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Abstract
The Belousov–Zhabotinsky reaction is a well-known family of nonlinear oscillating bio-
chemical systems. It is an example of a homogeneous non-equilibrium reaction that is 
widely used in biological structure, chemistry and physics. As a reaction kinetic model, 
it can be represented by multi-dimensional autonomous systems which contain only time-
invariant parameters. In such systems, it is assumed that; at a particular temperature, the 
chemical properties remain constant or vary slightly which enables us to neglect that vari-
ation. This paper introduces and studies the nonautonomous Belousov–Zhabotinsky (B–Z) 
reaction at which the parameters are allowed to be time-varying. Simulations have shown 
that this generalized system is still able to oscillate and to create limit cycles. Furthermore, 
we derive conditions that make the concentrations of reactants; as functions of time, are 
globally defined on [t0,∞) and vanish over time. In addition to the aforementioned origin 
attractivity, we investigate the rate-dependent and rate-independent hysteresis behaviors 
exhibited by one of the concentrations and derive a mathematical expression for the so-
called “hysteresis loop”.
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1 Introduction

Chemical kinetics of reacting chemical systems is generally governed by multi-dimen-
sional systems that may contain embedded negative or positive feedback loops in addi-
tion to the concentration solutions of the chemical species. It is an arduous task to analyze 
these systems in the presence of nonlinear terms. Despite all difficulties, this nonlinearity 
enhances the chances of solutions to exhibit oscillatory or chaotic behaviors [7]. These 
ubiquitous mathematical behaviors can be found in many “far-from-equilibrium” chemical 
systems [25]. Recent efforts have been focused to study some related equations with frac-
tional derivatives as in [1–4, 20, 24].

One of the most significant far-from-equilibrium chemical systems is the Belou-
sov–Zhabotinsky (B–Z) reaction [6, 18, 22]. Due to its nonlinearity, Belousov-Zhabotinsky 
reaction can exhibit oscillatory behavior because of the second law of thermodynamics 
[17]. Additionally, this reaction exhibits many fractures including oscillations, determinis-
tic chaos, multistability and excitability. A general way to describe the reaction is the fol-
lowing autonomous differential equation (see [23])

where t ≥ t0 , constants � , �1 , �2 , �3 , �4 , c1 , c2 , c3 , �1 and �2 , state v can be viewed as auto-
catalytic reagent, state u expresses a negative feedback response and state p is associated 
to the catalyst concentration. The coefficients of the prior system are related to concentra-
tions imposed at the beginning of the experiment. They are time-invariant because they are 
assumed not to vary in a large range. However, this assumption is not guaranteed to occur 
in every case.

This paper generalizes Belousov–Zhabotinsky (B–Z) reaction differential-based system 
into the time-varying framework which is more realistic than the time-invariant one. The 
formulation of the new system is given in Sect. 2. In Sect. 3, it is shown that the new time-
varying system is able to oscillate. Moreover, the origin attractivity is investigated which 
guarantees that vanishing of all states. On the other hand, the hysteretic behavior of the 
output v is studied in Sect. 4 in which a mathematical expression for the hysteresis loop is 
derived.

2  System under study

We generalize the Belousov–Zhabotinsky (B–Z) reaction (1)–(3) into the following time-
varying system

(1)v̇(t) = 𝛼
(
u(t) −

(
v(t) − 𝜇1

)(
v(t) − 𝜇2

)(
v(t) − 𝜇3

)
+ 𝜇4

)
,

(2)u̇(t) = c1 − c2p(t) − c3v(t) − u(t),

(3)ṗ(t) = 𝛾1v(t) − 𝛾2p(t),

(4)v̇(t) = 𝛼(t)
(
u(t) −

(
v(t) − 𝜇1(t)

)(
v(t) − 𝜇2(t)

)(
v(t) − 𝜇3(t)

)
+ 𝜇4(t)

)
,

(5)u̇(t) = c1(t) − c2(t)p(t) − c3(t)v(t) − u(t),
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where t ≥ t0 , states v, u, and p, continuous real functions �1 , �2 , �3 , �4 , c1 , c2 , c3 , �1 and �2 , 
and a Lebesgue measurable function � ∶ ℝ → ℝ . The right-hand sides of (4)–(6) are meas-
urable in t, locally bounded and continuous with respect to the states. Therefore, the system 
admits an absolutely continuous Carathéodory solution that is defined on a maximal exist-
ence interval [t0,�) where � can be infinity [5, Section 1.1].

The system (4)–(6) is able to exhibit oscillations which occurs in the presence 
of limit cycles. To see this, let t0 = 0 , v(t0) = 0.5 , u(t0) = 1 , p(t0) = 1 , �(t) = 0.065 , 
�1(t) =

1

t+1
+ 1 , �2(t) =

1

t+1
+ 2 , �3(t) =

1

t+1
+ 3 , �4(t) = −4 , c1(t) = 436.57731 , 

c2(t) = 3714.28317 × 10−3 , c3(t) = 21.7 and �1(t) = �2(t) = 0.23 . As illustrated in Fig.  1, 
the states v(t), u(t) and p(t) reach steady states just beyond transient effects. Moreover, the 
figure shows the limit cycles exhibited by the system.

3  Boundedness and attractivity of solutions

In this section, we mainly aim to investigate conditions that make the concentrations decay 
to zero as t gets larger. In other words, we aim to study the attractivity of the system (4)–(6) 
in which all states converge to zero as t goes to infinity [11, 16, 19]. To clinch this goal, we 
recall some results from [10, 13].

(6)ṗ(t) = 𝛾1(t)v(t) − 𝛾2(t)p(t),
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Fig. 1  Upper left v(t) versus t. Upper right u(t) versus t. Middle left p(t) versus t. Middle right u(t) versus 
v(t) . Lower left p(t) versus u(t). Lower right p(t) versus v(t)
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Theorem 3.1 [10, Theorem 2.1] Consider the system

for every t ≥ t0 , state w ∈ ℝ , initial value w
(
t0
) ≥ 0 , a strictly increasing function 

� ∈ C0(ℝ,ℝ) with �(0) = 0 , and continuous functions e, q ∈ C0
(
ℝ,ℝ+

)
 . Assume that 

q(t) > 0,∀t ≥ t0 , ∫ ∞

t0
q(�)d� = ∞ , limt→∞

e(t)

q(t)
= L ≥ 0 and L ∈ Range {�} . Then for every 

initial value w(t0) ≥ 0 and every solution w(t) with maximal existence interval [t0,�) ; 
� ∈ (t0,∞] , we have � = ∞ , ‖w‖∞ < ∞ and limt→∞ w(t) = �−1(L).

Proposition 3.1 [13, Prop. 3.2] Consider a locally absolutely continuous func-
tion z ∶ [t0,�) → ℝ+ , where � ∈ (t0,∞] . Assume the existence of some continuous 
functions �1 ∈ C0

(
[t0,∞),ℝ+

)
 and �2 ∈ C0

(
[t0,∞),ℝ+

)
 such that z(t0) < 𝜓2

(
t0
)
 , 

𝜓1(t) < 𝜓2(t), ∀t ≥ t0 and

Then we have z(t) < 𝜓2(t), ∀t ∈ [t0,𝜔).

Now we make the following assumptions.

Assumption 1 The function � is continuous and for all t ≥ t0 , we have 𝛾2(t) > 0 and

with

Define Q ∈ C0
(
[t0,∞),ℝ

)
 and E ∈ C0

(
[t0,∞),ℝ

)
 as

Obviously, we have Q(t) > 0 and E(t) ≥ 0 for all t ≥ t0.

Assumption 2 limt→∞

(
E(t)

Q(t)

)
= 0.

Observe that to make Assumption 2 satisfied, we need to have

The next theorem proves the boundedness of solutions and the local attractivity of the 
origin.

Theorem  3.2 Under Assumptions 1 − 2 , there exists some c > 0 such that the states 
v(t), u(t) and p(t) are bounded and continuable on [t0,∞) and the origin is locally 

(7)ẇ(t) = e(t) − q(t)𝛽(w(t)),

(8)ż(t) ≤ �̇�2(t) for almost all t ∈ (t0,𝜔), that satisfy 𝜓1(t) < z(t) < 𝜓2(t).

𝛼(t)
(
𝜇1(t)𝜇2(t) + 𝜇1(t)𝜇3(t) + 𝜇2(t)𝜇3(t)

)
> 0,

∞

∫
t0

�(t)
(
�1(t)�2(t) + �1(t)�3(t) + �2(t)�3(t)

)
dt =

∞

∫
t0

�2(t)dt = ∞.

Q(t) =min
(
1, �2(t), �(t)

(
�1(t)�2(t) + �1(t)�3(t) + �2(t)�3(t)

))
.

E(t) =|�(t)|
(
1 + ||�1(t) + �2(t) + �3(t)

|| + ||�1(t)�2(t)�3(t) + �4(t)
||
)

+ ||c1(t)|| + ||c2(t)|| + ||�1(t)|| + ||�(t) − c3(t)
||, ∀t ≥ t0.

lim
t→∞

c1(t) = lim
t→∞

c2(t) = lim
t→∞

c3(t) = lim
t→∞

�1(t) = lim
t→∞

�(t) = 0.
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attractive, that is limt→∞ v(t) = limt→∞ u(t) = limt→∞ p(t) = 0 , for each initial value (
v
(
t0
)
, u
(
t0
)
, p
(
t0
))

∈ ℝ
3 with magnitude less than c.

Proof Since the function � is assumed to be continuous, the right-hand sides of the system 
(4)–(6) is continuous and locally Lipschitz with respect to states. Thus, the system (4)–(6) 
has a unique continuously differentiable solution that is defined on an interval of the form 
[t0,�) ; � ∈ (t0,∞] [21, p. 66]. Consider the Lyapunov function V ∶ [t0,�) → ℝ+ such that 
V(t) = v2(t) + u2(t) + p2(t),∀t ∈ [t0,�) . Pick v(t0) ∈ ℝ , u(t0) ∈ ℝ and p(t0) ∈ ℝ . For all 
t ∈ (t0,�) , we have

so that

Thus, for a given � ≥ 1 and for all t ∈ (t0,�) that satisfy V(t) < 𝛿 , we have

This implies that: for all t ∈ (t0,�) that satisfy V(t) < 𝛿 , we get

or

where q(t) = 2Q(t) and e(t) = 2�2E(t) for all t ∈ [t0,∞) . Assumption 1 states that 
limt→∞

(
E(t)

Q(t)

)
= 0 and hence there exists some T ≥ t0 such that E(t)

Q(t)
<

1

𝛿
,∀t ≥ T  . Thus, we 

have

Therefore, we deduce by (9) that

V̇(t) = 2𝛼(t)v(t)
(
u(t) −

(
v(t) − 𝜇1(t)

)(
v(t) − 𝜇2(t)

)(
v(t) − 𝜇3(t)

)
+ 𝜇4(t)

)

+ 2u(t)
(
c1(t) − c2(t)p(t) − c3(t)v(t) − u(t)

)

+ 2p(t)
(
𝛾1(t)v(t) − 𝛾2(t)p(t)

)
,

V̇(t) =2𝛼(t)v(t)
[
u(t) − v3(t) +

(
𝜇1(t) + 𝜇2(t) + 𝜇3(t)

)
v2(t)

−
(
𝜇1(t)𝜇2(t) + 𝜇1(t)𝜇3(t) + 𝜇2(t)𝜇3(t)

)
v(t) + 𝜇1(t)𝜇2(t)𝜇3(t) + 𝜇4(t)

]

+ 2u(t)
(
c1(t) − c2(t)p(t) − c3(t)v(t) − u(t)

)

+ 2p(t)
(
𝛾1(t)v(t) − 𝛾2(t)p(t)

)
.

V̇(t) ≤ − 2
�
𝛼(t)

�
𝜇1(t)𝜇2(t) + 𝜇1(t)𝜇3(t) + 𝜇2(t)𝜇3(t)

�
v2(t) + u2(t) + 𝛾2(t)p

2(t)
�

+ 2
�
𝛼(t) − c3(t)

�
v(t)u(t) + 2�𝛼(t)�𝛿2 + 2�𝛼(t)���𝜇1(t) + 𝜇2(t) + 𝜇3(t)

��𝛿
3

2

2�𝛼(t)���𝜇1(t)𝜇2(t)𝜇3(t) + 𝜇4(t)
��
√
𝛿 + 2��c1(t)��

√
𝛿 + 2

���c2(t)�� + ��𝛾1(t)��
�
𝛿.

V̇(t) ≤ −2Q(t)
(
v2(t) + u2(t) + p2(t)

)
+ 2𝛿2E(t),

(9)V̇(t) ≤ −q(t)V(t) + e(t), for all t ∈ (t0,𝜔) that satisfy V(t) < 𝛿,

e(t)

q(t)
=

2𝛿2E(t)

2Q(t)
<

𝛿2

𝛿
= 𝛿,∀t ≥ T .

(10)V̇(t) ≤ 0, for all t ∈ (T ,𝜔) that satisfy
e(t)

q(t)
< V(t) < 𝛿.
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The continuity of the mapping t → e(t)

q(t)
 ensures that it attains its infimum on the compact 

interval 
[
t0, T

]
 and thus we can find a positive real number �∗ such that

Observe that 𝛿∗ < 𝛿 . If V(t0) < 𝛿∗ , we claim that V(t) ≤ �∗,∀t ∈
(
t0, T

)
 . To prove this, 

assume the existence of some t1 ∈
(
t0, T

)
 such that V

(
t1
)
> 𝛿∗ . Thus, by contradiction, we 

can easily see that there exists some t2 ∈
(
t0, t1

)
 such that V(t2) = �∗ and that V < 𝛿∗ < 𝛿 on 

[t0, t2] and hence (11) gives

Therefore, we deduce by (9) that V̇(t) < 0,∀t ∈ [t0, t2] so that V is decreasing on [t0, t2] 
which contradicts the facts that V(t0) < 𝛿∗ and V(t2) = �∗ . This proves our claim that states 
that V(t) ≤ �∗,∀t ∈

(
t0, T

)
 . As a results, we get by (10) that

Thus, all conditions of Proposition 3.1 are satisfied with z(t) = V(t) , �1(t) =
e(t)

q(t)
 and 

�2(t) = � for all t ∈ (t0,�) . Therefore, for all V(t0) < 𝛿∗ , one has V(t) < 𝛿 = 𝜓2(t) on 
t ∈ (t0,�) . Hence � = ∞ ; that is the Lyapunov function and the states of (4)–(6) are global. 
As a result, the inequality (9) is satisfied for all t > t0 whenever V(t0) < 𝛿∗.

Assumptions 1 and 2 give ∫ ∞

t0
q(t)dt = ∞ and limt→∞

(
e(t)

q(t)

)
= 0 . Thus, the system

satisfies all conditions of Theorem  3.1 with L = 0 and � is the identity func-
tion and hence its global solution is bounded and goes to zero as t → ∞ . Further-
more, a comparison principle [9, Theorem  3.1.1] gives V(t) ≤ w(t),∀t ≥ t0 so that 
limt→∞ V(t) = 0 . By the definition of V, we deduce that the origin is attractivity, that is 
limt→∞ v(t) = limt→∞ u(t) = limt→∞ p(t) = 0 , for any initial value 

(
v
(
t0
)
, u
(
t0
)
, p
(
t0
))

∈ ℝ
3 

with magnitude less than c =
√
�∗ .   ◻

Simulations. Let t0 = 1 , 
(
v(t0) u(t0) p(t0)

)
=
(
1.5 2.5 2

)
 . For all t ≥ t0 let 

�(t) = c3(t) = −
1

t
 , �1(t) = �4(t) = t , �2(t) = −t , �3(t) = c1(t) = c2(t) = �1(t) =

1

t
 and 

�2(t) = 1 . We get

It can be easily verified that Assumptions 1 and 2 are satisfied. Therefore, Theorem 3.2 
implies that the solution is global and the origin is attractive when the initial values v(t0) , 
u(t0) and p(t0) belong to some neighborhood about the origin. This is illustrated in Fig. 2.

Remark 3.1 Suppose that all conditions of Theorem 3.2 are satisfied. Then one can easily 
see by (4) that if ‖‖𝜇i

‖‖∞ < ∞ for i = 1, 2, 3 ; then limt→∞ �(t)�4(t) = −∞ is a necessary and 

(11)𝛿∗ < min

(
inf

t∈[t0,T]

e(t)

q(t)
, 𝛿

)
.

V(t) < 𝛿∗ <
e(t)

q(t)
, ∀t ∈ [t0, t2].

(12)V̇(t) ≤ 0, for all t ∈ (T ,𝜔) that satisfy
e(t)

q(t)
< V(t) < 𝛿.

ẇ(t) = e(t) − q(t)w(t)

w(t0) =V(t0) ∈ [0, 𝛿∗),

Q(t) =min (1, 1, t) = 1, ∀t ≥ t0 = 1,

E(t) =
2

t
−

1

t2
, ∀t ≥ t0 = 1.
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sufficient condition for the property limt→∞ v̇(t) = ∞ which means that the concentration 
rate v̇ diverges to infinity. This implies that concentration v vanishes rapidly as well. On the 
other hand, by (6) we conclude that limt→∞ �2(t) = ∞ is a necessary condition for the prop-
erty limt→∞ ṗ(t) = ∞ so that the catalyst p vanishes rapidly. Finally, the equation (5) leads 
to limt→∞ u̇(t) = 0 which means that the negative feedback u vanishes slowly.

4  Hysteresis behavior of the state v

Hysteresis is a physical phenomenon that is related to nonlinear input-output systems. A 
system is hysteretic if a looping behavior appears when plotting output versus input for dif-
ferent frequencies of a sinusoidal input. One way to characterize hysteresis is the consist-
ency which can be formulated as follows [8]: Consider an input function � ∶ [t0,∞) → ℝ 
belonging to the Sobolev space W1,∞

(
[t0,∞),ℝ

)
 ; that is � is locally absolutely continuous 

with ‖�̇�‖∞ < ∞ and ‖𝜅‖∞ < ∞ . When considering the time-scaled input 
u

(
t

𝛾

)
,∀t ≥ t0,∀𝛾 > 0 , the output is expected; in general, to depend on both t and � ; say 

�(t, �) . If t → Φ(t, �) ∶= �(�t, �) is convergent in L∞ as � → ∞ , then the system is said to 
be consistent. In the present of consistent hysteresis behavior, if Φ(t, �) depends of � , the 
hysteresis is called rate-dependent. When � → ∞ , the time dependent set {
(�(t),Φ(t, �)) ∶ t ≥ t0

}
 converges; in the Hausdorff space, to the limiting set {

(�(t),Φ∗(t)) ∶ t ≥ t0
}
 which represents the so called hysteresis loop including transient. 

Otherwise; i.e. when Φ(�t, �) is independent of � , say Φ(�t, �) = Φ(t) , the hysteresis is 
called rate-independent. In this case, the so-called hysteresis loop is represented by the set {
(�(t),Φ(t)) ∶ t ≥ t0

}
 . More discussions about the consistency of Duhem models can be 

found in [12, 14, 15].
The present section aims to investigate hysteresis between the state v and some input 

signal � ∈ W1,∞
(
[t0,∞),ℝ

)
 that depends on the parameters � and �4 . The prior function � 

is also based on the feedback-stimulus which is represented by u(t). To this end, we make 
the following assumptions.

Assumption i. the functions c2(t) and c3(t) are uniformly zero; while the function c1(t) is 
bounded.
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Fig. 2  v(t), u(t) and p(t) versus t. Observe that as time of reaction increases, the variation in concentrations 
of reactants go down until all reactant concentrations finish
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Observe that the prior assumption implies that the differential equation (5) contains 
only one state which is u. Thus, for each initial value u(t0) ∈ ℝ , a unique global continu-
ously differentiable solution U(t) for (4) exists. Since c1(t) is bounded, the solution U(t) 
is bounded as well (this can be shown by a simple Lyapunov argument). As a result, the 
right-hand side of (4) is bounded and so is U̇(t) . Therefore, U(t) belongs to Sobolev space 
W1,∞

(
[t0,∞),ℝ

)
.

Assumption ii. �4 ∈ W1,∞
(
[t0,∞),ℝ

)
 and �i are uniformly constant for i = 1, 2, 3 ; say 

�i(t) = �∗
i
,∀t ≥ t0.

Assumption iii. there exists G ∈ C0(ℝ,ℝ) such that 𝛼(t) = G
(||U̇(t) + �̇�4(t)

||
)
 for almost all 

t > t0 . Note that � may be discontinuous.
Consider the feedback-based input �(t) = U(t) + �4(t),∀t ≥ t0 , then 

� ∈ W1,∞
(
[t0,∞),ℝ

)
 . Therefore, Assumption iii and the differential equation (4) yield the 

Duhem model

for almost all t ≥ t0 and all 𝛾 > 0 . If the input �◦s� is considered instead of � where 
s𝛾 (t) =

t

𝛾
, 𝛾 > 0, t ≥ 0 , then the system (13)–(14) gives

Define Φ ∶ [t0,∞) ×ℝ+ → ℝ
m as Φ(t, 𝛾) = v(t𝛾 , 𝛾),∀t ≥ t0,∀𝛾 > 0 . We get by chain rule 

that 𝜕
𝜕t
Φ(t, 𝛾) = 𝛾

𝜕v

𝜕t
(t𝛾 , 𝛾),∀t ≥ t0,∀𝛾 > 0 . Thus, we conclude by the system (15)–(16) that 

the function Φ depends on � and

for almost all t ≥ t0 and all 𝛾 > 0.
Simulations for a constant negative feedback case. Let t0 = 0 , v(t0) = 0.2 , 

u(t0) = 1 , �∗
i
= 0 ; for i = 1, 2, 3 and �4(t) = 1 − sin (t),∀t ≥ 0 , c1(t) = 1 and 

c2(t) = c3(t) = 0,∀t ∈ [t0,∞) . We conclude the only solution of the differential equation 
(2) is U(t) = 1,∀t ∈ [t0,∞) . It is easy to see that Assumptions i-iv are satisfied. We have 
�(t) = sin (t),∀t ≥ t0 = 0 and hence the system (17)–(18) leads to

(13)v̇(t) =G(|�̇�(t)|)
(
−
(
v(t) − 𝜇∗

1

)(
v(t) − 𝜇∗

2

)(
v(t) − 𝜇∗

3

)
+ 𝜅(t)

)
,

(14)v(t0) = v0,

(15)

𝜕

𝜕t
v(t, 𝛾) =G

(|||||
1

𝛾
�̇�

(
t

𝛾

)|||||

)[
−
(
v(t, 𝛾) − 𝜇∗

1

)(
v(t, 𝛾) − 𝜇∗

2

)(
v(t, 𝛾) − 𝜇∗

3

)
+ 𝜅

(
t

𝛾

)

+ 𝜅

(
t

𝛾

)]
,

(16)v(t0, 𝛾) = v0, for almost all t ≥ t0 and all 𝛾 > 0.

(17)

𝜕

𝜕t
Φ(t, 𝛾) =𝛾G

(
|�̇�(t)|
𝛾

)[
−
(
Φ(t, 𝛾) − 𝜇∗

1

)(
Φ(t, 𝛾) − 𝜇∗

2

)(
Φ(t, 𝛾) − 𝜇∗

3

)

+ 𝜅(t)

]

(18)Φ
(
t0, �

)
=v0,
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The function G determines whether the hysteresis exhibited is rate-independent or rate-
dependent. To see this, we consider two cases for the function Φ(t, �) as follows.

First: Let G be the identity function, then the solution of the system (19) does not 
depend on � , the consistency is trivially satisfied and

Figure 3a shows the the function Φ reaches the steady state somewhere after t = 5 which 
leads to a rate-independent hysteresis with limiting curve 

{
(�(t),Φ(t)) ∶ t ≥ t0

}
 as shown 

in Fig. 3b at which the hysteresis loop can be observed (including transient).
Second: Let G be defined as G(�) = �

1+e−�
,∀� ∈ ℝ . The system (20) becomes

The function |cos (⋅)|

1+e
−
1
�
|cos (⋅)|

 converges in L∞ to |cos (⋅)|
2

 . Based on that fact, recent research [15] 

has proved that in the presence of a consistent hysteresis behavior, the limiting curve can 
be derived by the system

(19)
𝜕

𝜕t
Φ(t, 𝛾) = 𝛾G

(
|cos (t)|

𝛾

)(
−Φ3(t, 𝛾) + sin (t)

)
,∀t ≥ 0, ∀𝛾 > 0,

Φ(0, 𝛾) =0, ∀𝛾 > 0.

(20)Φ̇(t) = |cos (t)|
(
−Φ3(t) + sin (t)

)
, ∀t ≥ 0.

(21)
�

�t
Φ(t, �) =

|cos (t)|

1 + e
−

1

�
|cos (t)|

(
−Φ3(t, �) + sin (t)

)
, ∀t ≥ 0.

(a) (b)

(c)

Fig. 3  a Φ(t) versus t for (20) b the limiting curve for (20) c Φ∗(t) − Φ(t, �) versus t for (21) when � = 1 , 
� = 3 , � = 5 and � = 20 hysteresis simulations
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Thus, Φ is independent of � with

In other words, the solution function Φ(t, �) of (21) converges uniformly to the solution 
function Φ∗(t) of (22) as � → ∞ . This is illustrated in Fig. 3c. Observe that when � diverges 
to infinity, the function Φ(⋅, �) − Φ∗(⋅) goes to t−axis which emphasizes the consistency. 
For this case, the limiting curve is very similar to the one in 3(b) which has been plotted 
when G is the identity function.

5  Conclusions

The classical Belousov–Zhabotinsky reaction has been generalized into the nonautono-
mous framework in which all parameters are allowed to depend on time. Simulations 
ensure the existence of oscillatory behavior for the system. Sufficient conditions have been 
derived in Theorem 3.2 to ensure the “local” attractivity of the origin which implies that 
all concentration states are continuable on [t0,∞) and converge to zero as t goes to infin-
ity. Furthermore, the hysteresis behavior of the state v and some sinusoidal input has been 
investigated in Sect. 4 depending on the notion of consistency which has enabled us to find 
an explicit expression for the hysteresis loop including transient effects. Numerical simula-
tions have been carried out to clarify that the hysteresis behavior exhibited by the system 
can be either rate-dependent or rate-independent.

Acknowledgements The author is grateful to the responsible editor and the anonymous referees for their 
valuable efforts.

Funding No funding sources to be declared.

Data Availability Statement The data are available to academic researchers upon request.

Declaration Statements 

Competing interests The authors declare that they have no competing interests.

References

 1. Abdalla, M., Boulaaras, S., Akel, M., et al.: Certain fractional formulas of the extended k-hypergeo-
metric functions. Adv. Differ. Equ. 2021, 450 (2021)

 2. Agarwal, P., El-Sayed, A.A.: Non-standard finite difference and Chebyshev collocation methods for 
solving fractional diffusion equation. Phys. A 500, 40–49 (2018)

 3. Agarwal, P., Baleanu, D., Chen, Y.Q., et al.: Fractional calculus: ICFDA, Amman, Jordan (2018)
 4. Ali, M.A., Abbas, M., Budak, H., et al.: New quantum boundaries for quantum Simpson’s and quan-

tum Newton’s type inequalities for preinvex functions. Adv. Differ. Equ. 64 (2021)
 5. Bacciotti, A., Rosier, L.: Liapunov Functions and Stability in Control Theory. Springer, New York 

(2005)

�

�t
Φ(t, �) =

(
|cos (t)|

2

)(
−Φ3(t) + sin (t)

)
, ∀t ≥ 0.

(22)
d

dt

Φ∗(t) =
1

2
|cos (t)|

(
−(Φ∗(t))

3
+ sin (t)

)
, ∀t ≥ 0.



801On the nonautonomous Belousov–Zhabotinsky (B–Z) reaction  

1 3

 6. Belousov, B.P.: Periodically acting reaction and its mechanisms. Autowave processes in systems with 
diffusion. Gorky: Izd. Inst. Appl. Phys. Acad. Sci. SSSR 176–186 (1981)

 7. Chang, R.: Physical chemistry for the biosciences. University Science Books (2005)
 8. Ikhouane, F.: Characterization of hysteresis processes. Math. Control Signals Syst. 25, 294–310 (2013)
 9. Lakshmikantham, V., Leela, S.: Differential and Integral Inequalities: Theory and Application. Aca-

demic Press, New York (2002)
 10. Naser, M.F.M.: State convergence of a class of time-varying systems. IMA J. Math. Control. Inf. 37(1), 

27–38 (2020)
 11. Naser, M.F.M.: Behavior near time infinity of solutions of nonautonomous systems with unbounded 

perturbations. IMA J. Math. Control. Inf. 2021, 1–20 (2021)
 12. Naser, M.F.M., Ikhouane, F.: Hysteresis loop of the LuGre model. Automatica 59, 48–53 (2015)
 13. Naser, M.F.M., Ikhouane, F.: Stability of time-varying systems in the absence of strict Lyapunov func-

tions. IMA J. Math. Control. Inf. 36(2), 461–483 (2019)
 14. Naser, M.F.M., Al-Hdaibat, B., Gumah, G., Bdair, O.: On the consistency of local fractional semilinear 

Duhem model. Int. J. Dyn. Control 8(3), 723–729 (2020)
 15. Naser, M.F.M., Ikhouane, F.: Consistency of the Duhem model with hysteresis. Math. Problems Eng. 

586130(2013), 1–16 (2013)
 16. Naser, M.F.M., Gumah, G.N., Al-Omari, S.K., et al.: On the stability of a class of slowly varying sys-

tems. J. Inequal. Appl. 2018, 338 (2018)
 17. Nicolis, G., Prigogine, I.: Self-Organization in Nonequilibrium Systems. Wiley-Interscience, New 

York (1977)
 18. Pechenkin, A.: BP Belousov and his reaction. J. Biosci. 34(3), 365–371 (2009)
 19. Rajchakit, G., Agarwal, P., Ramalingam, S.: Stability Analysis of Neural Networks. Springer, Singa-

pore (2021)
 20. Ruzhansky, M.V., Je Cho, Y., Agarwal, P., Area, I.: Advances in Real and Complex Analysis with 

Applications. Trends in Mathematics, Birkhäuser. Springer, Singapore (2017)
 21. Schmitt, K., Thompson, R.: Nonlinear Analysis and Differential Equations: An Introduction, Lecture 

Notes. University of Utah, Department of Mathematics (1998)
 22. Schmitz, G.: Historical overview of the oscillating reactions. Contribution of Professor Slobodan Anić. 

Reaction Kinetics. Mech. Catal. 118(1), 5-13 (2016)
 23. Strizhak, P.E., Kawczynski, A.L.: Complex transient oscillations in the Belousov–Zhabotinskii reac-

tion in a batch reactor. J. Phys. Chem. 99(27), 10830–10833 (1995)
 24. Tariboon, J., Ntouyas, S.K., Agarwal, P.: New concepts of fractional quantum calculus and applica-

tions to impulsive fractional q-difference equations. Adv. Differ. Equ. 2015, 18 (2015)
 25. Turing, A.M.: The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. Lond. Ser. B 237, 37–72 

(1952)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.


	On the nonautonomous Belousov–Zhabotinsky (B–Z) reaction
	Abstract
	1 Introduction
	2 System under study
	3 Boundedness and attractivity of solutions
	4 Hysteresis behavior of the state v
	5 Conclusions
	Acknowledgements 
	References




