} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{array} \right] \right) = \left[\begin{array}{cc} 0 & 0 & 0 \\ 0 & 0 & c^n \\ 0 & 0 & 0 \end{array} \right].
$$

It is straightforward to see that $\Delta(AB) = \Delta(A)B^n + A^n\Delta(B)$ and $\Delta(\lambda A) = \lambda^n\Delta(A)$ for all $A, B \in \mathfrak{A}$ and all $\lambda \in \mathbb{C}$, which means that Δ is a derivation of degree *n* on \mathfrak{A} .

Definition 7 Let A be an algebra and let M be an A-bimodule. A mapping $f : A \to M$ is called a generalized derivation of degree *n* or an {*n*}-generalized derivation if there exists a mapping $d : A \rightarrow M$ such that

$$
f(ab) = f(a)bn + and(b),
$$

$$
f(\lambda a) = \lambdan f(a),
$$

for all $a, b \in A$ and all $\lambda \in \mathbb{C}$. In this case, *d* is called an associated map of *f*.

Example 8 Let A an algebra, let M be an A-bimodule, let *n* be a positive integer and let x_0 and y_0 be two elements of M satisfying

$$
y_0[(ab)^n - a^n b^n] = [(ab)^n - a^n b^n]x_0,
$$

for all $a, b \in A$. Define the mappings $f, d : A \to M$ by $f(a) = a^n x_0 - y_0 a^n$ and $d(a) = a^n x_0 - x_0 a^n$ for any $a \in A$. It is routine to see that $f(ab) = f(a)b^n + a^n d(b)$ and $f(\lambda a) = \lambda^n f(a)$ for all $a, b \in \mathcal{A}$ and all $\lambda \in \mathbb{C}$. This means that *f* is an {*n*}-generalized derivation with the associated mapping *d*. We call such mapping inner generalized derivation of degree *n* or inner {*n*}-generalized derivation.

In the following, we defne a ternary derivation of degree {*n*}.

Definition 9 Let A be an algebra and let M be an A-bimodule. A ternary derivation of degree *n* or an $\{n\}$ -ternary derivation is a triple of mappings (d_1, d_2, d_3) from A into M such that

$$
d_1(ab) = d_2(a)b^n + a^nd_3(b),
$$

$$
d_1(\lambda a) = \lambda^n d_1(a),
$$

for all $a, b \in A$, $\lambda \in \mathbb{C}$.

3 Results and proofs

Let A and B be two algebras over a field $\mathbb F$. Throughout this section, a mapping $D: A \rightarrow B$ is called a *rank-one mapping* if there exist a nonzero element $\mathfrak b$ of $\mathcal B$ and a functional μ : $\mathcal{A} \rightarrow \mathbb{F}$ such that $D(a) = \mu(a)$ ^t for all $a \in \mathcal{A}$.

We begin our results with the following theorem.

Theorem 10 Let A be a unital integral domain and let $\Delta : A \rightarrow A$ be a derivation of *degree n such that its rank is at most one*. *Then* Δ *is identically zero*.

Proof Let $\Delta : A \to A$ be a derivation of degree *n* such that its rank is at most one. We are going to show that $\Delta(\mathcal{A}) = \{0\}$. Suppose that Δ is a rank-one mapping. So there exist a nonzero element c of A and a functional $\mu : A \to \mathbb{C}$ such that $\Delta(a) = \mu(a)c$ for all $a \in \mathcal{A}$. To obtain a contradiction, suppose there exists a nonzero element $a \in \mathcal{A}$ such that $\Delta(\mathfrak{a}) \neq 0$. It is clear that $\mu(\mathfrak{a}) \neq 0$. We observe two cases for $\Delta(\mathfrak{c})$.

Case 1. $\Delta(c) = 0$. In this case, we have $\mu(c)c = 0$ and it implies that $\mu(c) = 0$. We have the following expressions:

$$
\mu(\mathfrak{a}^2)\mathfrak{c} = \Delta(\mathfrak{a}^2)
$$

= $\Delta(\mathfrak{a})\mathfrak{a}^n + \mathfrak{a}^n \Delta(\mathfrak{a})$
= $2\mathfrak{a}^n \Delta(\mathfrak{a})$
= $2\mathfrak{a}^n \mu(\mathfrak{a})\mathfrak{c}$
= $2\mu(\mathfrak{a})\mathfrak{a}^n\mathfrak{c}$.

Since we are assuming that $\Delta(\mathfrak{c}) = 0$, we have

$$
0 = (\mu(\mathfrak{a}^2))^n \Delta(\mathfrak{c}) = \Delta(\mu(\mathfrak{a}^2)\mathfrak{c}) = \Delta(2\mu(\mathfrak{a})\mathfrak{a}^n \mathfrak{c})
$$

= $2^n (\mu(\mathfrak{a}))^n [\Delta(\mathfrak{a}^n)\mathfrak{c}^n + \mathfrak{a}^{n^2} \Delta(\mathfrak{c})]$
= $2^n (\mu(\mathfrak{a}))^n \Delta(\mathfrak{a}^n)\mathfrak{c}^n$

Since A is a domain and $\mu(\mathfrak{a})$ and c are nonzero, we get that $\Delta(\mathfrak{a}^n) = 0$. Using induction, for any $m \in \mathbb{N}$, one can easily prove that

$$
\Delta(a^m) = \sum_{k=1}^m a^{(k-1)n} \Delta(a) a^{(m-k)n}
$$

in which $a^0 = e$. So we have

$$
0 = \Delta(\mathfrak{a}^n) = \Delta(\mathfrak{a}^{n-1}\mathfrak{a})
$$

\n
$$
= \Delta(\mathfrak{a}^{n-1})\mathfrak{a}^n + \mathfrak{a}^{n(n-1)}\Delta(\mathfrak{a})
$$

\n
$$
= \left[\sum_{k=1}^{n-1} \alpha^{(k-1)n} \Delta(\mathfrak{a}) \mathfrak{a}^{(n-1-k)n}\right] \mathfrak{a}^n + \mathfrak{a}^{n(n-1)}\Delta(\mathfrak{a})
$$

\n
$$
= \sum_{k=1}^{n-1} \left[\Delta(\mathfrak{a}) \mathfrak{a}^{n^2-n}\right] + \mathfrak{a}^{n^2-n}\Delta(\mathfrak{a})
$$

\n
$$
= n\Delta(\mathfrak{a}) \mathfrak{a}^{n^2-n},
$$

which implies that $\Delta(\mathfrak{a}) = 0$, a contradiction.

Case 2. $\Delta(c) \neq 0$. In this case, we have $\mu(c) \neq 0$. Now look at the following statements:

$$
\mu(\mathfrak{c}^2)\mathfrak{c} = \Delta(\mathfrak{c}^2) = \Delta(\mathfrak{c})\mathfrak{c}^n + \mathfrak{c}^n \Delta(\mathfrak{c}) = 2\mathfrak{c}^n \Delta(\mathfrak{c}) = 2\mu(\mathfrak{c})\mathfrak{c}^{n+1}
$$
(1)

If $\mu(c^2) = 0$, then it follows from [\(1\)](#page-6-0) that either $\mu(c) = 0$ or $c = 0$, and we know that both of them are nonzero. So $\mu(c^2) \neq 0$. Putting $\frac{\mu(c^2)}{2\mu(c)} = \alpha$ in ([1](#page-6-0)), we have $\mathfrak{c}(\mathfrak{c}^n - \alpha \mathfrak{e}) = \mathfrak{c}^{n+1} - \alpha \mathfrak{c} = 0$. In view of this assumption that A is a domain, we infer that $\mathfrak{c} = 0$, a contradiction, or $\mathfrak{c}^n = \alpha \mathfrak{e}$. So we have

$$
0 = \alpha^n \Delta(\mathbf{e}) = \Delta(\alpha \mathbf{e}) = \Delta(\mathbf{c}^n) = \Delta(\mathbf{c}^{n-1} \mathbf{c})
$$

\n
$$
= \Delta(\mathbf{c}^{n-1}) \mathbf{c}^n + \mathbf{c}^{n(n-1)} \Delta(\mathbf{c})
$$

\n
$$
= \left[\sum_{k=1}^{n-1} \mathbf{c}^{(k-1)n} \Delta(\mathbf{c}) \mathbf{c}^{(n-1-k)n} \right] \mathbf{c}^n + \mathbf{c}^{n(n-1)} \Delta(\mathbf{c})
$$

\n
$$
= \sum_{k=1}^{n-1} \left[\Delta(\mathbf{c}) \mathbf{c}^{n^2-n} \right] + \mathbf{c}^{n^2-n} \Delta(\mathbf{c})
$$

\n
$$
= n\Delta(\mathbf{c}) \mathbf{c}^{n^2-n}.
$$

Reusing the assumption that A is a domain, we get that $\mathfrak{c} = 0$ or $\Delta(\mathfrak{c}) = 0$, which these are contradictions. It is observed that both Cases 1 and 2 lead to contradictions. Therefore, there is no element α of $\mathcal A$ such that $\Delta(\alpha) \neq 0$, and consequently, Δ must be zero. \Box

In the following, we provide some examples that show that the conditions of Theorem [10](#page-5-0) are not superfuous.

Example 11

(i) Let *n* be a positive number. Define $\Delta : \mathbb{R} \to \mathbb{R}$ by

$$
\Delta(a) = \begin{cases} a^n \ln(|a|) & a \neq 0, \\ 0 & a = 0. \end{cases}
$$

One can easily check that $\Delta(ab) = \Delta(a)b^n + a^n \Delta(b)$ for all $a, b \in \mathbb{R}$ and also it is clear that the rank of Δ is at most one, but we observe that $\Delta(\alpha a) \neq \alpha^n \Delta(a)$ for some $\alpha, a \in \mathbb{R}$. We see that Δ is a nonzero mapping.

(ii) In Example [5](#page-3-0), considering $A = \mathbb{C}$, we see that $\Delta : \mathfrak{A} \to \mathfrak{A}$ defined by

$$
\Delta \left(\begin{bmatrix} 0 & a & b \\ 0 & c & 0 \\ 0 & 0 & e \end{bmatrix} \right) = \begin{bmatrix} 0 & 0 & b^n \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = b^n \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}
$$

is a nonzero, rank one derivation of degree *n*. Note that \mathfrak{A} is not an integral domain.

In the following theorem, we present some conditions under which every derivation of degree *n* on an algebra maps the algebra into its Jacobson radical.

Theorem 12 *Let A be a unital algebra and let* Δ : $\mathcal{A} \rightarrow \mathcal{A}$ *be a derivation of degree n such that* Δ (*a*) − Δ (*b*) ∈ *ker* φ *whenever* $a - b$ ∈ *ker* φ *for every* a, b ∈ *A and every* φ ∈ Φ _{*A}*. *In*</sub> *this case*, $\Delta(\mathcal{A}) \subseteq \bigcap_{\varphi \in \Phi_{\mathcal{A}}} \ker \varphi$. If \mathcal{A} *is also commutative, then* $\Delta(\mathcal{A}) \subseteq rad(\mathcal{A})$.

Proof Let φ be an arbitrary character on A. We define a mapping $\Omega: \frac{A}{\ker \varphi} \to \frac{A}{\ker \varphi}$ by $\Omega(a + \ker \varphi) = \Delta(a) + \ker \varphi$ for every $a \in A$. Ω is a derivation of degree *n* on the algebra $\frac{A}{\ker \varphi}$. It is clear that the algebra $\frac{A}{\ker \varphi}$ is a unital, integral domain and it follows from [\[4](#page-14-0), Proposition 1.3.37] that dim($\frac{\mathcal{A}}{\ker \varphi}$) = 1. So the rank of Ω is at most one. Now, Theorem [10](#page-5-0) yields that Ω is identically zero, and it means that $Δ(λ) ⊆$ ker $φ$. Since we are assuming $φ$ is an arbitrary element of $\Phi_{\mathcal{A}}$, $\Delta(\mathcal{A}) \subseteq \bigcap_{\varphi \in \Phi_{\mathcal{A}}} \ker \varphi$. It is obvious that if \mathcal{A} is commutative, then $\bigcap_{\varphi \in \Phi_{\mathcal{A}}}$ ker $\varphi = rad(\mathcal{A})$ (see [\[4](#page-14-0)]). Hence, we deduce that $\Delta(\mathcal{A}) \subseteq rad(\mathcal{A})$.

An immediate corollary of the previous theorem is as follows:

Corollary 13 Let A be a unital algebra such that $\bigcap_{\varphi \in \Phi_A} \ker \varphi = \{0\}$ and let $\Delta : A \to A$ *be a derivation of degree n such that* Δ(*a*) − Δ(*b*) ∈ *ker𝜑 whenever a* − *b* ∈ *ker𝜑 for every* $a, b \in A$ *and every* $\varphi \in \Phi$ _{*A}*. *Then* Δ *is identically zero.*</sub>

Proof According to $[8,$ $[8,$ Proposition 2.10], the algebra $\mathcal A$ is commutative and semisimple. Now the previous theorem gives the result. $□$

Remark 14 In this remark, we show that the image of derivation of degree *n* presented in Example [5](#page-3-0) is contained in $\bigcap_{\varphi \in \Phi_{\mathfrak{A}}}$ ker φ . Let A be a unital commutative Banach algebra and let

$$
\mathfrak{A} = \left\{ \begin{bmatrix} 0 & a & b \\ 0 & c & 0 \\ 0 & 0 & e \end{bmatrix} : a, b, c, e \in \mathcal{A} \right\}
$$

Note that $\mathfrak A$ is a non-commutative algebra. Since $\mathcal A$ is a unital commutative Banach algebra, it follows from [\[4](#page-14-0), Theorem 2.3.1] that its character space is a non-empty set, i.e. $\Phi_{\mathcal{A}} \neq \phi$. Let φ be a character of \mathcal{A} . We define $\theta_{\varphi}: \mathfrak{A} \to \mathbb{C}$ by θ_{φ} ⎜ $\mathsf t$ $\overline{}$ ⎡ ⎢ ⎢ ⎣ 0 *a b* 0 *c* 0 0 0 *e* ⎤ ⎥ ⎥ \overline{a} ⎞ ⎟ $\mathsf I$ ⎠ $= \varphi(c)$. It is clear that θ_{φ} is a character on **2** and it is easy to see that

$$
ker(\theta_{\varphi}) = \begin{bmatrix} 0 & \mathcal{A} & \mathcal{A} \\ 0 & ker(\varphi) & 0 \\ 0 & 0 & \mathcal{A} \end{bmatrix} = \begin{Bmatrix} 0 & a & b \\ 0 & x & 0 \\ 0 & 0 & e \end{Bmatrix} : a, b, e \in \mathcal{A}, x \in \text{ker}(\varphi).
$$

Also, if we define $\theta_{\omega} : \mathfrak{A} \to \mathbb{C}$ by $(\Gamma_0, \ldots, \Gamma_n)$

$$
\theta_{\varphi} \left(\begin{bmatrix} 0 & a & b \\ 0 & c & 0 \\ 0 & 0 & e \end{bmatrix} \right) = \varphi(e)
$$
, then we deduce that θ_{φ} is a character on **21**. It is easy to see that

$$
ker(\theta_{\varphi}) = \begin{bmatrix} 0 & \mathcal{A} & \mathcal{A} \\ 0 & \mathcal{A} & 0 \\ 0 & 0 & ker(\varphi) \end{bmatrix} = \left\{ \begin{bmatrix} 0 & a & b \\ 0 & c & 0 \\ 0 & 0 & z \end{bmatrix} : a, b, c \in \mathcal{A}, z \in \text{ker}(\varphi) \right\}.
$$

Therefore, $\Phi_{\mathfrak{A}} = \{ \theta_{\varphi} : \varphi \in \Phi_A \}$. It is observed that $\Delta(\mathfrak{A}) \subseteq \bigcap_{\varphi \in \Phi_{\mathfrak{A}}} \ker \theta_{\varphi}$.

In the next theorem, we prove that every derivation of degree *n* on a unital fnitedimensional algebra is identically zero under certain conditions. Let *m* be a positive integer and let A be an *m*-dimensional unital algebra with the basis $\mathfrak{B} = \{ \mathfrak{b}_1, \mathfrak{b}_2, \dots, \mathfrak{b}_m \}$.

Theorem 15 *Suppose that for every integer k,* $1 \leq k \leq m$ *, an ideal* \mathfrak{X}_k *generated by* $\mathfrak{B} - \{\mathfrak{b}_k\}$ **is a proper subset of A.** Let Δ ∶ A → A be a derivation of degree n such that $\Delta(a) - \Delta(b) \in \mathfrak{X}_k$ whenever $a - b \in \mathfrak{X}_k$ for every $a, b \in \mathcal{A}$ and every $1 \leq k \leq m$. Then Δ is *identically zero*.

Proof It is clear that $\dim(\frac{A}{\mathfrak{X}_k}) = 1$ for every $k \in \{1, ..., m\}$. We show that \mathfrak{X}_k is a maximal ideal of A for each $k \in \{1, ..., m\}$. If \mathfrak{X}_k is not a maximal ideal of A for some $k, 1 \leq k \leq m$, then there exists a maximal ideal \mathfrak{M}_k of A such that $\mathfrak{X}_k \subset \mathfrak{M}_k \subset A$, and so $m-1 = \dim(\mathfrak{X}_k) < \dim(\mathfrak{M}_k) < m$, a contradiction. Hence, every \mathfrak{X}_k is a maximal ideal of A. Moreover, it follows from Proposition 1.3.37 and Corollary 1.4.38 of [\[4](#page-14-0)] that for every maximal ideal \mathfrak{X}_k ($1 \leq k \leq m$) there exists a character $\varphi_k \in \Phi_A$ such $\mathfrak{X}_k = \text{ker}\varphi_k$. So the algebra $\frac{A}{x_k}$ is an integral domain. Now Theorem [10](#page-5-0) yields that $\Omega: \frac{A}{x_k} \to \frac{A}{x_k}$ defined by $\Omega(a + \mathcal{X}_k) = \Delta(a) + \mathcal{X}_k$, which is a derivation of degree *n*, is identically zero. This means that $\Delta(\mathcal{A}) \subseteq \mathfrak{X}_k$, for every $k \in \{1, ..., m\}$, and so $\Delta(\mathcal{A}) \subseteq \bigcap_{k=1}^n \mathfrak{X}_k$. Now suppose that there is an element α of A such that $\Delta(\alpha) \neq 0$. Since $\mathfrak{B} = {\mathfrak{b}_1, ..., \mathfrak{b}_m}$ is a basis for A, there exist the complex numbers μ_{i_j} , and the elements \mathfrak{b}_{i_j} of \mathfrak{B} such that

$$
\Delta(\mathfrak{a}) = \sum_{j=1}^r \mu_{i_j} \mathfrak{b}_{i_j} = \mu_{i_1} \mathfrak{b}_{i_1} + \mu_{i_2} \mathfrak{b}_{i_2} + \dots + \mu_{i_r} \mathfrak{b}_{i_r}, \quad (r \leq m).
$$

We know that $\Delta(\mathcal{A}) \subseteq \mathcal{X}_k$ for every $k \in \{1, ..., m\}$. So we can assume that $\Delta(\mathcal{A}) \subseteq \mathfrak{X}_{i_1} = \mathfrak{B} - \{\mathfrak{b}_{i_1}\}\.$ Thus, we have

$$
\Delta(\mathfrak{a}) = \mu_{i_1} \mathfrak{b}_{i_1} + \mu_{i_2} \mathfrak{b}_{i_2} + \dots + \mu_{i_r} \mathfrak{b}_{i_r} \in \mathfrak{X}_{i_1}.
$$

The previous equation asserts that $\mathfrak{b}_{i_1} \in \mathfrak{X}_{i_1}$, which is a contradiction. This contradiction proves our claim. \Box

In the following, we are going to characterize $\{n\}$ -derivations, $\{n\}$ -generalized derivations and {*n*}-ternary derivations on algebras under certain conditions.

Theorem 16 Let A be a unital algebra, let M be an A-bimodule and let $\Delta : A \rightarrow M$ be *an additive* {*n*}-*derivation*. *Then either* Δ *is a nonzero linear derivation or* Δ *is identically zero*.

Proof Since Δ is an additive mapping, $\Delta(a(b+c)) = \Delta(ab) + \Delta(ac)$ for all $a, b, c \in \mathcal{A}$. We have

$$
\Delta(a(b+c)) = \Delta(a)(b+c)^n + a^n \Delta(b) + a^n \Delta(c). \tag{2}
$$

Also, we have

$$
\Delta(ab) + \Delta(ac) = \Delta(a)b^{n} + a^{n}\Delta(b) + \Delta(a)c^{n} + a^{n}\Delta(c).
$$
\n(3)

Comparing (2) and (3) (3) , we get that

$$
\Delta(a)\big[(b+c)^n - b^n - c^n\big] = 0, \qquad (a, b, c \in \mathcal{A}).\tag{4}
$$

Putting $b = c = e$ in [\(4](#page-9-2)), we arrive at

$$
(2n - 2)\Delta(a) = 0, \qquad (a \in \mathcal{A}).
$$

It follows from the previous equation that either $n = 1$, which means that Δ is a nonzero linear derivation from A into M or Δ is identically zero. By the way, in both cases Δ is a derivation on A .

Corollary 17 *Let* A *be a unital*, *commutative Banach algebra and let* Δ ∶ A → A *be an additive* $\{n\}$ -*derivation for some* $n \in \mathbb{N}$. *Then* $\Delta(\mathcal{A}) \subseteq rad(\mathcal{A})$.

Proof It follows from the previous theorem that Δ is a derivation and now [[15](#page-15-4), Theorem 4.4] yields the required result. \Box

Theorem 18 Let A be a unital algebra, let M be an A-bimodule and let $f : A \rightarrow M$ be a *generalized* $\{n\}$ -*derivation with an associated mapping* $d : A \rightarrow M$ *. Then d is an* $\{n\}$ *-derivation if and only if* $f(\mathbf{e}) \left[(bc)^n - b^n c^n \right] = 0$ for all $b, c \in \mathcal{A}$.

Proof For every $a, b, c \in A$, we have

$$
f(abc) = f(a)(bc)^n + a^n d(bc).
$$

On the other hand, we have

$$
f(abc) = f(ab)cn + (ab)nd(c) = f(a)bncc + and(b)cn + (ab)nd(c).
$$

Comparing the last two equations, we get that

$$
f(a)[(bc)^{n} - b^{n}c^{n}] = a^{n}[d(b)c^{n} - d(bc)] + (ab)^{n}d(c).
$$
 (5)

 $\circled{2}$ Springer

Putting $a = e$ in [\(5](#page-9-3)), we have

$$
f(\mathbf{e})[(bc)^n - b^n c^n] = d(b)c^n - d(bc) + b^n d(c).
$$

If follows from the previous equation that $f(\mathbf{e})[(bc)^n - b^n c^n] = 0$ if and only if $d(bc) = d(b)cⁿ + bⁿd(c)$ for all $b, c \in A$. We know that $f(\lambda a) = \lambdaⁿf(a)$ for all $a \in A$ and all $\lambda \in \mathbb{C}$. Hence, for any $a, b \in \mathcal{A}$ and any $\lambda \in \mathbb{C}$, we have the following statements:

$$
f(a)(\lambda b)^n + a^n d(\lambda b) = f(a\lambda b) = \lambda^n f(a)b^n + \lambda^n a^n d(b),
$$

which implies that $a^n d(\lambda b) = \lambda^n a^n d(b)$. Putting $a = e$ in the previous equation, we get that $d(\lambda b) = \lambda^n d(b)$ for all $b \in A$. This means that *d* is an {*n*}-derivation. \square

Theorem 19 *Let A be a unital algebra, let M be an A-bimodule and let* $f : A → M$ *be an additive generalized* $\{n\}$ -derivation with an associated mapping $d : A \rightarrow M$ such that $d(2e) = 2d(e)$. Then either f is a nonzero linear generalized derivation with the associated *linear derivation d or f and d are identically zero*.

Proof Since *f* is an additive mapping, $f(a(b+c)) = f(ab) + f(ac)$ for all $a, b, c \in A$. We have

$$
f(a(b+c)) = f(a)(b+c)^n + a^n d(b+c).
$$
 (6)

Also, we have

$$
f(ab) + f(ac) = f(a)bn + and(b) + f(a)cn + and(c).
$$
 (7)

Comparing (6) and (7) (7) , we get that

$$
f(a)[(b+c)^{n} - b^{n} - c^{n}] = a^{n}[d(b) + d(c) - d(b+c)], (a, b, c \in \mathcal{A}).
$$
 (8)

Setting $b = c = e$ in ([8](#page-10-2)) and using the assumption that $d(2e) = 2d(e)$, we arrive at

$$
(2n - 2)f(a) = 0, \t (a \in \mathcal{A}). \t (9)
$$

We consider the following two cases:

Case 1. $2^n - 2 = 0$. Then $n = 1$ and this means that f is a linear generalized derivation with an associated mapping $d : A \rightarrow M$. Now we show that *d* is a linear derivation. Since $n = 1$, it follows from [\(8](#page-10-2)) that

$$
0 = a [d(b) + d(c) - d(b + c)], (a, b, c \in A).
$$
 (10)

Putting $a = e$ in [\(10\)](#page-10-3), we see that *d* is an additive mapping. Also, note that $f(\lambda a) = \lambda^n f(a) = \lambda f(a)$ for all $a \in \mathcal{A}$ and all $\lambda \in \mathbb{C}$. Similar to the proof of Theorem [18](#page-9-4), one can easily show that $d(\lambda a) = \lambda d(a)$ for all $a \in \mathcal{A}$ and we leave it to the interested reader. So *d* is a linear derivation.

Case 2. $2^n - 2 \neq 0$. It follows from ([9\)](#page-10-4) that *f* is identically zero. This fact with $f(ab) = f(a)b^n + a^n d(b)$ imply that $a^n d(b) = 0$ for all $a, b \in A$. Putting $a = e$ in the previous equation, we infer that *d* is identically zero. By the way, in both

above-mentioned cases f is a generalized derivation with an associated derivation *d* on A .

In the following, we present a characterization of {*n*}-ternary derivations on algebras.

Theorem 20 *Let* A *be a unital algebra*, *let* M *be an* A-*bimodule and let* (d_1, d_2, d_3) : $A \rightarrow M$ *be an* {*n*}-*ternary derivation. Let* $d_3(2\mathbf{e}) = 2d_3(\mathbf{e})$ *or* $d_2(2\mathbf{e}) = 2d_2(\mathbf{e})$ *. If* d_1 *is an additive mapping, then either all the mappings* d_1 , d_2 *and* d_3 *are linear and* (d_1, d_2, d_3) *is a ternary derivation on A or* $d_1 = d_2 = d_3 = 0$.

Proof Suppose that $d_3(2e) = 2d_3(e)$. Let *a*, *b*, *c* be arbitrary elements of A. We have the following expressions:

$$
d_1(a(b+c)) = d_2(a)(b+c)^n + a^n d_3(b+c).
$$
 (11)

On the other hand, we have

$$
d_1(a(b + c)) = d_1(ab) + d_1(ac)
$$

= $d_2(a)b^n + a^nd_3(b) + d_2(a)c^n + a^nd_3(c)$
= $d_2(a)(b^n + c^n) + a^n(d_3(b) + d_3(c))$,

which means that

$$
d_1(a(b+c)) = d_2(a)(b^n + c^n) + a^n(d_3(b) + d_3(c)).
$$
\n(12)

Comparing (11) and (12) (12) (12) , we get that

$$
d_2(a)\left[(b+c)^n - b^n - c^n \right] = a^n \left[d_3(b) + d_3(c) - d_3(b+c) \right].
$$
 (13)

Putting $b = c = e$ in [\(13\)](#page-11-2) and using the assumption that $d_3(2e) = 2d_3(e)$, we get that

$$
(2n - 2)d2(a) = 0 for all a \in \mathcal{A}.
$$
 (14)

We have two cases concerning $2^n - 2$ as follows:

Case 1. $2^n - 2 = 0$. So $n = 1$ and it follows from [\(13\)](#page-11-2) that

$$
0 = a [d_3(b) + d_3(c) - d_3(b + c)].
$$
\n(15)

Setting $a = e$ in [\(15\)](#page-11-3), we see that d_3 is an additive mapping. We know that $d_1(\lambda a) = \lambda^n d_1(a) = \lambda d_1(a)$ for all $a \in \mathcal{A}$ and all $\lambda \in \mathbb{C}$. Hence, for any $a, b \in \mathcal{A}$ and any $\lambda \in \mathbb{C}$, we have the following statements:

$$
d_2(a)(\lambda b) + ad_3(\lambda b) = d_1(a\lambda b) = \lambda d_2(a)b + \lambda ad_3(b),
$$

which implies that $ad_3(\lambda b) = \lambda ad_3(b)$. Putting $a = e$ in the previous equation, we get that $d_3(\lambda b) = \lambda d_3(b)$ for all $b \in A$. This means that d_3 is a linear mapping. Similarly, we can show that d_2 is a linear mapping. Hence, (d_1, d_2, d_3) is a ternary derivation on A.

Case 2. $2^{n} - 2 \neq 0$. Then equation ([14](#page-11-4)) yields that d_2 must be zero. Considering this case and using $d_1(ab) = d_2(a)b^n + a^n d_3(b)$ for all $a, b \in A$, we get that

 $\circled{2}$ Springer

$$
d_1(ab) = a^n d_3(b) \text{ for all } a, b \in \mathcal{A}.
$$
 (16)

We know that d_1 is an additive mapping. So we have $d_1((b + c)a) = d_1(ba) + d_1(ca)$ for all $a, b, c \in \mathcal{A}$. This equation along with [\(16\)](#page-12-0) imply that

$$
[(b+c)^{n} - b^{n} - c^{n}]d_{3}(a) = 0, \text{ for all } a, b, c \in \mathcal{A}.
$$
 (17)

Putting $b = c = e$ in [\(17\)](#page-12-1) and considering the assumption that $2^n - 2 \neq 0$, we infer that $d_3 = 0$ and it follows from [\(16\)](#page-12-0) that so is d_1 . Therefore, d_1 , d_2 and d_3 are zero. Reasoning like above, we obtain the required result if we assume that $d_2(2\mathbf{e}) = 2d_2(\mathbf{e})$. Note, however, that in both above-mentioned cases, (d_1, d_2, d_3) is a ternary derivation.

In the next theorem, we present a characterization of ${n}$ -generalized derivations using some functional equations.

Theorem 21 *Let A be a unital algebra, let n be a positive integer, and let* $d_1, d_2, d_3 : A \rightarrow A$ *be mappings satisfying*

$$
d_1(ab) = d_2(a)b^n + a^n d_3(b) = d_3(a)b^n + a^n d_2(b)
$$
\n(18)

$$
d_1(\lambda a) = \lambda^n d_1(a) \tag{19}
$$

for all a, b \in *A and all* $\lambda \in \mathbb{C}$ *. Furthermore, assume that* $d_i(\mathbf{e})[a^n b^n - (ab)^n] = 0$ *for all a*, *b* ∈ *A* and *i* ∈ {2, 3}. Then there exists an {*n*}-*derivation* Δ : $A \rightarrow A$ such that d_1, d_2 *and* d_3 *are* $\{n\}$ -generalized derivations with the associated $\{n\}$ -derivation Δ .

Proof Putting $b = e$ in [\(18\)](#page-12-2), we obtain

$$
d_1(a) = d_2(a) + a^n d_3(e) = d_3(a) + a^n d_2(e),
$$
\n(20)

and taking $a = e$ in ([18](#page-12-2)), we see that

$$
d_1(b) = d_2(e)b^n + d_3(b) = d_3(e)b^n + d_2(b).
$$
 (21)

Comparing (20) and (21) (21) (21) , we get that

$$
d_i(\mathbf{e})a^n = a^n d_i(\mathbf{e})
$$
\n(22)

for all $a \in A$ and $i \in \{1, 2, 3\}$. It follows from ([20](#page-12-3)) and [\(22\)](#page-12-5) that

$$
d_3(a) = d_2(a) + (d_3(e) - d_2(e))a^n = d_2(a) + a^n (d_3(e) - d_2(e)),
$$

for all $a \in A$. Using [\(20\)](#page-12-3), we have

$$
d_2(a)b^n + a^n d_3(b) = d_1(ab) = d_2(ab) + d_3(e)(ab)^n
$$

and so

$$
d_2(ab) = d_2(a)b^n + a^nd_3(b) - d_3(e)(ab)^n
$$

= $d_2(a)b^n + a^n [d_2(b) + (d_3(e) - d_2(e))b^n] - d_3(e)(ab)^n$
= $d_2(a)b^n + a^nd_2(b) - d_2(e)a^nb^n$

We define $\Delta : A \to A$ by $\Delta(a) = d_2(a) - d_2(e)a^n$. So by ([22](#page-12-5)) and the assumption that d_i **(e**) $[a^n b^n - (ab)^n] = 0$ for all $a, b \in \overline{A}$ and $i \in \{2, 3\}$, we have the following expressions:

$$
\Delta(ab) = d_2(ab) - d_2(e)(ab)^n
$$

= d₂(a)bⁿ + aⁿd₂(b) - d₂(e)aⁿbⁿ - d₂(e)(ab)ⁿ
= [d₂(a) - d₂(e)aⁿ]bⁿ + aⁿ[d₂(b) - d₂(e)bⁿ]
= \Delta(a)bⁿ + aⁿ\Delta(b),

which means that

$$
\Delta(ab) = \Delta(a)b^n + a^n \Delta(b), \quad \text{for all } a, b \in \mathcal{A}.
$$

Our next task is to show that $\Delta(\lambda a) = \lambda^n \Delta(a)$ for all $a \in \mathcal{A}$ and $\lambda \in \mathbb{C}$. Before that, we prove that $d_2(\lambda a) = \lambda^n d_2(a)$ for all $a \in \mathcal{A}$ and $\lambda \in \mathbb{C}$. We know that $d_1(\lambda a) = \lambda^n d_1(a)$ for all $a \in \mathcal{A}$ and $\lambda \in \mathbb{C}$. So we have

$$
d_1(\lambda ab) = \lambda^n d_1(ab) = \lambda^n d_2(a)b^n + \lambda^n a^n d_3(b)
$$

and on the other hand

$$
d_1(\lambda ab) = d_2(\lambda a)b^n + \lambda^n a^n d_3(b)
$$

for all $a, b \in A$ and all $\lambda \in \mathbb{C}$. By comparing these two equations related to $d_1(\lambda ab)$, we deduce that $\lambda^n d_2(a)b^n = d_2(\lambda a)b^n$. Putting $b = e$ in the previous equation, we get that $d_2(\lambda a) = \lambda^n d_2(a)$ for all $a \in \mathcal{A}$ and $\lambda \in \mathbb{C}$. Consequently, $\Delta(\lambda a) = \lambda^n \Delta(a)$ for all $a \in \mathcal{A}$ and $\lambda \in \mathbb{C}$. So Δ is an $\{n\}$ -derivation. Using this fact, we have

$$
d_2(ab) = \Delta(ab) + d_2(e)(ab)^n
$$

= $\Delta(a)b^n + a^n \Delta(b) + d_2(e)a^n b^n$
= $(\Delta(a) + d_2(e)a^n)b^n + a^n \Delta(b)$
= $d_2(a)b^n + a^n \Delta(b)$
= $\Delta(a)b^n + a^n d_2(b)$,

which means that

$$
d_2(ab) = d_2(a)b^n + a^n \Delta(b) = \Delta(a)b^n + a^n d_2(b), \text{ for all } a, b \in \mathcal{A}.
$$

So d_2 is an {*n*}-generalized derivation with the associated {*n*}derivation Δ. Using a similar argument, one can easily show that

$$
d_3(ab) = d_3(a)b^n + a^n d_3(b) - d_3(e)(ab)^n
$$
, for all $a, b \in A$.

By defining δ : $A \to A$ by $\delta(a) = d_3(a) - d_3(e)a^n$ and by reasoning like the mapping d_2 , it is observed that d_3 is an ${n}$ -generalized derivation with the associated ${n}$ -derivation δ . In the following, we show that $\delta = \Delta$. We know that $\Delta(a) = d_2(a) - d_2(e)a^n$ and it follows from ([21](#page-12-4)) that $d_2(a) = d_3(a) + a^n d_2(e) - d_3(e)a^n$ for all *a* ∈ *A*. So we have

$$
\Delta(a) = d_2(a) - d_2(\mathbf{e})a^n
$$

= d_3(a) + aⁿd_2(\mathbf{e}) - d_3(\mathbf{e})aⁿ - d_2(\mathbf{e})aⁿ
= d_3(a) - d_3(\mathbf{e})aⁿ
= \delta(a)

 \mathcal{D} Springer

for all $a \in A$. Hence, both d_2 and d_3 are $\{n\}$ -generalized derivations with the associated $\{n\}$ -derivation Δ . We are now ready to show that d_1 is also an $\{n\}$ -generalized derivation with the associated $\{n\}$ -derivation Δ . We know that $d_1(a) = d_2(a) + d_3(e)a^n$ and $d_2(a) = \Delta(a) + d_2(e)a^n$ for all $a \in \mathcal{A}$. Hence, we have

$$
d_1(a) = \Delta(a) + d_2(\mathbf{e})a^n + d_3(\mathbf{e})a^n = \Delta(a) + d_1(\mathbf{e})a^n,
$$

which means that d_1 is an {*n*}-generalized derivation with the associated {*n*}-derivation Δ , as required. \Box

We conclude this paper with the following questions.

Question 22 Let A be an algebra or ring, let $n > 1$ be a positive integer, and let $\Delta : A \rightarrow A$ be a mapping such that $\Delta(a^2) = \Delta(a)a^n + a^n \Delta(a)$ holds for all $a \in \mathcal{A}$. Under what conditions we have $\Delta(ab) = \Delta(a)b^n + a^n \Delta(b)$ for all $a, b \in \mathcal{A}$?

Question 23 Let A be a unital algebra or ring, let $n > 1$ be a positive integer, and let Δ : $\mathcal{A} \rightarrow \mathcal{A}$ be a mapping satisfying

$$
\Delta(a^m) = \sum_{k=1}^m a^{(k-1)n} \Delta(a) a^{(m-k)n}
$$

in which $a^0 = e$, for all $a \in A$ and for some positive integer *m*. Under what conditions we have $\Delta(ab) = \Delta(a)b^n + a^n \Delta(b)$ for all $a, b \in A$?

Acknowledgements The authors thank the referee for carefully reading the article and suggesting valuable comments that have improved the quality of this work.

References

- 1. Bodaghi, A., Zabandan, G.: On the Stability of Quadratic ∗-Derivations on ∗-Banach Algebras. Thai J. Math. **12**(2), 343–356 (2014)
- 2. Brevillena, A.R.: The noncommutative Singer-Wermer conjecture and-derivations. J. London Math. Soc. **66**(3), 710–720 (2002)
- 3. Bresar, M., Mathieu, M.: Derivations mapping into the radical III. J. Funct. Anal. **133**(1), 21–29 (1995)
- 4. Dales, H.G.: Banach algebras and automatic continuity, London math soc monographs, New Series, 24. Oxford University Press, New York (2000)
- 5. Gordji, M.E., Gharetapeh, S.K., Savadkouhi, M.B., Aghaei, M., Karimi, T.: On cubic derivations. Int. J. Math. Anal. **4**(49–52), 2501–2514 (2010)
- 6. Eshaghi Gordji, M., Bavand Savadkouhi, M.: Stability of cubic and quartic functional equations in non-Archimedean spaces. Acta Appl. Math **110**, 1321–1329 (2010)
- 7. Hosseini, A.: What can be expected from a cubic derivation on fnite dimensional algebras? Arab. J. Math. **6**, 75–78 (2017)
- 8. Hosseini, A., Hassani, M., Niknam, A., Hejazian, S.: Some results on -Derivations. Ann. Funct. Anal. **2**, 75–84 (2011)
- 9. Hayati, B., Eshaghi Gordji, M., Bavand Savadkouhi, M., Bidkham, M.: Stability of Ternary Cubic Derivations on Ternary Frèchet Algebras. Australian J. Basic Appl. Sci. **5**, 1224–1235 (2011)
- 10. Jung, Y.S.: Results on the range of derivations. Bull. Korean Math. Soc. **37**, 265–272 (2000)
- 11. Jung, Y.S., Park, K.H.: Noncommutative Versions of the Singer-Wermer Conjecture with Linear Left θ -derivations. Acta Math. Sinica, English Ser **24**, 1891–1900 (2008)
- 12. Mathieu, M.: Where to fnd the image of a derivation. Banach Center Publ. **30**, 237–249 (1994)
- 13. Park, C., Shagholi, S., Javadian, A., Savadkouhi, M.B., Gordji, M.E.: Quadratic derivations on non-Archimedean Banach algebras. J. Comput. Anal. Appl. **16**(3), 565–570 (2014)
- 14. Singer, I.M., Wermer, J.: Derivations on commutative normed algebras. Math. Ann. **129**, 260–264 (1955)
- 15. Thomas, M.P.: The image of a derivation is contained in the radical. Ann of Math. **128**, 435–460 (1988)
- 16. Thomas, M.P.: Primitive ideals and derivations on non-commutative Banach algebras. Pacifc J. Math. **159**, 139–152 (1993)
- 17. Yang, S.Y., Bodaghi, A., Mohd Atan, K.A.: Approximate Cubic ∗-Derivations on Banach ∗-Algebras. Abstr. Appl. Anal. **2**, 877–884 (2012)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to thisarticle under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving ofthe accepted manuscript version of this article is solely governed by the terms of such publishing agreement andapplicable law.