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Abstract
This paper is concerned with the Cauchy problem of nonlinear Klein–Gordon equations 
with general nonlinearities. We use the potential well and convexity methods to prove the 
global existence and finite time blow up of solution with low and critical initial energy lev-
els. And a finite time blow up of the solution with arbitrarily positive initial energy level is 
proved.

Keywords Cauchy problem · Klein–Gordon equations · Global solution · Finite time blow 
up
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1 Introduction

In this paper, we consider the following nonlinear Klein–Gordon equation with general 
nonlinearities

where ℝn(n ≥ 1) is a unbounded domain, Δ is the Laplacian operator on ℝn,

(1.1)utt − Δu + u = f (u), x ∈ ℝ
n, t > 0,

(1.2)u(x, 0) = u0(x), x ∈ ℝ
n,

(1.3)ut(x, 0) = u1(x), x ∈ ℝ
n,
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and ak > 0 , 1 ≤ k ≤ l , bj > 0 , 1 ≤ j ≤ s , al+1 > 0 , pk and qj satisfy

The three-dimensional Klein–Gordon equation (1.1) was simplified as

to describe the quantum behavior of free particles [1]. For the one-dimensional Klein–Gor-
don equation

when the nonlinear source f (u) = sin u , sinh u , eu , eu + e−2u or e−u + e−2u , the equations 
(1.5) are called Sine-Gordon equations, Sinh-Gordon equations, Liouville equations, 
Dodd–Bullough–Mikhailov equations or Tzitzeica–Dodd–Bullough equations respectively. 
Sine-Gordon equations and Sinh-Gordon equations are used to describe the propagation of 
fluxons in Josephson junction between two superconductors and the motion of a rigid pen-
dulum attached to a stretched line, which is often seen in solid state physics and nonlinear 
optics [1–3]. Liouville equations are used to describe the vibration of uniformly charged 
plasma [4]. Dodd–Bullough–Mikhailov equations and Tzitzeica–Dodd–Bullough equa-
tions appear in various problems in fluids and quantum field theory [2, 5]. In addition, the 
Eq. (1.5) with nonlinear source f (u) = −|u|2u + |u|4u are used to describe the quantum 
behavior of particles with spin 0 [6, 7].

In order to give a theoretical explanation from a mathematical point, we start from the 
well-posedness of the solution for the problem (1.1)–(1.3) to reveal the dynamic behavior 
of the solution. For the Cauchy problem of the Klein–Gordon equations (1.1)–(1.3) with 
f (u) = |u|p−1u , Xu [9] proved the global existence and finite time blow up of the solution at 
low initial energy level E(0) < d . Li and Zhang [10] extended the result of finite time blow 
up and global existence to the critical initial energy level E(0) = d for the Cauchy problem 
of the Klein–Gordon equation (1.1)–(1.3) with f (u) = u2 + u3 . Wang [8] proved the finite 
time blow up at the arbitrarily positive initial energy level E(0) > 0 to the Cauchy prob-
lem of the Klein–Gordon equation (1.1)–(1.3) with f (u) = up−1u . Kutev et  al. [11] con-
sidered Klein–Gordon equation (1.1)–(1.3) with f (u) =

∑l

k=1
ak�u�pk−1u −

∑s

j=1
bj�u�qj−1u 

and f (u) = a1�u�p1 +
∑l

k=2
ak�u�pk−1u −

∑s

j=1
bj�u�qj−1u , where a1 > 0 , a

k
> 0 , 2 ≤ k ≤ l , 

bj ≥ 0 , 1 ≤ j ≤ s , pk and qj satisfy (H). The global existence and finite time blow up of 
the solution at the critical initial energy level E(0) = d is proved in [12]. Kutev et al. [11] 
considered the same Cauchy problem and proved the finite time blow up of the solution at 
arbitrarily positive initial energy level E(0) > 0.

As the nonlinear source terms reflect the influence of the nonlinear factors on the 
Cauchy problem of the Klein–Gordon equation (1.1)–(1.3), while the complex com-
bined source terms describe the superimposition of these related factors. Obviously, the 
signs of the source terms greatly affect the size and direction of the combined source 

(1.4)

u0 ∈ H1(ℝn), u1 ∈ L2(ℝn),

f (u) = a1|u|p1 +
l∑

k=2

ak|u|pk−1u −
s∑

j=1

bj|u|qj−1u,

(H)

{
(1) if n = 1, 2, 1 < qs < qs−1 < ⋯ < q1 = q < p = p1 < p2 < ⋯ < pl < ∞;

(2) if n ≥ 3, 1 < qs < qs−1 < ⋯ < q1 = q < p = p1 < p2 < ⋯ < pl ≤ n+2

n−2
.

1

c2
�2u

�t2
− Δu + V(u)u = 0

(1.5)utt − �uxx + f (u) = 0,
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terms. The coefficients a1 > 0 , ak > 0 and bj ≥ 0 in [11, 12], which mean that the direc-
tions of external force are positive, positive and negative respectively, and this nonlin-
ear term is more general than the nonlinear term which appear in the damped semilinear 
wave equations [14], the fractional Laplacian parabolic [15], variable exponent parabolic 
equation [16], the parabolic systems [17], the pseudo-parabolic equation with singular 
potential [18], nonlinear Schröinger equation with a harmonic potential [19] and frac-
tional p-Laplacian evolution equations [20]. In this present paper, we consider the non-
linear source f (u) = a1�u�p1 +

∑l

k=2
ak�u�pk−1u −

∑s

j=1
bj�u�qj−1u , where a1 < 0 , ak > 0 , 

2 ≤ k ≤ l , bj ≥ 0 , 1 ≤ j ≤ s , pk and qj satisfy (H) to reveal the negative effects of the term 
a1|u|p1 , a1 < 0 and prove the well-posedness of the solution to the Cauchy problem of the 
Klein–Gordon equation (1.1)–(1.3).

2  Preliminaries

We commence this section by introducing the norms ‖u‖p ∶= ‖u‖Lp(ℝn) , ‖u‖ ∶= ‖u‖L2(ℝn) 
and the inner product (u, v) ∶= ∫

ℝn uvdx . Also we introduce the norm for H1(ℝn)

We define two C1 functionals on H1(ℝn) → ℝ , known as potential functional and Nehari 
function respectively as follows

and

We also define Nehari manifold

and the depth of the potential well (the so-called mountain pass level in [21])

Now, we define the potential well

the outer of the potential well

and the family of potential wells

‖u‖2
H1 ∶= ‖u‖2 + ‖∇u‖2.

(2.1)

J(u) ∶=
1

2
‖u‖2

H1 −

l�

k=2

ak

pk + 1
‖u‖pk+1

pk+1
−

a1

p1 + 1 ∫
ℝn

�u�p1udx +
s�

j=1

bj

qj + 1
‖u‖qk+1

qk+1

(2.2)I(u) ∶= ‖u‖2
H1 −

l�

k=2

ak‖u‖
pk+1

pk+1
− a1 ∫

ℝn

�u�p1udx +
s�

j=1

bj‖u‖
qj+1

qj+1
.

N ∶=
�
u ∈ H1(ℝn)� I(u) = 0, ‖∇u‖ ≠ 0

�

d ∶= inf
u∈N

J(u).

W ∶=
{
u ∈ H1(ℝn)|I(u) > 0, J(u) < d

}
∪ {0},

V ∶=
{
u ∈ H1(ℝn)|I(u) < 0, J(u) < d

}
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The corresponding Nehari manifolds and the depth of the family of potential wells are 
defined respectively by

and

Next we introduce the stable set W� and the unstable set V� defined by

and

Definition 2.1 Function u(x,  t) is called a week solution to problem (1.1)–(1.3), if it 
satisfies

and there holds

for any v ∈ H1(ℝn) , t ∈ [0, T) , where ⟨⋅, ⋅⟩ denotes the duality pairing between H−1(ℝn) 
and H1

0
(ℝn) , and the following energy equality holds

where

Lemma 2.2 Assume f(u) satisfy (H), then we have

where F(u) ∶= ∫ u

0
f (s)ds.

Proof When u ≥ 0 , then by (i) in (H), we have

and

I𝛿(u) ∶= 𝛿‖u‖2
H1 − a1 ∫

ℝn

�u�p1udx −
l�

k=2

ak‖u‖
pk+1

pk+1
+

s�

j=1

bj‖u‖
qj+1

qj+1
, 𝛿 > 0.

N� ∶=
�
u ∈ H1(ℝn)��I�(u) = 0, ‖∇u‖ ≠ 0

�

(2.3)d(�) ∶= inf
u∈N�

J(u).

W𝛿 ∶= {u ∈ H1(ℝn)||I𝛿(u) > 0, J(u) < d(𝛿)} ∪ {0}

V𝛿 ∶= {u ∈ H1(ℝn)||I𝛿(u) < 0, J(u) < d(𝛿)}.

u ∈ L∞
(
[0, T);H1(ℝn)

)
, ut ∈ L∞

(
[0, T);L2(ℝn)

)

(2.4)⟨utt, v⟩ + (∇u,∇v) + (u, v) = (f (u), v)

(2.5)E(t) = E(0), t ∈ (0,T),

(2.6)E(t) ∶=
1

2
‖ut‖2 + J(u).

(2.7)(p + 1)F(u) ≤ uf (u) for all u ∈ ℝ,

uf �(u) ≥ pf (u)
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which implies

that is

The proof of the case u < 0 is similar to the case u ≥ 0 .   ◻

Lemma 2.3 Let f(u) satisfy (H), then 

 (i) �F(u)� ≤ ∑l

k=1

ak

pk+1
�u�pk+1 +∑s

j=1

bj

qj+1
�u�qj+1 for all u ∈ ℝ;

 (ii) F(u) ≥ B|u|p+1 for B = F(1) and all |u| ≥ 1.

Proof (i) From (H), it implies that

(ii) When u > 0 , by (H) , we have F(u) > 0 . Then Lemma 2.2 tells

which gives

that is

Then F(u) ≥ Bup+1, B = F(1) . Similarly to the case u ≥ 1 , we obtain F(u) ≥ Bup+1 for all 
u ≤ −1 .   ◻

Lemma 2.4 (Relations between I(u) and ‖∇u‖ ) Let 𝛿 > 0 . 

(1) If 0 < ‖u‖H1 < 𝛾(𝛿) , then I𝛿(u) > 0 . In particular, if 0 < ‖u‖H1 < 𝛾(1) , then I(u) > 0;

(2) If I𝛿(u) < 0, then ‖u‖H1 > 𝛾(𝛿). In particular, if I(u) < 0, then ‖u‖H1 > 𝛾(1);

�
u

0

sf �(s)ds ≥ p�
u

0

f (s)ds = pF(u) for all u ≥ 0,

uf (u) − �
u

0

f (s)ds ≥ pF(u) for all u ≥ 0,

(p + 1)F(u) ≤ uf (u).

|F(u)| ≤
||||||
�

u

0

(
l∑

k=1

ak|u|pk−1u + a1|u|p1 −
s∑

j=1

bj|u|qj−1u
)
du

||||||

≤
l∑

k=1

ak

pk + 1
|u|pk+1 +

s∑

j=1

bj

qj + 1
|u|qj+1.

p + 1

u
≤ f (u)

F(u)
=

dF(u)

du

F(u)
,

(p + 1)�
u

1

1

s
ds ≤ �

u

1

dF(s)

F(s)
,

ln up+1 ≤ lnF(u) − lnF(1).
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(3) If I�(u) = 0 and ‖u‖H1 ≠ 0 , then ‖u‖H1 ≥ �(�) . In particular, if I(u) < 0 and ‖u‖H1 ≠ 0 , 
then ‖u‖H1 ≥ �(1),

where �(�) is the unique real root of equation �(�) = �,

Proof (1) From 0 < ‖u‖H1 ≤ 𝛾(𝛿) , we have ‖u‖qj+1 > 0 , 1 ≤ j ≤ s . Hence by

we get I𝛿(u) > 0.
(2) The inequality I𝛿(u) < 0 gives

which implies ‖u‖H1 > 𝛾(𝛿).
(3) If I�(u) = 0 and ‖u‖H1 ≠ 0 , then by

we get ‖u‖H1 > 𝛾(𝛿) .   ◻

Lemma 2.5 Let f(u) satisfy (H), u ∈ H1(ℝn) , ‖u‖H1 ≠ 0 and

Then 

 (i) �(�) is strictly increasing on [0,+∞);
 (ii) lim

�→0
�(�) = 0, lim

�→+∞
�(�) = +∞.

Proof (i) For 𝜆 > 0 , the conclusion follow from

�(�) ∶=

l+1�

k=1

akC
pk+1

k
�pk−1, Ck ∶= sup

u∈H1
0
(ℝn)

‖u‖pk+1
‖u‖H1

, 1 ≤ k ≤ l.

l�

k=2

ak‖u‖
pk+1

pk+1
+ a1 �

ℝn

�u�p1udx −
s�

j=1

bj‖u‖
qj+1

qj+1

<

l�

k=1

ak‖u‖
pk+1

pk+1
≤

l�

k=1

akC
pk+1

k
‖u‖pk+1

H1

= 𝜑(‖u‖H1 )‖u‖2
H1 ≤ 𝛿‖u‖2

H1 ,

𝛿‖u‖2
H1 <

l�

k=1

ak‖u‖
pk+1

pk+1
−

s�

j=1

bj‖u‖
qj+1

qj+1

<

l�

k=1

ak‖u‖
pk+1

pk+1
≤ 𝜑(‖u‖H1 )‖u‖2

H1 ,

𝛿‖u‖2
H1 =

l�

k=1

ak‖u‖
pk+1

pk+1
−

s�

j=1

bj‖u‖
qj+1

qj+1

<

l�

k=1

ak‖u‖
pk+1

pk+1
≤ 𝜑(‖u‖H1 )‖u‖2

H1 ,

�(�) ∶=
1

� ∫
ℝn

uf (�u)dx.
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and (i) in (H).
(ii) It follows directly from (ii) in (H) that

which implies that lim
�→0

�(�) = 0. From Lemma 2.2 and (ii) in Lemma 2.3, we get

where ℝn
�
=

{
x|x ∈ ℝ

n, |u| ≥ 1

�

}
. Hence from

we have

  ◻

Lemma 2.6 (Properties of J(�u) , Lemma 2.2 in [23] and Lemma 6 in [24]) Let u ∈ H1
0
(Ω) 

and ‖u‖H1 ≠ 0 . Then 

 (i) lim�→0 J(�u) = 0 , lim�→+∞ J(�u) = −∞.
 (ii) there exists a unique �∗ ∈ (0,∞) such that 

 (iii) J(�u) is increasing on 0 ≤ � ≤ �∗ , decreasing on 𝜆∗ ≤ 𝜆 < ∞ and takes the maximum 
at � = �∗.

 (iv) I(𝜆u) > 0 for 0 < 𝜆 < 𝜆∗ , I(𝜆u) < 0 for 𝜆∗ < 𝜆 < ∞ and I(�∗u) = 0.

Lemma 2.7 (Properties of d(�) , Lemma 3 in [25]) d(�) possesses the following properties 

 (i) d(𝛿) > a(𝛿)𝛾2(𝛿) for 0 < 𝛿 <
p+1

2
 , where a(�) ∶= 1

2
−

�

p+1
.

 (ii) lim
�→0

d(�) = d(0) and there exists a unique b >
p+1

2
 such that d(�0) = 0 and d(𝛿) > 0 

for 0 ≤ 𝛿 < b.

d𝜑(𝜆)

d𝜆
=
1

𝜆 ∫
ℝn

u2f �(𝜆u)dx −
1

𝜆2 ∫ℝn

uf (𝜆u)dx

=
1

𝜆3 ∫ℝn

𝜆u
(
𝜆uf �(𝜆u) − f (𝜆u)

)
dx > 0

��(�)� ≤ 1

�2 �ℝn

��uf (�u)�dx ≤ 1

�2 �ℝn

l�

k=1

ak��u�pk+1dx =
l�

k=1

ak�
pk−1‖u‖pk+1

pk+1
,

�(�) =
1

�2 �ℝn

|�uf (�u)|dx ≥ p + 1

�2 �
ℝ

n
�

F(�u)dx

≥p + 1

�2 �
ℝ

n
�

B|�u|p+1dx = (p + 1)B�p−1 �
ℝ

n
�

|u|p+1dx,

lim
𝜆→+∞∫

ℝ
n
𝜆

�u�p+1dx = ‖u‖p+1
p+1

> 0,

lim
�→+∞

�(�) = +∞.

d

d�
J(�u)

||||�=�∗
= 0.
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 (iii) d(�) is increasing on 0 ≤ � ≤ 1 , decreasing on 1 ≤ � ≤ �0 and takes the maximum 
d=d(1) at � = 1.

Lemma 2.8 (Invariance sets for E(0) < d ) Let f(u) satisfy (H), u0(x) ∈ H1(ℝn) , 
u1(x) ∈ L2(ℝn) . Suppose that 0 ≤ e < d , �1 and �2 are the two roots of equation d(�) = e . 
Then, 

 (i) the solution of problem (1.1)–(1.3) with 0 < E(0) ≤ e belongs to W� for 𝛿1 < 𝛿 < 𝛿2 , 
provided that I(u0) > 0 or ‖u0‖H1 = 0;

 (ii) the solution of problem (1.1)–(1.3) with 0 < E(0) ≤ e belongs to V� for 𝛿1 < 𝛿 < 𝛿2 , 
provided that I(u0) < 0.

Proof Assume u = u(t) is the solution to problem (1.1)–(1.3) with 0 < E(0) ≤ e , I(u0) > 0 
or ‖u0‖H1 = 0 and T is the maximum existence time of u(t). If ‖u0‖H1 = 0 , then u0 ∈ W� for 
� ∈ (�1, �2) . If I(u0) > 0 , then by (2.3) and

it follows that I𝛿(u0) > 0 and J(u0) < d(𝛿) , i.e., u0(x) ∈ W� for � ∈ (�1, �2) . Next we prove 
u(t) ∈ W� for � ∈ (�1, �2) , t ∈ (0, T). Arguing by contradiction, we suppose that there exists 
a t0 ∈ (0, T) such that u(t0) ∈ �W� , i.e.,

From (2.5), we obtain

which implies that J(u(t0)) = d(�) is impossible. If I�(u(t0)) = 0 and ‖u(t0)‖H1 ≠ 0 , by 
(2.3), it follows that J(u(t0)) ≥ d(�) , which contradicts (2.8). Similarly, we can achieve the 
second statement.   ◻

3  Global solution and finite time blow up for E(0) < d

Theorem  3.1 (Global existence for E(0) < d ) Let f(u) satisfy (H), u0(x) ∈ H1(ℝn) and 
u1(x) ∈ L2(ℝn) . Suppose that E(0) < d and I(u0) > 0 or ‖u0‖H1 = 0 . Then problem (1.1)–
(1.3) admits a global weak solution

with

and u(t) ∈ W for t ∈ (0,+∞).

1

2
‖u1‖ + J(u0) = E(0) = d(𝛿1) = d(𝛿2) < d(𝛿), 𝛿 ∈ (𝛿1, 𝛿2),

I�(u0) = 0, ‖u(t0)‖H1 ≠ 0 and J(u(t0)) = d(�), � ∈ (�1, �2).

(2.8)
1

2
‖ut‖2 + J(u) = E(0) < d(𝛿), 𝛿 ∈ (𝛿1, 𝛿2), t ∈ (0,T),

u(t) ∈ L∞
(
(0,∞);H1(ℝn)

)

ut(t) ∈ L∞
(
(0,∞);L2(ℝn)

)
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Proof Let {�j(x)} be a system of base functions in H1
0
(ℝn) . Construct approximate solu-

tions of problem (1.1)–(1.3) as

satisfying

and

Then by the same arguments used in the proof of Theorem 3.2 in [13], for sufficiently large 
m and t ∈ (0,+∞) we obtain

and um(t) ∈ W . From (3.1) and

for sufficiently large m it follows that

for sufficiently large m which implies that

and

From the definition of Ck and (3.3), for sufficiently large m we have

um(x, t) =

m∑

j=1

gjm(t)�j(x),m = 1, 2,⋯

⟨umtt,�s⟩ + (∇um,∇�s) + (um,�s) = (f (um),�s), s = 1, 2,… ,m,

um(x, 0) =

m�

j=1

gjm(0)�j(x) → u0(x) ∈ H1
0
(ℝn)

umt(x, 0) =

m∑

j=1

g�
jm
(0)�j(x) → u1(x) ∈ L2(ℝn).

(3.1)
1

2
‖umt‖2 + J(um) = Em(0) < d

(3.2)
J(um) ≥ 1

2
‖um‖2H1 −

1

p + 1

�
l�

k=2

ak‖u‖
pk+1

pk+1
+ �

ℝn

�u�p1udx −
s�

j=1

bj‖u‖
qk+1

qk+1

�

=

�
1

2
−

1

p + 1

�
‖um‖2H1 +

1

p + 1
I(um) ≥ p − 1

2(p + 1)
‖um‖2H1 ,

(3.3)
1

2
‖umt‖2 +

p − 1

2(p + 1)
‖um‖2H1 < d, t ∈ (0,+∞),

(3.4)‖um‖2H1 <
2(p + 1)

p − 1
d, t ∈ (0,+∞)

(3.5)‖umt‖2 < 2d, t ∈ (0,+∞).

(3.6)‖um‖2pk+1 ≤ C2
k
‖um‖2H1 < C2

k

2(p + 1)

p − 1
d, 1 ≤ k ≤ l, t ∈ (0,+∞).
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From (3.4)–(3.6) and compactness method it follows that problem (1.1)–(1.3) admits a 
global weak solution u(t) ∈ L∞

(
[0,∞);H1

0
(ℝn)

)
 with u

t
(t) ∈ L∞

(
[0,∞);L2(ℝn)

)
 . Finally by 

Lemma 2.8, for t ∈ (0,+∞) we have u(t) ∈ W .   ◻

Theorem  3.2 (Finite time blow up for E(0) < d ) Let f(u) satisfy (H), u0(x) ∈ H1(ℝn) , 
u1(x) ∈ L2(ℝn) . Assume that E(0) < d and I(u0) < 0 , then the solution to problem (1.1)–
(1.3) blows up in finite time.

Proof Arguing by contradiction, we assume the maximum existence time T = +∞ . First, 
for any T > 0 we define

then

and

due to (2.4). From (3.1) and (3.2), we have

Substituting (3.10) into (3.9), we obtain

Now, we consider the following two cases respectively.
(i) If 0 < E(0) < d , then from Lemma 2.8, it follows that u(t) ∈ V� for 1 < 𝛿 < 𝛿2 and 

t > 0 , where �2 is the same as that in Theorem 2.8. Thus I𝛿(u) < 0 and ‖u‖H1 > 𝛾(𝛿) for 
1 < 𝛿 < 𝛿2 and t > 0 . Therefore, we obtain I�2 (u) ≤ 0 and ‖u‖H1 ≥ �(�2) for t > 0 and by 
(3.9), for t ∈ [0, T) we have

then

which shows that there exists a t0 ≥ 0 such that

and

Hence for a sufficiently large t, we get

(3.7)M(t) ∶= ‖u(t)‖2,

(3.8)M�(t) = 2(ut, u)

(3.9)M��(t) = 2‖ut‖2 − 2I(u)

(3.10)2I(u) ≤ 2(p + 1)E(0) − (p + 1)‖ut‖2 − (p − 1)‖u‖2
H1 .

(3.11)M��(t) ≥ (p − 1)M(t) + (p + 3)‖ut‖2 − 2(p + 1)E(0).

M��(t) ≥ −2I(u) =2(𝛿2 − 1)‖u‖2
H1 − 2I𝛿2 (u)

≥2(𝛿2 − 1)𝛾2(𝛿2) > 0,

M�(t) ≥2(�2 − 1)�2(�2)t +M�(0),

M�(t) > M�(t0) > 0

M(t) ≥ M�(t0)(t − t0) +M(t0), t ≥ t0.

(p − 1)M(t) > 2(p + 1)E(0)
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and

Finally, Schwarz inequality tells

then

and

for some T∗ > 0 , which contradicts T = +∞.

(ii) When E(0) ≤ 0 , by (3.11), we obtain (3.12). The remaining proof is similar to the 
case (i).   ◻

4  Global existence and finite time blow up for E(0) = d

Theorem  4.1 (Global existence for E(0) = d ) Let f(u) satisfy (H), u0(x) ∈ H1(ℝn) , 
u1(x) ∈ L2(ℝn) . Suppose that E(0) = d and u0 ∈ W , then problem (1.1)–(1.3) admits a 
global weak solution u(t) ∈ L∞

(
[0, T);H1(ℝn)

)
 with u

t
(t) ∈ L∞

(
[0, T);L2(ℝn)

)
.

Proof We prove this theorem considering two cases (i) and (ii).
(i) In the case ‖u0‖H1 ≠ 0, let �m = 1 −

1

m
 and u0m = �mu0 , m = 2, 3,⋯ . Consider the 

initial conditions

and the corresponding problem (1.1), (4.1). From I(u0) > 0 and (iii), (iv) in Lemma 2.6, we 
have

From (2.1), we replace ‖u0m‖
p+1

L

n
p+1

p+1
(�)

 by I(u0m) to have

From (4.2) and (4.3), we have

(3.12)M��(t) > (p + 3)‖ut‖2.

M(t)M��(t) −
p + 3

4
(M�(t))2 ≥ M(t)

�
M��(t) − (p + 3)‖ut‖2

�
> 0,

(M−𝛼(t))�� =
−𝛼

M(t)𝛼+2

(
M(t)M��(t) − (𝛼 + 1)(M�(t))2

)
< 0, 𝛼 =

p − 1

4

lim
t→T∗

M(t) = +∞

(4.1)u(x, 0) = u0m(x), ut(x, 0) = u1(x)

(4.2)𝜆∗ = 𝜆∗(u0) ≥ 1 and J(u0m) = J(𝜆mu0) < J(u0).

(4.3)
J(u0m) ≥1

2
‖∇u0m‖2 +

1

2
‖u0m‖2 −

1

p + 1 �
ℝn

u0mf (u0m)dx

=
p − 1

2(p + 1)
‖u0m‖2H1 +

1

p + 1
I(u0m) > 0.
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Similar to the proof of Theorem 3.1, we finish this proof.
(ii) We discuss the case ‖um‖2H1

= 0 , which implies J(u0) = 0 and 1
2
‖u1‖2 = E(0) = d . 

Let �m = 1 −
1

m
 , u1m(x) = �mu1(x) , m = 2, 3,… . We take initial conditions

and consider the corresponding problem (1.1) and (4.4). From J(u0) = 0 and (2.6), we have

The remainder proof is similar to part (i) of this Theorem.   ◻

Lemma 4.2 (Invariance of V ′ for E(0) = d , Lemma 2.7 in [22]) Let f(u) satisfy (H), 
u0(x) ∈ H1(ℝn) , u1(x) ∈ L2(ℝn) . Suppose that E(0) = d and (u0, u1) ≥ 0 , then the set

is invariant under the flow of problem (1.1)–(1.3).

Theorem  4.3 (Finite time blow up for E(0) = d ) Let f(u) satisfy (H), u0(x) ∈ H1(ℝn) , 
u1(x) ∈ L2(ℝn) . Assume that E(0) = d , I(u0) < 0 and (u0, u1) ≥ 0 . Then the solution to 
problem (1.1)–(1.3) blows up in finite time.

Proof Let u(t) be any weak solution to problem (1.1)–(1.3) with E(0) = d , I(u0) < 0 and 
(u0, u1) ≥ 0 and T be the maximum existence time of u(t). We prove T < +∞ . Arguing by 
contradiction, we suppose T = ∞ . Recalling auxiliary function M(t) as (3.7) shows and 
from Lemma 4.2, we have

which implies that M�(t) is strictly increasing on (0,∞). Hence for any t0 > 0 , we get

then

Similarly arguments to Theorem 3.2, we derive the conclusion.   ◻

5  Finite time blow up for E(0) > 0

Lemma 5.1 Let u0(x) ∈ H1(ℝn) , u1 ∈ L2(ℝn) and (u0, u1) ≥ 0 . Suppose that u is a solu-
tion of the problem (1.1)–(1.3), then the map {t ↦ ‖u‖2} is strictly increasing as long as 
u(t) ∈ V �.

0 < Em(0) ≡ J(u0m) +
1

2
‖u1‖2 <

1

2
‖u1‖2 + J(u0) = E(0) = d.

(4.4)u(x, 0) = u0(x), ut(x, 0) = u1m(x)

0 < Em(0) =
1

2
‖u1m‖2 + J(u0) =

1

2
‖𝜆mu1‖2 <

1

2
‖u1‖2 = E(0) = d.

V � =
{
u ∈ H1(ℝn)|| I(u) < 0

}

(4.5)M��(t) = 2‖ut‖2 + 2⟨utt, u⟩ = 2‖ut‖2 − 2I(u) > 0, t ∈ (0,+∞),

M�(t) > M�(t0) > M�(0) ≥ 0, t ∈ (0,+∞),

M(t) ≥ M�(t0)(t − t0) +M(t0) ≥ M�(t0)(t − t0), t ∈ (0,+∞).
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Proof Recalling the function M(t) as (3.7) shows and by (3.9) and u ∈ V � , we have

Similarly arguments to Theorem 4.3, we know that M(t) is strictly increasing on [0,+∞) .  
 ◻

Lemma 5.2 (Invariance of the unstable set V ′ for E(0) > 0 ) Let u0(x) ∈ H1(ℝn) and 
u1(x) ∈ L2(ℝn) . Assume that (H), (u0, u1) ≥ 0 , u0 ∈ V � and

hold, then u ∈ V � for all t ∈ [0, T).

Proof We prove u(t) ∈ V � for all t ∈ [0, T) . By contradiction, suppose that there is a 
t0 ∈ (0, T) such that u ∈ N  and I(u(t)) < 0 for all t ∈ [0, t0) . The Lemma 5.1 tells that M(t) 
is strictly increasing on the interval [0, t0) , which implies that

Thus the continuity of u(t) in time tells

Then by (2.2) and (2.5), for t ∈ [0, t0] we obtain

We substitute t = t0 into (5.3) and by the fact that I(u(t0)) = 0 to obtain

which contradicts (5.2). So we complete the proof.   ◻

Theorem 5.3 (Finite time blow up for E(0) > 0 ) Let f(u) satisfy (H), u0(x) ∈ H1(ℝn) and 
u1(x) ∈ L2(ℝn) . Suppose that E(0) > 0 , I(u0) < 0 , (u0, u1) ≥ 0 and (5.1) hold, then the cor-
responding solution u(x, t) of problem (1.1)–(1.3) blows up in finite time.

Proof By contradiction, we suppose that u(t) is global in time. For any T > 0 , from (3.7), 
the Schwarz inequality and (4.5), we obtain

M��(t) = 2⟨u, utt⟩ + 2‖ut‖2 = −2I(u) + 2‖ut‖2 > 0, t ∈ (0,+∞).

(5.1)‖u0‖2 >
2(p + 1)

p − 1
E(0) > 0

M(t) > ‖u0‖2 >
2(p + 1)

p − 1
E(0), t ∈ [0, t0).

(5.2)M(t0) = ‖u(t0)‖2 >
2(p + 1)

p − 1
E(0).

(5.3)
E(0) = E(t) =

1

2
‖ut‖2 +

1

2
‖u‖2

H1 −

l�

k=1

ak

pk + 1
‖u‖pk+1

pk+1
+

s�

j=1

bj

qj + 1
‖u‖qk+1

qk+1

≥1

2
‖ut‖2 +

p − 1

2(p + 1)
‖u‖2 + 1

p + 1
I(u).

‖u(t0)‖2 ≤ 2(p + 1)

p − 1
E(0),
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where

By (5.3), we have

We substitute (5.6) into (5.5), by Lemma 5.1 and (5.1) to obtain

then

for a constant 𝛿 > 0 . On the other hand, the Lemma 5.2 tells that I(u(t)) < 0 for all 
t ∈ [0, T) . Similar arguments in Lemma 5.1, we know that M(t) is strictly increasing on 
[0, T). The continuity of u(t) in t tells

for a constant 𝜌 > 0 . Hence from (5.4) and (5.7), we have

Then similar arguments in the proof of Theorem 3.2, we achieve the conclusion.   ◻
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