

On the derivations, generalized derivations and ternary derivations of degree *n*

Amin Hosseini¹ · Mehdi Mohammadzadeh Karizaki² D

Received: 10 May 2022 / Accepted: 30 June 2022 / Published online: 3 August 2022 © The Author(s), under exclusive licence to Springer-Verlag Italia S.r.l., part of Springer Nature 2022

Abstract

In this paper, we introduce the concepts of derivation of degree n, generalized derivation of degree n and ternary derivation of degree n, where n is a positive integer, and then we study the algebraic properties of these mappings. For instance, we study the image of derivations of degree n on algebras and in this regard we prove that, under certain conditions, every derivation of degree n on an algebra maps the algebra into its Jacobson radical. Also, we present some characterizations of these mappings on algebras. For example, under certain assumptions, we show that if f is an additive generalized derivation of degree n with an associated mapping d, then either f is a linear generalized derivation with the associated linear derivation d or f and d are identically zero. Some other related results are also established.

Keywords Derivation \cdot Derivation of degree $n \cdot$ Generalized derivation of degree $n \cdot$ Ternary derivation of degree $n \cdot$ Singer-Wermer theorem

Mathematics Subject Classification Primary 47B47 · Secondary 47B48

1 Introduction and preliminaries

Let \mathcal{R} be a ring and let *n* be a positive integer. A mapping $\Delta : \mathcal{R} \to \mathcal{R}$ is called a derivation of degree *n* or $\{n\}$ -derivation if $\Delta(xy) = \Delta(x)y^n + x^n\Delta(y)$ holds for all $x, y \in \mathcal{R}$. Also, Δ is called a Jordan derivation of degree *n* or Jordan $\{n\}$ -derivation if $\Delta(x^2) = \Delta(x)x^n + x^n\Delta(x)$ holds for all $x \in \mathcal{R}$. In this paper, we provide an example of a Jordan derivation of degree *n* which is not a derivation of degree *n*.

By getting the idea from cubic derivations and quadratic derivations, we define a derivation of degree n from an algebra into a module. Before stating the results of this article, let us recall some basic definitions and set the notations which we use in what follows.

Mehdi Mohammadzadeh Karizaki m.mohammadzadeh@torbath.ac.ir Amin Hosseini

hosseini.amin82@gmail.com

¹ Kashmar Higher Education Institute, Kashmar, Iran

² Department of Computer Engineering, University of Torbat Heydarieh, Torbat Heydarieh, Iran

An algebra \mathcal{A} is called a domain if $\mathcal{A} \neq \{0\}$, and a = 0 or b = 0, whenever ab = 0. A commutative domain is called an integral domain. Recall that the Jacobson radical of an algebra \mathcal{A} is the intersection of all primitive ideals of \mathcal{A} which is denoted by $rad(\mathcal{A})$. An algebra \mathcal{A} is called semisimple if $rad(\mathcal{A}) = \{0\}$. A nonzero linear functional φ on an algebra \mathcal{A} is called a *character* if $\varphi(ab) = \varphi(a)\varphi(b)$ for every $a, b \in \mathcal{A}$. The set of all characters on \mathcal{A} is denoted by $\Phi_{\mathcal{A}}$ and is called the character space of \mathcal{A} . We know that ker φ is a maximal ideal of \mathcal{A} for every $\varphi \in \Phi_{\mathcal{A}}$ (see [4, Proposition 1.3.37]).

Let \mathcal{A} be a complex algebra and let \mathcal{M} be an \mathcal{A} -bimodule. Recall that a linear mapping $\delta : \mathcal{A} \to \mathcal{M}$ is called a derivation if it satisfies the Leibnitz's rule $\delta(ab) = \delta(a)b + a\delta(b)$ for all $a, b \in \mathcal{A}$. In [5], Eshaghi Gordji et al. introduced the concept of a cubic derivation. A mapping $D : \mathcal{A} \to \mathcal{M}$ is called a cubic derivation if D is a cubic homogeneous mapping, that is $D(\lambda a) = \lambda^3 D(a)$ ($\lambda \in \mathbb{C}$, $a \in \mathcal{A}$), and $D(ab) = D(a)b^3 + a^3D(b)$ for all $a, b \in \mathcal{A}$. Also, a mapping $d : \mathcal{A} \to \mathcal{M}$ is called a quadratic derivation if d is a quadratic homogeneous mapping, that is $d(\lambda a) = \lambda^2 d(a)$ ($\lambda \in \mathbb{C}$, $a \in \mathcal{A}$), and $d(ab) = d(a)b^2 + a^2d(b)$ for all $a, b \in \mathcal{A}$. The most papers to date have been focused on investigating stability of cubic derivations and quadratic derivations, see, e.g. [1, 5, 6, 9, 13, 17], and references therein.

In this paper, by getting the idea from the notions of cubic derivation and quadratic derivation, we define the notion of derivation of degree *n* on algebras, where *n* is a positive integer. In what follows, let \mathcal{A} be a complex algebra, let \mathcal{M} be an \mathcal{A} -bimodule and let *n* be a positive integer. A mapping $\Delta : \mathcal{A} \to \mathcal{M}$ is called a derivation of degree *n* or $\{n\}$ -derivation if it satisfies both the equations $\Delta(ab) = \Delta(a)b^n + a^n\Delta(b)$ and $\Delta(\lambda a) = \lambda^n\Delta(a)$ for all $a, b \in \mathcal{A}$ and all $\lambda \in \mathbb{C}$.

Now let us to give a background about the image of derivations. The image of derivations has a fairly long history and so far, many authors have studied the image of derivations, see, e.g. [2, 3, 7, 10–12, 14–16] and references therein. As a pioneering work, Singer and Wermer [14] achieved a fundamental result which started investigation into the image of derivations on Banach algebras. The so-called Singer-Wermer theorem, which is a classical theorem of complex Banach algebra theory, states that every continuous derivation on a commutative Banach algebra maps the algebra into its Jacobson radical, and Thomas [15] proved that the Singer-Wermer theorem remains true without assuming the continuity of the derivation.

One of our aims in this research is to prove some results similar to Singer-Wermer theorem and Thomas theorem for derivations of degree n. In this regard, we first prove the following theorem which has been motivated by [7]:

Let \mathcal{A} be a unital integral domain and let $\Delta : \mathcal{A} \to \mathcal{A}$ be an $\{n\}$ -derivation such that its rank is at most one. Then Δ is identically zero. Using this result, it is proved that if \mathcal{A} is a unital algebra and $\Delta : \mathcal{A} \to \mathcal{A}$ is an $\{n\}$ -derivation such that $\Delta(a) - \Delta(b) \in ker\varphi$ whenever $a - b \in ker\varphi$ for every $a, b \in \mathcal{A}$ and every $\varphi \in \Phi_{\mathcal{A}}$, then $\Delta(\mathcal{A}) \subseteq \bigcap_{\varphi \in \Phi_{\mathcal{A}}} ker \varphi$. If \mathcal{A} is also commutative, then $\Delta(\mathcal{A}) \subseteq rad(\mathcal{A})$. In this regard, we provide an example of an $\{n\}$ -derivation on an algebra \mathfrak{A} mapping the algebra into the intersection of all characters of \mathfrak{A} . In addition, we prove that if \mathcal{A} is a unital, commutative Banach algebra and $\Delta : \mathcal{A} \to \mathcal{A}$ is an additive $\{n\}$ -derivation on finite dimensional algebras is identically zero under certain conditions. Indeed, we establish the following result. Let m be a positive integer and let \mathcal{A} be an m-dimensional unital algebra with the basis $\mathfrak{B} = \{\mathfrak{b}_1, \ldots, \mathfrak{b}_m\}$. Furthermore, suppose that for every integer $k, 1 \leq k \leq m$, an ideal \mathfrak{X}_k generated by $\mathfrak{B} - \{\mathfrak{b}_k\}$ is a proper subset of \mathcal{A} . If $\Delta : \mathcal{A} \to \mathcal{A}$ is an $\{n\}$ -derivation such that $\Delta(a) - \Delta(b) \in \mathfrak{X}_k$ whenever $a - b \in \mathfrak{X}_k$ for every $a, b \in \mathcal{A}$ and $1 \leq k \leq m$, then Δ is identically zero.

Another objective of this paper is to characterize $\{n\}$ -derivations, $\{n\}$ -generalized derivations and $\{n\}$ -ternary derivations on algebras. First, we introduce these notions. A

mapping $f : A \to M$ is called a generalized derivation of degree *n* or an $\{n\}$ -generalized derivation if there exists a mapping $d : A \to M$ such that

$$f(ab) = f(a)b^n + a^n d(b),$$

$$f(\lambda a) = \lambda^n f(a),$$

for all $a, b \in A$ and all $\lambda \in \mathbb{C}$. In this case, d is called an associated mapping of f.

A ternary derivation of degree *n* is defined as follows. A ternary derivation of degree *n* or an $\{n\}$ -ternary derivation is a triple of mappings (d_1, d_2, d_3) from \mathcal{A} into \mathcal{M} such that

$$d_1(ab) = d_2(a)b^n + a^n d_3(b)$$
$$d_1(\lambda a) = \lambda^n d_1(a),$$

for all $a, b \in \mathcal{A}, \lambda \in \mathbb{C}$.

For instance, we establish the result below concerning the characterization of $\{n\}$ -generalized derivations. Let \mathcal{A} be a unital algebra with the identity element \mathbf{e} , let \mathcal{M} be an \mathcal{A} -bimodule and let $f : \mathcal{A} \to \mathcal{M}$ be an additive generalized $\{n\}$ -derivation with an associated mapping $d : \mathcal{A} \to \mathcal{M}$ such that $d(2\mathbf{e}) = 2d(\mathbf{e})$. Then either f is a nonzero linear generalized derivation with the associated linear derivation d or f and d are identically zero.

A theorem similar to the above result is presented for the $\{n\}$ -ternary derivations.

2 Definitions and examples

In this section, without further mention, \mathbf{e} denotes the identity of any unital ring or algebra. We begin this section with the following definition.

Definition 1 Let \mathcal{R} be a ring and let *n* be a positive integer. A mapping $\Delta : \mathcal{R} \to \mathcal{R}$ is called a *derivation of degree n* if

$$\Delta(xy) = \Delta(x)y^n + x^n \Delta(y)$$

holds for all $x, y \in \mathcal{R}$. Also, Δ is called a *Jordan derivation of degree n* if it satisfies

$$\Delta(x^2) = \Delta(x)x^n + x^n \Delta(x)$$

for all $x \in \mathcal{R}$.

Obviously, if Δ is a Jordan derivation of degree *n* on \mathcal{R} , then $\Delta(0) = 0$. Also, if \mathcal{R} is unital with the identity element **e**, then $\Delta(\mathbf{e}) = 0$. It is clear that every derivation of degree *n* is a Jordan derivation of degree *n*, but the converse is, in general, not true. In the following, we present a Jordan derivation of degree *n* which is not a derivation of degree *n*.

Example 2 Let \mathcal{R} be a ring such that $x^4 = 0$ for all $x \in \mathcal{R}$, but the product of some nonzero elements of \mathcal{R} is nonzero. Let

$$\mathfrak{R} = \left\{ \begin{bmatrix} 0 \ x \ y \\ 0 \ 0 \ x \\ 0 \ 0 \ 0 \end{bmatrix} : x, y \in \mathcal{R} \right\}$$

Define $\Delta : \mathfrak{R} \to \mathfrak{R}$ by

$$\Delta \left(\begin{bmatrix} 0 & x & y \\ 0 & 0 & x \\ 0 & 0 & 0 \end{bmatrix} \right) = \begin{bmatrix} 0 & 0 & y^2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

For any $A = \begin{bmatrix} 0 & x & y \\ 0 & 0 & x \\ 0 & 0 & 0 \end{bmatrix} \in \mathfrak{R}$, we have

$$\Delta(A^2) = \Delta\left(\left[\begin{array}{ccc} 0 & 0 & x^2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right]\right) = \left[\begin{array}{ccc} 0 & 0 & x^4 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right] = 0.$$

A straightforward verification shows that

$$\Delta(A)A^n + A^n\Delta(A) = 0,$$

for all $A \in \mathfrak{R}$ and all $n \in \mathbb{N}$. We see that Δ is a Jordan derivation of degree *n* for any $n \in \mathbb{N}$. Also, it is easy to see that $\Delta(A)B^n + A^n\Delta(B) = 0$ for all $A, B \in \mathfrak{R}$ and all $n \in \mathbb{N}$, but $\Delta(AB) \neq 0$ for some $A, B \in \mathfrak{R}$. It means that Δ is not a derivation of degree *n* for all $n \in \mathbb{N}$.

In the rest of this article, we consider derivations of degree n from algebras into modules as follows.

Definition 3 Let \mathcal{A} be a complex algebra, let \mathcal{M} be an \mathcal{A} -bimodule and let n be a positive integer. A mapping $\Delta : \mathcal{A} \to \mathcal{M}$ is called a derivation of degree n if it satisfies both of the following equations:

$$\Delta(ab) = \Delta(a)b^n + a^n \Delta(b),$$

$$\Delta(\lambda a) = \lambda^n \Delta(a),$$

for all $a, b \in \mathcal{A}$ and all $\lambda \in \mathbb{C}$.

Example 4 Let A an algebra, let M be an A-bimodule, let n be a positive integer and let x_0 be an element of M satisfying

$$x_0[(ab)^n - a^n b^n] = [(ab)^n - a^n b^n]x_0$$

for all $a, b \in A$. Define a mapping $\Delta : A \to M$ by $\Delta(a) = a^n x_0 - x_0 a^n$ for any $a \in A$. It is routine to see that $\Delta(ab) = \Delta(a)b^n + a^n \Delta(b)$ and $\Delta(\lambda a) = \lambda^n \Delta(a)$ for all $a, b \in A$ and all $\lambda \in \mathbb{C}$. This means that Δ is an $\{n\}$ -derivation. We call such mapping inner derivation of degree *n* or inner $\{n\}$ -derivation.

Example 5 Let \mathcal{A} be a commutative algebra, let *n* be an arbitrary positive integer and let

$$\mathfrak{A} = \left\{ \begin{bmatrix} 0 & a & b \\ 0 & c & 0 \\ 0 & 0 & e \end{bmatrix} : a, b, c, e \in \mathcal{A} \right\}$$

It is clear that \mathfrak{A} is a non-commutative algebra. Define $\Delta : \mathfrak{A} \to \mathfrak{A}$ by

$$\Delta \left(\begin{bmatrix} 0 & a & b \\ 0 & c & 0 \\ 0 & 0 & e \end{bmatrix} \right) = \begin{bmatrix} 0 & 0 & b^n \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

It is easy to see that for any $A = \begin{bmatrix} 0 & a & b \\ 0 & c & 0 \\ 0 & 0 & e \end{bmatrix} \in \mathfrak{A}$ and any $k \in \mathbb{N}$, we have
$$A^k = \begin{bmatrix} 0 & ac^{k-1} & be^k \\ 0 & c^k & 0 \\ 0 & 0 & e^k \end{bmatrix}$$

One can easily get that $\Delta(AB) = \Delta(A)B^n + A^n\Delta(B)$ and $\Delta(\lambda A) = \lambda^n\Delta(A)$ for all $A, B \in \mathfrak{A}$ and all $\lambda \in \mathbb{C}$, which means that Δ is a derivation of degree *n* on \mathfrak{A} .

Example 6 Let A be an algebra, let n be an arbitrary positive integer and let

$$\mathfrak{A} = \left\{ \begin{bmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{bmatrix} : a, b, c \in \mathcal{A} \right\}$$

Define Δ : $\mathfrak{A} \to \mathfrak{A}$ by

$$\Delta \left(\begin{bmatrix} 0 & a & b \\ 0 & 0 & c \\ 0 & 0 & 0 \end{bmatrix} \right) = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & c^n \\ 0 & 0 & 0 \end{bmatrix}.$$

It is straightforward to see that $\Delta(AB) = \Delta(A)B^n + A^n\Delta(B)$ and $\Delta(\lambda A) = \lambda^n\Delta(A)$ for all $A, B \in \mathfrak{A}$ and all $\lambda \in \mathbb{C}$, which means that Δ is a derivation of degree *n* on \mathfrak{A} .

Definition 7 Let A be an algebra and let M be an A-bimodule. A mapping $f : A \to M$ is called a generalized derivation of degree n or an $\{n\}$ -generalized derivation if there exists a mapping $d : A \to M$ such that

$$f(ab) = f(a)b^{n} + a^{n}d(b),$$

$$f(\lambda a) = \lambda^{n}f(a),$$

for all $a, b \in A$ and all $\lambda \in \mathbb{C}$. In this case, d is called an associated map of f.

Example 8 Let A an algebra, let M be an A-bimodule, let n be a positive integer and let x_0 and y_0 be two elements of M satisfying

$$y_0[(ab)^n - a^n b^n] = [(ab)^n - a^n b^n]x_0,$$

for all $a, b \in A$. Define the mappings $f, d : A \to M$ by $f(a) = a^n x_0 - y_0 a^n$ and $d(a) = a^n x_0 - x_0 a^n$ for any $a \in A$. It is routine to see that $f(ab) = f(a)b^n + a^n d(b)$ and $f(\lambda a) = \lambda^n f(a)$ for all $a, b \in A$ and all $\lambda \in \mathbb{C}$. This means that f is an $\{n\}$ -generalized derivation with the associated mapping d. We call such mapping inner generalized derivation of degree n or inner $\{n\}$ -generalized derivation.

In the following, we define a ternary derivation of degree $\{n\}$.

Definition 9 Let \mathcal{A} be an algebra and let \mathcal{M} be an \mathcal{A} -bimodule. A ternary derivation of degree *n* or an $\{n\}$ -ternary derivation is a triple of mappings (d_1, d_2, d_3) from \mathcal{A} into \mathcal{M} such that

$$d_1(ab) = d_2(a)b^n + a^n d_3(b),$$

$$d_1(\lambda a) = \lambda^n d_1(a),$$

for all $a, b \in \mathcal{A}, \lambda \in \mathbb{C}$.

3 Results and proofs

Let \mathcal{A} and \mathcal{B} be two algebras over a field \mathbb{F} . Throughout this section, a mapping $D : \mathcal{A} \to \mathcal{B}$ is called a *rank-one mapping* if there exist a nonzero element \mathfrak{b} of \mathcal{B} and a functional $\mu : \mathcal{A} \to \mathbb{F}$ such that $D(a) = \mu(a)\mathfrak{b}$ for all $a \in \mathcal{A}$.

We begin our results with the following theorem.

Theorem 10 Let A be a unital integral domain and let $\Delta : A \to A$ be a derivation of degree *n* such that its rank is at most one. Then Δ is identically zero.

Proof Let $\Delta : \mathcal{A} \to \mathcal{A}$ be a derivation of degree *n* such that its rank is at most one. We are going to show that $\Delta(\mathcal{A}) = \{0\}$. Suppose that Δ is a rank-one mapping. So there exist a nonzero element \mathfrak{c} of \mathcal{A} and a functional $\mu : \mathcal{A} \to \mathbb{C}$ such that $\Delta(a) = \mu(a)\mathfrak{c}$ for all $a \in \mathcal{A}$. To obtain a contradiction, suppose there exists a nonzero element $\mathfrak{a} \in \mathcal{A}$ such that $\Delta(\mathfrak{a}) \neq 0$. It is clear that $\mu(\mathfrak{a}) \neq 0$. We observe two cases for $\Delta(\mathfrak{c})$.

Case 1. $\Delta(\mathfrak{c}) = 0$. In this case, we have $\mu(\mathfrak{c})\mathfrak{c} = 0$ and it implies that $\mu(\mathfrak{c}) = 0$. We have the following expressions:

$$\mu(\mathfrak{a}^2)\mathfrak{c} = \Delta(\mathfrak{a}^2)$$

= $\Delta(\mathfrak{a})\mathfrak{a}^n + \mathfrak{a}^n\Delta(\mathfrak{a})$
= $2\mathfrak{a}^n\Delta(\mathfrak{a})$
= $2\mathfrak{a}^n\mu(\mathfrak{a})\mathfrak{c}$
= $2\mu(\mathfrak{a})\mathfrak{a}^n\mathfrak{c}.$

Since we are assuming that $\Delta(\mathfrak{c}) = 0$, we have

$$0 = (\mu(\mathfrak{a}^2))^n \Delta(\mathfrak{c}) = \Delta(\mu(\mathfrak{a}^2)\mathfrak{c}) = \Delta(2\mu(\mathfrak{a})\mathfrak{a}^n\mathfrak{c})$$
$$= 2^n (\mu(\mathfrak{a}))^n [\Delta(\mathfrak{a}^n)\mathfrak{c}^n + \mathfrak{a}^{n^2}\Delta(\mathfrak{c})]$$
$$= 2^n (\mu(\mathfrak{a}))^n \Delta(\mathfrak{a}^n)\mathfrak{c}^n$$

Since \mathcal{A} is a domain and $\mu(\mathfrak{a})$ and \mathfrak{c} are nonzero, we get that $\Delta(\mathfrak{a}^n) = 0$. Using induction, for any $m \in \mathbb{N}$, one can easily prove that

$$\Delta(a^m) = \sum_{k=1}^m a^{(k-1)n} \Delta(a) a^{(m-k)n}$$

in which $a^0 = \mathbf{e}$. So we have

$$0 = \Delta(\mathfrak{a}^n) = \Delta(\mathfrak{a}^{n-1}\mathfrak{a})$$

= $\Delta(\mathfrak{a}^{n-1})\mathfrak{a}^n + \mathfrak{a}^{n(n-1)}\Delta(\mathfrak{a})$
= $\left[\sum_{k=1}^{n-1}\mathfrak{a}^{(k-1)n}\Delta(\mathfrak{a})\mathfrak{a}^{(n-1-k)n}\right]\mathfrak{a}^n + \mathfrak{a}^{n(n-1)}\Delta(\mathfrak{a})$
= $\sum_{k=1}^{n-1}\left[\Delta(\mathfrak{a})\mathfrak{a}^{n^2-n}\right] + \mathfrak{a}^{n^2-n}\Delta(\mathfrak{a})$
= $n\Delta(\mathfrak{a})\mathfrak{a}^{n^2-n}$,

which implies that $\Delta(\mathfrak{a}) = 0$, a contradiction.

Case 2. $\Delta(c) \neq 0$. In this case, we have $\mu(c) \neq 0$. Now look at the following statements:

$$\mu(\mathfrak{c}^2)\mathfrak{c} = \Delta(\mathfrak{c}^2) = \Delta(\mathfrak{c})\mathfrak{c}^n + \mathfrak{c}^n\Delta(\mathfrak{c}) = 2\mathfrak{c}^n\Delta(\mathfrak{c}) = 2\mu(\mathfrak{c})\mathfrak{c}^{n+1}$$
(1)

If $\mu(\mathbf{c}^2) = 0$, then it follows from (1) that either $\mu(\mathbf{c}) = 0$ or $\mathbf{c} = 0$, and we know that both of them are nonzero. So $\mu(\mathbf{c}^2) \neq 0$. Putting $\frac{\mu(\mathbf{c}^2)}{2\mu(\mathbf{c})} = \alpha$ in (1), we have $\mathbf{c}(\mathbf{c}^n - \alpha \mathbf{e}) = \mathbf{c}^{n+1} - \alpha \mathbf{c} = 0$. In view of this assumption that \mathcal{A} is a domain, we infer that $\mathbf{c} = 0$, a contradiction, or $\mathbf{c}^n = \alpha \mathbf{e}$. So we have

$$0 = \alpha^{n} \Delta(\mathbf{e}) = \Delta(\alpha \mathbf{e}) = \Delta(\mathbf{c}^{n}) = \Delta(\mathbf{c}^{n-1}\mathbf{c})$$

= $\Delta(\mathbf{c}^{n-1})\mathbf{c}^{n} + \mathbf{c}^{n(n-1)}\Delta(\mathbf{c})$
= $\left[\sum_{k=1}^{n-1} \mathbf{c}^{(k-1)n} \Delta(\mathbf{c}) \mathbf{c}^{(n-1-k)n}\right] \mathbf{c}^{n} + \mathbf{c}^{n(n-1)} \Delta(\mathbf{c})$
= $\sum_{k=1}^{n-1} \left[\Delta(\mathbf{c}) \mathbf{c}^{n^{2}-n}\right] + \mathbf{c}^{n^{2}-n} \Delta(\mathbf{c})$
= $n\Delta(\mathbf{c}) \mathbf{c}^{n^{2}-n}.$

Reusing the assumption that \mathcal{A} is a domain, we get that $\mathbf{c} = 0$ or $\Delta(\mathbf{c}) = 0$, which these are contradictions. It is observed that both Cases 1 and 2 lead to contradictions. Therefore, there is no element \mathbf{a} of \mathcal{A} such that $\Delta(\mathbf{a}) \neq 0$, and consequently, Δ must be zero.

In the following, we provide some examples that show that the conditions of Theorem 10 are not superfluous.

Example 11

(i) Let *n* be a positive number. Define $\Delta : \mathbb{R} \to \mathbb{R}$ by

$$\Delta(a) = \begin{cases} a^n \ln(|a|) & a \neq 0, \\ 0 & a = 0. \end{cases}$$

One can easily check that $\Delta(ab) = \Delta(a)b^n + a^n \Delta(b)$ for all $a, b \in \mathbb{R}$ and also it is clear that the rank of Δ is at most one, but we observe that $\Delta(\alpha a) \neq \alpha^n \Delta(a)$ for some $\alpha, a \in \mathbb{R}$. We see that Δ is a nonzero mapping.

(ii) In Example 5, considering $\mathcal{A} = \mathbb{C}$, we see that $\Delta : \mathfrak{A} \to \mathfrak{A}$ defined by

$$\Delta \left(\begin{bmatrix} 0 & a & b \\ 0 & c & 0 \\ 0 & 0 & e \end{bmatrix} \right) = \left[\begin{bmatrix} 0 & 0 & b^n \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = b^n \left[\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \right]$$

is a nonzero, rank one derivation of degree n. Note that \mathfrak{A} is not an integral domain.

In the following theorem, we present some conditions under which every derivation of degree n on an algebra maps the algebra into its Jacobson radical.

Theorem 12 Let \mathcal{A} be a unital algebra and let $\Delta : \mathcal{A} \to \mathcal{A}$ be a derivation of degree n such that $\Delta(a) - \Delta(b) \in \ker \varphi$ whenever $a - b \in \ker \varphi$ for every $a, b \in \mathcal{A}$ and every $\varphi \in \Phi_{\mathcal{A}}$. In this case, $\Delta(\mathcal{A}) \subseteq \bigcap_{\varphi \in \Phi_{\mathcal{A}}} \ker \varphi$. If \mathcal{A} is also commutative, then $\Delta(\mathcal{A}) \subseteq \operatorname{rad}(\mathcal{A})$.

Proof Let φ be an arbitrary character on \mathcal{A} . We define a mapping $\Omega : \frac{\mathcal{A}}{\ker \varphi} \to \frac{\mathcal{A}}{\ker \varphi}$ by $\Omega(a + \ker \varphi) = \Delta(a) + \ker \varphi$ for every $a \in \mathcal{A}$. Ω is a derivation of degree *n* on the algebra $\frac{\mathcal{A}}{\ker \varphi}$. It is clear that the algebra $\frac{\mathcal{A}}{\ker \varphi}$ is a unital, integral domain and it follows from [4, Proposition 1.3.37] that $\dim(\frac{\mathcal{A}}{\ker \varphi}) = 1$. So the rank of Ω is at most one. Now, Theorem 10 yields that Ω is identically zero, and it means that $\Delta(\mathcal{A}) \subseteq \ker \varphi$. Since we are assuming φ is an arbitrary element of $\Phi_{\mathcal{A}}$, $\Delta(\mathcal{A}) \subseteq \bigcap_{\varphi \in \Phi_{\mathcal{A}}} \ker \varphi$. It is obvious that if \mathcal{A} is commutative, then $\bigcap_{\varphi \in \Phi_{\mathcal{A}}} \ker \varphi = rad(\mathcal{A})$ (see [4]). Hence, we deduce that $\Delta(\mathcal{A}) \subseteq rad(\mathcal{A})$.

An immediate corollary of the previous theorem is as follows:

Corollary 13 Let \mathcal{A} be a unital algebra such that $\bigcap_{\varphi \in \Phi_{\mathcal{A}}} \ker \varphi = \{0\}$ and let $\Delta : \mathcal{A} \to \mathcal{A}$ be a derivation of degree n such that $\Delta(a) - \Delta(b) \in \ker \varphi$ whenever $a - b \in \ker \varphi$ for every $a, b \in \mathcal{A}$ and every $\varphi \in \Phi_{\mathcal{A}}$. Then Δ is identically zero.

Proof According to [8, Proposition 2.10], the algebra \mathcal{A} is commutative and semisimple. Now the previous theorem gives the result.

Remark 14 In this remark, we show that the image of derivation of degree *n* presented in Example 5 is contained in $\bigcap_{\varphi \in \Phi_{\mathfrak{A}}} \ker \varphi$. Let \mathcal{A} be a unital commutative Banach algebra and let

$$\mathfrak{A} = \left\{ \begin{bmatrix} 0 & a & b \\ 0 & c & 0 \\ 0 & 0 & e \end{bmatrix} : a, b, c, e \in \mathcal{A} \right\}$$

Note that \mathfrak{A} is a non-commutative algebra. Since \mathcal{A} is a unital commutative Banach algebra, it follows from [4, Theorem 2.3.1] that its character space is a non-empty set, i.e. $\Phi_{\mathcal{A}} \neq \phi$. Let φ be a character of \mathcal{A} . We define $\theta_{\varphi} : \mathfrak{A} \to \mathbb{C}$ by $\theta_{\varphi} \left(\begin{bmatrix} 0 & a & b \\ 0 & c & 0 \\ 0 & 0 & e \end{bmatrix} \right) = \varphi(c)$. It is clear that θ_{φ} is a character on \mathfrak{A} and it is easy to see that

$$ker(\theta_{\varphi}) = \begin{bmatrix} 0 & \mathcal{A} & \mathcal{A} \\ 0 & ker(\varphi) & 0 \\ 0 & 0 & \mathcal{A} \end{bmatrix} = \left\{ \begin{bmatrix} 0 & a & b \\ 0 & x & 0 \\ 0 & 0 & e \end{bmatrix} : a, b, e \in \mathcal{A}, x \in ker(\varphi) \right\}.$$

Also, if we define $\theta_{\varphi} : \mathfrak{A} \to \mathbb{C}$ by $(\begin{bmatrix} 0 & a & b \end{bmatrix})$

$$\theta_{\varphi} \left[\begin{bmatrix} 0 & a & b \\ 0 & c & 0 \\ 0 & 0 & e \end{bmatrix} \right] = \varphi(e), \text{ then we deduce that } \theta_{\varphi} \text{ is a character on } \mathfrak{A}. \text{ It is easy to see that}$$

$$ker(\theta_{\varphi}) = \begin{bmatrix} 0 & \mathcal{A} & \mathcal{A} \\ 0 & \mathcal{A} & 0 \\ 0 & 0 & ker(\varphi) \end{bmatrix} = \left\{ \begin{bmatrix} 0 & a & b \\ 0 & c & 0 \\ 0 & 0 & z \end{bmatrix} : a, b, c \in \mathcal{A}, z \in ker(\varphi) \right\}.$$

Therefore, $\Phi_{\mathfrak{A}} = \{\theta_{\varphi} : \varphi \in \Phi_{\mathcal{A}}\}$. It is observed that $\Delta(\mathfrak{A}) \subseteq \bigcap_{\varphi \in \Phi_{\mathfrak{A}}} \ker \theta_{\varphi}$.

In the next theorem, we prove that every derivation of degree *n* on a unital finitedimensional algebra is identically zero under certain conditions. Let *m* be a positive integer and let \mathcal{A} be an *m*-dimensional unital algebra with the basis $\mathfrak{B} = \{\mathfrak{b}_1, \mathfrak{b}_2, \dots, \mathfrak{b}_m\}$.

Theorem 15 Suppose that for every integer k, $1 \le k \le m$, an ideal \mathfrak{X}_k generated by $\mathfrak{B} - {\mathfrak{b}_k}$ is a proper subset of \mathcal{A} . Let $\Delta : \mathcal{A} \to \mathcal{A}$ be a derivation of degree n such that $\Delta(a) - \Delta(b) \in \mathfrak{X}_k$ whenever $a - b \in \mathfrak{X}_k$ for every $a, b \in \mathcal{A}$ and every $1 \le k \le m$. Then Δ is identically zero.

Proof It is clear that $\dim(\frac{A}{x_k}) = 1$ for every $k \in \{1, ..., m\}$. We show that \mathfrak{X}_k is a maximal ideal of \mathcal{A} for each $k \in \{1, ..., m\}$. If \mathfrak{X}_k is not a maximal ideal of \mathcal{A} for some $k, 1 \le k \le m$, then there exists a maximal ideal \mathfrak{M}_k of \mathcal{A} such that $\mathfrak{X}_k \subset \mathfrak{M}_k \subset \mathcal{A}$, and so $m-1 = \dim(\mathfrak{X}_k) < \dim(\mathfrak{M}_k) < m$, a contradiction. Hence, every \mathfrak{X}_k is a maximal ideal of \mathcal{A} . Moreover, it follows from Proposition 1.3.37 and Corollary 1.4.38 of [4] that for every maximal ideal \mathfrak{X}_k ($1 \le k \le m$) there exists a character $\varphi_k \in \Phi_{\mathcal{A}}$ such $\mathfrak{X}_k = ker\varphi_k$. So the algebra $\frac{\mathcal{A}}{\mathfrak{X}_k}$ is an integral domain. Now Theorem 10 yields that $\Omega : \frac{\mathcal{A}}{\mathfrak{X}_k} \to \frac{\mathcal{A}}{\mathfrak{X}_k}$ defined by $\Omega(a + \mathfrak{X}_k) = \Delta(a) + \mathfrak{X}_k$, which is a derivation of degree *n*, is identically zero. This means that $\Delta(\mathcal{A}) \subseteq \mathfrak{X}_k$, for every $k \in \{1, ..., m\}$, and so $\Delta(\mathcal{A}) \subseteq \bigcap_{k=1}^n \mathfrak{X}_k$. Now suppose that there is an element \mathfrak{a} of \mathcal{A} such that $\Delta(\mathfrak{a}) \neq 0$. Since $\mathfrak{B} = \{\mathfrak{b}_1, ..., \mathfrak{b}_m\}$ is a basis for \mathcal{A} , there exist the complex numbers μ_i , and the elements \mathfrak{b}_i of \mathfrak{B} such that

$$\Delta(\mathfrak{a}) = \sum_{j=1}^{r} \mu_{i_j} \mathfrak{b}_{i_j} = \mu_{i_1} \mathfrak{b}_{i_1} + \mu_{i_2} \mathfrak{b}_{i_2} + \dots + \mu_{i_r} \mathfrak{b}_{i_r}, \quad (r \le m).$$

We know that $\Delta(\mathcal{A}) \subseteq \mathfrak{X}_k$ for every $k \in \{1, ..., m\}$. So we can assume that $\Delta(\mathcal{A}) \subseteq \mathfrak{X}_{i_1} = \mathfrak{B} - \{\mathfrak{b}_{i_1}\}$. Thus, we have

$$\Delta(\mathfrak{a}) = \mu_{i_1}\mathfrak{b}_{i_1} + \mu_{i_2}\mathfrak{b}_{i_2} + \dots + \mu_{i_r}\mathfrak{b}_{i_r} \in \mathfrak{X}_{i_1}.$$

The previous equation asserts that $\mathfrak{b}_{i_1} \in \mathfrak{X}_{i_1}$, which is a contradiction. This contradiction proves our claim.

In the following, we are going to characterize $\{n\}$ -derivations, $\{n\}$ -generalized derivations and $\{n\}$ -ternary derivations on algebras under certain conditions.

Theorem 16 Let A be a unital algebra, let M be an A-bimodule and let $\Delta : A \to M$ be an additive $\{n\}$ -derivation. Then either Δ is a nonzero linear derivation or Δ is identically zero.

Proof Since Δ is an additive mapping, $\Delta(a(b+c)) = \Delta(ab) + \Delta(ac)$ for all $a, b, c \in A$. We have

$$\Delta(a(b+c)) = \Delta(a)(b+c)^n + a^n \Delta(b) + a^n \Delta(c).$$
⁽²⁾

Also, we have

$$\Delta(ab) + \Delta(ac) = \Delta(a)b^n + a^n \Delta(b) + \Delta(a)c^n + a^n \Delta(c).$$
(3)

Comparing (2) and (3), we get that

$$\Delta(a)[(b+c)^{n} - b^{n} - c^{n}] = 0, \quad (a, b, c \in \mathcal{A}).$$
(4)

Putting $b = c = \mathbf{e}$ in (4), we arrive at

$$(2n - 2)\Delta(a) = 0, \qquad (a \in \mathcal{A}).$$

It follows from the previous equation that either n = 1, which means that Δ is a nonzero linear derivation from A into M or Δ is identically zero. By the way, in both cases Δ is a derivation on A.

Corollary 17 Let \mathcal{A} be a unital, commutative Banach algebra and let $\Delta : \mathcal{A} \to \mathcal{A}$ be an additive $\{n\}$ -derivation for some $n \in \mathbb{N}$. Then $\Delta(\mathcal{A}) \subseteq rad(\mathcal{A})$.

Proof It follows from the previous theorem that Δ is a derivation and now [15, Theorem 4.4] yields the required result.

Theorem 18 Let \mathcal{A} be a unital algebra, let \mathcal{M} be an \mathcal{A} -bimodule and let $f : \mathcal{A} \to \mathcal{M}$ be a generalized $\{n\}$ -derivation with an associated mapping $d : \mathcal{A} \to \mathcal{M}$. Then d is an $\{n\}$ -derivation if and only if $f(\mathbf{e})[(bc)^n - b^nc^n] = 0$ for all $b, c \in \mathcal{A}$.

Proof For every $a, b, c \in A$, we have

$$f(abc) = f(a)(bc)^n + a^n d(bc).$$

On the other hand, we have

$$f(abc) = f(ab)c^{n} + (ab)^{n}d(c) = f(a)b^{n}c^{c} + a^{n}d(b)c^{n} + (ab)^{n}d(c).$$

Comparing the last two equations, we get that

$$f(a)[(bc)^{n} - b^{n}c^{n}] = a^{n}[d(b)c^{n} - d(bc)] + (ab)^{n}d(c).$$
(5)

Deringer

Putting a = e in (5), we have

$$f(\mathbf{e})[(bc)^{n} - b^{n}c^{n}] = d(b)c^{n} - d(bc) + b^{n}d(c).$$

If follows from the previous equation that $f(\mathbf{e})[(bc)^n - b^n c^n] = 0$ if and only if $d(bc) = d(b)c^n + b^n d(c)$ for all $b, c \in \mathcal{A}$. We know that $f(\lambda a) = \lambda^n f(a)$ for all $a \in \mathcal{A}$ and all $\lambda \in \mathbb{C}$. Hence, for any $a, b \in \mathcal{A}$ and any $\lambda \in \mathbb{C}$, we have the following statements:

$$f(a)(\lambda b)^n + a^n d(\lambda b) = f(a\lambda b) = \lambda^n f(a)b^n + \lambda^n a^n d(b),$$

which implies that $a^n d(\lambda b) = \lambda^n a^n d(b)$. Putting $a = \mathbf{e}$ in the previous equation, we get that $d(\lambda b) = \lambda^n d(b)$ for all $b \in \mathcal{A}$. This means that d is an $\{n\}$ -derivation.

Theorem 19 Let A be a unital algebra, let M be an A-bimodule and let $f : A \to M$ be an additive generalized $\{n\}$ -derivation with an associated mapping $d : A \to M$ such that $d(2\mathbf{e}) = 2d(\mathbf{e})$. Then either f is a nonzero linear generalized derivation with the associated linear derivation d or f and d are identically zero.

Proof Since f is an additive mapping, f(a(b+c)) = f(ab) + f(ac) for all $a, b, c \in A$. We have

$$f(a(b+c)) = f(a)(b+c)^n + a^n d(b+c).$$
(6)

Also, we have

$$f(ab) + f(ac) = f(a)b^{n} + a^{n}d(b) + f(a)c^{n} + a^{n}d(c).$$
(7)

Comparing (6) and (7), we get that

$$f(a)[(b+c)^n - b^n - c^n] = a^n [d(b) + d(c) - d(b+c)], \quad (a, b, c \in \mathcal{A}).$$
(8)

Setting $b = c = \mathbf{e}$ in (8) and using the assumption that $d(2\mathbf{e}) = 2d(\mathbf{e})$, we arrive at

$$(2^n - 2)f(a) = 0,$$
 $(a \in \mathcal{A}).$ (9)

We consider the following two cases:

Case 1. $2^n - 2 = 0$. Then n = 1 and this means that *f* is a linear generalized derivation with an associated mapping $d : A \to M$. Now we show that *d* is a linear derivation. Since n = 1, it follows from (8) that

$$0 = a[d(b) + d(c) - d(b + c)], \ (a, b, c \in \mathcal{A}).$$
(10)

Putting $a = \mathbf{e}$ in (10), we see that d is an additive mapping. Also, note that $f(\lambda a) = \lambda^n f(a) = \lambda f(a)$ for all $a \in \mathcal{A}$ and all $\lambda \in \mathbb{C}$. Similar to the proof of Theorem 18, one can easily show that $d(\lambda a) = \lambda d(a)$ for all $a \in \mathcal{A}$ and we leave it to the interested reader. So d is a linear derivation.

Case 2. $2^n - 2 \neq 0$. It follows from (9) that *f* is identically zero. This fact with $f(ab) = f(a)b^n + a^n d(b)$ imply that $a^n d(b) = 0$ for all $a, b \in A$. Putting $a = \mathbf{e}$ in the previous equation, we infer that *d* is identically zero. By the way, in both

above-mentioned cases f is a generalized derivation with an associated derivation d on A.

In the following, we present a characterization of $\{n\}$ -ternary derivations on algebras.

Theorem 20 Let \mathcal{A} be a unital algebra, let \mathcal{M} be an \mathcal{A} -bimodule and let $(d_1, d_2, d_3) : \mathcal{A} \to \mathcal{M}$ be an $\{n\}$ -ternary derivation. Let $d_3(2\mathbf{e}) = 2d_3(\mathbf{e})$ or $d_2(2\mathbf{e}) = 2d_2(\mathbf{e})$. If d_1 is an additive mapping, then either all the mappings d_1 , d_2 and d_3 are linear and (d_1, d_2, d_3) is a ternary derivation on \mathcal{A} or $d_1 = d_2 = d_3 = 0$.

Proof Suppose that $d_3(2\mathbf{e}) = 2d_3(\mathbf{e})$. Let *a*, *b*, *c* be arbitrary elements of \mathcal{A} . We have the following expressions:

$$d_1(a(b+c)) = d_2(a)(b+c)^n + a^n d_3(b+c).$$
(11)

On the other hand, we have

$$d_1(a(b+c)) = d_1(ab) + d_1(ac)$$

= $d_2(a)b^n + a^n d_3(b) + d_2(a)c^n + a^n d_3(c)$
= $d_2(a)(b^n + c^n) + a^n(d_3(b) + d_3(c)),$

which means that

$$d_1(a(b+c)) = d_2(a)(b^n + c^n) + a^n(d_3(b) + d_3(c)).$$
(12)

Comparing (11) and (12), we get that

$$d_2(a)[(b+c)^n - b^n - c^n] = a^n[d_3(b) + d_3(c) - d_3(b+c)].$$
(13)

Putting $b = c = \mathbf{e}$ in (13) and using the assumption that $d_3(2\mathbf{e}) = 2d_3(\mathbf{e})$, we get that

$$(2n - 2)d_2(a) = 0 \text{ for all } a \in \mathcal{A}.$$
(14)

We have two cases concerning $2^n - 2$ as follows:

Case 1. $2^n - 2 = 0$. So n = 1 and it follows from (13) that

$$0 = a \left[d_3(b) + d_3(c) - d_3(b+c) \right].$$
(15)

Setting $a = \mathbf{e}$ in (15), we see that d_3 is an additive mapping. We know that $d_1(\lambda a) = \lambda^n d_1(a) = \lambda d_1(a)$ for all $a \in \mathcal{A}$ and all $\lambda \in \mathbb{C}$. Hence, for any $a, b \in \mathcal{A}$ and any $\lambda \in \mathbb{C}$, we have the following statements:

$$d_2(a)(\lambda b) + ad_3(\lambda b) = d_1(a\lambda b) = \lambda d_2(a)b + \lambda ad_3(b),$$

which implies that $ad_3(\lambda b) = \lambda ad_3(b)$. Putting $a = \mathbf{e}$ in the previous equation, we get that $d_3(\lambda b) = \lambda d_3(b)$ for all $b \in \mathcal{A}$. This means that d_3 is a linear mapping. Similarly, we can show that d_2 is a linear mapping. Hence, (d_1, d_2, d_3) is a ternary derivation on \mathcal{A} .

Case 2. $2^n - 2 \neq 0$. Then equation (14) yields that d_2 must be zero. Considering this case and using $d_1(ab) = d_2(a)b^n + a^n d_3(b)$ for all $a, b \in A$, we get that

$$d_1(ab) = a^n d_3(b) \quad \text{for all } a, b \in \mathcal{A}. \tag{16}$$

We know that d_1 is an additive mapping. So we have $d_1((b+c)a) = d_1(ba) + d_1(ca)$ for all $a, b, c \in A$. This equation along with (16) imply that

$$[(b+c)^{n} - b^{n} - c^{n}]d_{3}(a) = 0, \text{ for all } a, b, c \in \mathcal{A}.$$
(17)

Putting $b = c = \mathbf{e}$ in (17) and considering the assumption that $2^n - 2 \neq 0$, we infer that $d_3 = 0$ and it follows from (16) that so is d_1 . Therefore, d_1 , d_2 and d_3 are zero. Reasoning like above, we obtain the required result if we assume that $d_2(2\mathbf{e}) = 2d_2(\mathbf{e})$. Note, however, that in both above-mentioned cases, (d_1, d_2, d_3) is a ternary derivation.

In the next theorem, we present a characterization of $\{n\}$ -generalized derivations using some functional equations.

Theorem 21 Let A be a unital algebra, let n be a positive integer, and let $d_1, d_2, d_3 : A \to A$ be mappings satisfying

$$d_1(ab) = d_2(a)b^n + a^n d_3(b) = d_3(a)b^n + a^n d_2(b)$$
(18)

$$d_1(\lambda a) = \lambda^n d_1(a) \tag{19}$$

for all $a, b \in A$ and all $\lambda \in \mathbb{C}$. Furthermore, assume that $d_i(\mathbf{e})[a^n b^n - (ab)^n] = 0$ for all $a, b \in A$ and $i \in \{2, 3\}$. Then there exists an $\{n\}$ -derivation $\Delta : A \to A$ such that d_1, d_2 and d_3 are $\{n\}$ -generalized derivations with the associated $\{n\}$ -derivation Δ .

Proof Putting b = e in (18), we obtain

$$d_1(a) = d_2(a) + a^n d_3(\mathbf{e}) = d_3(a) + a^n d_2(\mathbf{e}),$$
(20)

and taking a = e in (18), we see that

$$d_1(b) = d_2(\mathbf{e})b^n + d_3(b) = d_3(\mathbf{e})b^n + d_2(b).$$
(21)

Comparing (20) and (21), we get that

$$d_i(\mathbf{e})a^n = a^n d_i(\mathbf{e}) \tag{22}$$

for all $a \in A$ and $i \in \{1, 2, 3\}$. It follows from (20) and (22) that

$$d_3(a) = d_2(a) + (d_3(\mathbf{e}) - d_2(\mathbf{e}))a^n = d_2(a) + a^n (d_3(\mathbf{e}) - d_2(\mathbf{e})),$$

for all $a \in \mathcal{A}$. Using (20), we have

$$d_2(a)b^n + a^n d_3(b) = d_1(ab) = d_2(ab) + d_3(\mathbf{e})(ab)^n$$

and so

$$d_2(ab) = d_2(a)b^n + a^n d_3(b) - d_3(\mathbf{e})(ab)^n$$

= $d_2(a)b^n + a^n [d_2(b) + (d_3(\mathbf{e}) - d_2(\mathbf{e}))b^n] - d_3(\mathbf{e})(ab)^n$
= $d_2(a)b^n + a^n d_2(b) - d_2(\mathbf{e})a^n b^n$

We define $\Delta : \mathcal{A} \to \mathcal{A}$ by $\Delta(a) = d_2(a) - d_2(\mathbf{e})a^n$. So by (22) and the assumption that $d_i(\mathbf{e})[a^n b^n - (ab)^n] = 0$ for all $a, b \in \mathcal{A}$ and $i \in \{2, 3\}$, we have the following expressions:

$$\begin{aligned} \Delta(ab) &= d_2(ab) - d_2(\mathbf{e})(ab)^n \\ &= d_2(a)b^n + a^n d_2(b) - d_2(\mathbf{e})a^n b^n - d_2(\mathbf{e})(ab)^n \\ &= \left[d_2(a) - d_2(\mathbf{e})a^n \right] b^n + a^n \left[d_2(b) - d_2(\mathbf{e})b^n \right] \\ &= \Delta(a)b^n + a^n \Delta(b), \end{aligned}$$

which means that

$$\Delta(ab) = \Delta(a)b^n + a^n \Delta(b), \quad \text{for all } a, b \in \mathcal{A}$$

Our next task is to show that $\Delta(\lambda a) = \lambda^n \Delta(a)$ for all $a \in \mathcal{A}$ and $\lambda \in \mathbb{C}$. Before that, we prove that $d_2(\lambda a) = \lambda^n d_2(a)$ for all $a \in \mathcal{A}$ and $\lambda \in \mathbb{C}$. We know that $d_1(\lambda a) = \lambda^n d_1(a)$ for all $a \in \mathcal{A}$ and $\lambda \in \mathbb{C}$. So we have

$$d_1(\lambda ab) = \lambda^n d_1(ab) = \lambda^n d_2(a)b^n + \lambda^n a^n d_3(b)$$

and on the other hand

$$d_1(\lambda ab) = d_2(\lambda a)b^n + \lambda^n a^n d_3(b)$$

for all $a, b \in A$ and all $\lambda \in \mathbb{C}$. By comparing these two equations related to $d_1(\lambda ab)$, we deduce that $\lambda^n d_2(a)b^n = d_2(\lambda a)b^n$. Putting $b = \mathbf{e}$ in the previous equation, we get that $d_2(\lambda a) = \lambda^n d_2(a)$ for all $a \in A$ and $\lambda \in \mathbb{C}$. Consequently, $\Delta(\lambda a) = \lambda^n \Delta(a)$ for all $a \in A$ and $\lambda \in \mathbb{C}$. So Δ is an $\{n\}$ -derivation. Using this fact, we have

$$d_2(ab) = \Delta(ab) + d_2(\mathbf{e})(ab)^n$$

= $\Delta(a)b^n + a^n\Delta(b) + d_2(\mathbf{e})a^nb^n$
= $(\Delta(a) + d_2(\mathbf{e})a^n)b^n + a^n\Delta(b)$
= $d_2(a)b^n + a^n\Delta(b)$
= $\Delta(a)b^n + a^nd_2(b),$

which means that

$$d_2(ab) = d_2(a)b^n + a^n \Delta(b) = \Delta(a)b^n + a^n d_2(b), \text{ for all } a, b \in \mathcal{A}.$$

So d_2 is an $\{n\}$ -generalized derivation with the associated $\{n\}$ derivation Δ . Using a similar argument, one can easily show that

$$d_3(ab) = d_3(a)b^n + a^n d_3(b) - d_3(\mathbf{e})(ab)^n$$
, for all $a, b \in \mathcal{A}$.

By defining $\delta : \mathcal{A} \to \mathcal{A}$ by $\delta(a) = d_3(a) - d_3(\mathbf{e})a^n$ and by reasoning like the mapping d_2 , it is observed that d_3 is an $\{n\}$ -generalized derivation with the associated $\{n\}$ -derivation δ . In the following, we show that $\delta = \Delta$. We know that $\Delta(a) = d_2(a) - d_2(\mathbf{e})a^n$ and it follows from (21) that $d_2(a) = d_3(a) + a^n d_2(\mathbf{e}) - d_3(\mathbf{e})a^n$ for all $a \in \mathcal{A}$. So we have

$$\Delta(a) = d_2(a) - d_2(\mathbf{e})a^n$$

= $d_3(a) + a^n d_2(\mathbf{e}) - d_3(\mathbf{e})a^n - d_2(\mathbf{e})a^n$
= $d_3(a) - d_3(\mathbf{e})a^n$
= $\delta(a)$

🖄 Springer

for all $a \in A$. Hence, both d_2 and d_3 are $\{n\}$ -generalized derivations with the associated $\{n\}$ -derivation Δ . We are now ready to show that d_1 is also an $\{n\}$ -generalized derivation with the associated $\{n\}$ -derivation Δ . We know that $d_1(a) = d_2(a) + d_3(\mathbf{e})a^n$ and $d_2(a) = \Delta(a) + d_2(\mathbf{e})a^n$ for all $a \in A$. Hence, we have

$$d_1(a) = \Delta(a) + d_2(\mathbf{e})a^n + d_3(\mathbf{e})a^n = \Delta(a) + d_1(\mathbf{e})a^n,$$

which means that d_1 is an $\{n\}$ -generalized derivation with the associated $\{n\}$ -derivation Δ , as required.

We conclude this paper with the following questions.

Question 22 Let \mathcal{A} be an algebra or ring, let n > 1 be a positive integer, and let $\Delta : \mathcal{A} \to \mathcal{A}$ be a mapping such that $\Delta(a^2) = \Delta(a)a^n + a^n\Delta(a)$ holds for all $a \in \mathcal{A}$. Under what conditions we have $\Delta(ab) = \Delta(a)b^n + a^n\Delta(b)$ for all $a, b \in \mathcal{A}$?

Question 23 Let \mathcal{A} be a unital algebra or ring, let n > 1 be a positive integer, and let $\Delta : \mathcal{A} \to \mathcal{A}$ be a mapping satisfying

$$\Delta(a^m) = \sum_{k=1}^m a^{(k-1)n} \Delta(a) a^{(m-k)n}$$

in which $a^0 = \mathbf{e}$, for all $a \in \mathcal{A}$ and for some positive integer *m*. Under what conditions we have $\Delta(ab) = \Delta(a)b^n + a^n \Delta(b)$ for all $a, b \in \mathcal{A}$?

Acknowledgements The authors thank the referee for carefully reading the article and suggesting valuable comments that have improved the quality of this work.

References

- Bodaghi, A., Zabandan, G.: On the Stability of Quadratic *-Derivations on *-Banach Algebras. Thai J. Math. 12(2), 343–356 (2014)
- Brevillena, A.R.: The noncommutative Singer-Wermer conjecture and-derivations. J. London Math. Soc. 66(3), 710–720 (2002)
- 3. Bresar, M., Mathieu, M.: Derivations mapping into the radical III. J. Funct. Anal. 133(1), 21–29 (1995)
- Dales, H.G.: Banach algebras and automatic continuity, London math soc monographs, New Series, 24. Oxford University Press, New York (2000)
- Gordji, M.E., Gharetapeh, S.K., Savadkouhi, M.B., Aghaei, M., Karimi, T.: On cubic derivations. Int. J. Math. Anal. 4(49–52), 2501–2514 (2010)
- Eshaghi Gordji, M., Bavand Savadkouhi, M.: Stability of cubic and quartic functional equations in non-Archimedean spaces. Acta Appl. Math 110, 1321–1329 (2010)
- Hosseini, A.: What can be expected from a cubic derivation on finite dimensional algebras? Arab. J. Math. 6, 75–78 (2017)
- Hosseini, A., Hassani, M., Niknam, A., Hejazian, S.: Some results on -Derivations. Ann. Funct. Anal. 2, 75–84 (2011)
- Hayati, B., Eshaghi Gordji, M., Bavand Savadkouhi, M., Bidkham, M.: Stability of Ternary Cubic Derivations on Ternary Frèchet Algebras. Australian J. Basic Appl. Sci. 5, 1224–1235 (2011)
- 10. Jung, Y.S.: Results on the range of derivations. Bull. Korean Math. Soc. 37, 265–272 (2000)
- Jung, Y.S., Park, K.H.: Noncommutative Versions of the Singer-Wermer Conjecture with Linear Left θ -derivations. Acta Math. Sinica, English Ser 24, 1891–1900 (2008)
- 12. Mathieu, M.: Where to find the image of a derivation. Banach Center Publ. 30, 237-249 (1994)

- Park, C., Shagholi, S., Javadian, A., Savadkouhi, M.B., Gordji, M.E.: Quadratic derivations on non-Archimedean Banach algebras. J. Comput. Anal. Appl. 16(3), 565–570 (2014)
- 14. Singer, I.M., Wermer, J.: Derivations on commutative normed algebras. Math. Ann. **129**, 260–264 (1955)
- 15. Thomas, M.P.: The image of a derivation is contained in the radical. Ann of Math. **128**, 435–460 (1988)
- Thomas, M.P.: Primitive ideals and derivations on non-commutative Banach algebras. Pacifc J. Math. 159, 139–152 (1993)
- 17. Yang, S.Y., Bodaghi, A., Mohd Atan, K.A.: Approximate Cubic *-Derivations on Banach *-Algebras. Abstr. Appl. Anal. 2, 877–884 (2012)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to thisarticle under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.